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Abstract This paper presents an analysis of planar
bearing localization and mapping for visual servoing
with known camera velocities. In particular, we
investigate what is the subset of camera locations and
environmental features that can be retrieved from
dynamic observations obtained by a planar bearing
sensor (nearly e.g., a pinhole camera). Results assume
that the camera’s linear and angular velocities are
available, which is equivalent to consider a unicycle
vehicle carrying an onboard camera. Results hold if
other system
omnidirectional vehicle. The theoretical results may
guide the design of nonlinear observers to estimate the
variables of interest in real time to be applied to visual
servoing schemes. An example of such an observer is
discussed and simulated.

inputs are considered, e.g., an

Keywords Camera, Localization, Mapping
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1. Introduction

Vision systems are versatile, powerful, and cheap,
providing a minimal sensing framework for dealing with
fundamental robotic problems such as localization,
environment mapping and robot motion. A quite
accurate measurement that can be collected from a vision
system is the horizontal bearing. This paper aims at an
analytical description of the information, i.e., robot
locations  (localization problem) and
landmark positions (mapping problem), that can be
inferred from observed landmarks with planar bearings.

environment

It is well known that the observability of localization and
landmark positions, a problem known as Simultaneous
Localization and Mapping (SLAM), is granted when
using stereo cameras [1]. With known configuration of
the stereo pair, observability is preserved even in the
static case [2]. This fact is mainly due to the stereo camera
capability of providing more than just scene appearance
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by capturing three-dimensional images, undoubtedly more
informative than images grabbed from monocular cameras.
However, the larger amount of information is obtained at
the cost of an increased complexity of the system, for
which fine calibration of the stereo pair as well as a
complex image processing algorithm are unavoidable.

In order to bound the system complexity, we are aiming
at determining the minimal amount of information
needed by a vision system in order to solve the
localization and mapping problem. In particular, we
analyze images coming from a monocular camera fixed
on a robot chassis in order to retrieve planar bearing
measurements and then retrieve the system observability
(the knowledge of the system inputs is given for granted).
In the case of vision problems, the observability problem
is the first and main question to investigate in order to
verify in which conditions visual servoing is a possibility.
In this respect, some results have been presented in
literature, in which the observability is treated by design
in a monocular SLAM for servoing approach as in [3], [4].
This paper follows a different direction by analyzing in
details the observability and mapping problems as a
function of the knowledge of the position of the observed
features.

While the observability question can be investigated
using system-theoretic tools [5], a specific approach for
vision problems has been presented only recently. The
first observability analysis of the monocular SLAM
problem using planar bearing measurements has been
discussed in [6], [7], where landmark positions are
considered known. Among the others, a characterization
of the observability analysis have been presented in [8]
for bearing only measurements with unknown landmark
motions, in [9] for multi-robot localization and in [10] for
on-line parameter identification and odometry self
calibration. In [11] only one landmark is used for
localization, assuming that vehicle orientation w.r.t. a
fixed reference frame is available.

The knowledge of the input signals is not necessary for
localization if structure from motion (SFM) [12]
techniques are adopted. In such a case, the camera
trajectory in space is reconstructed from a series of
images. Building a map using SFM is time-consuming
and hence it is usually carried out off-line, while
localization with SFM is faster if the map is previously
built. An alternative interesting method, called Visual
Odometry, has been proposed by Nistér [13], [14], where
performed through
landmarks tracking. This way, stereo or simple cameras
motion can be computed in real time using only visual
data.

motion estimation is selected

In practice, the main difference between visual odometry
and SFM is that the latter was originally conceived an off-
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line algorithm. However, apart from the implementation
differences, from a theoretical point of view monocular
visual odometry and monocular Visual SLAM [15] can
both be seen as a particular solution of SFM. One
drawback of SFM, and visual odometry as well, is the
strong assumption on the environment and on the camera
motion: both assume the rigidity in the scene and the
constant velocity of the camera along its trajectory.
Preliminary results that overcome these assumptions
have been presented in [16] , where an unknown input
observability analysis is proposed for measurements
taken from 3 known landmarks, without any other
information.

In this paper a detailed and complete analysis of the
localization and mapping observability problem
assuming planar bearings is presented following the
same methodology of [16] and assuming general
configurations of the observed landmarks with both
known and unknown positions. Configurations that are
not observable are decomposed in Kalman Form, in order
to have a clear picture of the observable and
unobservable spaces. For the best of the authors
knowledge, this is the first attempt of planar bearing
SLAM analysis that takes into account all the different
aspects of the problem. Theoretical results are verified via
simulation adapting the nonlinear observer presented in
[16]. A remarkable difference with respect to [16] is the
relaxed assumption on the knowledge of the camera
velocities. Indeed, results apply whenever at least the
camera’s linear and angular velocities are available,
which is equivalent to consider an unicycle vehicle
carrying an onboard camera. However, all results still
hold if additional system inputs are available, e.g., an
omnidirectional vehicle.
applicable to a range of problems, in particular, to visual
servoing.

The presented results are

2. Problem definition
2.1 System Dynamics

Consider a vehicle, whose configuration is denoted by
fr:(xr,zr,Hr)w.r.t. a fixed reference frame <W>,that
moves on a plane in an unknown environment with the
aim of mapping the object point features (or landmarks)
and localizing itself with respect to the mapped
environmental features. Adopting the notation presented
in [6], these landmarks are distinguished between those
belonging to objects with unknown position, named
targets, and those belonging to objects whose absolute
position w.r.t. <W> is known, which are called markers.
We will refer to ¢ =(§trl,...,§t/N) as a vector with all N
targets and & :( m,Nﬂ,...,fm’N,rM) as a vector with all M
markers. Wherever necessary, we use the notation *, to
specify that the variable refers to a target and *  to
specify that it refers to a marker.

www.intechopen.com



The observability problem under analysis is considered in
different configurations regarding the number of known
and unknown landmarks being observed. The system
state variable of the problem at hand comprises the
vehicle configuration and the unknown position of the N
targets &= (fr,ft) = (§r,§t/1,...,§t,N) with
é = (fr,O,...,O) (targets are motionless in<W> )By noticing
that the observable space for a unicycle-like vehicle is a
subset of that of an omnidirectional vehicle (the
difference is related to the presence of an additional input
velocity field), the analysis is carried for the unicycle
vehicle. Therefore, assuming that the dynamics are slow
enough to be neglected, the vehicle kinematic model is
given by & =f (ér) = [gf g, |u, where
. T T T
g = [COSHr,SlnHr,O] ;8= [0,0,l] and u, :va,w] are
the control inputs, i.e., the linear and the angular velocity
respectively.

dynamic

We consider vehicles equipped with a sensor head
measuring the angles in the horizontal plane between the
line joining the landmark with the head position and the
forward direction of the vehicle (see Fig. 1). Of course, a
vision system equipped with a simple point feature
detection and tracking algorithm falls into this category.
The measurement process is modeled by equations of the
form

X=X

Vi :hi(gr,gi):arctanZ{Zr _ZiJ_er”r' @)

where P, = (xi,zi) describes the absolute position of the i-

th landmark (see Fig. 1). For N targets and M markets, the

system output is thus defined as

Y :(ytll,ytlz,...,yt,N,ymlNﬂ...,ymle).Note that equation
(1) is not defined whenever vehicle and landmark
positions coincide.

Wz
F x })é
vs
br
20 _ ____ N
i v
: <W >
wo T i W x

Figure 1. Fixed frame < W >, vehicle state (XI,ZI,Hr ),
generalized velocities (V Iz Vh,a)), input disturbances

(df/dh/dw) and i landmark position P, = (Xi'Zi)'
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2.2 System Observability

Let us consider a generic continuous time-invariant
control  affine  system = f({ ) + G(§ )u with  system
outputs y = h(& ), where the vector field f is the drift and
the matrix G represents the m input velocity fields
G:(gl,...,gm).Let the ith Lie Derivative of a covector
field w(é) along a vector field f (f) be given by L(fi)a) and
let the i lie derivative of a generic codistribution
Q= [wl w, ]T along a  distribution A :[fl £, ] be
given by L(Z)Q.

Let Ay =(£,81,+/8p ), and Q = 0.h(¢) be two
codistributions. By applying the following iterative
formula:

Ot =% +Ly O, @

the system observability codistribution dC(£ ) =span [QOJ
is derived, where Q_ is the observability matrix. In [17] it is
demonstrated that a nonlinear system is locally weakly
observable if the observability —rank
rank(Qoo) = dim(f ) is verified. The analysis here
proposed makes use of this notion of observability.

condition

In the rest of the paper we will refer to ol as the i-th
submatrix of Q that corresponds to the i-th level of Lie

T
Bracketing of (2),i.e., O = [Q(O),Q(l),...,ﬂ(kq . Whenever

necessary, we will make explicit reference to the terms in

Q(i), ie., Q(i) = [551 LAzh(f),a52 LAZh,...J, for a given
£=(&,4)-
2.3 Local Decomposition

If a control affine system is not observable in the sense of
rank condition [17], there exists a coordinate mapping
(= (D(£ ) for which it can be decomposed into observable
and unobservable subsystems as follows:

éa =1 (Co/C6)+g6(<of<6)u
éo = f0 (Co)+g0 (Co)u 4 (3)
y=h,(¢)

where the observable state, i.e., the one that satisfies the
rank condition, is given by ¢ and the unobservable state
is given by (5. The local decomposition for linear systems
was originally dubbed Kalman observable canonical form.

3. Planar bearing SLAM observability

In this section the planar bearing SLAM observability
problem assuming the knowledge of the control inputs is
discussed. The results here reported extend those in [6]
by detailing all possible cases from 3 + N markers to 3 + N
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targets, thus including the unobservable cases and the
related Kalman Form decomposition.

3.1 Codistribution form

A generic form for the observability codistribution of the
systems under investigation is

ol
a=|aol

01 [ by 9ghy

| : | \
0, LlVh, o LWh, ®

In all cases, the rank of the observability codistributions
reaches its maximum within the first level of Lie
differentiation.

3.2 Observability Analysis

Each feature configuration is now analyzed separately.
Before going into details, we recall that the state space of
a vehicle moving on a plane has dimension 3, while each
landmark has 2 variables w.r.t. the plane of motion.

1. Case A: 3 or more markers: The observability
codistribution rank is equal to 3 for ol , which
means that the system is locally weakly observable
with level 0 Lie bracketing. Therefore, apart from
singular configurations, the problem is statically
invertible and reconstruction does not depend on
system inputs. Singular configurations are easily
determined by analyzing where the codistribution
rank is less than 3.

2. Case B: 2 markers: After 1 level of Lie differentiation,
the observability codistribution rank reaches its
maximum of 3, apart configuration
singularities, and the system is completely locally

from

weakly observable. The problem is not statically
invertible, only
possible under vehicle motion.

3. Case C: 1 and a half markers and half target: For this
case, the output function is given by the
measurements from two landmarks: one landmark
position is completely known (marker); the other
landmark position is partially known (half marker),
i.e., only one of the 2 plane coordinates is assumed to
be known. Without loss of generality, we will assume
that the coordinate z, (half marker) is known while
X, is unknown (half target). Hence the state space to
reconstruct is § = (ér,xl),while the system output is
y= (Y1’Ym,2)' After 1 level of Lie differentiation, the
observability  codistribution rank reaches its
maximum of 4, apart from configuration
singularities. Hence, all state variables from ¢ are
locally weakly observable, as the Case B.

4. Case D: 1 marker: After 1 level of Lie differentiation,
the observability codistribution rank reaches its

instead state reconstruction is

Int J Adv Robotic Sy, 2013, Vol. 10, 197:2013

maximum of 2, apart from configuration
singularities. Hence, ¢ is not fully observable and the
unobservable space dimension is 1. From geometric
analysis, the unobservable space is given by a

circumference centered in the marker.
Kalman form decomposition

Consider a reference frame <P> = {PO, PX, I)Z} (see Fig. 2)
such that its origin " O coincides with the position of the
feature P, = (X1IZ1) and axes "X and T Z are parallel to axes
WX andWZ respectively.  Moreover, consider the
coordinates mapping ( = dD(f ) = [p, ﬂ,d)]T described by
® =R*xS - R xS?, which maps the pose displacement
between £ and P, in polar coordinates w.r.t. <P>, ie.,

Wz
4
4
1
1
1
1
1
1
! &r
1
1
1
i
RS Ve Ix
o~
; < P
H “rx
"o = <W>

Figure 2. Reference frame <P> with axes parallel to <W> and
vehicle configuration represented using polar coordinates

Jxo=x ) 4z -2, )

p
¢=o(g)=| 8= tan"l(zr_Z]J—Or+7r G

Xp =Xy

iz -z
tanl(rlJ
Xr_xl

where p represents the cartesian distance from the vehicle
to the pointP,3 represents the angle displacement
between vehicle orientation and the line that passes
through point P, and vehicle position and ¢ represents the
angle formed by the vehicle with both axes”Xand " X.
Notice that the polar coordinates transformation is
undefined  for p =0. Vehicle polar
coordinates is then given by

kinematics on

(= ' vi+|-1|o. (6)

www.intechopen.com



We are now in a position to decouple observable and
unobservable subsystems. Indeed, under such coordinate
transformation, the system output becomesyz(ﬁ).For
p=0and after 1 level of Lie differentiation, the
observability codistribution for ¢ is

0 1 0
Q= _sm(ﬂ) _cos(ﬁ) ol
P’ p

whose null space is given by Ker(Q)zspan([O,O,l]T .
Therefore, the observable subsystem is ( = (p, ﬁ) and the
unobservable subsystem is (5 =(¢).In other words, the
vehicle is able to determine its distance p to the feature
and the angle 5 by which it sees the feature, but its
orientation ¢ with respect to a generic reference frame
attached to the plane of motion remains unknown.

5. Case E: Half marker and half target: We are now
interested in a robot whose output measurements
consist of two landmarks: one landmark has a
position that is partially known. Without loss of
generality, the coordinate z, (half marker) is assumed
known while x1 is unknown (half target). Again, the
state space iséz(ﬁr,xl)and the system output is
y:(yl).After 1 level of Lie differentiation, the
observability  codistribution rank reaches its
maximum of 2, apart from configuration
singularities. Hence, {is not observable, while the
dimensions of the observable and unobservable
spaces is 2.

Kalman form decomposition

With reference to the reference frame <P> presented in
section 3.2 .4 and Fig. 2, consider the coordinates
transformation ¢ = CD(§ ) = [ p,ﬂ,qﬁ,xl]T described by
®=R>xS > R" xR x S%,ie, the mapping to polar
coordinates (5) plus the half target coordinate. Notice that
x, corresponds to the unknown horizontal translation
from originOpto  origin O, along”X.The  system
dynamics ¢ is (6) plusx, =0and system output is again

y=(8).

Using the new set of coordinates, after 1 level of Lie
differentiation, the observability codistribution for ¢ is

0 1 00
Q= sm(ﬂ) cos(ﬁ) ,
- 00
P’ p

whose null space is Ker(Q):span([OzXz,;]),where we
use the notation 0,; to represent aixjmatrix of zeros and
Ian identity matrix of dimension i. As in section 3.2. 4,
the observable subsystem is( = ( 0,0 ) and  the

www.intechopen.com

unobservable subsystem is (5 = ((b,xl),which means that
the horizontal translation x, between O, and Oy, is
unobservable.

6. Case F: 1 target: After 1 level of Lie differentiation, the
observability  codistribution rank reaches its
maximum of 2, apart from configuration
singularities. { is not completely observable and the

unobservable space dimension has 3.
Kalman form decomposition

With reference to Fig. 2, consider again the frame <P> and
the mapping( = @(f) = [p,,@,@,xl,zl]T described by
®=R*xS > R*"xR?xS%. As in section 3.2. 5, (X1/Z1)
corresponds to the position of the origin O, w.r.t <W> The
system dynamic has an additional variable z; =0 and the
system output isy = (ﬂ)

Using the new set of coordinates, after 1 level of Lie
differentiation, the observability codistribution for ¢ is

0 1 000
Q= _sin(ﬂ) cos(ﬂ) ,
o’ P00 0

whose null space is given by Ker(Q):span([03X2,]3'])
and we can conclude that the observable subsystem is
(= (p,ﬁ) while the subsystem is
(5= [qﬁ,xl,zd, i.e., angle¢and origin POw.r.t. world
frame <W> are not observable, similar to section 3.2. 4.

unobservable

7. Case G: 2 targets: After 1 level of Lie differentiation,
the observability codistribution rank reaches its
maximum of 4, apart from singularities. Hence, £ is
not fully observable, with an unobservable subspace
dimension of 2.

HZ
x £
t
TN
[ N e
Cor o
] N N oo
o
-
¥ oar \ ‘
\ i
\ .n’.
\ S 3 PR N
\ J . "
: S
\ . -
\ / P2 N=T Pus
N .,'. - s
v - Pga
z1[. 1__{:'},:"919
PO
. X
W - T -
a ! < W >

Figure 3. Reference frame <P> of 2 targets problem.

Kalman form decomposition
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Consider a reference frame<P>={Y0,"X,PZ! such that
its origin"Ois coincident to the position of the feature
P, = (xl,zl) and axis¥Xis coincident to the line that
passes through P, and P, , with direction from P, to P, (see
Fig. 3 for reference). Orientation of <P> w.r.t. <W> will be
denoted ¢, ,. Position P, w.r.t. <P> will be described by
PP2 = sz,O and vehicle configuration will be described
asP§r =(er, ZrPHr).

Consider the coordinate transformation
¢ = (er,Pzr Pﬁr,sz,xl,zl,(pm)
®=R®xS > R®>xS? and defined as

(xr - xl)cos[tan_l ( 55 J] + (zr - zl)sin[tan_l ( L% J]
(zr - zl)cos[tanl [::n - (x,r - ><1)sin(tan1 [:: ::: ]]
0 - tan’l[zz i J
X =X

given by

¢= T :
(x2 - xl)cos(;i)m) + (Zz -z )sin(;i)]lz)
X
Z
tan ™ (—ZZ ~* j
for which system dynamic yields

¢ = (cos(P6’r)Vf,sin(PQr)vf,O,...,O) and system

becomes
P
- Pﬁr +tan ! ==
PX

. .
T— Pﬁr +tanH — 2
I)X - PXZ

T

output

y:

® is a not a global diffeomorphism since it is not defined
if the robot is on the feature position P;. Moreover, & is
not defined ifo2 =0,i.e., the features are coincident,
which is the Case F. After 1 level of Lie differentiation,
the observability codistribution for ¢ is:

ag‘hl 0

00 0

| %ha O g g

obhi 9 000

R

where:

. Paz. . Pax,, dan PAz_,
= - 7 2 7
g i Pprl Ppr,iz [ Ppr,22

Int J Adv Robotic Sy, 2013, Vol. 10, 197:2013

[ 2F AmeAzm cos([’é’r)+ (P Az, ; +F Ax; )([ Az, - Axr,i)sin(lyﬁr)

r, ,14
oL, - 2"Ax, PAz, sin( PH,) +(P Azr;;; 4AXr,; )(I)Az,,i - AX,,;)COS(PQ)
i
r AXx, ; cos ( I’Hr ) +F Az, ; sin( [’Hr )
P pmz
5@ Lih, = (—ZPAXLZPAZL2 cos(@r ) - ( PAzr[;Z +P4A)<n2 )( I)Azrl2 _r AX, ) sin(:9r )) 4

Pr

The null space of Q is Ker(Q) = span([i)3 4,5]‘), hence the
observable subsystem is given by {, =("x,, z, Hr,sz)
and the unobservable subsystem is ¢ =(x1,zl,¢l/2).1t is
worthwhile to note that the observable subsystem ¢ of
the 2 target problem is equivalent to the system
investigated in the 1 and a half marker problem if one
considers the z position of the half marker zero.

3.3 Extension of results

Results presented in this section are extended to any number
of targets. Let¢" = (5r/5t,1/~-/§t,N) be a generic system. The
system that describes the same problem with additional L
targets will be written as ¢ = (5*,§t’N+M+1,...,§t,N+M+L). We
will use the notation “whenever we refer to quantities related
to the original system ¢*.

Proposition 1: Consider a system ¢ = (gr,gtrl,...,gtrN), for
which the dimension of the observable space is given by
dim (( 0*) =K. Now, consider a system
&= (5*,§t’N+M+1,...,§LN+M+L) that comprises " and L new
targets. The dimension of the observable space of ¢ is dim
(¢,)=K+L.

Proof: Given a generic observability codistribution Q"
associated to ¢* :
Q0
Q=

the correspondentQ (associated to¢) that consider the
same problem with N new targets can be written as

Qv 0

QO)
Q= o |

. Qtl)

where
0, Ly, 0
Qt i) _ 0 a.»;t/lLA(i)ht,z
0 0
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Given that{QtO),Ql) has rank 2, we can conclude that
rank (Q)Zrank (Q* +L.

M |0 000 1 1 1 23+M
2 2
N |p4N 211 00 N 0 N
2

1 111 11 0 10
no|742N 754 34 4+N 3 3+2M+2N
n, [4+2N 422 24 4+N 3 3+2M+2N
n63 332 10 0 00

Table 1. Observability analysis summary: M — Number of
markers; N - N Number of targets; K - Minimum level of lie-
bracketing required to cover observable space; 1 — System
dimension; n,- Observable space dimension; ng- Unobservable

space dimension.

Table I presents an overview of the results obtained in
this section for any number of targets.

4. Results

Theoretical results were evaluated by simulations,
implementing the nonlinear observer described in [16] to
reconstruct the observable space of the cases analyzed in
section 3. Simulation results for arbitrary configurations
are summarized in Fig. 4. Notice that the nonlinear
observer converges in all cases, hence it always succeeds
in reconstructing the observable space.

In particular, when only one landmark is being observed
(Case D,E and F), the observable subsystem is(_ = (p, 6)
where p represents the cartesian distance of the vehicle
from the landmark and 3 represents the bearing angle
between the vehicle orientation and the landmark. The
unobservable space in these cases is the angle ¢ formed

Corollary 1: If&'is completely observable then¢is ) — .
by the vehicle position and any arbitrary reference frame
completely observable. ™~ 1
and the position of the landmark if it is a target.
3 b 3 = J{
Case B Case C Case D
= :\ |
= = 4
-1\ / g g
Case E Case F Case G
Figure 4. Observed state errorse_ =¢ - 50
+ comtrol ” wehicle dynamics
T
{0,0,0} c()
desired pose . "
- ﬁ" H (‘Ef":- ‘Eh ‘Em]
C observer Image measurements

estimated pose
{in polar coordinates)

Figure 5. PBVS Visual Servoing Scheme
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When 2 landmarks P, and P, available (Case B, C, G), the
observable subsystem is
¢, = (er, Pzr, PHr, le, le, sz, Pzz, Px3, Pz3,...) where
<P> is a right-handed coordinate frame whose origin is
coincident with the position P, and axis "X parallel to the
line that passes through P, and P,.If 3 or more landmarks
are known (Case A), static complete observability is
available, otherwise full observability is reached after 1
level of Lie differentiation. The unobservable space
concerns the coordinate transformation between frame
<P> and world frame <W>.This coordinate transformation
is completely unobservable if all landmarks are targets
(Case G), while it is completely observable when at lest
three coordinates of the landmark positions are known
(Case C), e.g., position of P and orientation of the line
passing through P, and P, w.r.t. <W>

4.1 Visual Servoing

In this section we validate the use of the nonlinear
observer described in [16] in a Position Based Visual
Servoing scheme (as seen in Fig. 5) for the case of
measuring 3 markers (as seen in section 3.2. 1). The
controller ~used is the Visual-Servoing with
Omnidirectional Sight as presented in [18].

Ctiservae Sute Euvie Posiion Bt

s w1 2 = = = aw 5 10 %5 ® @ = =\ 4 &
' t

a) b)

tmtizn v ) Trajpesry

c) d)

Figure 6. Visual Servoing Results: Observer error e (a); Position
error: distance from desired position (b); Orientation error (c);
and vehicle trajectory

The desired configuration of the robot is considered to be
coincident to the origin of the world framehWi. The initial
configuration  is £ = {100 cm,100 cm,0°}.
Landmark positions, control and observer constants are
arbitrarily chosen. Measurement noise is not considered.

vehicle

Results can be seen in Fig. 6. The simulation clearly
shows that the pose regulation is successfully achieved.

Int J Adv Robotic Sy, 2013, Vol. 10, 197:2013

5. Conclusions and future work

In this paper we have presented a complete observability
analysis of the planar bearing only localization and
mapping problem for all configurations of landmarks
with known (markers) and unknown position (targets).
Theoretical results are supported by simulations.

Future work will concentrate mainly on the singularity
analysis and on observability without input knowledge.
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