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1. Introduction

Let q be a power of a prime, then the Hermitian curve H is the plane curve defined over Fq2 by 
the affine equation xq+1 = yq + y, where x, y ∈ Fq2 .

This curve has genus g = q(q−1)
2 and has q3

Fq2 -rational affine points, plus one point at infinity, so 
it has q3 +1 rational points over Fq2 and therefore it is a maximal curve (Ruck and Stichtenoth, 1994). 
This is the best known example of maximal curve and there is a vast literature on its properties, see 
Hirschfeld et al. (2008) for a recent survey. Moreover, the Goppa code (Goppa, 1981, 1988) con-
structed on this curve is by far the most studied, due to the simple basis of its Riemann–Roch space 
(Stichtenoth, 1993), which can be written explicitly. The Goppa construction has been generalized in 
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Vlăduţ and Manin (1984) to higher dimensions. A simpler description can be found in Fitzgerald and 
Lax (1998) for the so-called affine-variety codes.

In this paper we provide an algebraic and geometric description for codewords of a given weight 
belonging to any fixed affine-variety code. In Augot (1996) the solving of a (multivariate) polynomial 
equation system was proposed for the first time to determine minimum-weight codewords of cyclic 
codes, while in Sala (2007) a more efficient system was proposed. Our proposal can be seen as a gen-
eralization to the affine-variety case of Sala (2007). A similar approach can be used to decode codes, 
as described, for example, in de Boer and Pellikaan (1999) and surveyed in Mora and Orsini (2009). 
The specialization of our results to the Hermitian case allows us to give explicit formulas for the num-
ber of some small-weight codewords. Codes over the Hermitian curve have been studied along the 
years and in Høholdt et al. (1998), along with a survey of known results, a new challenging approach 
as explicit evaluation codes is proposed. We expand on our 2006 previous result, presented orally as 
Sala and Pellegrini (2006), where we proved the intimate connection between curve intersections and 
minimum-weight codewords.

The paper is organized as follows:

• In Section 2 we provide our notation, our first preliminary results on the algebraic charac-
terization of fixed-weight codewords of any affine-variety code and some easy results on the 
intersection between the Hermitian curve and any line.

• In the beginning of Section 3 we provide a division of Hermitian codes in four phases, which is 
a slight modification of the division in Høholdt et al. (1998), and we give our algebraic charac-
terization of fixed-weight codewords of some Hermitian codes. We study in depth the first phase 
(that is, d ≤ q) in Section 3.2 and we use these results to completely classify geometrically the 
minimum-weight codewords for all first-phase codes in Section 3.3. In Section 3.4 we can count 
some special configurations of second weight codewords for any first-phase code and finally in 
Section 3.5 we can count the exact number of second-weight codewords for the special case 
when d = 3, 4. A result in this section relies on our results (Marcolla et al., 2014) on intersec-
tion properties of H with some special conics, firstly presented at Effective Method in Algebraic 
Geometry, MEGA 2013.

• In Section 4 we draw some conclusions and propose some open problems.

2. Preliminary results

2.1. Known facts on Hermitian curve and affine-variety codes

From now on we consider Fq the finite field with q elements, where q is a power of a prime and 
Fq2 the finite field with q2 elements. Also, Fq2 will denote the algebraic closure of Fq and Fq2 . Let α
be a fixed primitive element of Fq2 , and we consider β = αq+1 as a primitive element of Fq . From 
now on q, q2, α and β are understood as above.

The Hermitian curve H =Hq is defined over Fq2 by the affine equation

xq+1 = yq + y where x, y ∈ Fq2 . (1)

This curve has genus g = q(q−1)
2 and has n = q3 rational affine points, denoted by P1, . . . , Pn . For any 

x ∈ Fq2 , Eq. (1) has exactly q distinct solutions in Fq2 . The curve contains also one point at infinity 
P∞ , so it has q3 + 1 rational points over Fq2 (Ruck and Stichtenoth, 1994).

Let t ≥ 1. For any ideal I in the polynomial ring Fq[X], where X = {x1, . . . , xt}, we denote by 
V(I) ⊂ (Fq)

t its variety, that is, the set of its common roots. For any Z ⊂ (Fq)
t we denote by I(Z) ⊂

Fq[X] the vanishing ideal of Z , that is, I(Z) = { f ∈ Fq[X] | f (Z) = 0}.
Let g1, . . . , gs ∈ Fq[X], we denote by I = 〈g1, . . . , gs〉 the ideal generated by the gi ’s. Let {xq

1 − x1,

. . . , xq
t − xt} ⊂ I . Then I is zero-dimensional and radical (Seidenberg, 1974). Let V(I) = {P1, . . . , Pn}. 
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We have an isomorphism of Fq-vector spaces (an evaluation map):

φ : R = Fq[x1, . . . , xt]/I −→ (Fq)
n

f 
−→ ( f (P1), . . . , f (Pn)).
(2)

Let L ⊆ R be an Fq-vector subspace of R with dimension r.

Definition 1. The affine-variety code C(I, L) is the image φ(L) and the affine-variety code C⊥(I, L) is 
its dual code.

Our definition is slightly different from Fitzgerald and Lax (1998) and follows instead that in 
Marcolla et al. (2012). Let L be linearly generated by b1, . . . , br then the matrix

H =
⎛
⎝b1(P1) b1(P2) . . . b1(Pn)

...
...

. . .
...

br(P1) br(P2) . . . br(Pn)

⎞
⎠

is a generator matrix for C(I, L) and a parity-check matrix for C⊥(I, L).
For more recent results on affine-variety codes see Geil (2008), Marcolla et al. (2012), Lax (2012).

2.2. First results on words of given weight

Let 0 ≤ w ≤ n, C be a linear code and c ∈ C . We recall that the weight of c, denoted by w(c), is 
the number of components of c that are different from zero and

Aw(C) = |{c ∈ C | w(c) = w}|.
Let c ∈ (Fq)

n , c = (c1, . . . , cn). Then

c ∈ C(I, L)⊥ ⇐⇒ HcT = 0 ⇐⇒
n∑

i=1

cib j(Pi) = 0, j = 1, . . . , r. (3)

Proposition 1. Let 1 ≤ w ≤ n. Let I = 〈g1, . . . , gs〉 be such that {xq
1 − x1, . . . , x

q
t − xt} ⊂ I . Let L be a sub-

space of Fq2 [x1, . . . , xt]/I of dimension r. Let L be linearly generated by {b1, . . . , br}. Let J w be the ideal in 
Fq[x1,1, . . . , x1,t , . . . , xw,1, . . . , xw,t , z1, . . . , zw ] generated by

w∑
i=1

zib j(xi,1, . . . , xi,t) for j = 1, . . . , r (4)

gh(xi,1, . . . , xi,t) for i = 1, . . . , w and h = 1, . . . , s (5)

zq−1
i − 1 for i = 1, . . . , w (6)∏

1≤l≤t

((x j,l − xi,l)
q−1 − 1) for 1 ≤ j < i ≤ w. (7)

Then any solution of J w corresponds to a codeword of C⊥(I, L) with weight w. Moreover,

Aw(C⊥(I, L)) = |V( J w)|
w! .

Proof. Let σ be a permutation, σ ∈ S w . It induces a permutation σ̂ acting on {x1,1, . . . , x1,t , . . . , xw,1,

. . . , xw,t , z1, . . . , zw} as σ̂ (xi,l) = xσ(i),l and σ̂ (zi) = zσ(i) . It is easy to show that J w is invariant w.r.t. 
any σ̂ , since each of (4), (5), (6) and (7) is so.

Let Q = (x̄1,1, . . . , ̄x1,t, . . . , ̄xw,1, . . . , ̄xw,t, ̄z1, . . . , ̄zw) ∈ V( J w). We can associate a codeword to Q
in the following way. For each i = 1, . . . , w , Pri = (x̄i,1, . . . , ̄xi,t) is in V(I), by (5). We can assume 
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r1 < r2 < . . . < rw , via a permutation σ̂ if necessary. Note that (7) ensures that for each (i, j), with 
i �= j, we have Pri �= Pr j , since there is an l such that xi,l �= x j,l . Since z̄q−1

i = 1 (6), z̄i ∈ Fq \ {0}. Let 
c ∈ (Fq)

n be

c = (0, . . . ,0, z̄1↑
r1

,0, . . . ,0, z̄i↑
ri

,0, . . . ,0, z̄w↑
rw

,0, . . . ,0).

We have that c ∈ C⊥(I, L), since (4) is equivalent to (3).
Reversing the previous argument, we can associate to any codeword a solution of J w . By invariance 

of J w , we actually have w! distinct solutions for any codeword. So, to get the number of codewords 
of weight w , we divide |V( J w)| by w!. �
2.3. Intersection between the Hermitian curve H and a line

We consider the norm and the trace, the two functions defined as follows.

Definition 2. The norm N
Fqm

Fq
and the trace Tr

Fqm

Fq
are two functions from Fqm to Fq such that

N
Fqm

Fq
(x) = x1+q+...+qm−1

and Tr
Fqm

Fq
(x) = x + xq + . . . + xqm−1

.

We denote by N and Tr, respectively, the norm and the trace from Fq2 to Fq . It is clear that 
H = {N(x) = Tr(y) | x, y ∈ Fq2}.

Lemma 1. For any t ∈ Fq, the equation Tr(y) = yq + y = t has exactly q distinct solutions in Fq2 . The equation 
N(x) = xq+1 = t has exactly q + 1 distinct solutions, if t �= 0, otherwise it has just one solution.

Proof. The trace is a linear surjective function between two Fq-vector spaces of dimension, respectively, 
2 and 1. Thus, dim(ker(Tr)) = 1, and this means that for any t ∈ Fq the set of solutions of the equation 
Tr(y) = yq + y = t is non-empty and then it has the same cardinality of Fq, that is, q.

The equation xq+1 = 0 has obviously only the solution x = 0. If t �= 0, since t ∈ Fq, we can write t = β i , so 
that x = αi+ j(q−1) are all solutions. We can assign j = 0, . . . , q, and so we have q + 1 distinct solutions. �
Lemma 2. Let H be the Hermitian curve.

(i) Every line L of P2(Fq2 ) either intersects H in q + 1 distinct points, or it is tangent to H at a point P (with 
contact order q + 1). In the latter case, L does not intersect H in any other point different from P .

(ii) Through each point of H, there is one tangent and q2 lines of P2(Fq2 ) that intersect H in q + 1 points.

Proof. See Hirschfeld (1998), Lemma 7.3.2 at p. 247. �
Lemma 3. Let L be any vertical line {x = t}, with t ∈ Fq2 . Then L intersects H in q affine points.

Proof. For any t ∈ Fq2 , tq+1 ∈ Fq , and so the equation yq + y = tq+1 has exactly q distinct solutions 
by applying Lemma 1. �
Lemma 4. Let L be any horizontal line {y = b}, with b ∈ Fq2 . Then if Tr(b) = 0, L intersects H in one affine 
point, otherwise, if Tr(b) �= 0, L intersects H in q + 1 affine points.

Proof. By Lemma 1, for any b ∈ Fq2 , the equation xq+1 = bq + b has exactly q + 1 distinct solutions if 
Tr(b) �= 0, otherwise it has one solution. �
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Lemma 5. In the affine plane A2(Fq2 ), the total number of non-vertical lines is q4. Of these, q4 − q3 intersect 
H in q + 1 affine points, while the remaining q3 lines are tangent to H and they intersect H in only one affine 
point.

Proof. Let L be any non-vertical line in A2(Fq2 ), then L = {y = ax + b}, with a, b ∈ Fq2 . We have q2

choices for both a and b, so the total number is q4.
By (ii) of Lemma 2 we have that through each point of H there is one tangent. Since the Hermitian 

curve has q3 affine points, then there exist q3 tangent lines to H (that meet H at a single point of 
order q + 1).

The lines containing the point at infinity are only the vertical lines. By Lemma 3, their number 
is q2 (since they are L = {x = t} where t ∈ Fq2 ).

The remaining lines are q4 − q3. By (i) of Lemma 2 they meet the curve at q + 1 affine points. �
3. Small-weight codewords of Hermitian codes

We recall that an affine-variety code is Im(φ(L)), where φ is as (2). We consider a special case of 
affine-variety code, which is the Hermitian code.

Let I = 〈xq+1 − yq − y, xq2 −x, yq2 − y〉 ⊂ Fq2 [x, y] and let R = Fq2 [x, y]/I . We take L ⊆ R generated 
by

Bm,q = {xr ys + I | qr + (q + 1)s ≤ m, 0 ≤ s ≤ q − 1, 0 ≤ r ≤ q2 − 1},
where m is an integer such that 0 ≤ m ≤ q3 +q2 −q −2. For simplicity, we also write xr ys for xr ys + I . 
We have the following affine-variety codes: C(I, L) = SpanFq2

〈φ(Bm,q)〉 where φ is the evaluation 
map (2) and we denote by C(m, q) = (C(I, L))⊥ its dual. Then the affine-variety code C(m, q) is called 
the Hermitian code with parity-check matrix H :

H =
⎛
⎝ f1(P1) . . . f1(Pn)

...
. . .

...

f i(P1) . . . f i(Pn)

⎞
⎠ where f j ∈ Bm,q. (8)

Remark 1. We recall that the Riemann–Roch space associated to a divisor E of a curve χ is a vector 
space L(E) over Fq(χ) defined as

L(E) = { f ∈ Fq(χ) | ( f ) + E ≥ 0} ∪ {0},
where Fq(χ) is a rational function field on χ . In particular, if we consider the Hermitian curve H, 
we know that it has q3 + 1 points of degree one, namely a pole Q ∞ and q3 distinct affine points 
Pγ ,δ = (γ , δ) such that γ q+1 = δq + δ. Let D be the divisor D = ∑

γ q+1=δq+δ Pγ ,δ on the curve H. For 
m ∈ Z the affine-variety code C(m, q)⊥ is the same code as the Goppa code C(D, mQ ∞) associated 
with the divisors D and mQ ∞ as

C(D,mQ ∞) = {( f (P1), . . . , f (Pn)) | f ∈ L(mQ ∞)} ⊂ (Fq2)
n,

where L(mQ ∞) is a vector space over Fq2 (H).
Note that Bm,q is a monomial basis for L(mQ ∞).

The Hermitian codes can be divided in four phases (Høholdt et al., 1998), any of them having 
specific explicit formulas linking their dimension and their distance (Marcolla, 2013), as in Table 1.

In the remainder of this paper we focus on the first phase. This case can be characterized by the 
condition d ≤ q.
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Table 1
The four “phases” of Hermitian codes (Marcolla, 2013).

Phase m Distance d Dimension k

1

0 ≤ m ≤ q2 − 2
m = aq + b

0 ≤ b ≤ a ≤ q − 1
b �= q − 1

a + 1 a > b
a + 2 a = b

⇐⇒ d ≤ q q3 − a(a+1)
2 − (b + 1)

2

q2 − 1 ≤ m ≤ 4g − 3
m = 2q2 − q − aq − b − 3

1 ≤ a ≤ q − 2
0 ≤ b ≤ q − 2

(q − a)q − b − 1 a ≤ b
(q − a)q a > b

n − g − q2 + aq + b + 2

3 4g − 2 ≤ m ≤ n − 2 m − 2g + 2 n − m + g − 1

4
n − 1 ≤ m ≤ n + 2g − 2

m = n + 2g − 2 − aq − b
0 ≤ b ≤ a ≤ q − 2,

n − aq − b a(a+1)
2 + b + 1

3.1. Corner codes and edge codes

In Section 5.3 of Høholdt et al. (1998), the first phase denotes case (3) at p. 933, where it is 
characterized by l < g , which is equivalent to consider the first g − 1 nongaps in the numerical 
semigroup 	 = 〈q, q + 1〉, that is all nongaps up to the conductor c = 2g = q2 − q. With respect 
to this description, we are able to extend this phase to include also nongaps {q2 − q + 1, . . . , q2 − 2}, 
as follows.

By analyzing precisely the monomials involved, we are able to partition this phase in two sets: 
the edge codes and the corner codes. When considering nongaps up to the conductor, there are non-
gaps immediately preceding a gap. These correspond to corner codes. The others are edge codes. For 
example, if 	 = 〈5, 6〉 then g = 10 and the conductor c = 20. The non-gaps up to c are {0, 5, 6, 10,

11,12,15,16, 17, 18, 20}. Obviously, {0, 6, 12, 18} are followed by the gaps, respectively, {1, 7, 13, 19}. 
So {0, 6, 12, 18} correspond to corner codes, while {5, 10, 11,15, 16,17, 20,21, 22, 23} correspond to 
edge codes (note that we have included our addition {21, 22, 23}, with q2 − 2 = 23).

We observe that corner codes are codes of the form C(m, q), with m = (q + 1)s and 0 ≤ s ≤ q − 2, 
while edge codes are codes of the form C(m, q), with m = qr + (q +1)s, 1 ≤ r ≤ q −1 and r + s ≤ q −1.

We provide a formal definition in terms of monomials.

Definition 3. Let 2 ≤ d ≤ q and let 1 ≤ j ≤ d − 1.
Let L0

d = {1, x, . . . , xd−2}, L1
d = {y, xy, . . . , xd−3 y}, . . . , Ld−2

d = {yd−2}.

Let l1d = xd−1, . . . , l j
d = xd− j y j−1.

• If Bm,q = L0
d ∪ . . . ∪ Ld−2

d , then we say that C(m, q) is a corner code and we denote it by H0
d .

• If Bm,q = L0
d ∪ . . . ∪ Ld−2

d ∪ {l1d, . . . , l j
d}, then we say that C(m, q) is an edge code and we denote it 

by H j
d .

From the formulas in Table 1 we have the following theorem.

Theorem 4. Let 2 ≤ d ≤ q, 1 ≤ j ≤ d − 1. Then

d(H0
d) = d(H j

d) = d, dimFq2 (H0
d) = n − d(d − 1)

2
, dimFq2 (H j

d) = n − d(d − 1)

2
− j

In other words, all φ(xr ys) are linearly independent (i.e. H has maximal rank) and for any dis-
tance d there are exactly d Hermitian codes (one corner code and d −1 edge codes). We can represent 
the above codes as in the following picture, where we consider the five smallest non-trivial codes (for 
any q ≥ 3).
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H0
2 is an [n, n − 1, 2] code.
Bm,q = L0

2 = {1}, so the parity-check matrix 
of H0

2 is (1, . . . , 1).
H1

2 is an [n, n − 2, 2] code.
Bm,q = L0

2 ∪ {l12} = {1, x}
H0

3 is an [n, n − 3, 3] code.
Bm,q = L0

3 ∪ L1
3 = {1, x, y}

H1
3 is an [n, n − 4, 3] code.
Bm,q = L0

3 ∪ L1
3 ∪ {l13} = {1, x, y, x2}

H2
3 is an [n, n − 5, 3] code.
Bm,q = L0

3 ∪ L1
3 ∪ {l13, l23} = {1, x, y, x2, xy}

3.2. First results for the first phase

Ideal J w of Proposition 1 for C(m, q) is

J w =
〈 {∑w

i=1 zi xr
i ys

i

}
xr ys∈Bm,q

,
{

xq+1
i − yq

i − yi

}
i=1,...,w

,{
zq2−1

i − 1
}

i=1,...,w
,
{

xq2

i − xi

}
i=1,...,w

,
{

yq2

i − yi

}
i=1,...,w

,{
((xi − x j)

q2−1 − 1)((yi − y j)
q2−1 − 1)

}
1≤i< j≤w

〉
.

(9)

Let w ≥ v ≥ 1. Let Q = (x̄1, . . . , ̄xw , ȳ1, . . . , ȳw , ̄z1, . . . , ̄zw) ∈ V( J w). We know (see Proposition 1) 
that Q correspond to a codeword c. We say that the set {(x̄1, ȳ1), . . . , (x̄w , ȳw)} is the support of c.

We say that Q is in v-block position if we can partition {1, . . . , w} in v blocks I1, . . . , I v such 
that

x̄i = x̄ j ⇐⇒ ∃1 ≤ h ≤ v such that i, j ∈ Ih.

This means that, in the support of c, we have |I1| points on a vertical line, |I2| points on another 
vertical line, and so on.

W.l.o.g. we can assume |I1| ≤ . . . ≤ |I v | and I1 = {1, . . . , u}.
We need the following technical lemmas.

Lemma 6. We always have u + v ≤ w + 1. If u ≥ 2 and v ≥ 2, then v ≤ � w
2 � and u + v ≤ � w

2 � + 2.

Proof. Note that uv ≤ w since |I1| + . . . + |I v | = w and |I1| ≤ . . . ≤ |I v |. So the worst case is when 
w = uv . This is equivalent to the case when all blocks have the same size. Let w ′ := uv , note that 
we always have w ′ ≤ w and hence any lower bound for w ′ implies a lower bound for w . If u = 1, 
then we have u + v = 1 + v = 1 + w ′ . If v = 1, then u = w = w ′ and so u + v = w + 1. If u ≥ 2 and 
v ≥ 2, we have u ≤ � w

2 � and v ≤ � w
2 �, and then u + v ≤ � w

2 � + � w
2 � ≤ w < w + 1. So we always have 

u + v ≤ w + 1.
To prove that u + v ≤ � w

2 � + 2, we study the real-valued function f (v) = u + v = w
v + v , with 

2 ≤ v ≤ w
2 (w ≥ 4). We have f (2) = f ( w

2 ) = w
2 + 2 where v = √

w is the minimum point. In fact, the 
derivative of f (in the variable v) is f ′(v) = (v2 − w)/v2, its zero is v = √

w , f ′′ is positive in the 
whole interval under consideration and we have 2 ≤ √

w ≤ w
2 . Thus, the function takes its maximum 

value at the endpoints of the interval. Then we have u + v ≤ w
2 + 2. Since u and v are integers, we 

actually have that u + v ≤ � w
2 � + 2. �

Lemma 7. Let us consider the edge code H j
d with 1 ≤ j ≤ d − 1 ≤ q − 1 and 3 ≤ d ≤ w ≤ 2d − 3. Let Q =

(x̄1, . . . , ̄xw , ȳ1, . . . , ȳw , ̄z1, . . . , ̄zw) be a solution of J w in v-block position, then exactly one of the following 
cases holds:
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(a) u = 1, v ≥ d + 1 and w ≥ d + 1,

or

(b) v = 1, that is, x̄1 = . . . = x̄w .

Proof. We define, for all h such that 1 ≤ h ≤ v:

Xh = x̄i if i ∈ Ih, Zh =
∑
i∈Ih

z̄i .

(a) u = 1. We want to prove, by contradiction, that v ≥ d + 1.
Let v ≤ d. Since Q ∈ V( J w), for any f ∈ L0

d, {l1d} we have f (Q ) = 0 and so we have the following 
equations

0 =
w∑

i=1

x̄r
i z̄i =

v∑
h=1

∑
i∈Ih

Xr
h z̄i =

v∑
h=1

Xr
h Zh 0 ≤ r ≤ d − 1. (10)

Since v ≤ d, one can restrict to the first v equations of (10) to get a v × v system, that is,⎛
⎜⎜⎝

1 . . . 1
X1 . . . Xv
...

. . .
...

X v−1
1 . . . X v−1

v

⎞
⎟⎟⎠

⎛
⎝ Z1

...

Z v

⎞
⎠ = 0 (11)

The above matrix is a Vandermonde matrix and the Xi ’s are pairwise distinct, so it has maximal 
rank v . Therefore, the solution of (11) is (Z1, . . . , Z v) = (0, . . . , 0). Since u = 1, then Z1 = z̄1 = 0, 
which contradicts z̄i ∈ Fq2 \ {0}. Thus, v ≥ d +1; we have w +1 ≥ u + v = v +1 > d +1 and hence 
w ≥ d + 1.

(b) u ≥ 2. We suppose by contradiction that v ≥ 2.
We need to define:

Yh,s =
∑
i∈Ih

ȳs
i z̄i with 1 ≤ s ≤ u − 1

We consider Proposition 1. A subset of equations of condition (4) is the following system:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑w
i=1 x̄r

i z̄i = 0∑w
i=1 x̄r

i ȳi z̄i = 0
...∑w
i=1 x̄r

i ȳu−1
i z̄i = 0

⇐⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑v
h=1 Xr

h Zh = 0∑v
h=1 Xr

hYh,1 = 0
...∑v
h=1 Xr

hYh,u−1 = 0

0 ≤ r ≤ v − 1. (12)

In fact, system (12) is a subset of (4) if and only if deg(x̄v−1
i ȳu−1

i ) ≤ d − 2 for any i = 1, . . . , w . 
That is, (v − 1) + (u − 1) ≤ d − 2 ⇐⇒ v + u ≤ d.
To verify this, since v ≥ 2, it is sufficient to apply Lemma 6 and we obtain u + v ≤ � w

2 � + 2 ≤
� 2d−3

2 � + 2 = d.
System (12) can be decomposed in u systems, all with the same Vandermonde matrix, having 
rank v:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑v
h=1 Zh = 0∑v
h=1 Xh Zh = 0
...∑v X v−1 Z = 0

,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑v
h=1 Yh,1 = 0∑v
h=1 XhYh,1 = 0
...∑v X v−1Y = 0

, . . . ,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑v
h=1 Yh,u−1 = 0∑v
h=1 XhYh,u−1 = 0
...∑v X v−1Y = 0

(13)
h=1 h h h=1 h h,1 h=1 h h,u−1
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Therefore, the solutions of these systems are zero-solutions. So, in particular, we have Z1 = Y1,1 =
. . . = Y1,u−1 = 0, that is⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑u
i=1 z̄i = 0∑u
i=1 ȳi z̄i = 0
...∑u
i=1 ȳu−1

i z̄i = 0

⇐⇒

⎛
⎜⎜⎝

1 . . . 1
ȳ1 . . . ȳu
...

. . .
...

ȳu−1
1 . . . ȳu−1

u

⎞
⎟⎟⎠

⎛
⎝ z̄1

...

z̄u

⎞
⎠ = 0.

Since the x̄i ’s in I1 are all equal, then the ȳi ’s are all distinct. Then the last Vandermonde matrix 
has rank u, and so z̄1 = . . . = z̄u = 0, but this is impossible because every z̄i ∈ Fq2 \ {0}. Therefore 
v = 1 and u = w . �

3.3. Minimum-weight codewords

Corollary 1. Let us consider the edge code H j
d with 1 ≤ j ≤ d − 1 ≤ q − 1.

If Q = (x̄1, . . . , ̄xd, ȳ1, . . . , ȳd, ̄z1, . . . , ̄zd) ∈ V( Jd), then x̄1 = . . . = x̄d . In other words, the support of a 
minimum-weight word lies in the intersection of the Hermitian curve H and a vertical line.

Whereas if d ≥ 4 and Q = (x̄1, . . . , ̄xd+1, ȳ1, . . . , ȳd+1, ̄z1, . . . , ̄zd+1) ∈ V( Jd+1), then one of the following 
cases holds:

(a) x̄i �= x̄ j for i �= j, 1 ≤ i, j ≤ d + 1,

or

(b) x̄1 = . . . = x̄d+1 .

Proof. We are in the hypotheses of Lemma 7. If w = d, then u > 1, hence v = 1. Whereas, if w = d +1, 
we can apply Lemma 7 only if d ≥ 4. We have two possibilities: in case (a) of Lemma 7, we have 
v = d + 1, then all x̄i ’s are different, otherwise we are in case (b). �

Now we can prove the following theorem for edge codes.

Theorem 5. Let 2 ≤ d ≤ q and let 1 ≤ j ≤ d − 1, then the number of minimum weight words of an edge code 
H j

d is

Ad = q2(q2 − 1)

(
q

d

)
.

Proof. By Proposition 1 we know that Jd represents all the words of minimum weight. The first set 
of ideal basis (9) has exactly d(d−1)

2 + j equations, where 1 ≤ j ≤ d − 1. So, if j = 1, this set implies 
the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z̄1 + . . . + z̄d = 0

x̄1 z̄1 + . . . + x̄d z̄d = 0

ȳ1 z̄1 + . . . + ȳd z̄d = 0
...

ȳd−2
1 z̄1 + . . . + ȳd−2

d z̄d = 0

x̄d−1 z̄1 + . . . + x̄d−1 z̄ = 0

(14)
1 d d
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Whereas, if j > 1, then we have to add the first j − 1 of the following equations:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x̄d−2
1 ȳ1 z̄1 + . . . + x̄d−2

d ȳd z̄d = 0

x̄d−3
1 ȳ2

1 z̄1 + . . . + x̄d−3
d ȳ2

d z̄d = 0
...

x̄1 ȳd−2
1 z̄1 + . . . + x̄d ȳd−2

d z̄d = 0

(15)

But x̄1 = . . . = x̄d , since we are in the hypotheses of Corollary 1. So, for any j, the system becomes:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

z̄1 + . . . + z̄d = 0

ȳ1 z̄1 + . . . + ȳd z̄d = 0
...

ȳd−2
1 z̄1 + . . . + ȳd−2

d z̄d = 0

(16)

We have q2 choices for the common value of the x̄i ’s and, by Lemma 3, we have 
(q

d

)
d! different ȳi ’s, 

since for any choice of x̄i there are exactly q possible values for the ȳi ’s, but we need just d of them, 
and any permutation of these will be again a solution. Now we have to compute the solutions for the 
z̄i ’s.

The matrix of the system (16) is a Vandermonde matrix, with rank d − 1. This means that the 
solution space has linear dimension 1. So the solutions are (a1α, a2α, . . . , ad−1α) with α ∈ F

∗
q2 , where 

a j are fixed since they depend on the ȳi ’s. So the number of the z̄i ’s is |F∗
q2 | = q2 − 1, then Ad =

1
d!

(
q2

(q
d

)
d !(q2 − 1)

)
. �

We consider now corner codes. We have the following geometric characterization.

Proposition 2. Let us consider the corner code H0
d and 2 ≤ d ≤ q. Then the points (x̄1, ȳ1), . . . , (x̄d, ȳd) cor-

responding to minimum-weight words lie on a same line.

Proof. The minimum-weight words of a corner code have to verify the first condition set of J w , 
which has d(d−1)

2 equations. That is,⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

z̄1 + . . . + z̄d = 0

x̄1 z̄1 + . . . + x̄d z̄d = 0

ȳ1 z̄1 + . . . + ȳd z̄d = 0
...

ȳd−2
1 z̄1 + . . . + ȳd−2

d z̄d = 0

(17)

This system is the same as (14), but with a missing equation. This means that (17) has all the solu-
tions of system (14) and other solutions.

We claim that the z̄i ’s are all non-zero only if either all x̄i ’s are distinct, or all are equal. In fact, 
suppose that we have some (but not all) x̄i ’s equal, then we have that the point Q ∈ V( J w), that 
corresponds to a codeword c, is in v-block position with 1 < v < d. We can repeat the same argument 
of the proof of Lemma 7. In particular, we have two different cases:

u = 1 we can restrict to the first v of equations of a subset of (17), which has just the variables x’s 
and z’s. In this way we obtain a v × v system as (11). As before, z̄1 = 0 since u = 1, so it is 
impossible.

u ≥ 2 and v ≥ 2. We have u systems, all with the same Vandermonde matrix, having rank v as (13). 
As in the point (b) of the proof of Lemma 7, we obtain that z̄1 = . . . = z̄u = 0.
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Therefore, we have only two possibilities for the x̄i ’s: either all are different or they coincide. The 
same consideration is true for the ȳi ’s, because when we consider (17) and we exchange x with y, 
we obtain again (17).

So we have two alternatives:

• The x̄i ’s are all equal or the ȳi ’s are all equal, so our proposition is true.
• The x̄i ’s and the ȳi ’s are all distinct. We will prove that they lie on a non-horizontal line that 

intersects the Hermitian curve.
Let y = βx + λ be a non-vertical line passing through two points in a minimum weight configu-
ration. We can do an affine transformation of this type:{

x = x′
y = y′ + ax′, a ∈ Fq2

such that at least two of the y′ ’s are equal. Substituting the above transformation in (17) and 
applying some operations between the equations, we obtain a system that is equivalent to (17). 
But this new system has all y′ ’s equal or all distinct, so the y′ ’s have to be all equal. Hence we 
can conclude that the points lie on a same line. �

We finally prove the following theorem:

Theorem 6. Let 2 ≤ d ≤ q, then the number of words having weight d of a corner code H0
d is

Ad = q2(q2 − 1)
q3 − d + 1

d

(
q

d − 1

)
.

Proof. Again, the points corresponding to minimum-weight words of a corner code have to verify 
(17). By Proposition 2, we know that these points lie in the intersections of any line and the Hermitian 
curve H.

Let Q = (x̄1, . . . , ̄xd, ȳ1, . . . , ȳd, ̄z1, . . . , ̄zd) ∈ V( Jd) such that x̄1 = . . . = x̄d , that is, the points (x̄i, ȳi)

lie on a vertical line. We know that the number of such Q ’s is

q2(q2 − 1)

(
q

d

)
d ! .

Now we have to compute the number of solutions Q ∈ V( Jd) such that (x̄i, ȳi) lie on a non-vertical 
line.

By Lemma 5 we have that the number of d-tuples of points is

(q4 − q3)

(
q + 1

d

)
d !,

because we have q4 − q3 non-vertical lines that intersect H in q + 1 points, and for any choice of a 
line we need just d of these points (and the system is invariant). As regards the number of the z̄i ’s, 
we have to compute the number of solutions of system (17).

We apply an affine transformation to the system (17) to obtain a horizontal line, that is, to have 
all the x̄i ’s different and all the ȳi ’s equal, so we obtain a system equivalent to system (16). Therefore 
we have a Vandermonde matrix, hence the number of the z̄i ’s is q2 − 1. So

Ad = 1
d!

(
q2(q2 − 1)

(q
d

)
d ! + (q4 − q3)(q2 − 1)

(q+1
d

)
d !

)
= q2(q2 − 1)

[(q
d

) + (q2 − q)
(q+1

d

)] =
= q2(q2 − 1)

[
(q−d+1)q!

d(d−1)!(q−d+1)! + (q2 − q)
(q+1)q!

d(d−1)!(q−d+1)!
]

= q2(q2 − 1)
( q

d−1

)[ q−d+1
d + (q2−q)(q+1)

d

]
= q2(q2 − 1)

q3−d+1
d

( q
d−1

)
. �
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3.4. Second-weight codewords

In this section we state more theorems for edge and corner codes. We study the case when the 
x̄i ’s coincide or when the ȳi ’s coincide.

Theorem 7. Let 2 ≤ d ≤ q, then the number of words of weight d + 1 with ȳ1 = . . . = ȳd+1 of a corner code 
H0

d is:

(q2 − q)(q4 − (d + 1)q2 + d)

(
q + 1

d + 1

)
.

Whereas for an edge code H j
d with 1 ≤ j ≤ d − 1 this numbers is:

(q2 − q)(q2 − 1)

(
q + 1

d + 1

)
.

Proof. We have q2 −q choices for the ȳi ’s and, by Lemma 4, we have 
(q+1

d+1

)
(d +1)! different x̄i ’s, since 

for any choice of the ȳi ’s there are exactly q + 1 possible values for the x̄i ’s, but we need just d + 1
of them and any permutation of these will be again a solution.

Now we have to compute the solutions for the z̄i ’s, in the two distinct cases.

∗ Case H0
d . By Proposition 1 we know that Jd represents all the words of minimum weight. The 

first set of ideal basis (9) has exactly d(d−1)
2 equations, which is system (17) with more variables.1

Since ȳ1 = . . . = ȳd+1, system (17) becomes⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

z̄1 + . . . + z̄d+1 = 0

x̄1 z̄1 + . . . + x̄d+1 z̄d+1 = 0
...

x̄d−2
1 z̄1 + . . . + x̄d−2

d+1 z̄d+1 = 0

(18)

The matrix of this system is a Vandermonde matrix of rank d − 1. This means that the so-
lution space has linear dimension 2, hence the number of the admissible z’s is q4 − |{z̄i = 0
for at least one i}|. Now we compute the number of solutions such that z̄i = 0 for at least one i.
If we set one z̄i = 0, we have a linear (solution) space of dimension 1, that contains q2 solutions, 
corresponding to the zero solution and q2 − 1 codewords of weight d. We have d + 1 of such 
subspaces.
Moreover, the intersection of any two of them is only the zero solution, because if we set z̄i = 0
for two z̄i ’s, we have a linear space of dimension 0. The number of admissible z’s is q4 − (d +
1)q2 + d, obtained by counting the elements of d + 1 subspaces and removing the zero solution 
counted d extra times. Thus, the number of words of weight d + 1 with ȳ1 = . . . = ȳd+1 of H0

d is:

(q2 − q)(q4 − (d + 1)q2 + d)

(
q + 1

d + 1

)
.

∗ Case H j
d . In this case the first set of ideal basis (9) contains exactly d(d−1)

2 + j equations, where 
1 ≤ j ≤ d − 1. So, if j = 1, this set implies the system (14) with more variables. Whereas, if j > 1, 
then we have to add the first j − 1 of Eqs. (15) with more variables.

1 We have x̄i , ȳi , z̄i with 1 ≤ i ≤ d + 1 instead of 1 ≤ i ≤ d. We mean this every time that we write “with more variables”.
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Since ȳ1 = . . . = ȳd+1, the system becomes⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

z̄1 + . . . + z̄d+1 = 0

x̄1 z̄1 + . . . + x̄d+1 z̄d+1 = 0
...

x̄d−1
1 z̄1 + . . . + x̄d−1

d+1 z̄d+1 = 0

(19)

This means that the solution space has linear dimension 1. So the number of the z’s is |F∗
q2 | =

q2 − 1, then the number of words of weight d + 1 with ȳ1 = . . . = ȳd+1 of H j
d is

(q2 − q)(q2 − 1)

(
q + 1

d + 1

)
. �

Theorem 8. Let 2 ≤ d ≤ q − 1, then the number of words of weight d + 1 with x̄1 = . . . = x̄d+1 of a corner 
code H0

d and of an edge code H j
d is:

q2(q4 − (d + 1)q2 + d)

(
q

d + 1

)
.

Proof. By Proposition 1 we know that Jd represents all the words of minimum weight. For an edge 
code the first set of ideal basis (9) implies, if j = 1, the system (14) with more variables and, if j > 1, 
we have to add the first j − 1 of Eqs. (15) with more variables. Whereas, for a corner code, the first 
set of ideal basis (9) implies the system (17) with more variables.

But x̄1 = . . . = x̄d+1, so in both cases the system becomes:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

z̄1 + . . . + z̄d+1 = 0

ȳ1 z̄1 + . . . + ȳd+1 z̄d+1 = 0
...

ȳd−2
1 z̄1 + . . . + ȳd−2

d+1 z̄d+1 = 0

(20)

We have q2 choices for the x̄i ’s and, by Lemma 3, we have 
( q

d+1

)
(d + 1)! different ȳi ’s, since for any 

choice of the x̄i ’s there are exactly q possible values for the ȳi ’s, but we need just d + 1 of them and 
any permutation of these will be again a solution. Moreover, we have (q4 − (d + 1)q2 +d) possible z’s, 
because system (20) is analogous to the system (18). �
Theorem 9. Let 2 ≤ d ≤ q, then the number of words of weight d + 1 of a corner code H0

d with (x̄i, ȳi) lying 
on a non-vertical line is:

(q4 − q3)(q4 − (d + 1)q2 + d)

(
q + 1

d + 1

)
.

Whereas for an edge code H j
d with 1 ≤ j ≤ d − 1 this numbers is:

(q4 − q3)(q2 − 1)

(
q + 1

d + 1

)
.

Proof (sketched). We have q4 − q3 non-vertical lines, intersecting H in a set of q + 1 points. We 
choose a line and d + 1 points on it. By an affine transformation, the system can always be reduced 
to system (18) for corner codes, or to system (19) for edge codes. For corner codes we get a linear 
space of dimension 2, whereas for edge codes we get a linear space of dimension 1. �
Remark 2. Non-vertical lines include horizontal lines of Theorem 7, so that Theorem 9 can be consid-
ered as a generalization of Theorem 7.
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In other cases, we have to consider the intersection of H with higher degree curves and the 
formulas get more complicated. For example, the cubic found in Couvreur (2012).

3.5. The complete investigation for d = 3, 4

In this section we will study separately some special cases of Hermitian codes, that is, the corner 
codes and edge codes of distance d = 3 and d = 4, with q ≥ 3: H0

3, H1
3, H2

3, H0
4, {H j

4}1≤ j≤3. For any 
of these codes, we count the number of words having weight d + 1. In the following section we are 
going to prove these theorems:

Theorem 10. Let q ≥ 3. The number of words of weight 4 of a corner code H0
3 is:

A4 = (q − 1)(q3 − 3)

4

(
(q + 1)

(
q3

3

)
− q2(3q3 + 2q2 − 8)

(
q + 1

3

))
.

The number of words of weight 4 of an edge code H1
3 is2:

A4 = q2(q4 − 4q2 + 3)

(
q

4

)
+ q4(q2 − 1)2(q − 1)2

8
+ (q2 − 1)

2q∑
k=4

Nk

(
k

4

)
,

where Nk is the number of parabolas (of the form y = ax2 + bx + c, a �= 0 and a, b, c ∈ Fq2 ) and non-vertical 
lines that intersect H in exactly k points.

The number of words of weight 4 of an edge code H2
3 is:

A4 = q2(q − 1)(2q3 − 3q2 − 4q + 9)

(
q + 1

4

)
.

Theorem 11. Let q ≥ 4. The number of words of weight 5 of a corner code H0
4 is:

A5 = q2(q − 1)(q2 − 4)(q3 − 4)

(
q + 1

5

)
.

The number of words of weight 5 of all edge codes H j
4 for 1 ≤ j ≤ 3 is:

A5 = q2(q − 1)(2q3 − 4q2 − 5q + 16)

(
q + 1

5

)
.

The formula for A4 of H1
3 in Theorem 10 contains some implicit values Nk ’s. To derive explicit 

values it is enough to consider Theorem 3.1 of Marcolla et al. (2014).

3.5.1. Study of H0
3

We count the number of words with weight w = 4. In this case, the first condition set of J w
becomes:⎧⎨

⎩
z̄1 + z̄2 + z̄3 + z̄4 = 0

x̄1 z̄1 + x̄2 z̄2 + x̄3 z̄3 + x̄4 z̄4 = 0

ȳ1 z̄1 + ȳ2 z̄2 + ȳ3 z̄3 + ȳ4 z̄4 = 0

This is a linear system in z̄i . We first choose 4 distinct points Pi = (x̄i, ȳi) on H and then we compute 
the number of solutions in z̄i ’s. The coefficient matrix is( 1 1 1 1

x̄1 x̄2 x̄3 x̄4
ȳ1 ȳ2 ȳ3 ȳ4

)

2 Note that if q = 3, then (q
4

) = 0 by convention.
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This matrix cannot have rank 1, since either the x̄i ’s or the ȳi ’s are not all equal. If the rank is 2, this 
means that all Pi ’s lie on a same line. In this case, the linear space of solutions has dimension 2, so 
that we have q4 − 4q2 + 3 solutions in z̄i ’s.

Otherwise, the rank is 3. In this case, we have 3 points on a same line, say P1, P2, P3, if and only 
if we have a square submatrix of order 3 whose determinant is 0, but this implies that z̄4 = 0, which 
is not admissible. Thus, if we choose 4 points such that no 3 of them lie on a same line, all z̄i ’s will 
be non-zero and we get a codeword of weight 4. The vector space of solutions has dimension 1, so 
that we have q2 − 1 solutions in z̄i ’s.

If the rank is 2, by Lemmas 3 and 5 the total number of solutions (in x̄i, ȳi, ̄zi ) is(
q2

(
q

4

)
+ (q4 − q3)

(
q + 1

4

))
(q4 − 4q2 + 3).

If the rank is 3, the total number of solutions (in x̄i , ȳi, ̄zi ) is((
q3

4

)
− q2

(
q

3

)
(q3 − q) − (q4 − q3)

(
q + 1

3

)
(q3 − q − 1)

− q2
(

q

4

)
− (q4 − q3)

(
q + 1

4

))
(q2 − 1).

(We consider all the choices of 4 points of H, then we subtract all the choices of 3 points on a line 
and the other elsewhere, and we also subtract all the choices of 4 points on a line.) Putting together, 
we get the total number of codewords of weight 4 of H0

3:

A4 =
((

q3

4

)
− q2

(
q

3

)
(q3 − q) − (q4 − q3)

(
q + 1

3

)
(q3 − q − 1)

)
(q2 − 1)

+
(

q2
(

q

4

)
+ (q4 − q3)

(
q + 1

4

))
(q4 − 5q2 + 4).

Doing the computations we obtain the first part of Theorem 10.

3.5.2. Study of H1
3

We count the number of words with weight w = 4. In this case, the first condition set of J w
becomes:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
z̄1 + z̄2 + z̄3 + z̄4 = 0

x̄1 z̄1 + x̄2 z̄2 + x̄3 z̄3 + x̄4 z̄4 = 0

ȳ1 z̄1 + ȳ2 z̄2 + ȳ3 z̄3 + ȳ4 z̄4 = 0

x̄2
1 z̄1 + x̄2

2 z̄2 + x̄2
3 z̄3 + x̄2

4 z̄4 = 0

As above, we first choose 4 points Pi = (x̄i, ȳi) on H and then we compute the number of solutions 
in z̄i ’s. The coefficient matrix is⎛

⎜⎝
1 1 1 1
x̄1 x̄2 x̄3 x̄4
ȳ1 ȳ2 ȳ3 ȳ4
x̄2

1 x̄2
2 x̄2

3 x̄2
4

⎞
⎟⎠ (21)

Now we study the rank of the matrix according to “v-blocks” (although we cannot apply Lemma 7).
If all x̄i ’s are equal, we have 4 points on a vertical line; the rank is 2 and the number of codewords 

is (see case H0
3)

q2
(

q

4

)
(q4 − 4q2 + 3).

If only three x̄i ’s are equal, we have 3 points on a vertical line and another one outside, but this 
configuration is impossible for H0

3 (that is, we do not have codewords associated to it), and it is also 
impossible for H1

3, since H1
3 ⊆ H0

3.
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If we have two pairs of equal x̄i ’s (for instance, x̄1 = x̄2 �= x̄3 = x̄4), we can have codewords. In this 
case, we deduce z̄1 + z̄2 = 0, z̄3 + z̄4 = 0, z̄1( ȳ1 − ȳ2) + z̄3( ȳ3 − ȳ4) = 0, so that we have 

(q2

2

)
ways 

to choose {x̄1, ̄x3}, 
(q

2

)
ways to choose { ȳ1, ȳ2}, 

(q
2

)
ways to choose { ȳ3, ȳ4}, q2 − 1 ways to choose z̄1, 

this determines all z̄i . The number of codewords in this case is

q4(q2 − 1)2(q − 1)2

8
.

If only two x̄i ’s are equal, say x̄1 = x̄2, we can show that we have z̄1 + z̄2 = 0, z̄3 = 0, z̄4 = 0
(because if we set Z1 = z̄1 + z̄2, we get a Vandermonde matrix of rank 3), which is not admissible.

If we have all x̄i ’s distinct, the submatrix( 1 1 1 1
x̄1 x̄2 x̄3 x̄4
x̄2

1 x̄2
2 x̄2

3 x̄2
4

)

has rank 3, but if the whole matrix (21) had rank 4 we could only have the zero solution, which is 
not admissible. Thus, (21) must have rank 3, that is, the ȳi ’s row must be linearly dependent on the 
other rows. This means that

∃a,b, c ∈ Fq2 such that ȳi = ax̄2
i + bx̄i + c ∀ i = 1, . . . ,4.

That is, all Pi ’s lie on a same parabola (or on a same non-vertical line, if a = 0). In this case, the 
number of codewords is

(q2 − 1)

2q∑
k=4

Nk

(
k

4

)
,

where Nk is the number of parabolas (of the form y = ax2 + bx + c, a �= 0 and a, b, c ∈ Fq2 ) and 
non-vertical lines that intersect H in exactly k points (any parabola can intersect H at most in 2q
points).

Putting all together we get A4, that is, the second part of Theorem 10.

3.5.3. Study of H2
3

We count the number of words with weight w = 4. In this case, the first condition set of J w

becomes:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

z̄1 + z̄2 + z̄3 + z̄4 = 0
x̄1 z̄1 + x̄2 z̄2 + x̄3 z̄3 + x̄4 z̄4 = 0
ȳ1 z̄1 + ȳ2 z̄2 + ȳ3 z̄3 + ȳ4 z̄4 = 0
x̄2

1 z̄1 + x̄2
2 z̄2 + x̄2

3 z̄3 + x̄2
4 z̄4 = 0

x̄1 ȳ1 z̄1 + x̄2 ȳ2 z̄2 + x̄3 ȳ3 z̄3 + x̄4 ȳ4 z̄4 = 0

As above, we first choose 4 points Pi = (x̄i, ȳi) on H and then we compute the number of solutions 
in z̄i ’s. The coefficient matrix is⎛

⎜⎜⎜⎝
1 1 1 1
x̄1 x̄2 x̄3 x̄4
ȳ1 ȳ2 ȳ3 ȳ4
x̄2

1 x̄2
2 x̄2

3 x̄2
4

x̄1 ȳ1 x̄2 ȳ2 x̄3 ȳ3 x̄4 ȳ4

⎞
⎟⎟⎟⎠ (22)

Now we study the rank of the matrix according to “v-blocks”.
If all x̄i ’s are equal, we have 4 points on a vertical line; the rank is 2 and the number of codewords 

is (see case H0
3)

q2
(

q

4

)
(q4 − 4q2 + 3).
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If only three x̄i ’s are equal, we have 3 points on a vertical line and another one outside, but this 
configuration is impossible (as above).

If we have two pairs of equal x̄i ’s (for instance, x̄1 = x̄2 �= x̄3 = x̄4), we can deduce z̄1 + z̄2 = 0, 
z̄3 + z̄4 = 0, and then{

z̄1( ȳ1 − ȳ2) + z̄3( ȳ3 − ȳ4) = 0

x̄1 z̄1( ȳ1 − ȳ2) + x̄3 z̄3( ȳ3 − ȳ4) = 0
,

but this system in the unknowns ȳ1 − ȳ2, ȳ3 − ȳ4 has determinant z̄1 z̄3(x̄3 − x̄1) �= 0, so that ȳ1 = ȳ2
and ȳ3 = ȳ4, which is impossible.

If only two x̄i ’s are equal, say x̄1 = x̄2, we can show that we have z̄1 + z̄2 = 0, z̄3 = 0, ̄z4 = 0 (as 
above), which is not admissible.

If we have all x̄i ’s distinct, the submatrix( 1 1 1 1
x̄1 x̄2 x̄3 x̄4
x̄2

1 x̄2
2 x̄2

3 x̄2
4

)

has rank 3, but if the whole matrix (22) had rank 4 we could only have the zero solution, which is not 
admissible. Thus, (22) must have rank 3, that is, the ȳi ’s and x̄i ȳi ’s rows must be linearly dependent 
on the other rows. This means that y = ax2 + bx + c and xy = dx2 + ex + f , then ax3 + (b − d)x2 +
(c − e)x − f = 0. But this equation can have at most 3 distinct solutions, and we need 4. Thus we 
must have a = 0, b = d, c = e, f = 0, that is, y = bx + c: all Pi ’s lie on a same non-vertical line, and 
the number of codewords is

(q4 − q3)

(
q + 1

4

)
(q2 − 1).

Putting all together we get A4, that is, the last part of Theorem 10.

3.5.4. Study of H0
4

We count the number of words with weight w = 5. We have a linear system in z̄i with a (6 × 5)

matrix. If its rank is 5, we can only have the zero solution, which is not admissible. Thus, its rank 
must be at most 4; this means that we have at least 2 relationships of linear dependency, say{

xy = a + bx + cy + dx2

y2 = e + f x + gy + hx2.

We need to find 5 points on the intersection of 2 different conics, but this means that the 2 conics 
must be degenerate, they must have a common line, and all 5 points belong to this line. We could 
distinguish between vertical lines and non-vertical lines, but in both cases the rank of the matrix is 
exactly 3. So, the number of codewords is

A5 =
(

(q4 − q3)

(
q + 1

5

)
+ q2

(
q

5

))
(q4 − 5q2 + 4).

Doing the computations we obtain the first part of Theorem 11.

3.5.5. Study of H1
4 , H2

4 , H3
4

To count the number of words with weight w = 5, we remember that

H0
4 ⊇ H1

4 ⊇ H2
4 ⊇ H3

4 ⊇ H0
5

and the first and the last code have all the words with weight 5 corresponding to 5 points on a line. 
We notice that for a vertical line the rank of the matrix is 3, while for a non-vertical line the rank of 
the matrix is 4. So, the number of codewords is

A5 = q2
(

q

5

)
(q4 − 5q2 + 4) + (q4 − q3)

(
q + 1

5

)
(q2 − 1).

Doing the computations we obtain the last part of Theorem 11.
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4. Conclusions and open problems

The so-called first-phase codes have nice geometric properties that allow their study, as first real-
ized in Pellegrini (2006) and Sala and Pellegrini (2006). In particular, the fact that all minimum-weight 
codewords lie on intersections of lines and H is essential. Recent research has widened this approach 
to intersection with degree-2 and degree-3 curves (Couvreur, 2012; Ballico and Ravagnani, 2014;
Fontanari and Marcolla, 2015), unfortunately without reaching an exact formula for higher weights. 
We believe that only complete classifications of intersections of H and higher degree curves can lead 
to the determination of the full weight distribution of first-phase Hermitian codes. We invite the 
reader to pursue this approach further.

As regards the other phases, it seems that only a part of the second phase can be described in a 
similar way. Therefore, probably a radically different approach is needed for phase-3, 4 codes in order 
to determine their weight distribution completely. Alas, we have no suggestions as to how reach this.
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