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We consider a particular truncation of the generalized Proca field theory in four dimensions for which we
construct static and axisymmetric rotating black hole “stealth solutions,” namely solutions with (anti) de
Sitter or Kerr metric but nontrivial vector field. The static configuration is promoted to a backreacting black
hole with asymptotic (anti) de Sitter behavior by turning on a nonlinear electrodynamic source given as a
fixed power of the Maxwell invariant. Finally we extend our solutions to arbitrary dimensions.
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I. INTRODUCTION

So far, the most successful theory of gravity, not only
from a theoretical point of view but also from its exper-
imental validation, is Einstein’s theory of general relativity
(GR). At Solar System scales, the predictive power of GR
[1] and the recent direct detection of gravitational waves [2]
position GR in an unsurpassable place. As a direct
consequence, new horizons on the study of black hole
physics will be opened with the opportunity of detecting
black holes via modern observations. Nevertheless, during
the past decades, huge efforts have been made in the
construction of alternative theories of gravity [3], mostly
motivated by the incompatibilities of GR at quantum scales
[4] and by the dark matter and dark energy phenomena [5].
It seems that the theory should be modified not only at
ultraviolet (UV) scales but also at infrared (IR) ones.
Ultraviolet modifications generally incorporate high order
curvature terms as is the case in string theory [6], while IR
modifications might imply the inclusion of exotic forms of
matter or new degrees of freedom. The so far unsuccessful
detection of new particles that could account for dark
matter or dark energy have motivated many theorists to
consider modified gravity with increasingly complex for-
mulations. The most illustrative case is the so-called scalar-
tensor theory (STT), which extends GR with one or more
scalar degree of freedom [7]. A common feature of these
theories is that they are all encoded by second-order
differential equations of motion in order to avoid the
Ostrogradski instability [8]. The most general second-order
STT in four dimensions was constructed during the early
1970s by Horndeski [9], and a sector of it was rediscovered

later in a different framework by the name of Galileon
theory [10–12]. The latter also corresponds to a scalar field
theory coming from the generalization of the decoupling
limit of the Dvali-Gabadadze-Porrati (DGP) model [13].
In the past few years, Horndeski/Galileon-like theories
have been extensively studied in the context of black hole
physics [14–27]. In addition, solutions describing neutron
stars and other compact objects have come out, imposing
several constraints on the validity of these kinds of models
[28–31]. These theories attracted a lot of interest also in
the cosmology community as they might play a role in
explaining inflation, dark energy, or dark matter [32].
There are other modifications of gravity that are cur-

rently under scrutiny as, for example, the vector-tensor
theories (VTT). In Ref. [33], it was proved that there is no
Galileon extension for a VTT exhibiting gauge symmetry.
In fact, the first result on the general gauge invariant vector
theory coupled to gravity yielding second-order field
equations was obtained by Horndeski himself [34,35].
The resulting gauge invariant theory, apart from the
Maxwell term, contains an additional contribution propor-
tional to the double dual of the Riemann tensor and reduces
to the standard Maxwell electrodynamics in the flat limit
case. However, relaxing the hypothesis of gauge invariance,
more general VTT can be constructed. The simplest way to
do so is to consider a mass term m2AμAμ for the vector
field, which explicitly breaks the gauge invariance.
The generalization of the Proca action for a massive vector
field with derivative self-interaction was studied in several
papers; see e.g. [36–38]. The resulting theory, which
describes a massive vector field theory propagating
3 degrees of freedom, namely the two transverse modes
and the longitudinal mode, has been called “vector
Galileon.” This terminology is essentially due to the fact
that the longitudinal mode, which can be related to the
scalar Galileon field through the Stuckelberg mechanism,
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shows the same self-interaction as in the Galileon theory.
The corresponding curved version is obtained using the
same procedure as in the scalar case following the standard
minimal coupling approach and adding proper nonminimal
couplings between gravity and the vector field in order to
maintain the second-order nature of the field equations. As
a result, the most general theory describing a Proca field in
curved spacetime, yielding second-order differential equa-
tions of motion and propagating only the 3 physical degrees
of freedom is expressed by the following Lagrangian [38]:

Lcurved
gen Proca ¼

ffiffiffiffiffiffi−gp X5

n¼2

Ln; ð1Þ

where

L2 ¼G2ðAμ;Fμν; ~FμνÞ; L3 ¼G3ðYÞ∇μAμ;

L4 ¼G4ðYÞRþG4;Y ½ð∇μAμÞ2−∇ρAσ∇σAρ&;

L5 ¼G5ðYÞGμν∇μAν−
1

6
G5;Y ½ð∇ ·AÞ3þ2∇ρAσ∇γAρ∇σAγ

−3ð∇ ·AÞ∇ρAσ∇σAρ&− ~G5ðYÞ ~Fαμ ~Fβ
μ∇αAβ;

L6 ¼G6ðYÞLμναβ∇μAν∇αAβþ
G6;Y

2
~Fαβ ~Fμν∇αAμ∇βAν:

ð2Þ

Here, Fμν ¼ ∇μAν −∇νAμ stands for the field strength
tensor, ~Fμν is its dual, and Lμναβ is the double dual Riemann
tensor defined as

Lμναβ ¼ 1

4
ϵμνρσϵαβγδRρσγδ: ð3Þ

In the previous expressions, the Gn’s represent arbitrary
functions of Y ¼ − 1

2AμAμ, and we note that the standard
Maxwell term 1

4FμνFμν may be contained in the functionG2.
Recently, several works have appeared studying various

aspects of this theory, such as cosmological perturbations
[39], screening mechanisms [40], or higher order exten-
sions [41]. However, only a few works have explored the
existence of black hole configurations on the spectrum of
these theories. A promising and interesting sector of (1),
which displays black hole solutions with various asymp-
totic structures, is the one involving the nonminimal
coupling of the Proca field with the Einstein tensor, i.e.
the term GμνAμAν; see [42–45]. Indeed, in [42] the authors
have obtained asymptotically flat and asymptotically
Lifshitz black hole solutions. In [44] the author expresses
the relation between solutions on this vector theory and the
known solutions for the kinetic nonminimal sector of the
scalar case. Moreover the slowly rotating extensions are
obtained. On the other hand, solutions where a nonminimal
coupling between the Ricci scalar and the vector field is
considered are also described in [45].

In this paper, we will consider a particular truncation of
the general Lagrangian (1) where the only nonvanishing
terms are given by L3 ¼ − 1

2A
2∇μAμ and by L2 which only

depends on Fμν. Indeed, this truncation is of interest since
as we show below, as a matter of fact, it allows for the
construction of black hole solutions. It is also interesting
to note that the full theory can be promoted to a gauge
invariant theory making use of the Stuckelberg procedure.
Indeed, this can be achieved by including an additional
scalar field through Aμ → Aμ þ ∂μπ. Properly choosing the
arbitrary functions in (1), namely Gn ¼ Y, and setting
Aμ ¼ 0, the full scalar Galileon interactions are recovered.
Then it is possible to make a connection between vector and
scalar models, noticing that our model defined by L3 has
the DGP model Lagrangian as the scalar counterpart.
Moreover, due to the fact that L3 is linear in the connection
its covariantization is trivial and does not need any
counterterm when going from Minkowski spacetime to a
curved background.
To begin with, we show that, when the term L2 is absent

in our truncated Lagrangian, the theory admits a particular
class of black hole solutions known as “stealth configura-
tions.” These are characterized by the vanishing of the
geometric and of the matter parts of the Einstein equations.
In particular, we obtain stealth configurations described by
the Schwarzschild and Kerr metric while some components
of the vector field are nontrivial.
Next, we show that the metric of these stealth configu-

rations can be nontrivially modified by turning on the
Lagrangian L2. This task is nontrivial essentially because
of the non-Coulombian behavior of the potential scalar.
Nevertheless, we will take advantage of the nonlinear
electrodynamic models that are known to accommodate
non-Coulombian fields, and we choose the appropriate
form for the Lagrangian L2, given by a fractional power of
the Maxwell invariant.
The paper is organized as follows. In Sec. II, we present

the model and its associated field equations. In Sec. III, we
find the static stealth solution without the Lagrangian L2

and the black hole solution when the latter is taken into
account. In Sec. IV, we find the stealth configuration
corresponding to the Kerr black hole. In Sec. V, we present
some possible extensions of the present work. Appendix A
is also provided where the four-dimensional stealth con-
figuration on Kerr spacetime is generalized to arbitrary
dimensions.

II. MODEL AND FIELD EQUATIONS

We consider the following action defined in four
dimensions:

S ¼
Z

ffiffiffiffiffiffi−gp
"
κðR − 2ΛÞ − 1

4
L2ðF2Þ − α

2
A2∇νAν

#
d4x;

ð4Þ
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and corresponding to a subset of the Lagrangian (1) and (2)
with G3 ¼ − 1

2A
2, and L2 depending on the Maxwell

kinetic term only. The variation of the action with respect
to the metric and to the vector field yield, respectively,

Eμν ≔ κðGμν þ ΛgμνÞ −
α
2
AμAν∇αAα þ α

4
Aμ∇νðA2Þ

þ α
4
Aν∇μðA2Þ − α

4
gμνAα∇αðA2Þ

−
1

2

$
dL2ðF2Þ
dF2

FμαFα
ν − gμνL2ðF2Þ

%
¼ 0; ð5Þ

Eν ≔ ∇μ

$
Fμν dL2ðF2Þ

dF2

%
− Aν∇μAμ þ 1

2
∇νðA2Þ ¼ 0: ð6Þ

Before looking for solutions to the field equations, we first
show that, imposing the following condition:

∇μAμ ¼ 0; ð7Þ

will imply that, under some reasonable assumptions, the
norm of the vector Aμ must vanish. As shown below, these
two conditions will then be imposed in order to find some
solutions.
Indeed, by taking the divergence of the vector field

equation, one finds

∇ν∇μ

$
Fμν dL2ðF2Þ

dF2

%
¼ ∇νAν∇μAμ − 1

2
∇ν∇νðA2Þ:

The antisymmetry of the left side of this expression implies
that the norm of the vector satisfies the massless Klein-
Gordon equation

□A2 ¼ 0: ð8Þ

Following the same argument used by Bekenstein to prove
its no-hair theorem [46], we now show that, for a spacetime
describing a stationary and axisymmetric black hole,
Eq. (8) implies AμAμ ¼ 0, provided that the vector field
is regular outside the black hole horizon and vanishing at
infinity. Let us define ψ ¼ AμAμ. Since the spacetime is
stationary axisymmetric, there must exist a parametrization
in which the metric reads

ds2 ¼ gttdt2 þ 2gtϕdtdϕþ gϕϕdϕ2 þW½dρ2 þ dz2&; ð9Þ

where the functions gtt, gtϕ, gϕϕ, and W depend only on ρ
and z. Assuming that also the field ψ has the same
symmetries1 implies that ψ ¼ ψðρ; zÞ. Then, considering

Eq. (8) for ψ and integrating over a four-volume V bounded
by the horizon, spacelike infinity as well as two spacelike
hypersurfaces at constant t, one obtains from Gauss’s
theorem that

Z

t¼t1
dSμψ∂μψþ

Z

t¼t2
dSμψ∂μψþ

Z

i0
dSμψ∂μψ

þ
Z

Hþ
dSμψ∂μψ −

Z

V

ffiffiffiffiffiffi−gp
d4xW−2½ðψ ;zÞ2þðψ ;ρÞ2& ¼ 0;

where we have separated the boundary integral on its
different components. The first two terms corresponding to
integrals on spacelike hypersurfaces at constant t cancel
each other because their orientation is opposite and neither
the scalar field nor the metric depend on the time coor-
dinate. The integral at spacelike infinity (i0) vanishes if we
require the field ψ to decay fast enough, and the boundary
integral at the horizon vanishes as well using the Schwarz
inequality together with the fact that the horizon is a null
surface. Therefore, the bulk integral must vanish and, since
the integrand is definite positive, the field ψ must be an
arbitrary constant. However, the vanishing condition at
infinity implies that

AμAμ ¼ 0: ð10Þ

In the next section, we find static solutions for which
both conditions (7) and (10) are satisfied.

III. TWO DIFFERENT CLASSES
OF STATIC SOLUTIONS

In this section, we show the construction of static
solutions. In order to achieve this task, we consider the
Ansatz

ds2 ¼ −NðrÞ2fðrÞdt2 þ dr2

fðrÞ
þ r2ðdθ2 þ sin2θdϕ2Þ;

ð11Þ

and

A ¼ Aμdxμ ¼ AtðrÞdtþ ArðrÞdr; ð12Þ

where the nontrivial component Ar, which is related to
the vector longitudinal polarization mode, is propagating
because of the lack of gauge symmetry. As mentioned
before, the class of solutions we are looking for is that
satisfying the conditions (7) and (10). It is easy to see that
the integration of these two conditions can be done in full
generality yielding

AtðrÞ ¼
Q
r2
; ArðrÞ ¼

Q
r2fðrÞNðrÞ

; ð13Þ

1In the case of a complex Klein-Gordon scalar field with a
massive term, it has recently been shown that relaxing the
symmetry condition but still requiring the energy-momentum
tensor to realize this symmetry, hairy black holes exist [47]. A
quite similar argument was previously used to construct nonlinear
solitons for the Skyrme model [48].
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where Q is an arbitrary integration constant. It is important
to stress that the apparent singularity of the component
ArðrÞ is just an artifact that could be removed by using
coordinates which are well defined at the horizon.

A. Static black hole stealth configurations

To determine the metric, we note that when L2 ¼ 0,
conditions (7) and (10) imply that (6) is automatically
satisfied while the matter part of the stress tensor of the
Einstein equations (5) vanishes. Hence, in order to satisfy
both equations, we are left with nothing but Einstein
equations with a cosmological constant, Gμν þ Λgμν ¼ 0,
whose static black hole solutions are given by the
Schwarzschild-(a)dS spacetimes. Hence, the
Schwarzschild-(a)dS black hole metric (11) with

NðrÞ ¼ 1; fðrÞ ¼ r2

l2
þ 1 −

2M
r

;

together with (13), is a solution of the theory defined
by the action (4) with L2 ¼ 0. This model, where both
sides of the Einstein equations (the geometric part and
the matter stress tensor) vanish identically, is known in
the literature as a “stealth” configuration. Some exam-
ples of such solutions have been derived previously in
the case of a scalar field nonminimally coupled to gravity
[49–51] and also in the context of Horndeski theories
[17]. It is worth noticing that even though these con-
figurations do not gravitate, in the case of black hole
backgrounds the thermal quantities might depend on the
matter profile, which may produce quantum tunneling
between the configurations with and without matter field;
see e.g. [52].

B. Black hole solutions with nonlinear electrodynamics

We now turn on the term L2 in (4) in order to find new
black hole solutions. Direct integration of the general
equations of motion is not possible; thus we opt for the
following strategy: we keep imposing the conditions (7)
and (10) so the solution Aμ is given by (13) with the static
Ansatz (11). In turn, this implies that the field equations (5)
and (6) reduce to

κðGμν þ ΛgμνÞ ¼
1

2

$
dL2ðF2Þ
dF2

FμαFα
ν − gμνL2ðF2Þ

%
;

∇μ

$
Fμν dL2ðF2Þ

dF2

%
¼ 0: ð14Þ

Now, it remains to find the appropriate Lagrangian L2 that
satisfies the above equations. For sure, because of the non-
Coulombian behavior of the scalar potential AtðrÞ ¼ Q=r2,
we know that the Lagrangian L2 cannot be given by the
standard Maxwell term. A simple way to circumvent
this problem is to choose a form inspired by nonlinear

electrodynamics for the Lagrangian L2. As shown below,
the nonlinearity can, in fact, induce a non-Coulombian
scalar potential. It is interesting to note that nonlinear
electrodynamics models have been proved to be excellent
laboratories in order to avoid some problems that occur in
the standard Maxwell theory. The interest for such models
has started with the pioneering work of Born and Infeld
[53] whose main motivation was to modify the standard
Maxwell theory in order to eliminate the problem of infinite
energy of the electron. Nonlinear electrodynamics is also
crucial for the construction of regular black holes [54] and
for anisotropic black hole solutions [55]. In addition, owing
to their peculiar thermodynamics properties, nonlinear
electrodynamic models have also attracted a lot attention
from the physics community [56].
In our case, we will see that the appropriate form is

given by a power of the Maxwell invariant, namely
L2 ¼ ð−FμνFμνÞp. The presence of the minus sign multi-
plying the Maxwell invariant ensures the existence of real
solutions for any exponent p. This model has been
intensively studied during the past decade [57]. Hence,
in the search of charged black hole solutions, we will
consider the following four-dimensional action:

S ¼ κ
Z

ffiffiffiffiffiffi−gp ðR − 2ΛÞd4xþ β
4

Z
ffiffiffiffiffiffi−gp ð−FμνFμνÞpd4x

−
α
2

Z
ffiffiffiffiffiffi−gp

A2∇μAμd4x; ð15Þ

where β is assumed to be positive in order to recover the
standard Maxwell theory in the limit p → 1. The variations
with respect to the metric tensor and the vector field
yield

Eμν ¼ κðGμν þ ΛgμνÞ −
β
2
Tð1Þ
μν −

α
2
Tð2Þ
μν ¼ 0; ð16Þ

Eν ¼ pβ∇μðFp−1FμνÞ − αAν∇αAα þ α
2
∇νðA2Þ ¼ 0; ð17Þ

where we have defined

Tð1Þ
μν ¼ pFp−1FμλFλ

ν þ
1

4
gμνFp; ð18Þ

Tð2Þ
μν ¼ AμAν∇αAα −

1

2
Aμ∇νðA2Þ − 1

2
Aν∇μðA2Þ

þ 1

2
gμνAα∇αA2; ð19Þ

and where F ¼ −FμνFμν.
Using the Ansatz defined in (11) and (12) with NðrÞ ¼ 1

and setting a ≔ At and ϕ ≔ Ar, the equations of motion
become2

2We have set NðrÞ ¼ 1 since the solutions of Einstein gravity
with the nonlinear source are only known for this particular
Ansatz.
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Et ≔ −2aa02ðrf0 þ 2fÞϕ − f½βpa02pa00rð2p − p2pþ1Þ þ 2aa02rϕ0 − βpð2a0Þ2pþ1& ¼ 0;

Er ≔ 4f þ rf0ϕ2 þ raðaf0 − 2a0fÞ ¼ 0;

Ett ≔ 2ϕ2r2f2ðϕf0 þ 2fϕ0Þ − ½4arða0rþ 2aÞf þ 2a2f0r2&ϕ − 8κf2 þ f½8κð1 − rf0 − Λr2Þ
− 4a2r2ϕ0 þ βa02pr2ð2p − p2pþ1Þ& ¼ 0;

Err ≔ 8κf2 − 2rfðrff0 − 4fÞϕ3 − ½2ar2ðaf0 − 2fa0Þ&ϕþ f½8κðrf0 − 1þ Λr2Þ − βa02pr2ð2p − p2pþ1Þ& ¼ 0;

Etr ≔ rf0ða2 − f2ϕ2Þ − 4ϕ2f3 − 2rfaa0 ¼ 0: ð20Þ

The conditions (7) and (10) imply that aðrÞ ¼ Q
r2 and

ϕðrÞ ¼ Q
fðrÞr2, and, as a direct consequence, the field

equations Er and Etr are automatically satisfied. The
remaining equations take the form

Et ¼ −
βp
4Q

r2f
$
8Q2

r6

%p
ð6p − 5Þ ¼ 0; ð21Þ

and

Ett ¼ Err ¼ 8κðrf0 − 1þ f þ 8Λr2Þ

þ βr2
$
8Q2

r6

%p
ð2p − 1Þ ¼ 0; ð22Þ

and we see that, in order to satisfy the nonlinear Maxwell
equation Et, we have p ¼ 5

6. This justifies a posteriori the
minus sign multiplying the Maxwell invariant owing that
this latter is negative definite for our Ansatz. Finally, the
remaining independent equation yields

fðrÞ ¼ r2

l2
−
M
r
þ 1þ β

ffiffiffi
2

p

6κ
Q

5
3

r3
; ð23Þ

where, as usual, we have defined the (a)dS radius l2 ¼ − 3
Λ

(in the de Sitter case, the solution is still valid and
corresponds to an imaginary value of l). This family of
solutions is asymptotically (a)dS if Λ ≠ 0 and asymptoti-
cally locally flat otherwise. In both cases, there is a
curvature singularity at the origin, revealed by the scalar
curvature which reads

R ¼ 4Λ − β

ffiffiffi
2

p

3κ
Q

5
3

r5
: ð24Þ

This singularity is hidden by the horizon(s) located, as
usual, at rh, such that fðrhÞ ¼ 0.
Note that this solution is easily extended to D > 4

dimensions. Indeed, in such a case, the divergenceless
and the null condition on the vector field implies that

AtðrÞ ¼
Q

rD−2 ;

and the nonlinear electrodynamic term in the Lagrangian is
given by L2 ¼ ð−FμνFμνÞp with

p ¼ 2D − 3

2ðD − 1Þ
:

IV. BLACK HOLE ROTATING
STEALTH SOLUTIONS

We now show that the static stealth solutions can be
generalized to a stealth configuration described by the Kerr
metric. We will follow the same strategy as before by
considering the action (4) withL2 ¼ 0 and with a vanishing
cosmological constant.3 The usual conditions ∇μAμ ¼ 0
and AμAμ ¼ 0 for the field equations (5) and (6) with
L2 ¼ Λ ¼ 0, in the case of a stationary and axisymmetric
Ansatz, imply that the spacetime metric solution is given by
the Kerr metric. In Kerr-Schild coordinates this is given by

ds2 ¼ −dt̄2 þ dr̄2 þ Σdθ̄2 þ ðr̄2 þ a2Þsin2θ̄dϕ̄2

− 2asin2θ̄dr̄dϕ̄þ 2Mr̄
Σ

ðdt̄þ dr̄ − asin2θ̄dϕ̄Þ2;

ð25Þ

where Σ ≔ r̄2 þ a2cos2θ̄, M is the mass, and a ¼ J=M is
the rotation parameter. We also assume that the nonvanish-
ing components of the potential A are along the time and
radial coordinate, i.e. Aμ ¼ At̄δt̄μ þ Ar̄δr̄μ, with components
being functions of the radial and polar coordinates r̄ and θ̄.
In this case, the transverse and null conditions imply that

Ar̄ðr̄; θ̄Þ ¼ Fðθ̄Þ
r̄2 þ a2cos2θ̄

; ð26Þ

and this restriction is consistent with two different expres-
sions of the scalar potential that are given by

At̄ðr̄; θ̄Þ ¼ −
Fðθ̄Þ

r̄2 þ a2cos2θ̄
; ð27Þ

and

At̄ðr̄; θ̄Þ ¼ Fðθ̄Þðr̄2 þ 2Mr̄þ a2cos2θ̄Þ
ðr̄2 þ a2cos2θ̄Þðr̄2 − 2Mr̄þ a2cos2θ̄Þ

: ð28Þ

3The restriction Λ ¼ 0 is just for simplification, and the
solution we obtain can easily be generalized to a stealth
configuration on the Kerr (a)dS spacetime. Stealth configurations
on rotating black holes have also been found for conformally
coupled scalar fields in [58].
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In these equations Fðθ̄Þ is an arbitrary function of the polar
coordinate. In order to better clarify these two classes of
rotating stealth configurations, we write them in Boyer-
Lindquist coordinates ðt; r; θ;ϕÞ defined by

t ¼ t̄ −
Z

2Mr̄
r̄2 − 2Mr̄þ a2

dr̄; ð29Þ

ϕ ¼ ϕ̄ −
Z

a
r̄2 − 2Mr̄þ a2

dr̄: ð30Þ

In this coordinate system, the metric reads

ds2 ¼−dt2þρðr;θÞ2
$

dr2

ΔðrÞ
þdθ2

%

þðr2þa2ÞsinðθÞ2dϕ2þ 2Mr
ρðr;θÞ2

ðasinðθÞ2dϕ−dtÞ2;

where ρðr;θÞ2¼ r2þa2 cosðθÞ2 and ΔðrÞ¼ r2−2Mrþa2.
It is worthwhile to note that through the coordinate change,
the potential Aμ acquires an additional component, and the
first class of rotating stealth configuration (27) becomes, in
the Boyer-Lindquist coordinates,

Atðr; θÞ ¼ −
FðθÞðr2 þ a2Þ

ðr2 þ a2cos2θÞðr2 − 2Mrþ a2Þ
;

Arðr; θÞ ¼ FðθÞ
r2 þ a2cos2θ

;

Aϕðr; θÞ ¼ −
aFðθÞ

ðr2 − 2Mrþ a2Þðr2 þ a2cos2θÞ
;

while the second class (28) is expressed as

Atðr; θÞ ¼ ðr2 þ a2Þðr2 þ a2cos2θÞ − 2rmðr2 − a2 þ 2a2cos2θÞ
ðr2 − 2Mrþ a2Þðr2 þ a2cos2θÞðr2 − 2Mrþ a2cos2θÞ

FðθÞ;

Arðr; θÞ ¼ FðθÞ
r2 þ a2cos2θ

;

Aϕðr; θÞ ¼ −
aFðθÞ

ðr2 − 2Mrþ a2Þðr2 þ a2cos2θÞ
:

Away for distinguishing these two classes of solutions is to
remark that the t-component of the last stealth configuration
diverges at the ergosphere. Hence, it may be reasonable to
consider the first configuration as the physically sound one.

V. CONCLUSIONS AND FURTHER RESEARCH

In this work, we have found black hole solutions of the
generalized Proca field theory exhibiting nonminimal
couplings of the vector field with the curvature along with
self-derivatives interactions. We focused on the simplest
Lagrangian contained in (1) and given by the action (4). For
this model, we have shown, using a similar argument to the
no-hair theorem of Bekenstein, that the transverse con-
dition ∇μAμ ¼ 0must be associated with the null condition
AμAμ ¼ 0. As shown in this work, these two conditions are
very helpful in our search of black hole solutions. First, in
the absence of the L2 term in the action (4), these two
conditions necessarily imply that the solution must be a
stealth configuration. In this case, we have obtained two
nontrivial black hole stealth configurations defined on the
Schwarzschild and on the Kerr spacetimes. The scalar
potential in the static case does not exhibit a Coulombian
behavior, and instead behaves as Q=r2. We have taken
inspiration from the nonlinear electrodynamic models that
admit non-Coulombian fields to chose appropriately the
Lagrangian L2 in order to construct black hole solutions
that differ from (a)dS black holes.

Some further directions can be followed to extend our
analysis. For example, it will be interesting to explore more
general truncations of the full Lagrangian (1) and the
corresponding transverse and null conditions that yield to
stealth configurations. Also the analysis of the thermody-
namical properties of our new solutions are worth inves-
tigating. Indeed, for the stealth black holes, the solutions
are characterized by an integration constant Q in addition
to the standard mass parameter M. It will be nice to clarify
the physical interpretation of this constant, which, in the
nonlinear case, is proportional to the electric charge.
Finally, as a very nontrivial task, it will be interesting to
find the rotating version of the static solution in the
nonlinear electrodynamic case.
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APPENDIX: HIGHER DIMENSIONAL
ROTATING STEALTHS

The rotating stealth solution can be further extended to
higher dimensions. In fact, the extension of the Kerr metric
to dimensions greater than four was found by Myers
and Perry in [59]. The spacetime describes a black hole
characterized by ½D−2

2 & rotation parameters ai and a mass
parameter M. The metric can be written in a Kerr-Schild
form, and providedD ¼ N þ 1, we have for odd N that the
metric reads

ds2 ¼ −dt2 þ dr2 þ r2dα2 þ ðr2 þ a2i Þðdμ2i þ μ2i dϕ
2
i Þ

þ 2aiμ2i dϕidrþ
Mr2

ΠF
ðdtþ drþ aiμ2i dϕiÞ2;

where α2 ¼ 1 − μ2i and where the sum is understood for
repeated index i with i ¼ 1;…; N−1

2 . The functions F and Π
are functions that depend on r and μi. For evenN the metric
solution reads

ds2 ¼ −dt2 þ dr2 þ ðr2 þ a2i Þðdμ2i þ μ2i Þ þ 2aiμ2i dϕidr

þ Kðr; μiÞðdtþ drþ aiμ2i dϕiÞ2;

where now the coordinates μi are restricted such that
μ2i ¼ 1. In both cases (even and odd), the expressions
for Π and F read

F ¼ 1 −
a2i μ

2
i

r2 þ a2i
;

Π ¼
YðN−1Þ=2

i¼1

ðr2 þ a2i Þ;

while the function K is given by

Kðr; μiÞ ¼
& Mr

ΠF for oddN;
Mr2
ΠF for evenN:

We are concerned with the problem of finding null and
divergentless vectors on these spacetimes. Assuming as in
the four-dimensional case, the Ansatz Aμ ¼ Atðr; μiÞδ

μ
tþ

Arðr; μiÞδ
μ
r , the following configuration provides a stealth

generalized Proca field on the Myers-Perry background:

Ar ¼ CðμiÞffiffiffiffiffiffi−gp ; ðA1Þ

where C is an arbitrary function of the angles μi; this
expression is compatible with two possible solutions of the
t-component of Aμ given by

At ¼ −Ar; ðA2Þ

or

At ¼
$
1þ K
1 − K

%
Ar: ðA3Þ

As before, the metric can be transformed into Boyer-
Lindquist coordinates where the vector field will also
acquire components along the ϕ2

i direction, giving rise
to magnetic components.
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