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Abstract—Next-generation Phasor Measurement Units (PMU)
are expected to be more accurate than existing ones, especially
to address the stricter requirements of future active distribution
grids. From this perspective, the influence of acquisition wideband
noise (which includes multiple contributions both in amplitude
and in phase) has to be carefully evaluated. In this context,
the contribution of this paper is twofold. First, it provides a
general framework to evaluate the effect of wideband noise on
synchrophasor amplitude, phase, frequency and rate of change
of frequency (ROCOF) estimation. The results of this analysis
show that the influence of wideband noise can become critical
for compliance with the requirements reported in the IEEE
Standards C37.118.1-2011 and C37.118.1a-2014, especially for
frequency and ROCOF estimation. In addition, the paper reports
general guidelines to choose the PMU effective resolution and
sampling rate for which the impact of wideband noise on both
P Class and M Class PMUs is negligible.
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I. INTRODUCTION

In future distribution networks, the increasing diffusion of
distributed energy resources (possibly equipped with energy
storage) and the potential bidirectional power flows caused by
large variations of load and generation profiles, will require
high-accuracy instruments able to measure the amplitude,
phase, frequency and rate of change of frequency (ROCOF)
of electrical waveforms in real-time [1]. The so-called Phasor
Measurement Units (PMUs) are expected to play a central role
to this end [2]. Most of the algorithms proposed in the last few
years are conceived not only to mitigate the effect of steady-
state disturbances, but also to track dynamic oscillations in
amplitude and in phase. While the techniques based on the
Interpolated DFT (IpDFT) and its variants can compensate
mainly the effect of static or quasi-static off-nominal frequency
deviations [3]–[5], the dynamic models relying on the Taylor’s
series expansion of the synchrophasor can be successfully used
to estimate its derivatives with respect to time, thus improving
accuracy even in non-stationary or in transient conditions [6]–
[8]. Moreover, synchrophasor, frequency and ROCOF can be
estimated together, possibly using a single data record [9]–[13].
At the moment, the main reference documents to test and to
compare PMU performances are the IEEE Standard C37.118-
2011 and the IEEE Amendment C37.118.1a-2014 [14]–[16].
However, the effect of wideband noise on PMU measurement

accuracy is not included in the testing conditions, probably
because it is implicitly supposed to be made negligible at
the design level. As a consequence, the effect of wideband
noise on PMU synchrophasor estimation algorithms has been
analyzed just marginally in the scientific literature, either
using simulations (e.g. to evaluate the performances of specific
algorithms [17], [18]) or in experimental testbeds (e.g. for
calibration purposes [19], [20]). However, in view of deploying
the PMUs in distribution systems, the accuracy of phase,
frequency and ROCOF measurements has to be considerably
improved with respect to current standard limits [21]. Thus, the
effect of noise can become relevant. For instance, the accuracy
required for phasor angle measurements can be even smaller
than 1 mrad [22] and the impact of noise has to be reduced,
as emphasized in [23], where an algorithm based on the DFT
and two bandpass filters is proposed to this purpose. Moreover,
since frequency and ROCOF are defined, respectively, as the
first and the second derivative with respect to time of the
waveform instantaneous phase, they are expected to be quite
sensitive to wideband noise, although the actual impact of such
noise on estimation accuracy depends of the adopted algorithm.
Some PMU manufacturers have recently pointed out that quan-
tization, thermal noise and other noise sources affecting the
input section of a PMU can significantly affect measurement
accuracy [24], [25]. Nevertheless, a theoretical analysis of the
impact of noise on synchrophasor amplitude, phase, frequency
and ROCOF estimation is basically missing in the literature.
This paper contributes to fill this gap by extending the prelim-
inary analysis presented in [26]. First, Section II shows how
signal-to-noise ratio, estimation algorithm properties and data
acquisition parameters affect measurement accuracy. In Section
III some meaningful simulation results confirm the correctness
of the theoretical analysis in different testing conditions. Then,
Section IV provides general guidelines to keep the impact of
noise under control for both P Class and M Class PMUs.
Finally, Section V concludes the paper.

II. THEORETICAL ANALYSIS

A. Waveform model
As known, a PMU is conceived to measure the phasor,

the frequency and the ROCOF of a voltage or a current
waveform at a reference time tr synchronized to the UTC.
To this aim, a PMU has to process the data collected within
observation intervals of settable duration. In particular, each
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interval typically comprises approximately an integer number
C of waveform cycles at nominal frequency f0 (equal to 50
Hz or 60 Hz) [8], [14]. Let us assume that each observation
interval includes N samples. If fs is the sampling rate of
the PMU and M = fs

f0
is the number of samples within a

single nominal waveform period, then N ∼= C ·M . Thus, the
waveform collected by a PMU within the r−th observation
interval (with r integer) can be modeled as follows:

xr(n)=Ar(n) cos
[
θr(n)+ηp(n)

]
+ εhr

(n) + ηa(n) (1)

where:
• −N−12 ≤ n ≤ N−1

2 (for N odd) or −N2 ≤ n ≤ N
2 − 1

(for N even), since the reference time, at which syn-
chrophasor, frequency and ROCOF are measured, lie
exactly in the center of the r−th observation interval;

• Ar(n) = A · [1 + εar (n)] is the waveform amplitude
given by the superimposition of the mean value A and
the intrinsic oscillations described by εar (n);

• θr(n) = 2π
M(1+δ)n+εpr (n) + φr is the instantaneous

phase of the waveform which depends on:
- the initial phase φr at reference time tr;
- the intrinsic phase changes εpr (n);
- the angle resulting from the phasor rotation at normal-
ized frequency 2π

M(1+δ), with δ being the off-nominal
fractional frequency deviation;

• ηp(n) is a zero-mean random variable modeling the
phase noise due to both sampling jitter and time syn-
chronization uncertainty;

• εhr (n) includes the steady-state disturbances due to nar-
rowband (i.e. harmonic and inter-harmonic) components;

• ηa(n) is a zero-mean additive wideband noise due to
the signal acquisition stage of the PMU, although it
may also include other possible wideband disturbances
superimposed to the input waveform.

Note that the signal model (1) relies on the definition of syn-
chrophasor, as it is reported in the IEEE Standard C37.118.1-
2011 [14]. If, for instance N is odd, the quantities of interest
are: the waveform amplitude Ar(0), phase θr(0), frequency
fr(0) = 1

2π
dθr
dt and ROCOFr(0) = dfr

dt at the reference time
tr. In the rest of this paper, such quantities will be shortly
denoted as: Ar, θr, fr and ROCOFr. Since PMUs are also
supposed to track the evolution over time of such quantities,
Ar(n) and θr(n) in (1) can be regarded as measurands, while
ηp(n), εhr (n), ηa(n) represent different types of disturbances.
Till now, ηp(n) and ηa(n) have seldom been included in
synchrophasor measurement models because, as stated in the
Introduction, the effect of such contributions has been usu-
ally assumed to be negligible with respect to both intrinsic
amplitude and phase fluctuations or steady-state disturbances.
However, if the estimation algorithms are able to mitigate
the impact of such contributions, then the effect of noise can
become significant. In addition, under the realistic assumption
that |ηp(n)| is small, amplitude and phase noises tend to sum
up. This can be easily shown by expanding (1) as follows:

xr(n) ∼= Ar(n) cos θr(n)+εhr
(n) +η(n), (2)

where η(n) = ηa(n) − ηp(n)Ar(n) sin θr(n) is the total
additive noise given by the sum of two zero-mean and

uncorrelated random sequences. Consider that both ηp(n)
and ηa(n) result from the superimposition of a variety of
wideband contributions. Thus, both terms can be reasonably
assumed to be normally distributed because of the central limit
theorem. As a result, to a first approximation η(n) exhibits
a Gaussian distribution, as well. It is important to emphasize
that η(n) includes not only the quantization noise, but also the
electrical noise due to the analog front-end, the intrinsic noise
superimposed to the input signal and also the phase noise. In
particular, it has been recently observed that the phase noise
can be so critical as the amplitude noise [25].

B. Noise effect analysis
The purpose of the theoretical analysis described in this

section is to provide proper closed-form expressions describing
how synchrophasor, amplitude, phase, frequency and ROCOF
estimation uncertainties depend on various quantities including
the total Signal-to-Noise Ratio (SNR). This is the ratio between
the power of the collected sinewave and the power of the
additive noise sequence η(·) defined in (2).

In general, the variance of any unbiased estimator of the
parameters of a noisy waveform is larger than a threshold. One
of the most widely used thresholds is the so-called Cramer-Rao
Lower Bound (CRLB) [27]. In a multi-parametric estimation
problem, the CRLB expressions actually depend on the number
of parameters to be estimated. In the specific context of PMUs,
the estimation algorithms have to be natively able to track
power waveform variations. To this purpose, four parameters
have to be estimated, i.e. synchrophasor amplitude, phase,
frequency and ROCOF. Currently, two main categories of
estimators exist, i.e. those based on the assumption that the
synchrophasor parameters do not change significantly within
an observation interval (static models), and those relying on the
assumption that all synchrophasor parameters are functions of
time (dynamic models). The main difference between them is
that the former category does not allow to estimate the ROCOF
using a single data record, as the waveform frequency is im-
plicitly assumed to be constant within an observation interval.
In such conditions, the CRLBs associated with the estimation
of amplitude, phase and frequency only could be derived [28].
However, such CRLBs are not very useful in practice, since
they refer to ideal conditions in which the ROCOF is assumed
to be zero, which is not very realistic in power systems. For
this reason, the CRLBs of unbiased estimators of all four
parameters will be considered in the following as a reference
for accuracy evaluation and comparison.

In this respect, if η(·) is a zero-mean normally distributed
white noise over the band [− fs2 ,

fs
2 ], it is shown in Appendix A

that the CRLBs for any unbiased estimators of synchrophasor
amplitude, phase, frequency and ROCOF are respectively

CRA∼=
A2

SNR ·N
∼=

A2

2 · SNRB
1

C
, (3)

CRθ∼=
9

4

1

SNR ·N
∼=

9

8

1

SNRB

1

C
, (4)

CRf ∼=
3

π2

f2s
SNR ·N3

∼=
3f20
2π2

1

SNRB

1

C3
, (5)
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CRR∼=
180

π2

f4s
SNR ·N5

∼=
90f40
π2

1

SNRB

1

C5
, (6)

where the three classic PMU design variables, i.e. fs, N and
SNR are replaced by C ∼= N/M and SNRB = SNR · M2 .
This choice is justified by the fact that, while C and SNRB are
independent, fs and N are not, as N ∼= C fs

f0
is related to both

C and fs. Note that, while C affects also estimation latency
and responsiveness, SNRB represents the Signal-to-Noise
Ratio within [−f0, f0]. Indeed, if η(·) is assumed to be white
over [− fs2 ,

fs
2 ], the amount of noise power included within

[−f0, f0] is a fraction 2f0
fs

= 2
M of the total wideband noise.

Hence, [−f0, f0] can be also regarded as the minimum possible
band of an ideal anti-aliasing filter, thus justifying the physical
meaning of SNRB . Equations (3)-(6) show compactly that the
effect of noise can be kept under control by increasing C or
the Signal-to-Noise Ratio within the band [−f0, f0].

It is important to remind that when just amplitude, phase
and frequency can be estimated using a single data record (i.e.
in the case of estimation algorithms based on synchrophasor
static models), the corresponding CRLBs are partially different
from (3)-(5). In particular, while the CRLBs for amplitude and
frequency estimation are the same as (3) and (5), respectively,
the CRLB associated with phase estimation of a real-valued
sinusoid in the center of the considered observation interval is
4
9 of (4) [28].

Unfortunately, expressions (3)-(6) are not immediately suit-
able for a comparison with the requirements of the IEEE Stan-
dards. In fact, different accuracy parameters for synchrophasor,
frequency and ROCOF measurements are defined in [14], i.e.
• the Total Vector Error (TVE)

TV Er =
|Ârejθ̂r −Arejθr |

|Arejθr |
; (7)

• the Frequency Error (FE)

FEr= |f̂r − fr|; (8)

• and the Rate of Frequency Error (RFE)

RFEr = | ̂ROCOF r −ROCOFr|. (9)

where index r refers the r−th observation interval and the
“hat” symbol denotes the estimated quantities. Observe that the
values of TV Er, FEr and RFEr in the presence of wideband
noise change randomly from record to record. Therefore, (7)-
(9) can be regarded as random variables. Since they are non-
negative by definition, their mean value is larger than zero,
even when the estimators of amplitude, phase, frequency or
ROCOF are statistically unbiased. Thus, proper relationships
between (3)-(6) and the mean squared values of (7)-(9),
namely the Mean Square Errors (MSEs) of TV Er, FEr and
RFEr, have to be determined to quantify the best achievable
estimation accuracy. As far as TV Er is concerned, it ensues
from (3)-(4) (see Appendix B) that a lower bound to its mean
squared value is approximately

LB
TV E
∼= 2

CRA
A2

+
5

9
CRθ ∼=

13

8

1

SNRB
· 1

C
. (10)

The derivation of the mean square values of FEr and RFEr
is instead straightforward, as it relies on the basic properties
of such random variables. In fact, since both frequency and
ROCOF estimates can be assumed to be almost normally
distributed, then the probability density functions of FEr and
RFEr are almost half-normal and their mean square values
coincide with the variance of frequency and ROCOF estimates,
respectively. Thus, the corresponding MSE lower bounds are
simply

LB
FE

= CRf and LB
RFE

= CRR. (11)

Observe that LB
TV E

, LB
FE

and LB
RFE

are squared quan-
tities. So, their respective square root values should be used
in order to enable a dimensionally consistent comparison with
the P Class or M Class limits reported in the IEEE Standards.
In particular, the upper endpoints of the confidence intervals
associated with TV Er, FEr and RFEr (in the following
shortly referred to as maximum uncertainties for brevity) are
certainly proportional to

√
LB

TV E
,
√
LB

FE
and

√
LB

RFE
,

and can be defined as

U
TV E

= β
TV E
·
√
LB

TV E
,

U
FE

= β
FE
·
√
LB

FE
, (12)

U
RFE

= β
RFE
·
√
LB

RFE
,

where coefficients β
TV E

> 0, β
FE

> 0 and β
RFE

> 0 depend
on the Equivalent Noise Bandwidth (ENBW) of the adopted
window function, the features of the estimation algorithm (as
it will be shown in Section III) and, of course, the level of
confidence chosen to define the maximum uncertainty (e.g.
95%, 98% or 99.7%). It is important to highlight that, once
the confidence level is given, the lowest possible β coefficients
correspond to those of unbiased estimators of synchrophasor
amplitude, phase, frequency and ROCOF that reach the respec-
tive CRLBs. No other estimation algorithms can ensure lower
values for these coefficients when all four quantities above
have to be estimated using the same data record. For instance,
if a 99.7% level of confidence is considered, it follows that
β

TV E
≥ 2.6 (this is slightly larger than the 99.7% percentile of

a Rayleigh distribution for the reasons explained in Appendix
B), while β

FE
≥ 3 andβ

RFE
≥ 3, as they coincide with the

99.7% percentile of half-normal distributions.

III. SIMULATION RESULTS

The results reported in this Section confirm the previous
theoretical analysis and show the impact of wideband noise
in different testing conditions specified in the IEEE Standards.
In the following, the theoretical maximum uncertainty values
provided by (12) are compared with those obtained via Monte
Carlo simulations using three state-of-the-art techniques for
synchrophasor, frequency and ROCOF estimation, i.e. the
Generalized Taylor Weighted Least Squares (GTWLS) algo-
rithm [10], the Interpolated Dynamic Discrete Fourier Trans-
form (IpD2FT) technique [17] and the Interpolated Discrete
Fourier Transform (IpDFT) estimator [4], [5]. A common
feature of all algorithms is their ability to estimate and to
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Fig. 1. Maximum uncertainties UTV E , UFE and URFE (with a 99.7% level of confidence) as a function of SNRB when synchrophasor, frequency and
ROCOF of a steady-state nominal waveform affected by wideband noise are estimated over observation intervals of C = 2, C = 6 or C = 10 nominal cycles.
The solid patterns refer to the maximum estimation uncertainty values obtained with Monte Carlo simulations using the GTWLS algorithm with a rectangular
window [in (a), (b) and (c)], the IpD2FT estimator with a Hann window [in (d), (e) and (f)] and the IpDFT technique with 2-term MIR window. The dashed
lines are given by (12) for different values of constant coefficients βTV E , βFE , βRFE (reported in Tab. I). Finally, the horizontal dotted lines are the worst-case
Class M limits reported in the IEEE Standards in steady-state conditions.

compensate for possible estimation errors due to static devi-
ations of the fundamental frequency. However, only the first
two estimators rely on a dynamic synchrophasor model. This
is obtained by truncating to the second order the Taylor’s series
expansion with respect to time of the synchrophasor function.
The IpDFT instead is based on a static synchrophasor model.
In fact, the signal fundamental frequency is estimated by
interpolating the samples within the mainlobe of the windowed
DFT of the collected waveform [29]. The ROCOF cannot
be estimated directly from model parameters, but it can be
obtained from the first-order finite difference of the frequency
values estimated over two subsequent observation intervals
(e.g. shifted by 1 waveform cycle). This approach requires
using one additional cycle, i.e. further information with respect

to that assumed to derive (3)-(6). Despite this, the IpDFT
algorithm has been considered in the simulation analysis for
the sake of completeness.

Fig. 1 shows, on a logarithmic scale, the trends of the
maximum uncertainties U

TV E
, U

FE
and U

RFE
(with a 99.7%

level of confidence) when a 50-Hz sine-wave with amplitude
A = 1 p.u. sampled at fs = 3.2 kHz (i.e. M = 64) is
affected by different levels of wideband noise. All curves
are plotted as a function of SNRB (expressed in dB) for
C = 2, C = 6 and C = 10 nominal cycles and using
three different algorithms, i.e. the GTWLS algorithm with a
rectangular window in Fig. 1(a)-(c), the IpD2FT technique with
the Hann window in Fig. 1(d)-(f) and the IpDFT estimator
with the 2-term Maximum Image Rejection (MIR) window
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TABLE I. MEAN VALUES OF THE β COEFFICIENTS ASSOCIATED WITH THE GTWLS, IPD2FT AND IPDFT ALGORITHMS USING DIFFERENT WINDOW
FUNCTIONS OVER OBSERVATION INTERVALS OF 2, 6, AND 10 NOMINAL CYCLES. ALL VALUES HAVE BEEN ESTIMATED IN NOMINAL, STEADY-STATE

CONDITIONS.

Algorithm No. cycles
Rectangular window Hann window 2-term MIR window 3-term MSD window

β̂
TV E

β̂
FE

β̂
RFE

β̂
TV E

β̂
FE

β̂
RFE

β̂
TV E

β̂
FE

β̂
RFE

β̂
TV E

β̂
FE

β̂
RFE

GTWLS

C = 2 2.8 3.1 3.2 3.6 6.4 8.0 3.5 6.0 7.2 4.0 9.0 16.0

C = 6 2.9 3.0 3.0 3.5 6.5 8.2 3.5 6.2 8.4 4.1 9.4 16.0

C = 10 2.9 3.0 3.0 3.6 6.4 8.4 3.6 6.3 8.3 4.1 9.4 16.0

IpD2FT

C = 2 3.0 3.9 3.3 3.4 5.7 6.1 3.2 5.5 6.0 3.8 7.4 10.2

C = 6 2.9 3.8 3.1 3.4 5.7 5.8 3.2 5.7 5.7 3.6 7.3 9.6

C = 10 2.9 3.8 3.1 3.4 5.8 5.8 3.3 5.6 5.7 3.6 7.3 9.4

IpDFT

C = 2 2.0 5.5 2.2 2.5 6.5 2.4 2.3 6.5 2.4 2.6 8.3 3.0

C = 6 2.0 5.1 6.1 2.5 6.7 7.2 2.3 6.6 7.3 2.6 8.2 8.5

C = 10 2.0 5.0 10.0 2.5 6.8 12.3 2.3 6.7 12.3 2.6 8.3 15.2

TABLE II. MEAN VALUES AND RANGES OF VARIATION OF THE β COEFFICIENTS ASSOCIATED WITH DIFFERENT ALGORITHMS AND WINDOW
FUNCTIONS ESTIMATED IN FOUR TESTING CONDITIONS SPECIFIED IN THE IEEE STANDARDS C37.118.1-2011 AND C37.118.1A-2014 OVER

OBSERVATION INTERVALS OF 2, 6, AND 10 NOMINAL CYCLES.

Algorithm
Rectangular window Hann window 2-term MIR window 3-term MSD window

β̂
TV E

β̂
FE

β̂
RFE

β̂
TV E

β̂
FE

β̂
RFE

β̂
TV E

β̂
FE

β̂
RFE

β̂
TV E

β̂
FE

β̂
RFE

GTWLS 2.8±0.2 3.0±0.2 3.0±0.3 3.5±0.2 6.2±0.3 8.1±0.5 3.5±0.1 6.2±0.5 7.9±0.6 4.1±0.3 9.2±0.9 16±2

IpD2FT 2.9±0.7 3.8±0.5 3.0±2 3.4±0.6 5.7±0.4 6±2 3.3±0.7 5.6±0.5 6.0±2 3.8±0.3 7.3±0.6 10±3

IpDFT 3±1 16± 26 30±60 2.5±0.2 6.6±0.6 15±47 2.3±0.2 6.6±0.7 15±47 2.6±0.3 8.3±0.7 15±35

in Fig. 1(g)-(i) [30]. The solid lines refer to the results of
Monte Carlo simulations over 2000 runs in which the initial
phase and the additive wideband noise change randomly. The
dashed lines represent the respective theoretical values given
by (12) for different sets of constant coefficients β

TV E
, β

FE

and β
RFE

(further details on these values are explained in the
last part of this Section). Finally, the horizontal dotted lines
represent the Class M limits reported in the IEEE Amendment
C37.118.1a-2014 in steady-state conditions [16]. Observe that
all theoretical lines are almost perfectly overlapped to the sim-
ulated patterns for both short and long observation intervals.
These results confirm the correctness of (12). Note also that
by increasing the value of C, estimation accuracy improves in
all cases, as expected.

The results in Fig. 1(a)-(c) obtained using the GTWLS al-
gorithm with a rectangular window are particularly interesting,
as this approach relies on classic least squares minimization,
which provides maximum likelihood estimation [28]. Never-
theless, this window is hardly used in practice because of its
relevant scalloping loss and the significant magnitude of its
spectral side-lobes [30].

It is important to highlight that the values of U
TV E

, U
FE

and U
RFE

can be larger and, sometimes, even much larger than
the limits reported in the Standard even for quite large values
of SNRB . This is true especially for frequency and, above all,
for ROCOF estimation. For example, in Class M steady-state
conditions, for C = 2 and SNRB = 67 dB (this value can
be achieved, for instance, with M = 64 and SNR = 52 dB)
the effect of noise on TVE is clearly one order of magnitude
smaller than the 1% Standard limit (i.e. negligible). However,
for the same values of C and SNRB , both the FE and the
RFE Standard limits are violated (the latter by about one order

of magnitude). This situation suggests that, if the effective
resolution of the data acquisition stage cannot be improved
any further, either a greater value of M (and consequently
a higher sampling rate) is used (provided that the noise is
white over the band [− fs2 ,

fs
2 ]), or a much larger number of

cycles has to be observed. However, both these solutions may
pose problems in terms of processing latency and algorithm
responsiveness.

Coefficients β
TV E

, β
FE

and β
RFE

play a key role to analyze
and to compare the noise sensitivity of different algorithms.
In general, the values of such coefficients can be hardly
determined analytically. However, in the case of nominal,
steady-state conditions, they can be easily found numerically.
To this purpose, first the values of Û

TV E
, Û

FE
and Û

RFE

for a given algorithm and level of confidence (e.g. 99.7%)
are estimated through Monte Carlo simulations by changing
randomly both initial phase and wideband noise power over
a reasonably large number of records. Then, the values of β
coefficients can be estimated as follows, i.e.

β
TV E

∼= β̂
TV E

=
1

L

L∑
l=1

Û
TV E

(l)√
LB

TV E

β
FE

∼= β̂
FE

=
1

L

L∑
l=1

Û
FE

(l)√
LB

FE

(13)

β
RFE

∼= β̂
RFE

=
1

L

L∑
l=1

Û
RFE

(l)√
LB

RFE

.

where the averages on the rightmost side of (13) are performed
over L different levels of SNRB in order to smooth possible
numerical fluctuations.
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Tab. I reports the values of the β coefficients associated with
the GTWLS, IpD2FT and IpDFT algorithms for four different
types of windows (i.e. rectangular, Hann, 2-term MIR, and
3-term Maximum Side-lobe Decay - MSD) estimated over
observation intervals of 2, 6, and 10 nominal waveform cycles,
respectively, with records of 2000 runs each, and for L = 20
values of SNRB in the range [30, 100] dB. Some of these
coefficients have been also used in Fig. 1(a)-(i) to verify (12).
The results in Tab. I are interesting for a variety of reasons.
First, they show that all β coefficients tend to grow as the
number of terms of the window functions increases, since their
ENBWs also grow accordingly. However, for a given number
of terms, the impact of the window shape is minor, as its
ENBW does not change significantly. For instance, the values
obtained with the MIR and Hann windows are quite close to
each other. Note also that, in most cases, for a given algorithm
and for a fixed value of C, the values of β

RFE
are usually larger

than those of β
FE

and much larger than those of β
TV E

. This
confirms that the statistical efficiency of ROCOF estimators is
generally poorer than in the case of syncrophasor amplitude,
phase and frequency estimation. Moreover, the values of β

RFE

increase faster than β
TV E

and β
FE

as a function of the number
of window terms. This trend is particularly clear when the
GTWLS algorithm is used. Probably this is due to the fact
that this approach fully exploits all the noisy data collected in
each observation interval. IpD2FT and IpDFT instead rely just
on the samples within the spectrum main lobe of the chosen
window. Therefore, noise sensitivity is expected to be lower
since those samples contain most of the signal power and just
a limited fraction of noise power.

It is worth noticing that the values of β
TV E

in the case of
the IpDFT are sometimes smaller than the minimum expected
value (i.e. about 2.6). This result is correct since the IpDFT
is conceived to estimate only three waveform parameters
(i.e. amplitude, phase and frequency). Therefore, when the
IpDFT with a rectangular window is used, amplitude and
phase estimation variances approach the respective CRLBs
for a three-parameter estimation problem [28]. Given that,
as explained in Section II-B, the CRLB for phase estimation
is 4

9 of (4), the lower bound to the root mean square value
associated with TV Er is potentially smaller than (10), i.e.
2CRA

A2 = 1
SNRB

· 1C . However, in this case ROCOF estimation
is ignored completely, whereas the beta coefficients resulting
from (13) are obtained under the assumption that also the
ROCOF has to be considered. Consequently, the values of
LB

TV E
, LB

FE
and LB

RFE
related to the four-parameter

estimation problem are used at the denominators of (13). This
explains why, when the IpDFT is used, the values of β

TV E

are generally smaller than those obtained with the estimators
based on the dynamic model. Moreover, in the IpDFT case the
values of β

RFE
strongly depend on the observation interval

length, since the finite difference approach used to estimate
the ROCOF relies on two data records of variable size shifted
by one waveform cycle.

A further point that deserves attention concerns with the
effect of other disturbances on top of wideband noise. Even
if expressions (10)-(11) hold only when sine-waves with a
constant ROCOF are corrupted by additive wideband noise,

in realistic operating scenarios further disturbances may affect
a power waveform. Therefore, a proper robustness analysis is
needed to evaluate to what extent the combination of noise and
such additional disturbances may affect parameter estimation
uncertainty.

Even if the superimposition principle does not hold rigor-
ously, the wideband noise magnitude, for typical values of
SNRB , is small enough to assume that all estimators can be
linearized around the estimated values. This approach is very
similar to the one adopted in [31] to evaluate the propagation
of uncertainty when nonlinear measurement models are used.
However, since the influence of such disturbances can be only
partially compensated before applying (13), in realistic con-
ditions the β coefficients may exhibit significant fluctuations
around the respective expected values. In the following, the
ranges of variation of the β coefficients for the three algorithms
considered have been computed in four testing conditions
specified in the IEEE Standards, i.e.
• the Class-M frequency ramp test, i.e. with the funda-

mental frequency changing linearly from 45 Hz to 55
Hz at 1 Hz/s;

• steady-state tests with the waveform fundamental fre-
quency affected by static deviations within ±10% of the
nominal value;

• amplitude modulation (AM) tests, with the fundamental
waveform subjected to sinusoidal oscillations of fre-
quency up to 5 Hz and amplitude within ±10% of the
nominal value;

• and, finally, phase modulation (PM) tests, with the fun-
damental waveform subjected to sinusoidal oscillations
of frequency up to 5 Hz and amplitude within ±0.1 rad.

Tab. II summarizes the mean values as well as the ranges of
variation of β̂

TV E
, β̂

FE
and β̂

RFE
for the same algorithms

and windows shown in Tab. I over all the testing conditions
listed above. Of course, unlike Tab. I, the ranges of variation
are no longer negligible, as they include both the residual
effect of disturbance-specific uncertainty contributions and the
dependence on observation interval length. Despite this, in
most cases, the average values almost coincide with the those
reported in Tab. I, as expected. Also, the maximum relative
uncertainties of the β parameters are typically ±10% for TVE
and FE and up to about ±30% for RFE (except in the IpDFT
case for the reasons explained above).

IV. DESIGN GUIDELINES OF THE DATA ACQUISITION
STAGE OF A PMU

The results of the theoretical analysis reported in Sec-
tion II-B can be used to keep under control the impact of
wideband noise on synchrophasor amplitude, phase, frequency
and ROCOF estimation. From a design perspective, this can
be done by properly setting three key parameters of the
acquisition stage of a PMU, i.e. the observation interval length
C (which affects both algorithm responsiveness and estimation
accuracy), the sampling rate fs and the PMU effective reso-
lution expressed in ENOB. In particular, C, fs and ENOB
must be large enough to ensure that, for a given algorithm,

U
TV E
≤
τ
TV Ei

F
, U

FE
≤
τ
FEi

F
, U

RFE
≤
τ
RFEi

F
(14)
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where τ
TV Ei

, τ
FEi

and τ
RFEi

for i ∈ {P,M} are the most
stringent P Class or M Class limits among those specified in
the IEEE Standards for different testing conditions [14], [16].
Moreover, F ≥ 1 is an arbitrary constant factor to be set large
enough to keep the noise-related uncertainty well below the
related limits. However, increasing F too much could lead to
excessive (i.e. infeasible) requirements in terms of sampling
rate and/or effective resolution. As a rule of thumb, F = 3
provides a reasonable trade-off between noise impact reduction
and PMU design feasibility.

While at a glance, the three conditions (14) must be satisfied
independently, in practice it is shown in Appendix C that for
reasonably small values of C, i.e. when

1 ≤ C ≤ C∗i ∼=

⌊
2
√

15f0
β

RFE

β
FE

τ
FEi

τ
RFEi

⌋
i ∈ {P,M}, (15)

(where b·c denotes the floor operator) the constraint on RFE
prevails on the others. In the current edition of the IEEE
Standards, τ

FEP
= τ

FEM
= 5 mHz, τ

RFEP
= 0.4 Hz/s and

τ
RFEM

= 0.1 Hz/s. Therefore, given that usually β
RFE
≥ β

FE

(see Tabs. I-II), it follows from (15) that C∗P ≥ 4 and
C∗M ≥ 19 for f0 = 50 Hz, while C∗P ≥ 5 and C∗M ≥ 23
for f0 = 60 Hz. These values are safely larger than the
typical observation interval lengths of P Class and M Class
PMUs, respectively. As a consequence, choosing the PMU
data acquisition parameters just on the basis of the impact of
wideband noise on ROCOF estimation is a sensible approach
to simplify the design procedure. To this end, two basic steps
are needed.

1) First, once the synchrophasor estimation algorithm to
be implemented is chosen, coefficients β̂

TV E
, β̂

FE
and

β̂
RFE

have to be computed in nominal steady-state
conditions, as explained in Section III.

2) Then, for a given observation interval length C ≤ C∗i ,
suitable pairs of fs and ENOB values have to be
arbitrarily chosen among those satisfying condition (see
Appendix C)

fs ≥
β̂2

RFE

10
6.02·ENOB+1.76

10

2f0 · Γi
C5

(16)

where Γi =
90f4

0

π2
F 2

τ2
RFEi

, for i ∈ {P,M}, is a constant value.

Tabs. III(a)-(b) shows some examples of fs lower bounds
(expressed in kHz) given by (16) for some typical values of
β̂

RFE
, C and ENOB with F = 3, f0 = 50 Hz, and for P Class

and M Class PMUs, respectively. Observe that the values of
C and ENOB chosen to build Tabs. III(a)-(b) are purposely
different, since P Class PMUs are supposed to be faster and
less accurate than M Class PMUs. In general, it is advisable to
choose a balanced configuration in terms of fs and ENOB for
a given value of C. Indeed, as a rule of thumb, increasing the
sampling rate usually degrades the effective resolution of a data
acquisition system and vice versa. Moreover, larger values of
fs and ENOB usually imply higher hardware design costs. If
the observation interval length is adjustable, but the sampling
rate is not, the values fs and ENOB should be chosen on

TABLE III. MINIMUM fs VALUES (IN KHZ) FOR WHICH THE
SYNCHROPHASOR PARAMETERS ESTIMATION UNCERTAINTIES DUE TO

WIDEBAND NOISE ARE SMALLER THAN AT MOST 1/3 OF THE STRICTEST P
CLASS (A) OR M CLASS (B) LIMITS REPORTED IN THE IEEE STANDARDS.
THE SAMPLING RATES RESULT FROM (16) FOR SOME TYPICAL VALUES OF

β̂RFE , C AND ENOB WHEN f0=50 HZ.

β̂
RFE

C = 1 C = 2 C = 3

ENOB ENOB ENOB

12 13 14 12 13 14 12 13 14

3.0 115 29 7.2 3.6 0.9 0.2 0.5 0.1 0.1

4.5 258 65 16 8.1 2.0 0.5 1.1 0.3 0.1

6.0 460 115 29 14 3.6 0.9 1.9 0.5 0.1

7.5 718 180 45 22 5.6 1.4 3.0 0.7 0.2

9.0 1034 259 65 32 8.1 2.0 4.3 1.1 0.3

10.5 1407 352 88 44 11 2.7 5.8 1.4 0.4

12 1838 456 115 57 14 3.6 7.6 1.9 0.5

13.5 2326 582 145 73 18 4.5 10 2.4 0.6

15 2872 718 180 90 22 5.6 12 3.0 0.7

(a)

β̂
RFE

C = 2 C = 3 C = 4

ENOB ENOB ENOB

13 14 15 13 14 15 13 14 15

3.0 14 3.6 1.0 1.9 0.5 0.1 0.4 0.1 0.1

4.5 32 8.1 2.0 4.3 1.1 0.3 1.0 0.3 0.1

6.0 57 14 3.6 7.6 1.9 0.5 1.8 0.4 0.1

7.5 90 22 5.6 12 3.0 0.7 2.8 0.7 0.2

9.0 129 32 8.1 17 4.3 1.1 4.0 1.0 0.3

10.5 176 44 11 23 5.8 1.4 5.5 1.4 0.3

12 230 57 14 30 7.6 1.9 7.2 1.8 0.4

13.5 291 73 18 38 9.6 2.4 9.1 2.3 0.6

15 359 90 22 47 12 3.0 11 2.8 0.7

(b)

the basis of the minimum allowed observation interval length.
Indeed, with longer observation intervals the impact of noise
certainly decreases and, eventually, becomes negligible in any
case as confirmed by (3)-(6).

Observe that some cells in Tabs. III(a)-(b) are shadowed, as
they correspond to results which are not meaningful in practice
for two different reasons. The cells in the bottom left corner
of either Table are shadowed as the related sampling rates are
higher than 100 kHz. Indeed, the PMU processing time grows
with the total number of acquired samples N , which, in turn,
increases with fs. Therefore, if fs > 100 kHz, real-time data
reporting rates up to 50 or 60 frames per second (or more,
as required in the IEEE Standards) can become very difficult
of even impossible to achieve with existing technologies.
Moreover, noise power reduction through oversampling makes
sense only if the noise itself is approximately white over the
whole band [− fs2 ,

fs
2 ]. If instead the noise power spectral

density is band-limited (e.g. because of the input anti-aliasing
filter), oversampling the input waveform not only increases the
processing time, but it does not provide significant accuracy
improvements either.

Conversely, the cells in the top right corner of Tabs. III(a)-
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(b) are shadowed because the fs values are excessively low. So,
the estimation results, although quite unaffected by wideband
noise, could be strongly perturbed by the aliasing of residual
harmonic and inter-harmonic disturbances.

In order to clarify with an example how the results of
this Section could be useful in practice, let us assume that
the IpD2FT algorithm based on the Hann window (i.e. with
β̂

RFE
= 6) has to be implemented in a P Class PMU. If the

shortest observation interval is equal to C = 1 cycle, then a
data acquisition system with a sampling rate of at least 29 kHz
and ENOB = 14 bits is good enough to make the effect of
noise is negligible. However, if C = 2, both these requirements
can be further relaxed.

V. CONCLUSIONS

This paper presents a comprehensive analysis of the effect of
wideband noise on synchrophasor, amplitude, phase, frequency
and ROCOF estimation accuracy. The proposed analysis shows
that the impact of wideband noise may become relevant, and
it is particularly critical for frequency and, above all, ROCOF
estimation. In particular, data acquisition systems with 12-
13 effective bits and a sampling rate of some kHz could
be too low to make the effect of noise negligible when
very short observation intervals are used. This problem can
be solved in different complementary ways, i.e. i) by using
longer observation intervals (but this may affect estimation
responsiveness and processing time); ii) by increasing the
sampling rate (but only if the total noise is white over the
whole Nyquist band and only till when the processing time
meets real-time requirements) or iii) by increasing the number
of effective bits of a PMU. In practice, the wise combination of
these three approaches is expected to provide the most sensible
solution, which however may depend also on additional con-
tour conditions (e.g. budget or market constraints). The design
guidelines described in this paper can help engineers to achieve
their specific goals as far as the effect of wideband noise on
PMU measurement accuracy is concerned.

APPENDIX A
DERIVATION OF EXPRESSIONS (3)-(6)

Let us assume that both εar (·) and εhr
(·) in (1) are negli-

gible. If the ROCOF is assumed to be equal to a constant R,
then εpr (n) = πRn2

f2
s

. In addition, if both amplitude and phase
wideband noise contributions are merged together as in (2),
then (1) can be rewritten simply as

xr(n)=sr(n,p)=A cos

(
2π
f0
fs
n+πR

n2

f2s
+φr

)
+η(n),

(A.1)
where p = [A, φr, f0, R]T is the vector of the waveform
parameters to be estimated, and η(·) is the total wideband
noise. According to the fundamentals of estimation theory [28],
the CRLBs associated with the unbiased estimation of the
elements of p are given by the diagonal elements of the inverse
of the corresponding 4×4 Fischer information matrix I(p). If
the additive noise is white and normally distributed with a zero
mean and variance σ2 and the elements of p are estimated in

the center of an observation interval, then the element (i, j) of
I(p) is given by [28]

Iij(p) =
1

σ2

N−1
2∑

n=−N−1
2

∂sr(n,p)

∂pi

∂sr(n,p)

∂pj
(A.2)

where pi and pj denote the i−th and the j−th element of
p, respectively. Note that in (A.2) N is assumed to be odd.
However, the case with N even is very similar.

Assuming that R and N are small enough and
that an approximately integer number of cycles is
collected, the following approximate expressions
hold, i.e. 1

Nk+1

∑N−1
2

n=−N−1
2

nk sin[2θr(n)] ∼= 0 and

1
Nk+1

∑N−1
2

n=−N−1
2

nk cos[2θr(n)] ∼= 0, for k = 0, 1, 2, 3 [28],

where θr(n) = 2π f0fsn + πRn2

f2
s

+ φr. By using these
expressions, after some algebraic steps, it can be shown that
the diagonal elements of I(p) are:

I11(p) =
1

σ2

N−1
2∑

n=−N−1
2

cos2[θr(n)]∼=
N

2σ2

I22(p) =
A2

σ2

N−1
2∑

n=−N−1
2

sin2[θr(n)]∼=
A2N

2σ2

I33(p) =
4π2A2

σ2f2s

N−1
2∑

n=−N−1
2

n2sin2[θr(n)]∼=
A2

2σ2

π2N(N2−1)

3f2s

I44(p) =
A2

σ2f4s

N−1
2∑

n=−N−1
2

n4sin2[θr(n)]∼=
A2

2σ2

π2N(3N2−7)(N2−1)

240f4s

Similarly, the non-diagonal elements of the Fischer information
matrix are: I12(p)=I21(p)∼= 0, I13(p)=I31(p)∼= 0, I41(p)=
I14(p)∼=0, I23(p)=I23(p), I34(p)=I43(p)∼=0, and

I24(p)=I42(p)=
πA2

σ2f2s

N−1
2∑

n=−N−1
2

n2sin2[θr(n)]∼=
A2

2σ2

πN(N2−1)

12

By replacing SNR = A2

2σ2 into all elements of I(p) and by
inverting the Fischer matrix, it finally results that the CRLBs
associated with any unbiased estimator of amplitude, phase,
frequency and ROCOF are given respectively by

CRA ∼=
A2

SNR ·N
, (A.3)

CRθ ∼=
1

4

1

SNR ·N
9N2−21

N2 − 4
(A.4)

CRf ∼=
3f2s
π2

1

SNR

1

N(N2−1)
(A.5)

CRR ∼=
180f4s
π2

1

SNR

1

N(N2−1)(N2−4)
. (A.6)

Note that, in practice, N is (at least) in the order of some tens.
Thus, (A.3)-(A.6) can be approximately rewritten as (3)-(6).
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APPENDIX B
DERIVATION OF EXPRESSION (10)

Let eAr
= Âr − Ar and eθr = θ̂r − θr be the amplitude

and phase estimation errors in the r−th observation interval.
The probability density functions of both eAr

Ar
and eθr can

be reasonably assumed to be Gaussian because of the central
limit theorem. If synchrophasor amplitude, phase, frequency
and ROCOF are estimated using a single data record and
the estimators of waveform amplitude and phase are unbi-
ased and efficient, then eAr

Ar
and eθr exhibit zero mean and

variance given by (A.3) and (A.4), respectively. As a result,
the scaled phase estimation error sequence e′θr = 2

3eθr also
exhibits a normal distribution with zero mean and variance
CRA

A2 = 4
9CRθ. Thus, from the definition of TVE, it follows

that if |eθr | << 1, we have that

TV Er =

√
e2Ar

A2
r

+ 4

(
1+

eAr

Ar

)
sin

e2θr
2

∼=

√
e2Ar

A2
r

+ e2θr =

√
e2zr +

5

9
e2θr (B.1)

where random variable ezr =

√
e2Ar

A2
r

+ e′2θr exhibits a Rayleigh

distribution with mean
√

πCRA

2A2 and variance (2 − π
2 )CRA

A2 .
Indeed both eAr

Ar
and e′θr are normally distributed with zero

mean and the same variance. Thus, if E{·} denotes the
expectation operator, it ensues immediately that

E{TV E2
r}∼=E{e2zr}+

5

9
E{e2θr}, (B.2)

and (10) finally results.

APPENDIX C
DERIVATION OF EXPRESSION (16)

Let τ
TV EM

, τ
FEM

and τ
RFEM

be the most stringent P
Class and M Class accuracy limits specified in [14], [16] and
summarized in Section IV. By reversing (12), the system of
inequalities (14) can be rewritten as

SNRB ≥ β2
TV E

Ai
C

(C.1)

SNRB ≥ β2
FE

Bi
C3

(C.2)

SNRB ≥ β2
RFE

Γi
C5

(C.3)

where subscript i ∈ {P,M} denotes the PMU Class and

Ai=
13

8

F 2

τ2
TV Ei

, Bi =
3f20
2π2

F 2

τ2
FEi

, Γi=
90f40
π2

F 2

τ2
RFEi

. (C.4)

By replacing the values of f0 (i.e. 50 Hz or 60 Hz), τ
TV Ei

, τ
FEi

and τ
RFEi

into (C.4), it can be easily found that Ai << Bi <<
Γi for both i ∈ {P,M}. Since it is clear from Tabs. I and II
that usually β

TV E
≤ β

FE
≤ β

RFE
, it is also evident that, for

C = 1, (C.3) dominates over both (C.1) and (C.2). However, as

C grows, (C.3) decreases monotonically faster than (C.2) and
much faster than (C.1). Eventually, all pairs of (C.1), (C.2) and
(C.3) will return the same value for some value of C. Among
the three intersection points, the one occurring for the smallest
value of C (for the considered values of constants Ai, Bi, Γi) is
certainly associated with the intersection of the curves resulting
from (C.2) and (C.3). Thus, the value of C∗i in (15) is obtained
by equating (C.2) and (C.3). This means that inequality (C.3)
dominates over (C.1) and (C.2) for 1 ≤ C ≤ C∗i . Moreover,
since SNRB = SNR · fs2f0

where SNR = 10
6.02·ENOB+1.76

10 ,
by replacing these expressions and the estimated coefficient
β̂

RFE
into (C.3), (16) finally results.
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