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Here we report the lipid profiles of ten dinoflagellate species originating from different
freshwater habitats and grown at 4, 13, or 20◦C akin to their natural occurrence.
Lipids were determined by High Performance Liquid Chromatography-ElectroSpray
Ionization-Mass Spectrometry in positive and negative ion modes. Besides the
well-studied monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol
(DGDG) lipids, our study revealed the presence of intact molecular lipid species
of trigalactosyldiacylglycerols, betaine diacylglyceryl-carboxyhydroxymethylcholine,
sulfolipid sulfoquinovosyldiacylglycerols (SQDG) and phospholipids, in particular
phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol. In
multivariate ordination, the freshwater dinoflagellates studied could be distinguished
into two groups based on their lipid profiles. Peridinium aciculiferum, Borghiella
dodgei, B. tenuissima and Tovellia coronata belonged to group 1 while Ceratium
cornutum, Gymnodinium palustre, Jadwigia applanata, P. cinctum, P. willei, and
P. gatunense belonged to group 2. Indicator species analysis evidenced that group
1 was characterized by 36:9 MGDG and 36:9 DGDG and group 2 by 38:9 and
38:10 MGDG, 38:9 and 38:10 DGDG and 34:1 SQDG. We suggest that the grouping
of dinoflagellates indicated their range of temperature tolerance. Furthermore, non-
thylakoid lipids were linked to dinoflagellate phylogeny based on the large ribosomal
sub-unit (28S LSU) rather than their temperature tolerance. Thus certain lipids better
reflected habitat adaptation while other lipids better reflected genetic diversity.

Keywords: membrane lipids, freshwater dinoflagellates, cold adaptation, RPLC-ESI-IT-MS, multivariate data
analysis

Abbreviations: ACL, average chain length; LC-ESI-MS, liquid chromatography-electrospray ionization- mass spectrometry;
NMDS, non-metrical multidimensional scaling; OPLS-DA, orthogonal partial least square – discriminant analysis; PCA,
principal component analysis; PLS-DA, partial least square – discriminant analysis; UI, unsaturation index.
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INTRODUCTION

In marine and freshwater ecosystems, photosynthetic
dinoflagellates are important primary producers, both as free-
living cells and as symbionts (Leblond et al., 2010b). Ectothermic
organisms, including dinoflagellates, are especially susceptible to
climate change and their biogeographical distribution depends
on physiological, biochemical and molecular mechanisms
governing species temperature tolerance (Somero et al., 1996;
Thornhill et al., 2008; Somero, 2012). Mechanisms of temperature
tolerance in ectotherms have been substantially linked to proteins
via enzyme activity and membrane integrity (Somero et al., 1996).
Lipids, however, have received less attention, in part because
unlike proteins they have no recognizable catalytic properties,
and thus it is impossible to determine directly the function of
lipids in vitro (Murata and Siegenthaler, 2004). Lipids are an
essential part of membranes, and modifications of membrane
lipid composition and architecture in response to environmental
conditions are known as homeoviscous adaptation (Hazel, 1995).
Common strategies to maintain adequate membrane fluidity
involve the incorporation of polyunsaturated fatty acids, the
position and conformation of double bonds, the length of fatty
acyl chains and the presence of sterols (White et al., 2000;
Chintalapati et al., 2004; D’Amico et al., 2006; Guschina and
Harwood, 2006a,b). The incorporation of methyl branched fatty
acids, carotenoids and the modification of polar head group
composition are less widespread (D’Amico et al., 2006).

Photosynthetic organisms need to compensate changes in
thylakoid membrane fluidity as determined by environmental
conditions (e.g., temperature, nutrients) to prevent the inhibition
of photosynthesis (Murata, 1989). The active restructuring of
membranes with respect to temperature has been studied in
different photosynthetic organisms such as cyanobacteria (Wada
et al., 1990; Gombos et al., 1992), green algae (Terrados and
Lopez-Jimenez, 1996; Valledor et al., 2013), diatoms (Chen et al.,
2008, 2013; Dodson et al., 2014) and higher plants (Routaboul
et al., 2000; Welti et al., 2002, 2007). In dinoflagellates, most of
what we know about the active restructuring of membranes with
respect to temperature refers to marine species (e.g., Mansour
et al., 1999; Leblond et al., 2006; Gray et al., 2009a,b; Dahmen
et al., 2013), and few studies have investigated temperature related
changes in freshwater dinoflagellates (Flaim et al., 2012, 2014).
Furthermore, studies usually focus on either cold-adapted (Flaim
et al., 2014) or warm-adapted species (Gray et al., 2009a,b;
Leblond et al., 2010a).

Membrane lipids are a mixture of neutral and anionic
lipids. Neutral lipids comprise monogalactosyldiacylglycerols
(MGDGs), digalactosyldiacylglycerols (DGDGs) and,
in some algae such as diatoms and dinoflagellates,
trigalactosyldiacylglycerols (TGDGs). MGDGs and DGDGs
are the most abundant lipids in nature (Siegenthaler, 2004),
accounting for about 50 and 30% of total lipids in chloroplast
membranes respectively, and they exert structural and functional
roles (Murata and Siegenthaler, 2004; Siegenthaler, 2004).
TGDGs have been suggested to act as viscosity buffers (Gray
et al., 2009a), are fatty acid carriers (Xu et al., 2010; Moellering
and Benning, 2011) and seem to support thylakoid function

irrespective of temperature (Flaim et al., 2014). Anionic lipids
comprise the phospholipid phosphatidylglycerol (PG) and
the glycolipid sulfoquinovosyldiacylglycerol (SQDG). PGs are
also important for the structure and activity of photosystem
II that is embedded in the lipid environment of the thylakoid
membranes of plants and algae (Barber, 2012), and PG’s function
can be replaced by SQDG under phosphorus limitation (Yu and
Benning, 2003). PG and SQDG account for about 5–12% of total
lipids.

Apart from thylakoid membranes, polar lipids also occur
in plasma membranes and extra-chloroplast membranes;
presently, little information is available about these lipid
fractions regarding temperature adaptation; in dinoflagellates
and other algae these polar lipids comprehend the phospholipids
phosphatidylcholine (PC) and phosphatidylethanolamine (PE)
and betaine lipids (Siegenthaler, 2004). PC is usually the most
abundant phospholipid in eukaryotic membranes, followed
by PE. Betaine ether-linked lipids are present in a limited
number of species, mainly in algae such as dinoflagellates,
ferns, lower plants, and fungi (Sato, 1992; Dembitsky, 1996;
Rozentsvet, 2004; Leblond et al., 2015). Three types of betaines
are known: diacylglyceryl-trimethyl-homoserine (DGTS),
diacylglyceryl-hydroxymethyl-trimethyl-β-alanine (DGTA) and
diacylglyceryl-carboxyhydroxymethylcholine (DGCC) (Sato,
1992; Siegenthaler, 2004). Betaines are considered primitive
lipids, as they can play the same role in the cells of lower plants
as PC. Curiously, an inverse relationship between PC and DGCC
has been observed: betaines, which are structurally similar to PC,
tend to replace PC in phosphorous-limiting conditions (Klug
and Benning, 2001; Popendorf et al., 2013).

Cold-adaptation in dinoflagellates has been the subject
of recent studies, with a particular focus on galactolipids
MGDG and DGDG. By using gas chromatography-mass
spectrometry (GC-MS) methodology, Leblond et al. (2006) found
octadecatetraenoic 18:4 (ω3) and octadecapentaenoic 18:5 (ω3)
acids in high percentages in the cold-adapted dinoflagellates
Peridinium aciculiferum and Scrippsiella hangoei. Investigating
35 peridinin-containing dinoflagellates grown at 21◦C, Gray
et al. (2009b) found that they clustered into two groups based
on the regiochemical distribution of their fatty acyl chains in
MGDG and DGDG. Cluster 1 was characterized by the ω3 fatty
acyl chain ratio C18/C18 (18:4 and 18:5 acyl chains at the sn-
1 and sn-2 positions of the glycerol backbone) whilst cluster
2 by the ω3 fatty acyl chain ratio C20/C18 (20:5 at the sn-1
and 18:4 or 18:5 at sn-2). Gray et al. (2009b) did not find a
clear relationship between galactolipid profiles and phylogeny
and suggest that this grouping could be linked to habitat
characteristics. A further study (Gray et al., 2009a) on four cold-
adapted dinoflagellates (Gymnodium sp., Scrippsiella hangoei,
Woloszynskia halophila, and P. aciculiferum) found that these
psychrophiles (microorganisms with optimum growth below
10◦C and maximum temperature tolerance below 20◦C; Morgan-
Kiss et al., 2006) all belong to the C18/C18 cluster sensu Gray et al.
(2009b). An extensive lipid profile encompassing galactolipids,
phospholipids, betaines and triacylglycerols (TAGs) for the cold-
adapted dinoflagellate P. aciculiferum showed that the basic lipid
composition was conserved in the vegetative stages (2.5–5.5◦C
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temperature range), while significant changes in the lipid profile
were noted at 7◦C, a temperature that induced encystment (Flaim
et al., 2014). Furthermore, increasing the growth temperature
determined an overall decrease in the UI in all lipid classes for
this species (Flaim et al., 2014). The psychrophilic Borghiella
dodgei also showed similar behavior (Flaim et al., 2012); therefore
Flaim et al. (2014) suggest that strict psychrophiles possess a
limited temperature tolerance before relevant changes in lipid
composition occur.

Here we present lipid profiles of ten freshwater dinoflagellate
species grown at specific temperatures akin to their natural
occurrence. We focused on three psychrophiles (P. aciculiferum,
B. dodgei, B. tenuissima), six temperate dinoflagellates (C.
cornutum, G. palustre, J. applanata, P. cinctum, P. willei, T.
coronata) and one warm-water dinoflagellate (P. gatunense).
The psychrophiles all occur in very cold waters in winter or
early spring (Moestrup et al., 2008; Flaim et al., 2012, 2014).
Peridinium gatunense occurs in sub-tropical lakes in spring
and in temperate lakes in summer (Hansen and Flaim, 2007;
Zohary et al., 2014) while the others generally have broader
temporal and spatial occurrence (Hansen and Flaim, 2007). We
investigated the association of these freshwater dinoflagellates
with the C18/C18 and C20/C18 clusters sensu Gray et al. (2009b)
and linked their lipid profiles to their growth temperature and
genetic diversity.

EXPERIMENTAL

Chemicals
HPLC grade methanol and chloroform were purchased from
VWR (VWR International, Milan, Italy); LC-MS grade methanol
was purchased from Merck (Merck KgaA, Darmstadt, Germany).
Deionized water, filtered at 0.2 µm, was obtained from Elix Water
Purification System (Merck Millipore, Billerica, MA, USA).
MGDG and DGDG standards were purchased from Matreya LLC
(State College, USA).

Dinoflagellate Selection and Culture
Conditions
Ten freshwater dinoflagellates were grown at temperatures that
reflected their temperature niche and permitted active growth
(Table 1).

Light intensity was approximately 20–40 µmol m−2 s−1

[measured at the culture surface using a Quantum Photo
Radiometer (Delta Ohm srl, Caselle di Selvazzano, PD, Italy)]
with a 14:10 light:dark cycle for all dinoflagellates except
P. gatunense (12:12). Cells were grown in batch cultures and
harvested by centrifugation at 3000× g for 10 min at their growth
temperature at the end of the exponential phase.

Total Lipid Extraction
Cells were washed three times with distilled water and the
final pellet was extracted with a 1:1 chloroform: methanol (v:v)
mixture using a glass/glass potter on ice, checked microscopically
for complete cell disintegration, and collected into 15 mL

TABLE 1 | Freshwater dinoflagellate species used in lipid profiling; origin
of cultures, growth media and growth temperature are given;
Scandinavian Culture Collection of Algae and Protozoa (SCCAP;
http://www.sccap.dk/); Kinneret Limnological Laboratory culture
collection (KLL; Zohary et al., 2014).

species origin growth
medium

growth
temperature

Borghiella tenuissima SCCAP K-0666 DY-V 4◦C

Borghiella dodgei SCCAP K-0959 DY-V 4◦C

Ceratium cornutum SCCAP K- 1412 DY-V 13◦C

Gymnodinium palustre SCCAP K-0995 DY-V 13◦C

Jadwigia applanata SCCAP K-0677 DY-V 13◦C

Peridinium aciculiferum SCCAP K-0998 MWC+Se 4◦C

Peridinium cinctum SCCAP K-1382 MWC+Se 13◦C

Peridinium gatunense KLL L16-V 20◦C

Peridinium willei SCCAP K-0962 DY-V 13◦C

Tovellia coronata SCCAP K-1118 DY-V 13◦C

The growth media, MWC + Se and L16-V are modifications according to Guillard
and Lorenzen (1972) and Lindström (1991), respectively. DY is according to
Andersen et al. (1997); all media recipes can be found at http://www.sccap.dk/
media/.

glass tubes; re-suspended in 10 ml of chloroform/methanol 2:1
(v/v), sonicated for 15 min in an ultrasonic bath (Sonorex
Super, Bandelin electronics, Berlin, Germany), and centrifuged
at 3000 × g for 10 min at room temperature to separate
the organic phase (bottom layer). All the organic phases were
collected, filtered by using Whatman GF/X filters (0.45 µm)
under vacuum and reduced to dryness on a rotary evaporation
(Büchi Labortechnik AG, Flawil, Swiss) to obtain crude
lipid extracts. Extracts were re-suspended in 300 µL of
methanol.

Reverse Phase Liquid
Chromatography-Electrospray
Ionization-Ion Trap-Mass Spectrometry
Analyses (RPLC-ESI-IT-MS)
Liquid chromatography-electrospray ionization-mass
spectrometry allows separation of a wide variety of intact
lipid molecular species and gives detailed structural information
about lipid head groups and the FAC regiochemical distribution
(Welti et al., 2002, 2007; Guella et al., 2003; Anesi and Guella,
2015). To analyze crude lipid extracts we used a Hewlett-Packard
Model 1100 Series liquid chromatograph (Hewlett-Packard
Development Company, L.P., Palo Alto, CA, USA) coupled
both to a Bruker Esquire-LC quadrupole IT-MS equipped with
an ESI source (Bruker Optik GmbH, Ettlingen, Germany) and
to a photo diode-array detector (DAD) (Agilent Technologies,
Milan, Italy, Agilent 1100). Chromatographic separation of
lipids was carried out on a Zorbax Eclipse XDB-C8 column
(150 × 4.6 mm i.d., pore size 200 Å, particle size 3.5 µm)
(Hewlett Packard, Palo Alto, CA, USA) with a linear gradient of
solvent A (methanol: water 7:3, containing 12 mM ammonium
acetate) and solvent B (methanol containing 12 mM ammonium
acetate) from 70%A/30%B to 100%B in 40 min, at a constant
flow rate of 0.8 ml/min. Final conditions were kept for at
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least 30 min to ensure the complete elution of non-polar
lipids. Aliquots of 10 µL of crude extract in methanol-d4 were
injected.

Each crude extract was separately analyzed in positive and
negative ionization modes in the range 50–1200 m/z with a scan
range of 13000 unit s−1. For the analysis, high purity nitrogen
was used at a pressure of 35 psi, at a temperature of 300◦C
and a flow rate of 7 L min−1. The high voltage capillary was
set at 4000 V for positive ionization mode and −4000 V for
negative mode. The regiochemical distribution of acyl chains was
conducted through MS/MS experiment in positive and negative
ion as described by Guella et al. (2003) for galactolipids and by
Flaim et al. (2014) for betaines and phospholipids. We applied
a recently published method (Anesi and Guella, 2015) based on
HILIC chromatography coupled to precursor ion/neutral loss
scanning in positive ion mode to improve the assignment of lipid
molecular species.

Relative Quantification of Lipids and
Data Analysis
Raw data were analyzed by DataAnalysis 3.0 software (Bruker
Daltonik, Ettlingen, Germany). Each lipid molecular species was
quantified with respect to the total area of all lipid species
belonging to the same class (e.g., relative quantification of PC
was performed with respect to total area of PC). MGDG, DGDG,
TGDG, DGCC and PC, were quantified on a dataset recorded
in positive ion mode, while PE, PG and SQDG on that obtained
in negative ion mode. In particular, ESI(+) MS response factors
for MGDG and DGDG were established by the use of the
commercially available internal standard (MGDG 18:3/18:3 and
DGDG 18:3/18:3) (Flaim et al., 2014).

For statistical analyses, the UI and the ACL were calculated for
each lipid class, using the formulas

UIclassy = 6(relative area lipidx ∗ double bond number of lipidx)

and
ACLclassy = 6(relative area lipidx ∗ acyl chain length of lipidx)

where lipidx represents each single molecular species belonging
to the y lipid class, respectively.

The ratio between MGDG and DGDG was calculated as [6
area MGDG/6 area DGDG] ∗ F; where F is the normalization
ratio obtained by using internal standard (Flaim et al., 2014).

Data were log(x+ 1) transformed and scaled using the Pareto
method. At first, we applied a PCA (an unsupervised method) to
define homogeneous clusters of taxa based on % area of single
molecular species, UI and ACL.

Then, we used the identified clusters as dependent variables
first in PLS-DA followed by OPLS-DA, both supervised methods.
Significance of PLS-DA was determined with permutation tests
(200 permutations). PCA and DA were performed with Simca-
P 13.0 software (Umetrics AB, Umea, Sweden). We furthermore
analyzed the correlation loading plots of OPLS-DA analysis to
determine which metabolites contributed to the separation of
clusters by setting a correlation coefficient p(corr) threshold
of 0.75; a two-tailed Welch test for single candidate markers

was carried out to investigate their status as markers; unequal
variance between groups was considered.

Similarly to Leblond et al. (2010b), we investigated the
relationship between the dinoflagellates’ phylogeny and
their lipid profile by calculating the correlation between the
dissimilarity matrix based on uncorrected genetic distance
and Euclidean distance based on the fatty acyl chains. The
uncorrected genetic distance was calculated based on a
606 base pairs long part of the 28S LSU gene downloaded
from GenBank (accession number: B. dodgei EU126801,
C. hirundinella JQ639749 (in substitution of C. cornutum
that was not available in GenBank), J. applanata AY950448,
P. aciculiferum EF417312, P. cinctum EF205011, P. gatunense
EF058267, P. willei AF260384, AF260384, T. coronata AY950445,
B. tenuissima AY571374, G. palustre AF260382) where all species
overlapped. The correlation between matrices was done by
Pearson correlation and its significance was assessed by a Mantel
test. We, furthermore, investigated the relationship between
dinoflagellate species based on their lipid profile by combining
a cluster analysis with Non-Metric Multidimensional Scaling
(NMDS). While a cluster analysis searches for discontinuities
in the data, ordination techniques such as NMSD extract the
main patterns, and combining them can be an advantageous
approach to investigate differences between groups (Borcard
et al., 2011). In NMDS, we used Euclidean distance and in
hierarchical clustering, we used Ward’s clustering method based
on correlations. In NMDS, the goodness of fit was investigated
by the Shepard plot that shows the relationship between the
inter-object distances in NMDS and Bray–Curtis dissimilarity.
The residuals of this relationship were used to calculate Kruskal’s
stress (S); S-values <0.2 are considered statistically meaningful
(Quinn and Keough, 2002). In hierarchical clustering, significant
clusters were identified by bootstrap resampling (Suzuki and
Shimodaira, 2015). Hierarchical clustering, calculation of
uncorrected genetic distances, Mantel tests and NMDS were
performed with R (R Core Team, 2014), package vegan, ape and
pvclust.

RESULTS

Overall, we found 32 galactolipid species (9 MGDGs, 13 DGDGs,
10 TGDGs), nine SQDGs, 29 DGCC and 25 phospholipids (19
PCs, 3 PGs, 3 PEs), whose distribution is taxa-specific (see
Supplementary Table S1 for detailed information).

The regiochemistry of acyl chains for most abundant MGDG
and DGDG species was established by the method proposed by
Guella et al. (2003). As shown in Figure 1A for the 36:9 DGDG
[M+Na]+molecular species, in positive ion-mode the fragments
at m/z 679 and 677 represent, respectively, the loss of the acyl
chain 18:5 and 18:4 from glycerol backbone. Since, according
to Guella et al. (2003), the loss of the carboxylic acid linked to
the sn-1 glycerol position always produces a more intense peak
(here at m/z 679) than that derived from the loss of the sn-
2 linked acyl chain, the regiochemical distribution of this 36:9
DGDG species can be unambiguously assigned as 18:5/18:4. In
all dinoflagellates the 36:8 (18:4/18:4), 36:9 (18:5/18:4), 36:10
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FIGURE 1 | Positive-ion MS/MS spectra of (A) DGDG (18:5/18:4). The fragment at m/z 679 represents the loss of the sn-1 linked acyl chain 18:5 whilst the
fragment at m/z 677 represents the loss of the sn-2 linked acyl chain 18:4; (B) DGCC (16:0/22:6). The fragment at m/z 544 represents the loss of the acyl chain 16:0
while the fragment at m/z 472 represents the loss of the acyl chain 22:6 but no information about their regiochemical distribution is implied.

(18:5/18:5), 38:9 (18:4/20:5) and 38:10 (18:5/20:5) were the most
abundant species of MGDGs and DGDGs. Taken as an example,
the distribution of MGDG and DGDG in the cold adapted
B. tenuissima and in the mesophilic species C. cornutum is shown
in Figure 2. The chains composition of DGCC and phospholipids
was established according to Flaim et al. (2014). As an example,
the MS/MS of DGCC 38:6 (m/z 953) showed fragments at m/z
544, attributable to the loss of 16:0, and at m/z 472, which is
attributable to 22:6 fatty acid (Figure 1B). The fragmentation
of DGCC under positive-ion ESI/MS/MS was less clear than
that of galactolipids. Therefore, it was not possible to determine
unambiguously their regiochemistry and, as an example, here
DGCC 36:6 (16:0/22:6) only means that this molecular species is
built on the two different acyl chains 16:0 and 22.6 but we don’t
know which is where.

Among the betaine lipids (DGCC) and the phospholipids
(PC), the molecular species 36:6 (14:0/22:6), 38:6 (16:0/22:6), and
44:12 (22:6/22:6) were the most abundant.

Less abundant lipid species, such as TGDG, PG, PE and
SQDG, were not detected in all dinoflagellates. For example, PGs
were not detected in P. willei and P. cinctum, PEs in T. coronata
and in C. cornutum, and four SQDGs were only found in
P. aciculiferum.

The first two principal components of the PCA based
on % area of lipids explained 33.5 and 21.3% of the total
variance, respectively. In the ordination based on the first
principal component (Figure 3), the psychrophilic species
B. dodgei, B. tenuissima, P. aciculiferum clustered with the
mesophilic species T. coronata (cluster 1) versus all other species
(cluster 2; J. applanata, C. cornutum, P. gatunense, P. willei,
P. cinctum, G. palustre). The PLS-DA model with these two
clusters as dependent variables was statistically significant (Q2

value = 0.836; P < 0.05). Based on the scatter plot of the
corresponding OPLS-DA model, we identified metabolites that
contributed to the separation between groups (Table 1). Group
1 was characterized by a higher percent of 36:9 (18:5/18:4)
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FIGURE 2 | Relative distribution of most abundant MGDG and DGDG molecular species in B. tenuissima (blue) and C. cornutum (red) dinoflagellates.
Only species above 2% were considered.

FIGURE 3 | Score plot of PCA model based on % area of fatty acids [log(x+1) transformed and Pareto scaled] generated with Simca-P 13.0 software.
2 components; R2X (cumulative): 0.548; Q2 (cumulative): 0.104. Group 1 (left side of X-axis): B. dodgei, B. tenuissima, P. aciculiferum and T. coronata; group 2 (right
side): J. applanata, C. cornutum, P. gatunense, P. willei, P. cinctum, G. palustre.
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MGDG, 36:9 (18:5/18:4) DGDG and 36:6 (14:0/22:6) DGCC
(Table 2). Group 2 was characterized by a higher percent of
38:9 (20:5/18:4) and 38:10 (20:5/18:5) MGDGs, 38:9 (20:5/18:4)
and 38:10 (20:5/18:5) DGDGs, 32:1 TGDG, 34:1 SQDG, 32:1 PE
and 34:2 PE (Table 2). Furthermore as investigated by a t-test
comparing both groups, group 1 had a higher percent of total
MGDGs than group 2, and group 2 had a longer AVLs of MGDG,
DGDG and DGCC and a higher content of DGDG and TGDG
than group 1 (Table 3).

The correlation between the uncorrected genetic dissimilarity
and the lipid profile dissimilarity based on % area and UI,
respectively, was high for betaine (Mantel r%area = 0.48,
P = 0.004; Mantel rUI = 0.49; P = 0.001). The correlation
for PC was high (Mantel r%area = 0.65, P = 0.03; Mantel
rUI = 0.67; P = 0.03) but was driven by C. cornutum; excluding
this dinoflagellate, the correlation was not significant. For the
other lipids the correlation was either non-significant (TGDG) or
below 0.25 (MGDG, DGDG). For SQDG, the mantel correlation
was non-significant based on % area but significant based on UI
(Mantel rUI = 0.34; P = 0.05); two influential distances between
taxa determined this significant correlation and their exclusion
led to an insignificant result (SQDG rUI = 0.28; P = 0.09). To
further investigate the relationship between genetic diversity and
lipid profile by NMDS and cluster analysis, we only considered
correlations >0.25 to focus on meaningful relationships. For
betaine (% area), hierarchical clustering indicated three groups
(B. dodgei, B. tenuissima, P. aciculiferum, T. coronata, J. applanata
versus P. cinctum, P. gatunense, C. cornutum, P. willei versus
G. palustre) (Figure 4A). This clustering was only partially
evident in NMDS (S = 0.11) (Figure 4B). Based on the UI of
betaine, in NMDS (S = 0.03) the former two large groups were
supported by the clustering.

DISCUSSION

Temperature is one of the most important factors constraining
life on earth (Litchman and Klausmeier, 2008). The active
restructuring of the physical state of membranes in response
to temperature changes, also known as the homeoviscous
adaptation, is a very important aspect of temperature adaptation
in poikilotherms (Hazel and Williams, 1990; Hazel, 1995). This
is the first study that considers the intact molecular species
of different membrane lipid classes (galactolipids, glycolipids,
phospholipids and betaines) from ten freshwater dinoflagellates
grown at specific temperatures akin to their natural occurrence.
All dinoflagellates studied possessed the galactolipids MGDG,
DGDG and TGDG, the glycolipid SQDG, the betaine DGCC and
the phospholipid PC while the phospholipids PE and PG were
not universally present. Lipid species that were not found in some
dinoflagellates might have been under the detection limit of our
experimental setup because of their low concentration. Thus, we
focused our attention on meaningful concentrations and not on
the absence of lipid species.

The freshwater dinoflagellates could be distinguished into two
groups based on the regiochemical distribution of the major
fatty acyl chains of MGDGs and DGDGs: the psychrophilic TA
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FIGURE 4 | Combination between hierarchical clustering and NMDS of betaine; shown is the NMDS ordination with clusters, indicated by bootstrap
resampling, and the cluster dendrogram (the black lines connecting taxa): (A) % area of fatty acids, (B) UI.

taxa P. aciculiferum, B. dodgei, B. tenuissima and the mesophile
T. coronata belonged to the C18/C18 cluster while C. cornutum,
G. palustre, J. applanata, P. cinctum, P. willei and P. gatunense
belonged to the C20/C18 cluster sensu Gray et al. (2009b).

In our study, dinoflagellates of the C18/C18 cluster had a
[DGDG]/[MGDG] molar ratio within a narrow range (1.1–1.2)
while dinoflagellates of the C20/C18 cluster had a much higher
ratio (1.6–4.0), further distinguishing these two clusters. The

relative amount of galactolipids is important in temperature
adaptation; MGDGs possess an inverted conical geometry
and, therefore, in aqueous systems tend to form hexagonal-
II phase rather than forming a bilayer (Gurr et al., 2002;
Arouri and Mouritsen, 2013), and this can be an important
property to sustain membrane fluidity with low temperature.
In psychrophiles, MGDGs are more important for maintaining
membrane fluidity than DGDGs (Flaim et al., 2012). Likewise in
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Pyrocystis spp., grown between 25 and 35◦C, DGDGs respond
more to temperature changes than MGDGs (Leblond et al.,
2010a).

Furthermore, dinoflagellates of the C18/C18 cluster generally
had a shorter acyl chain length with respect to C20/C18 cluster
dinoflagellates. This is not surprising because many studies have
confirmed the relationship between colder temperatures and
shorter chain lengths (Gray et al., 2009b; Flaim et al., 2012, 2014)
versus warmer temperatures and longer chain lengths (Adolf
et al., 2007; Fuentes-Grünewald et al., 2012) in dinoflagellates.

While an increase in the UI with decreasing temperatures
is commonly seen within a single species with changing
temperature, both for warm- and cold-water dinoflagellates
(e.g., Leblond et al., 2010a, 2015; Flaim et al., 2012, 2014), no
differences in the UIs of all lipid classes were found for the
C18/C18 and C20/C18 clusters. When the UI was applied to inter-
specific comparisons, there was no difference between clusters;
we suggest that this was driven by compensatory effects of single
lipid species.

Photosynthetic organisms in general have different amounts
of MGDG and DGDG species that change even when the degree
of unsaturation of their associated fatty acid profile is not
apparently modulated (Leblond et al., 2010a). We suggest that
the mechanisms that control membrane fluidity seem to be very
fine-tuned and species specific.

While Gray et al. (2009b) link the regiochemical clustering of
species to habitat characteristics such as mixing and nutrients,
here we give a physiological explanation. We suggest that the
grouping of dinoflagellates in C18/C18 and C20/C18 clusters is
actually an indication of the range of temperature tolerance
of species and might separate stenotherms (i.e., organisms
with a limited temperature tolerance) from eurytherms (i.e.,
organisms with a higher temperature tolerance). In the C18/C18
cluster, temperature tolerance seems to be limited, as indicated
experimentally for the two psychrophile dinoflagellates B. dodgei
(Flaim et al., 2012) and P. aciculiferum (Flaim et al., 2014).
Warm-water dinoflagellates that belong to the C18/C18 cluster
should therefore also have a limited temperature range (of ca.
10◦C) that sustains optimum growth and metabolic functions.
Indirect evidence of this can be found in several studies showing
maximum values for different metabolic parameters in a narrow
temperature range: Scrippsiella trochoidea (no difference in
growth rates between 11 and 18◦C with significant decreases
at higher and lower temperatures; Binder and Anderson,
1987), no change in whole cell fluorescence in Symbiodinium
microadriaticum between 24 and 28◦C (Iglesias-Prieto et al.,
1992), optimum growth of Prorocentrum minimum between
18 and 26◦C (Grzebyk and Berland, 1996); furthermore,
Symbiodinium spp. show different metabolite profiles at 18 and
26◦C (Klueter et al., 2015) also indicating a narrow tolerance to
temperature before significant changes occur.

Dinoflagellates belonging to the C20/C18 cluster instead seem
to have a wider temperature tolerance, and thus thrive over
a greater temperature range as indicated for Alexandrium
tamarense (no change in survival rate between 0 and 25◦C or
15 and 30◦C depending on strain; Kobiyama et al., 2010) and
Pyrocystis lunula (no difference in bioluminescence between 14

and 30◦C; Craig et al., 2003). Furthermore, an in situ study
on blooms of Prorocentrum minimum (C18/C18 cluster) and
Lingulodinium polyedrum (C20/C18 cluster) indicated that the
latter was not influenced by temperature while the former was
negatively influenced by mixing depth (Shipe et al., 2007).
We hypothesize that a shallow mixing layer indicates summer
conditions and a narrower temperature range. The concept of
temperature tolerance is eloquently shown by Butterwick et al.
(2005), who carried out growth experiments with various algal
species over a wide temperature range. Similarly to Butterwick
et al. (2005), specific studies are needed to test our hypothesis on
the extent of temperature tolerance in relation to the clustering
of dinoflagellates. Dahmen et al. (2013) suggest that the C20/C18
cluster dinoflagellate L. polyedrum has specific elongases and
desaturases to modulate the galactolipid chain length. Following
the same corollary we speculate that differences in temperature
tolerance between C18/C18 and C20/C18 clusters could be related
to a different array of enzymes and/or their different activity
and would thus define their eurythermic or stenothermic nature.
Stenotherms originate from more thermally stable environments
than eurytherms, and both stenotherms and eurytherms can
better cope with temperature changes toward lower temperature
than toward higher temperatures (Somero et al., 1996). Thus,
understanding the mechanisms that underlie thermal adaptations
is pivotal to predict how climate warming will affect species
distribution (Somero, 2010).

While in recent years, the galactolipid composition in
dinoflagellates has attracted attention (Leblond et al., 2006, 2010a;
Gray et al., 2009a,b; Flaim et al., 2012) little information is
available about betaine lipids (Leblond and Chapman, 2000;
Flaim et al., 2014; Leblond et al., 2015).

This study corroborated that, in dinoflagellates, the FAC
distribution of betaines remarkably differs from that of
galactolipids: while the latter mainly possessed ω3 acyl chains
such as 18:4, 18:5, and/or 20:5, predominant DGCCs possess
short chain saturated fatty acids (14:0 – 16:0) together with
long chain polyunsaturated one (22:6, ω3). Similarly to Flaim
et al. (2014) and Leblond et al. (2015), 36:6 DGCC presented
the highest percentage in dinoflagellates and was furthermore
indicated as a marker for the C18/C18 cluster. Surprisingly, in
the ordination specific for betaine lipids, the grouping in C18/C18
and C20/C18 cluster was not that evident; specifically, J. applanata
and G. palustre clustered together with the C18/C18 cluster.
This was also found for the C18/C18 dinoflagellate symbiont
Symbiodinium (Leblond et al., 2015), where betaine lipids
showed minimal changes with temperature. This unexpected
result could be explained by the link between taxa lipid profile
and genetic distance. Species within the groups T. coronata
and J. applanata (Hansen et al., 2007; Daugbjerg et al., 2014),
B. tenuissima and B. dodgei (Daugbjerg et al., 2014) and
P. gatunense, P. willei, and P. cinctum (Logares et al., 2007) are
close together in phylogenetic trees. We suggest that betaine
lipids better reflected the phylogenetic relationship rather than
the temperature tolerance in dinoflagellates. In fact, J. applanata
and G. palustre showed the highest amount of 36:6 DGCC within
the C20/C18 cluster and might well be grouped with the C18/C18
cluster.
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In summary, our study indicated that the analysis of
thylakoid glycolipids can shed light on the range of dinoflagellate
temperature tolerance whereas the distribution of non-thylakoid
lipids better reflects their phylogeny.
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