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Abstract

Event structures are one of the classical models of concurrent systems. The idea is that an enabling X ` e
represents the fact that the event e can only occur after all the events in the set X have already occurred.
By interpreting events as actions promised by some participants, and by associating each participant with
a goal (a function on sequences of events), we use event structures as a formal model for contracts. The
states of a contract are sequences of events; a participant has a contractual obligation (in a given state)
whenever some of its events is enabled in such a state. To represent the fact that participants are mutually
distrusting, we study concurrent games on event structures; there, participants may play by firing events in
order to reach their goals, and eventually win, lose or tie.

A crucial notion arising in this setting is that of agreement : a participant agrees on a set of contracts if she
has a strategy to reach her goals in all the plays conforming to her strategy (or to make another participant
sanctionable for not honouring an obligation). Another relevant notion is protection: a participant is
protected by her contract when she has a strategy to avoid losing in any contexts, even in those where she
has not reached an agreement. We study conditions for obtaining agreement and protection, and we show
that these properties mutually exclude each other in a certain class of contracts. We then relate the notion
of agreement in contracts with that of compliance in session types. In particular, we show that compliance
corresponds to the fact that eager strategies lead to agreement.
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1. Introduction

Several recent papers have been devoted to the study of contracts as a way to formally specify abstrac-
tions of the behaviour of software systems. A common aspect that gathers together some of these studies is
a notion of compliance. This is a relation between systems which want to interact. Before starting the inter-
action, contracts are statically checked for compliance: when enjoyed, it guarantees that systems respecting
their contracts will interact correctly. Since distributed applications are often constructed by dynamically
discovering and composing services published by different (possibly distrusting) organizations, compliance
becomes relevant to protect those services from each other’s misbehaviour. Indeed, the larger an application
is, the greater is the probability that some of its components deviates from the expected behaviour (either
because of unintentional bugs, or maliciousness).

Compliance can be modelled in many different ways. Typically, it is formalised as a fairness property,
which ensures progress (possibly, until reaching a success state [1, 2]), or which ensures the possibility of
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always reaching success [3, 4]. Weaker variants of compliance allow services to discard some messages [5],
or involve orchestrators which can sometimes rearrange them [6]. All these approaches express contracts as
terms of some process calculus.

In this paper we study compliance in the semantic setting of event structures (ES [7]). By abstracting
away from the concrete details of process calculi, this model may be used as a unifying framework for
reasoning about contracts, in the same spirit that event structures are used as an underlying semantics for
a variety of concrete calculi for concurrency.

In our setting, a contract specifies the behaviour promised and expected by a participant or set of partic-
ipants. Contracts coming from different participants can be composed together. In our view, agreement (a
generalisation of compliance) is a property of composed contracts, which — roughly — ensures an acceptable
interaction to each participant in the composition.

Our contracts are built upon four principal notions:

Events are the atomic observables. For instance, “Alice gives an apple to Bob” can be modelled as an
event (say, a) in an ES. We assume that each event is unique, i.e. it cannot occur twice in the same
computation. Thus, if Alice has to give two apples to Bob, we assume two events a0, a1 (representing
two distinct occurrences of the same action).

Participants are the entities which advertise contracts, and are bound to perform the events prescribed
by their contracts. We assume that each event is associated with a unique participant. For instance,
if both Alice and Carol have to give an apple to Bob, we use two distinct events.

Obligations make explicit the causal dependencies between the events performed by participants. For
instance, Alice’s contract clause “I will give an apple to Bob after I have received a banana” induces
an obligation for her to do event a after event b has been performed, since she has promised to do it.
Event structures are a natural model for obligations; for instance, we can interpret the above clause
as the enabling {b} ` a.

Objectives express the degree of “satisfaction” of a participant in a contract execution. Contracts associate
each participant to an objective function, which in turn associates each execution with a payoff, which
can be “win”, “lose”, or “tie”.

In the above setting, we provide a formal definition of contracts, by interpreting their semantics as a
multi-player concurrent game on event structures. We then formalise two key notions about contracts,
namely agreement and protection. Intuitively, agreement is a property of a contract which results from the
composition of a number of individual contracts from a set of participants. A participant agrees with such
composed contract if she has a strategy to interact with the other participants so that in each interaction
she either wins, or it is possible to blame another participant who is not honouring his obligations. Instead,
protection is a property of a contract of a single participant. It requires that, whenever the contract is
composed with any other contracts, possibly crafted by adversaries, then the participant has a strategy to
avoid losing (by instead winning or tying) in the interactions with such adversaries.

Contributions. The main contributions of this paper are the following:

• We provide a formal definition for the intuitive notion of agreement. We study conditions for reach-
ing agreements in contracts with Offer-Request payoffs, where participants request some actions in
exchange for an offered service. Lemma 4.17 gives a necessary condition for agreement, while Theo-
rem 4.19 gives a sufficient one.

• We interpret binary session types [8, 9] as contracts, by providing them with event structure semantics
(Definitions 5.12 and 5.19). We establish our semantics faithful to the original one, by proving that the
associated event structure is bisimilar to the session type in its operational semantics (Theorems 5.17
and 5.20). We then exploit this correspondence result to show that compliance in session types
holds whenever eager strategies lead to an agreement in the associated contract (Theorem 5.23). To
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prove this correspondence, we establish an auxiliary result about event structures. We provide them
with two notions of Labelled Transition Systems, one based on the remainder, and the other one on
configurations, and we relate them by bisimilarity (Lemma A.5).

• We formalise the notion of protection, and we study necessary conditions (Lemma 6.6) and sufficient
conditions (Theorem 6.7) for obtaining protection in contracts with Offer-Request payoffs. We then
show that agreement and protection are mutually exclusive for contracts with Offer-Request payoffs
suffering from a circularity condition (Theorem 6.11). Roughly, the problem is that when the offers
of the participants mutually depend on their requests, either there is a participant willing to perform
the first offer, and so giving up protection, or each participant wants someone else to move first, so
preventing an agreement to be reached.

The proofs of all our statements are provided either in the main text, or in Section A.

2. Event structures

Event structures (ES) are a model for concurrency introduced in [10]; they describe a process as per-
forming events as time goes on. An event is a particular occurrence of an action, and different events may
be occurrences of the same action. Each event e is labelled with the action `(e) it is associated with. For
instance, pressing n times a certain button is represented by a sequence of n distinct events, all with the
same label. ESs are equipped with an enabling relation (written `) to model causality, and a conflict relation
(written #) to model non-determinism. The enabling X ` e models the fact that event e can be fired after
all the events in X have been fired. A conflict a#b models that a and b cannot both occur in the same
computation.

In this section we report some basic definitions and results about ES, which will be needed in our later
technical development. Furthermore, we study labelled transition systems (LTS) over ES, which will be
used to define plays in contracts.

2.1. Basic definitions

We assume a denumerable universe of events E, ranged over by a, b, e . . ., and a universe of action labels A,
ranged over by α, β, . . ..

Definition 2.1 (Conflict-free and consistent sets [11]). Given a set of events E ⊆ E and a relation
# ⊆ E × E, we define the predicate CF on sets X ⊆ E as follows:

CF (X) = ∀e, e′ ∈ X : ¬(e#e′)

When CF (X), we say that X is conflict-free. We define the set Con of finite conflict-free sets as follows:

Con = {X ⊆fin E | CF (X)}

Definition 2.2 (Event structure [7]). An event structure is a 4-tuple E = (E,#,`, `), where

• E ⊆ E,

• # ⊆ E × E is an irreflexive and symmetric relation, called conflict relation,

• ` ⊆ Con × E is a relation, called enabling relation. We assume ` saturated, i.e. sat(`) = `, where:

sat(`) = {(Y, e) | (X, e) ∈ ` and X ⊆ Y ∈ Con}

• ` : E → A is a labelling function.

We say that E is finite when E is finite; we say that E is conflict-free when the conflict relation is empty.
We denote with ES the class of all event structures.
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Figure 1: Graphical representation of ESs. An edge from node a to node b denotes an enabling {a} ` b. A conflict a#b is
represented by a wavy line between a and b. We will use hyperdges to represent enablings of the form X ` e, when X is not a
singleton (for instance, {c, d} ` e in E3).

Definition 2.3 (Union of ESs). Let E = (E,#,`, `) and E′ = (E′,#′,`′, `′) be two ESs, with `(e) = `′(e)
for all e ∈ E ∩ E′. We define their union E t E′ as = (E ∪ E′, ` ∪ `′, # ∪#′, ` ∪ `′).

Notation 2.4 (Sequences of events). We denote with 〈e0 e1 . . .〉 the (possibly infinite) sequence of events
e0, e1, . . ., and with E∞ the set of such sequences over E. We use metavariables σ, η, . . . to range over such
sequences. For a sequence σ = 〈e0 e1 . . .〉, we write: σ for the set of events in σ, and σi for the subsequence
〈e0 . . . ei−1〉 containing the first i events of σ. If σ = 〈e0 . . . en〉 is finite, we write σe for the sequence
〈e0 . . . en e〉. The empty sequence is denoted by ε.

Notation 2.5 (Shorthands). We adopt the following conventions: (i) we write e ∈ E to mean that e is
an event of E; (ii) ` e is a shorthand for ∅ ` e; (iii) a ` b is a shorthand for {a} ` b; (iv) for finite, conflict
free sets X,Y ⊆ E, the enabling X ` Y means that ∀e ∈ Y. X ` e.

A configuration C ⊆ E is a “snapshot” of the computation of a process: a set of events C (possibly
infinite) is a configuration whenever for each event e ∈ C we can find a finite sequence of events containing
e, which is closed under the enabling relation.

Definition 2.6 (Configuration [7]). For an ES E = (E,#,`, `), we say that C ⊆ E is a configuration
of E whenever CF (C), and

∀e ∈ C. ∃σ = 〈e0, . . . , en〉. e ∈ σ ⊆ C ∧ ∀i ≤ n. σi ` ei

The set of all configurations of E is denoted by FE.

Example 2.7. Consider the five ESs in Figure 1. We have that:

• E1 has enablings ` a and a ` b, and we have FE1 = {∅, {a}, {a, b}}.

• E2 has enablings a ` b and b ` a, and we have FE2
= {∅}.

• E3 has enablings ` a, ` b, a ` c, b ` d, and {c, d} ` e, and the conflict a#b. The configurations of E3

are ∅, {a}, {b}, {a, c} and {b, d}. Note that no configuration contains e, because of the conflict a#b.

• E4 has enablings ` a, ` b, a ` c, b ` d, c ` e and d ` e. The configurations of E4 are ∅, {a}, {b},
{a, c}, {b, d}, {a, c, e} and {b, d, e}.

• E5 has configurations
⋃
i<k{ei}, for all k. Also, the infinite set

⋃
i∈N ei is a configuration of E5. �

Lemma 2.8. If C is a finite nonempty configuration of E, there exists some e ∈ C such that C \ {e} ∈ FE.

Proof. By induction on |C|. For |C| ∈ {0, 1}, trivial. Otherwise, by coincidence freeness (Theorem 1.1.9
in [7]), we have some Y ∈ FE with Y ⊂ C. By Lemma 1.1.11 in [7], and by the finiteness of C, we can
build a sequence of configurations:

Y ⊆ Y ∪ {e1} ⊆ Y ∪ {e1, e2} ⊆ · · · ⊆ Y ∪ {e1, . . . , em} ⊆ C

by adding a new event at each step. Hence, C = (Y ∪ {e1, . . . , em}) \ {em}, and so there exists e = em such
that C \ {e} ∈ FE. �
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2.2. Labelled Transition Systems over configurations

We now define, for each ES, an LTS over its configurations. The states of this LTS, which we denote
with →E in Definition 2.9, are the finite configurations of E; a transition with label e from state C exists
whenever e is enabled by (and not in conflict with) C in E.

Definition 2.9 (LTS over configurations). For all event structures E = (E,#,`, `), we define the LTS
(℘fin(E), E,→E) as follows:

C
e−→E C ∪ {e} if C ` e, e 6∈ C and CF (C ∪ {e})

Notation 2.10. As usual, we overload the symbol → to denote both the LTS and its transition relation. To
make explicit that some state q belongs to the LTS →, we write the state as a pair (q,→).

Further, for each LTS (Z, E,→) and each function ` : E → A, we define the LTS (Z, A,→`) with the
following transition relation:

q
`(e)−−−−→ ` q′ whenever q

e−→ q′

The following lemma states that a transition labelled e and enabled in a (finite) configuration C, will
also be enabled in all the supersets of C not in conflict with e.

Lemma 2.11. For all C,C ′ ⊆fin E, and for all e ∈ E such that CF (C ′ ∪ {e}):

C
e−→E ∧ C ⊆ C ′ ∧ e 6∈ C ′ =⇒ C ′

e−→E

Proof. By Definition 2.9, C
e−→E implies that C ` e. By saturation (since CF (C ′)), this in turn implies that

C ′ ` e. Therefore, since e 6∈ C ′ and CF (C ′ ∪ {e}) then we conclude that C ′
e−→E. �

We establish a further auxiliary result, which relates (possibly infinite) configurations of E with the states
of the LTS→E. A direct consequence is that the states in the LTS reachable from the initial state ∅ coincide
with the finite configurations of E. Again, the proof is straightforward.

Lemma 2.12. For all ES E, and for all C ⊆ E:

C ∈ FE ⇐⇒ ∀D ⊆fin C. ∃C0. D ⊆ C0 ⊆fin C. ∅ →∗E C0

3. A game-based model of contracts

In this section we present a game-based model for contracts, originally introduced in [12].

3.1. Contracts

A contract (Definition 3.1) specifies the obligations and the objectives of a set of participants, which are
ranged over by A,B, . . . in universe PU. We use P,P′, . . . to range over sets of participants.

Obligations are modelled as an event structure; we assume that each event is associated to a participant
by a function π : E → PU. Intuitively, an enabling X ` e models the fact that, if all the events in X
have happened, then e is an obligation for participant π(e). Such obligation may be discharged only by
performing e, or by performing any event in conflict with e. For instance, consider an internal choice between
two events a and b. This is modelled by an ES with enablings ` a, ` b and conflict a#b. After the choice
(say, of a), the obligation b is discharged. For all A ∈ PU, we write EA for the set {e ∈ E | π(e) = A}.

Objectives are modelled as a function Φ, which associates each participant A and each trace of events σ
to a payoff ΦAσ. We assume a rather coarse notion of payoffs: we only have three possible outcomes which
represent, respectively, success (1), failure (-1), and tie (0).

Definition 3.1 (Contract). A contract C is a tuple (E,Φ), where:

• E = (E,#,`, `) is an event structure,

5



• Φ : PU ⇀ E∞ → {−1, 0, 1} associates each participant and trace with a payoff

and where, for all X ` e in E, Φ(π(e)) is defined. We say that C is a contract of participants P whenever
ΦA is defined for all A in P.

Note that Φ is a partial function (denoted with the symbol ⇀), hence a contract does not need to define
payoffs for all the participants in PU: actually, when A advertises her contract, she will not speculate about
the objectives of B. The constraint on Φ required by Definition 3.1 asks that if a contract defines some
obligations for A, then A must also declare in C her payoffs.

3.2. Plays

We interpret a contract C = (E,Φ), as a multi-player game [13]. The game involves participants who
concurrently perform events in order to reach the objectives defined by Φ. A play of the game is a (finite
or infinite) trace of the LTS induced by E according to Definition 2.9.

Definition 3.2 (Play). A play of a contract C = (E,Φ) is a (finite or infinite) trace σ of (∅,→E).

Since only enabled events are allowed, as a consequence of Lemma 2.12 we have that plays and configu-
rations share the same events.

Lemma 3.3. For all plays σ of (E,Φ), the set σ is a configuration of E.

Each participant can choose a strategy to decide which of her events has to be done at each move. A
strategy can only prescribe to perform events enabled by the already occurred ones. When a participant
acts as suggested by the strategy, the resulting play is said to conform to that strategy.

Definition 3.4 (Strategy and conformance). A strategy Σ for A is a function which maps each finite
play σ = 〈e0 · · · en〉 to a set of events of A (possibly empty), such that

e ∈ Σ(σ) =⇒ σe is a play

We say that a strategy Σ is deterministic if |Σ(σ)| ≤ 1 for all plays σ.

We say that a play σ = 〈e0e1 · · ·〉 conforms to a strategy Σ for A if for all i ≥ 0,

ei ∈ EA =⇒ ei ∈ Σ(σi)

3.3. Some examples

Example 3.5. Suppose there are two kids who want to play together. Alice (A) has a toy airplane, while
Bob (B) has a bike. Both kids are willing to share their toys, but they do not trust each other. Thus, before
starting to play they advertise the following contracts. Alice will lend her airplane only after Bob has allowed
her ride his bike. Bob will lend his bike unconditionally. We model the events “Alice lends her airplane” and
“Bob lends his bike” as a and b, respectively. The obligations of Alice and Bob are modelled by the following
ES (its conflict relations are empty, and the labelling irrelevant):

E : b ` a , ` b

The objectives of the two kids are modelled by the function Φ below. Alice has a positive payoff in those
traces where b has been performed, while she has a negative payoff when she performs a while not obtaining
b in return. The payoffs of Bob are dual. Formally:

ΦA = λσ.


1 if b ∈ σ
0 if a, b 6∈ σ
−1 otherwise

ΦB = λσ.


1 if a ∈ σ
0 if b, a 6∈ σ
−1 otherwise
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Figure 2: A contract with an indefinitely delayed obligation.

Example 3.6. Suppose Bob lends his bike to Alice (event b), and requires Alices’s toy airplane in exchange.
Alice agrees to lend the airplane, but she does not specify the day she will give it. She says she might lend
it in the same day (event a0), or one day after (event a1), or two days after (a2), and so on. If on day n,
Alice is not going to lend the airplane, she fires the event ãn, in conflict with an. The obligations of Alice
and Bob are modelled by the following ES:

E : ` b, b ` a0, b ` ã0 {ãi ` ai+1, ãi ` ãi+1 | i ≥ 0} {ãi#ai | i ≥ 0}

The overall obligations of Alice and Bob are represented in Figure 2, and their payoffs are given by:

ΦAσ =


1 if b ∈ σ
0 if b 6∈ σ and σ ∩ S = ∅
−1 otherwise

ΦBσ =


1 if σ ∩ S 6= ∅
0 if b 6∈ σ and σ ∩ S = ∅
−1 otherwise

where S = {ai | i ≥ 0}. We will show in 4.11 that Bob does not agree with the contract — as to be expected,
since Alice can indefinitely delay lending her airplane. �

3.4. Offer-request payoffs

The definition of payoff functions in Definition 3.1 is quite liberal. Indeed, it also allows for uncomputable
functions, which are of little use in doing anything with a contract. Here we shall focus on a particular class
of payoff functions, called Offer-Request.

Offer-Request payoffs model the situation in which a participant wants something in exchange for a
provided service. Each participant A defines a set of pairs (offer,request) {(OiA, RiA)}i, where the offers OiA
are sets of events of A, while requests RiA are sets of events not of A. For A to be successful, whenever A
performs some OiA in a play (in whatever order), then the play must also contain the corresponding RiA, and
at least one of the requests set has to be performed.

Definition 3.7 (Offer-Request payoff). We say that Φ is an Offer-Request payoff for A iff there exists
a (possibly infinite) set {(Oi, Ri)}i∈I such that for all i ∈ I ⊆ N, Oi ⊆ EA, ∅ 6= Ri ⊆ E \EA, and for all σ:

ΦAσ =


1 if (∃i. Ri ⊆ σ) ∧ (∀j. Oj ⊆ σ =⇒ Rj ⊆ σ)

0 if (∀i. Ri 6⊆ σ ∧ Oi 6⊆ σ)

−1 otherwise

If all the sets Oi and Ri are finite, we say that Φ is finite (the index set I may still be infinite).

For instance, the payoff functions ΦA and ΦB in Example 3.5 are O-R payoffs for A and B. The offers
and the requests of A and B are, respectively O0

A = {a} = R0
B and, dually, O0

B = {b} = R0
A. Instead, the

payoff of B in Example 3.6 is not an O-R payoff: indeed, the offer b must be followed by (at least) one of
the events ai.

Some remarks about O-R payoffs follow.
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• A play σ has a negative payoff for a participant A if A has already done what she offered (Oi ⊆ σ )
and she has not received what she wanted (Ri 6⊆ σ).

• If A offers nothing for a non-empty set of requests (e.g. O0
A = ∅ and R0

A 6= ∅), then in the play ε where
no events have been performed, A has a negative payoff. Indeed, O0

A = ∅ ⊆ ε but R0
A 6⊆ ε.

• Specifying the same offer set towards differents request sets (for instance ({a}, {b}),({a}, {c})) is equiv-
alent to specifying only the single clause ({a}, {b, c}), as the plays with positive/negative playoff are
the same.

In some Offer-Request payoffs, the requests of participants may mutually depend on their offers. An
O-R payoff is circular when it is not possible to satisfy the requests of a set of participants without each
participant doing some offer. For instance, the payoffs of Alice and Bob in Example 3.5 are circular, because
their requests (a and b, respectively) match exactly their offers.

Definition 3.8 (Circular Offer-Request payoff). Let P ⊆ PU be a set of participants with |P| > 1. We
say that an O-R payoff Φ is circular for P whenever:

∀J : P→ I. ∃L : P→ I.
⋃

A∈PO
LA
A ⊆

⋃
A∈PR

JA
A (1)

Example 3.9. Consider participants P = {A,B} with the following O-R payoffs:

i OiA RiA
0 {a0} {b0}
1 {a0, a1} {b0, b1}
2 {a0, a1, a2} {b0, b1, b2}

i OiB RiB
0 {b0} {a0}
1 {b1, b2} {a0, a1}
2 {b0, b1, b2} {a0, a2}

There are 32 possible choices for the function J : P→ {0, 1, 2}. For each of these choices, we have that:

{a0, b0} ⊆
⋃
A∈P

RJA
A

Therefore, we can satisfy (1) by choosing L = {A 7→ 0,B 7→ 0}. By Definition 3.8, we conclude that the
payoffs of A and B are circular. Note that in any play where A and B have a positive payoff, there is a prefix
of the play where one of the participants has performed all the events in one of his offers, but she has not
received the corresponding requests. For instance, for the play σ = 〈a0 b0〉, A has done all her offers in O0

A

in the prefix 〈a0〉, but there she has not already received R0
A. If we remove the clause (O0

A, R
0
A), then the

payoff is no longer circular (take e.g. J = {A 7→ 1,B 7→ 0}). In this case, there exists a contract with a play
η = 〈a0 b0 b1〉 where both participants have a positive payoff (because R1

A∪R0
B ⊆ η), but there exists no prefix

of η where one of the participants has performed all her offers before receiving the corresponding requests. �

Example 3.10 (Dining retailers [14]). Around a table, n cutlery retailers are about to have dinner. At
the center of the table, there is a large dish of food. Despite the food being delicious, the retailers cannot
start eating. To dine properly, each retailer needs a complete cutlery set, consisting of n pieces of different
kinds. Much to their dismay, each retailer owns a set of n pieces of cutlery, all of the same kind. The
retailers start discussing about trading their cutlery, so that they can finally eat.

We formalise the retailers payoffs as follows. Each retailer Ai initially owns n pieces of kind i. For all
j 6= i, the event ei,j models Ai giving a piece of cutlery to retailer Aj. Thus, EAi

= {ei,j | j 6= i}. Retailer
Ai offers n− 1 pieces of his cutlery of kind i in exchange for n− 1 pieces of cutlery of the other kinds.

Oi = {ei,j | j 6= i} Ri = {ej,i | j 6= i}

By Definition 3.8, the payoff Φi of each retailer is a finite O-R circular payoff. Indeed:⋃
i∈1..n

Oi = {ei,j | i 6= j} =
⋃

i∈1..n

Ri �
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4. Agreements

A crucial notion on contracts is that of agreement. Intuitively, when Alice agrees on a contract C, then
she can safely initiate an interaction with the other participants, and be guaranteed that the interaction
will not “go wrong” — even in the presence of dishonest participants. This does not mean that Alice will
always reach a positive payoff in all interactions (which is quite unlikely if the others are not cooperating).
Rather, we say that Alice agrees on a contract if either she has a positive payoff, or if she can blame someone
else. In an actual implementation of a contract-oriented infrastructure, a judge may provide compensations
to Alice, or impose a punishment to the participants who have violated the contract. Here, we shall not
explicitly model the judge, and we only focus on the agreement property.

4.1. Basic definitions

Recall from Definition 3.2 that we interpret a contract as a multi-player game, where participants con-
currently perform events. The plays of this game are the conflict-free sequences of events, with the further
requirement that an event e can be fired in a play σ only if e is obliged (i.e., enabled) by the events previously
performed in σ. The behaviour of each participant A is specified by a strategy ΣA (Definition 3.4), defining
which events of A will be done at each state of a play.

As usual in concurrency, we shall only consider those fair plays where an event infinitely often enabled
is eventually performed. Indeed, contracts would make little sense in the presence of unfair plays, because
an honest participant willing to perform a promised action could be perpetually prevented (by an unfair
scheduler, for instance) from keeping her promise.

Technically, we define fairness with respect to the strategy of a participant. A play is fair for a strategy Σ
(say, of A) when the other participants cannot prevent A from doing some action persistently chosen by Σ.

Definition 4.1 (Fair play). We say that a play σ = 〈e0 e1 · · ·〉 is fair for Σ iff, for all i ≤ |σ| and for all e:(
∀j : i ≤ j ≤ |σ|. e ∈ Σ(σj)

)
=⇒ ∃h. i ≤ h < |σ|. eh = e

Note that, since E is denumerable, then all ESs admit fair plays (respect to every strategy).

Lemma 4.2. A play σ = 〈e0 e1 · · ·〉 is fair for Σ iff:

∀i ≤ |σ|. @e. ∀j : i ≤ j ≤ |σ|. e ∈ Σ(σj)

Proof. For a play σ = 〈e0 e1 · · ·〉 let the predicates P (e, i) and Q(e, i) be defined as:

P (e, i) , ∀j : i ≤ j ≤ |σ|. e ∈ Σ(σj)

Q(e, i) , ∃h ≥ i. eh = e

Then, Definition 4.1 can be rewritten as: ∀i ≤ |σ|. ∀e. P (e, i) =⇒ Q(e, i).

When Q(e, i) is true, there exists h ≥ i such that eh = e, hence σh e = σh+1 6
e−−→. Thus, by Definition 3.4

it must be e 6∈ Σ(σh+1), which implies P (e, i) to be false.
Therefore, P (e, i) implies Q(e, i), which in turn implies ¬P (e, i). From this we conclude that P (e, i) is

false, from which the thesis follows:

σ is fair ⇐⇒ ∀i ≤ |σ|. ∀e. ¬P (e, i) ⇐⇒ ∀i ≤ |σ|. ¬∃e. P (e, i) �

During a play, a participant is considered innocent if she eventually performs all the events which are
persistently enabled. Note that if e is an enabled event, then e is no longer enabled if some event in conflict
with it is performed.

9



Definition 4.3 (Innocence). We say that A is innocent in σ iff:

∀i ≥ 0. ∀e ∈ EA.
(
σi

e−→ =⇒ ∃j ≥ i. σj 6
e−→
)

A strategy Σ for A is innocent iff A is innocent in all fair plays which conform to Σ.

If A is not innocent in σ, then we say she is culpable in σ.

Not all strategies are innocent. For instance, the one which always prescribes A to do nothing is innocent
only in case A really has nothing to do. Nevertheless, it is always possible to define a strategy which
guarantees A to be innocent in every (fair) play. One such strategy is the eager strategy, which prescribes A
to do all her enabled events.

Definition 4.4 (Eager strategy). We define the eager strategy Σ!
A for A as follows:

Σ!
A(σ) = {e ∈ EA | σ

e−→ }

We say that a strategy Σ is greater than the strategy Σ′, if for all plays σ, we have that Σ′σ ⊆ Σσ.
The eager strategy Σ!

A is the greatest strategy for A. Moreover, since Σ!
A makes A innocent, we have the

following lemma:

Lemma 4.5. Σ!
A is the greatest innocent strategy for A.

We now define when a participant wins in a play. If A is culpable, then she loses. If A is innocent, but
some other participant is culpable, then A wins. Otherwise, if all participants are innocent, then A wins if
she has a positive payoff in the play. This is formalised as the function W in Definition 4.6 below.

Definition 4.6 (Winning play). Let C = (E,Φ) be a contract of participants P. We define the function
W : P→ E∞ → {1, 0,−1} as:

WAσ =


ΦAσ if all participants are innocent in σ

−1 if A is culpable in σ

+1 otherwise

For a participant A and a play σ, we say that A wins (resp. loses) in σ iff WAσ > 0 (resp. WAσ < 0).

Note that in the last case of the definition of WAσ, A is innocent but there exists some B 6= A culpable in σ.

Definition 4.7 (Winning strategy). A strategy Σ is winning (resp. losing) for A iff A wins (resp. loses)
in every fair play conforming to Σ.

Whenever A has a strategy Σ which allows her to win in all fair plays conforming to Σ, then she agrees
on that contract.

Definition 4.8 (Agreement). A participant A agrees on a contract C if and only if A has a winning
strategy in C. A contract C of participants P admits an agreement whenever each A ∈ P agrees on C.

Indeed, if A agrees on a contract, then in any interaction regulated by that contract (whatever are the
moves of her opponents), she can win by following her strategy.
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4.2. Some examples

Example 4.9. The contract C of Example 3.5 admits an agreement. The winning strategies for A and B
are, respectively:

ΣA(σ) =

{
{a} if b ∈ σ and a 6∈ σ
∅ otherwise

ΣB(σ) =

{
{b} if b 6∈ σ
∅ otherwise

The strategy ΣA prescribes A to do nothing in the empty play, and to do a as long as b has been done.
So the fair plays which are conform to ΣA are ε and 〈b a〉. In ε, B is culpable so A wins; in 〈b a〉 the payoff
of A is positive and both participants are innocent, so A wins.

The strategy ΣB prescribes B to do b in the empty play and nothing else. So the fair plays conforming to
ΣB are 〈b〉 and 〈b a〉. In 〈b〉, A is culpable so B wins; in 〈b a〉 the payoff of B is positive and both participants
are innocent, so B wins. �

Example 4.10. The eager strategy Σ!
A is not always winning for A. Consider the contract with ` a, ` b,

a#b, EA = {a, b}, and ΦAσ = 1 iff a ∈ σ. We have that Σ!
A(ε) = {a, b}, but A is losing in the fair play

σ = 〈b〉. However, A agrees on C, because the strategy (λσ. if σ
a−→ then {a} else ∅) is winning for A in C. �

Example 4.11. Let C be the contract in Example 3.6. We have that A agrees on C, while B does not.
Indeed, a winning strategy for A is the following:

ΣA(σ) =

{
{ãi} if σ

ãi−→
∅ otherwise

which prescribes A to delay forever the lending of her airplane. The fair plays conforming to this strategy
are: ε and the infinite one 〈b ã0 ã1ã2 · · ·〉. In the empty play, B is culpable and hence A wins. In the infinite
one, A has a positive payoff and both participants are innocent: hence A wins.

On the contrary, B has not a winning strategy: either he will perform b or not. In the empty strategy,
where he does not perform b, he is culpabable in the play ε: hence he loses. Otherwise, if he performs b, he
cannot make Alice lending her plane. In the play where Alice decides to lend the plane, he wins, but in the
infinite play where Alice delays forever, he has a negative payoff and loses.

4.3. Constructions on strategies

The following theorem establishes a relation between deterministic and non-deterministic strategies, by
stating that it is always possible to construct a winning deterministic strategy Σ′ from a winning non-
deterministic Σ. As observed in Example 4.13 below, a näıve construction of Σ′ not always produces a
winning strategy. The insight of our construction in Theorem 4.12 is that, to define Σ′(σ), we take the
longest suffix of σ which has persistently enabled events by Σ, and we enable the least of them.

Theorem 4.12. If A agrees on C, then there exists a deterministic winning strategy for A in C.

Proof. Let Σ be a (non-deterministic) winning strategy for A in C. Since the universe of events is a
denumerable set, we can fix a bijection between it and the set of natural numbers. This induces a (well-)
ordering between events such that every event has only finitely many smaller events. We now define a
deterministic winning strategy Σ′. For all σ and j ≤ |σ|, let:

A(σ, j) =
⋂

j≤i≤|σ|

Σ(σi)

Then, let the strategy Σ′ be defined as follows:

Σ′(σ) =

{
∅ if Σ(σ) = ∅
minA(σ, j0) otherwise, with j0 = min{j | A(σ, j) 6= ∅}

(2)
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Note that minA(σ, j0) denotes the minimum over events, with respect to the ordering mentioned above.
Now, let σ be a fair play conforming to Σ′. Since Σ′(η) ⊆ Σ(η) holds for all η, then σ conforms to Σ.

We shall prove that σ is fair for Σ. From this and the fact that Σ is winning for A, we will deduce that A
wins in σ, which implies the thesis: Σ′ is winning for A.

To prove that σ is fair for Σ, we proceed by contradiction. Assume then that σ is not fair for Σ.
By Lemma 4.2, this amounts to say that there exist some index i and event e such that e ∈ Σ(σj) for all
j ≥ i. Then, the set {j | A(σ, j) 6= ∅} is non-empty: so, let j0 be its least element, and let e0 = minA(σ, j0).

In particular, we have that:
e0 ∈ Σ(σj) for all j ≥ j0 (3)

By definition of e0 we have that, for all e1 < e0, there exists h ≥ j0 such that e1 6∈ Σ(σh) — otherwise e0

would not be the minimum. Let last(e1) denote one such index h. Then, let j1 = max {last(e1) | e1 < e0},
which is well-defined as there are only finitely many e1 < e0 (this relies on the assumption that the universe
of events is denumerable, as pointed out above). Note that j1 ≥ j0.

Since e0 is in Σ(σh) for all h ≥ j0, while every e1 < e0 is not in Σ(σh) for some h ∈ j0..j1, by definition
of Σ′ in Equation (2) it must be Σ′(σj) = {e0} for all j ≥ j1. Since σ is fair w.r.t. Σ′, then e0 must be in σ.

So, there is some index h ≥ j1 ≥ j0 such that e0 ∈ σh 6
e0−→, hence e0 6∈ Σ(σh) — which contradicts (3). �

Example 4.13. Consider the ES with events N ∪ {∞} (for simplicity, assume that they are all in EA),
empty conflict relation, and enabling relation defined by ` ∞, ` 0, and n ` n+ 1 for all n ≥ 0. Let ΦAσ be
positive iff N ⊆ σ. Note that the eager strategy is winning for A: however, such strategy is non-deterministic,
e.g. because Σ(〈0, . . . , n〉) = {n+ 1,∞}, for all n ∈ N. Consider now the deterministic strategy Σ′ obtained
from Σ by removing the event ∞, i.e. Σ′(σ) = Σ(σ) \ {∞}. We have that Σ′ is not winning: indeed, the
infinite play η = 〈0, 1, . . .〉 is fair w.r.t. Σ′ (and not for Σ), but A is culpable in η, because ∞ is persistenly
enabled and never fired.

We now study how to compose strategies. Note that the näıve definition (i.e. taking the pointwise union)
would lead to unwanted results. Indeed, consider the contract C with enablings ` a, ` b, {a} ` a′, {b} ` b′,
and conflicts a#b′, a′#b, and where all the events belong to A. Let ΦAσ be positive if either a, a′ ∈ σ, or
b, b′ ∈ σ. Then, the following two strategies are winning for A in C:

Σa(σ) =


{a} if σ

a−→
{a′} if σ

a′−→
∅ otherwise

Σb(σ) =


{b} if σ

b−→
{b′} if σ

b′−→
∅ otherwise

(4)

Their näıve composition Σ = λσ.Σa(σ)∪Σb(σ) is not winning. Indeed, Σ(a) = {a′, b}, and so σ = 〈a b〉 is a
fair play conforming to Σ, and such that ΦAσ ≤ 0. By Definition 4.7, Σ is not winning for A in σ.

Because of the above issue, the definition of strategy composition (Definition 4.14) is slightly more
sophisticated. This definition ensures that the composition of a finite set of winning strategies is winning
(Lemma 4.15).

Definition 4.14 (Composition of strategies). For a set of strategies S, we define the strategy
⊔
S as:

(
⊔

S)(σ) =
⋃
{Σ(σ) | Σ ∈ S ∧ σ conforms to Σ}

According to this definition, the composition Σ′ = Σa t Σb of the strategies in (4) is winning for A:

Σ′(σ) =


{a, b} if σ = ∅
{a′} if σ = 〈a〉
{b′} if σ = 〈b〉
∅ otherwise
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Figure 3: Joining an infinite set of winning strategies is not a winning strategy.

Lemma 4.15. Let S be a non-empty finite set of strategies for participant A. Then:

(a) If a play σ conforms to
⊔
S, then there exists Σ ∈ S such that σ conforms to Σ.

(b) If each Σ ∈ S is winning (resp. non-losing) for A in C, then
⊔

S is a winning (resp. non-losing) strategy
for A in C.

Proof. For item (a), we prove the contrapositive. Assume that σ does not conform to any Σ ∈ S. By Defi-
nition 3.4, this means that:

∀Σ ∈ S. ∃iΣ ≥ 0. π(eiΣ) = A ∧ eiΣ 6∈ Σ(σiΣ) (5)

Clearly, σiΣ+1 does not conform to Σ, and so for all j > iΣ, σj does not as well. Since S is finite, we can
take the maximum of the indices iΣ obtained in (5) i.e. let:

k = max {iΣ | Σ ∈ S}

By construction of k, π(ek) = A, but σk+1 does not conform to any Σ ∈ S. Then, by Definition 4.14, σ does
not conform to

⊔
S.

To prove item (b), let σ be a play conforming to
⊔

S. By item (a), there exists Σ ∈ S such that σ
conforms to Σ. Since by hypothesis Σ is winning (resp. non-losing), then A wins in σ. So

⊔
S is a winning

(resp. non-losing) strategy for A. �

Note that Lemma 4.15 cannot be applied when the set of strategies is infinite. Indeed, for each event ei of
an infinite play σ fair and conforming to

⊔
S, there may exists a different Σi ∈ S to whom each σi conforms,

but not a single Σ to which the whole σ conforms. So, even if all the strategies in S are winning,
⊔
S may

not be winning, as shown in the following example.

Example 4.16. Let CA = (EA,ΦA) be a contract with the following payoff:

ΦAσ =

{
1 if a ∈ σ
−1 otherwise

where EA has the following enablings and conflicts (see Figure 3):

` : { ` e1} ∪ {ei ` ei+1 | i ≥ 1} ∪ {ei ` e′i | i ≥ 1} ∪ {e′i ` a | i ≥ 1}
# : {e′i#ei+1 | i ≥ 1}

and where π(a) = π(ei) = π(e′i) = A, for all i ∈ N.
For all i > 0, let Σi be the strategy for A which prescribes to wait i+ 1 events before performing a:

Σi(σ) =


{ej} if |σ| < i and σ

ej−−→

{e′i} if |σ| = i and σ
e′i−−→

{a} if |σ| = i+ 1 and σ
a−→

∅ otherwise
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The strategy Σi is winning for all i > 0. Indeed, each fair play σ conforming to Σi has the form 〈e1e2 · · · eie′ia〉.
For instance, 〈e1e

′
1a〉 is a fair play conforming to Σ1 and 〈e1e2e

′
2a〉 is a fair play conforming to Σ2. In the

play σ, the payoff of A is positive, hence Σi is winning for A.
Now, let S =

⊔
{Σi | i > 0}, and let σ∞ = 〈e1 e2 e3 . . .〉 be the only infinite play of CA . We have that:

• σ∞ is fair for
⊔
S. Indeed, there does not exist an event e such that ∃i. ∀j ≥ i. e ∈ (

⊔
S)σ∞j . Thus,

Lemma 4.2 states σ∞ is fair;

• σ∞ conforms to
⊔
S, since for all i > 0, σ∞i conforms to every Σj with j > i;

• A loses in σ∞, since she never performs the event a.

Summing up, we have found a fair play conforming to
⊔
S where A is not winning: therefore,

⊔
S is not a

winning strategy. �

4.4. Agreements for Offer-Request payoffs

We now provide some general results about contracts with O-R payoffs. The following lemma states a
necessary condition to reach an agreement: the ES of the contract must have a configuration containing at
least a request set.

Lemma 4.17. Let C = (E,Φ) be a contract with O-R payoff ΦA = λσ. φ(σ) for A. If A agrees on C, then
there exists some configuration C ∈ FE such that φ(C) > 0.

Proof. Assume that A agrees on C. By Definition 4.8, A has a winning strategy in C, be it ΣA. By Defini-
tion 4.7, A wins in every fair play which conforms to ΣA. Among all these plays, there must exist at least
one where all the participants are innocent (e.g. the play where all B 6= A adopt the eager strategy Σ!

B),
call it σ. Since A wins in σ, by Definition 4.6 we have ΦAσ > 0. To conclude, it suffices to observe that
by Lemma 3.3, the set σ is a configuration of E. �

The following example shows that the converse of Lemma 4.17 does not hold. Indeed, to agree on a
contract it is not enough to require that φ(C) > 0 for some C ∈ FE: a conflict may prevent A from reaching
a positive payoff.

Example 4.18. Let C = (E,Φ), where Φ has O-R payoffs for A, be defined as follows:

E : ` a ` a′ ` b ` b′ a# a′ b# b′

Φ : O0
A = {a} R0

A = {b} O1
A = {a′} R1

A = {b′}

where π(a) = π(a′) = A, π(b) = π(b′) = B, and the payoff of B is irrelevant. Even though there exist two
configurations, {a, b} and {a′, b′}, where A has a positive payoff, there are also some plays, e.g. 〈ab′〉 and
〈a′b〉, where she has a negative payoff, and hence she loses. Since A has no innocent strategy to avoid these
plays, then A does not agree on the contract C. �

The following theorem establishes a sufficient condition for reaching agreements in conflict-free contracts
with O-R payoffs. If there exists a configuration C in C which contains all the requests of A, then A agrees
on C. Since the ES of C is conflict-free, if the strategy of A prescribes to do all her enabled events in C,
then the other participants are obliged to do their events in C. Eventually, either some participant B 6= A
is culpable, or a state is reached where the payoff of A is positive.

Theorem 4.19. Let C = (E,Φ) be a contract with O-R payoff for A. If E is conflict-free and
⋃
iR

i
A ⊆ C

for some configuration C ∈ FE, then A agrees on C.
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Proof. We will prove that the eager strategy Σ!
A is winning for A in C. Let γ be a fair play of C which

conforms to Σ!
A. By contradiction, assume that A is not winning in γ. By Lemma 4.5, A is innocent in γ.

Thus, by Definition 4.6 it follows that all participants are innocent and, ΦAγ ≤ 0. By Definition 3.7, this
means that either there exist some i such that OiA ⊆ γ and RiA 6⊆ γ (in case A loses), or that for all i, OiA 6⊆ γ
and RiA 6⊆ γ (in case A ties). In both case, there exists at least one i such that RiA 6⊆ γ.

Let i be such that RiA 6⊆ γ, and let e be such that e ∈ RiA \ γ. By hypothesis, there exists C ∈ FE such
that

⋃
iR

i
A ⊆ C; hence e ∈ C. Since C is a configuration, and since every family of configurations enjoy

finiteness, (see [7], Theorem 1.1.9 (ii)) there exists C ′ ⊆fin C such that C ′ ∈ FE and e ∈ C ′. By Lemma 2.12,

there exists a play σ = 〈e0 · · · en〉 such that ∅ σ−−→E σ, and e ∈ σ = C ′.
We will prove that σ ⊆ γ by induction on the length of σ. The base case σ0 = ε is trivial. For the

inductive case, we have to prove that σi+1 = σi ∪ {ei} ⊆ γ. By the induction hypothesis, σi ⊆ γ for i < |σ|,
hence it is enough to prove that ei ∈ γ.

Let γk be the shortest prefix of γ such that σi ⊆ γk. Since σi ` ei, by Lemma 2.11 it follows that
γh

ei−−→E for all h ≥ k. Since all participants are innocent in γ, and since E is conflict-free, by Definition 4.3
(innocence) there exists some j > k such that the j-th event of γ is ei — hence ei ∈ γ.

Summing up, we have proved that
⋃
iR

i
A ⊆ γ for all fair plays γ — contradiction. �

Note that the conflict-freeness requirement in Theorem 4.19 cannot be dropped. Indeed, consider Ex-
ample 4.18 where we remove O1

A, R
1
A. Then, the configuration {b} contains all the requests of A (i.e., R0

A).
However, there is no innocent strategy for A where she is winning. Hence, A does not agree on such contract.

5. Session types as contracts

In this section we shall relate the standard progress-based notion of compliance in session types with the
notion of agreement in game-based contracts.

Assume that the set of action labels A is partitioned in two sets, the output labels A!, ranged over by
a!, b!, . . ., and the input labels A?, ranged over by a?, b?, . . ., We let α, β, . . . range over A? ∪ A!, and we
postulate an involution co(·) such that co(a?) = a! and co(a!) = a?. In Section 5.1 we describe the syntax
and semantics of binary session types, following the notation used in [2]. We then provide session types with
an alternative operational semantics, where the two participants alternate in firing actions (Section 5.2);
this semantics preserves the progress-based notion of compliance (Theorem 5.11). In Section 5.3 we devise
denotational semantics of session types, in the form of an event structure whose LTS is bisimilar to the one of
the turn-based operational semantics (Theorem 5.20). Our main result in this section is Theorem 5.23, which
states that compliance in session types is equivalent to the winningness of eager strategies in contracts.

5.1. Session types and compliance

Definition 5.1 (Session type). Session types are terms of the following grammar:

P,Q ::= 1
∣∣ ⊕

i∈I ai! . Pi
∣∣ ∑

i∈I ai? . Pi
∣∣ rec x. P

∣∣ x
where (i) the index set I is finite and non-empty, (ii) the actions in internal/external choices are pairwise
distinct, and (iii) recursion is guarded.

Session types are terms of a process algebra featuring 1 (success), internal choice
⊕

i∈I ai! . Pi, external
choice

∑
i∈I ai? . Pi, and guarded recursion. If Q =

⊕
i∈I ai! . Pi and 0 6∈ I, we write a0!.P0 ⊕ Q for⊕

i∈I∪{0} ai! . Pi (same for external choice). As usual, we write a!.P and a?.P for singleton choices, we
omit trailing occurrences of 1, and we assume terms up-to unfolding of recursion.

The semantics of session types is defined in Figure 4. There, we extend the syntax with the term 0,
which is only used to make it easier relating session types with contracts. The intuition is that a session type
models the intended behaviour of one of the two participants involved in a session, while the behaviour of
two interacting participants is modelled by the composition of two session types, denoted P | Q. An internal
choice must first commit to one of the branches a!.P , before advertising a! (note that, in the first rule
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a! . P ⊕ Q −→ a! . P a! . P
a!−→ P

1 −→ 0 a? . P + Q
a?−→ P

P −→ P ′

P | Q −→ P ′ | Q
P

a!−→ P ′ Q
a?−→ Q′

P | Q −→ P ′ | Q′

Figure 4: Operational semantics of session types (symmetric rules omitted).

(a! . P ⊕ Q) ‖ R A : a!−−−→→ [a!]P ‖ R (a? . P + Q) ‖ [a!]R
A : a?−−−→→ P ‖R 1 ‖ P̃ A :X−−−→→ 0 ‖ P̃

Figure 5: Turn-based operational semantics of session types (symmetric rules for B omitted).

of Figure 4, the session type a! . P ⊕ Q has at least two branches). An external choice can always advertise
each of its actions. Two session types can run asynchronously only when one of them is committing to a
branch. Synchronisation between P and Q requires that P has committed to a branch a! in an internal
choice, and Q is advertising a? in an external choice.

Following [15, 1, 2] we define a progress-based notion of compliance between session types. The intuition
is that if a client contract P is compliant with a server contract Q then, whenever a computation of P | Q
becomes stuck, the client has reached the success state. Actually, below we provide a more general definition
of compliance, which is parametric on the LTS →, parallel composition operator ◦, and success states S.
The set Z of the states of the LTS → contains terms of the form p ◦ q.

Definition 5.2 (Compliance). Let T be a set of terms, and let (Z, ◦, A,→, S) be an LTS, where Z ⊆
{p ◦ q | p, q ∈ T} and S ⊆ Z. We say that p is compliant with q (written p( q) whenever:

p ◦ q →∗ p′ ◦ q′ 6→ implies p′ ◦ q′ ∈ S

Notation 5.3. Compliance between session types, denoted by a, is obtained by instantiating → in Defini-
tion 5.2 with the relation in Figure 4, ◦ with parallel |, and S with the set of terms of the form 0 ‖Q.

Example 5.4. Let P = a! ⊕ b!, and let Q = a?.c! + d?. If P commits to the branch labelled a, then
P | Q will take a transition to a! | Q, which can take a further transition to 1 | c!. Suppose instead that
P commits to b: in this case, P | Q → b! | Q, which is stuck because b is not offered by Q in its external
choice. Then, P 6a Q and Q 6a P . Instead, with P ′ = a! we have that P ′ is compliant with Q (P ′ a Q), but
the viceversa is not true (Q 6a P ′).

5.2. Turn-based semantics of session types

We now present an alternative operational semantics of session types, where the two terms P and Q in
a composition P ‖Q alternate in firing actions. To do this, we extend the run-time syntax of session types
with terms of the form [a!]P , where [a!] models a one-position buffer storing a!.

Definition 5.5 (Turn-based semantics of session types). A turn-based configuration is a pair P̃ ‖ Q̃,
where either: (i) both P̃ and Q̃ are session types, or (ii) P̃ is a session type, and Q̃ = [a!]P for some session
type P (symmetric cases omitted, and including the session type 0). In Figure 5 we define an LTS over
turn-based configurations, with labels in {A,B} × (A ∪ {X}).

A session type with an internal choice a!.P ⊕Q can fire the action a! (if the buffer is empty), and write
a! to the buffer. Then, the other session type can read the buffer by firing a? in an external choice. We
also extend the set of labels with X, which is fired by the success state 1 before reaching the state 0.

The following lemma is straightforward by the rules in Figure 5 and by the assumption (ii) in Defini-
tion 5.1, which states that actions in an internal/external choice are pairwise distinct.

Lemma 5.6. The LTS
α−→→ is finitely branching. Furthermore, it is deterministic, i.e.:

P̃ ‖ Q̃ α−→→ P̃1 ‖ Q̃1 and P̃ ‖ Q̃ α−→→ P̃2 ‖ Q̃2 =⇒ P̃1 ‖ Q̃1 = P̃2 ‖ Q̃2
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The notion of compliance under the turn-based semantics is defined by suitably instantiating the param-
eters in Definition 5.2.

Notation 5.7. We write P 
Q whenever P is compliant with Q, by instantiating → in Definition 5.2 with
the relation −→→ in Figure 5, ◦ with ‖ , and S with the set of turn-based configurations of the form 0 ‖ Q̃.

In Theorem 5.11 below we will show that the turn-based compliance of session types is equivalent to
the compliance relation of Definition 5.2. To prove that, we introduce a notion of simulation (called turn-
simulation) which is suitable to relate the turn-based semantics with the one in Figure 4. This relation is
between states of two LTSs →1 and →2, and it is parameterised over two sets S1 and S2 of success states.
A state (p2,→2) turn-simulates (p1,→1) whenever each move of p1 can be matched by a sequence of moves
of p2 (ignoring the labels), and stuckness of p1 implies that p2 will get stuck in at most one step. Further,
turn-simulation must preserve success.

Definition 5.8 (Turn-simulation). For i ∈ {1, 2}, let →i be an LTS over a state space Zi, and let Si
be a set of states of →i. We say that a relation R ⊆ Z1 × Z2 is a turn-simulation iff s1 R s2 implies:

(a) s1 →1 s
′
1 =⇒ ∃s′2 : s2 →∗2 s′2 and s′1 R s′2

(b) s2 →2 s
′
2 =⇒ s1 →1 or (s1 R s′2 and s′2 6→2)

(c) s2 ∈ S2 =⇒ s1 ∈ S1

If there is a turn-simulation between s1 and s2 (written s1 R s2), we say that s2 turn-simulates s1. We
denote with 4 the greatest turn-simulation.

We say that R is a turn-bisimulation iff both R⊆ Z1 × Z2 and R−1⊆ Z2 × Z1 are turn-simulations.

The following lemma relates turn-based simulation and compliance in two arbitrary LTSs. Whenever p
and q can be composed in parallel in both LTSs, and these compositions are turn-similar, then compliance
can be transferred from one LTS to the other (in the other direction w.r.t. the simulation).

Lemma 5.9. If p ◦1 q 4 p ◦2 q and p(2 q, then p(1 q.

Proof. By Definition 5.2, assume that:

p ◦1 q →∗1 p′1 ◦1 q′1 6→1

Since p ◦1 q 4 p ◦2 q and p ◦1 q →∗1 p′1 ◦1 q′1, by item (a) of Definition 5.8 we have that there exist p′2, q
′
2

such that p ◦2 q →∗2 p′2 ◦1 q′2 and p′1 ◦1 q′1 4 p′2 ◦2 q′2. Now we have the following two cases:

• p′2 ◦2 q′2 6→2. Since p(2 q, by Definition 5.2 it must be p′2 ◦2 q′2 ∈ S2. By item (c) of Definition 5.8 it
follows that p′1 ◦1 q′1 ∈ S1, from which we conclude that p(1 q.

• p′2 ◦2 q′2 →2 p
′′
2 ◦2 q′′2 . By item (b) of Definition 5.8 we have one of the following two cases:

– p′1 ◦1 q′1 →1. This is not possible, because we have assumed that p′1 ◦1 q′1 is stuck.

– p′1 ◦1 q′1 4 p′′2 ◦2 q′′2 and p′′2 ◦2 q′′2 6→2. Since p′′2 ◦2 q′′2 is stuck and p(2 q, by Definition 5.2 it follows
that p′′2 ◦2 q′′2 ∈ S2. Hence, from p′1 ◦1 q′1 4 p′′2 ◦2 q′′2 and item (c) of Definition 5.8 it must be
p′1 ◦1 q′1 ∈ S1, from which the thesis p(1 q follows. �

The following lemma establishes that the two semantics of session types (Figures 4 and 5) give rise to a
turn-bisimulation.

Lemma 5.10. P | Q is turn-bisimilar to P ‖Q.
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Proof. Let (P | Q,→, {0 | 0}) be the LTS for P | Q, and (P ‖Q,−→→, {0 ‖0}) be the LTS for P ‖Q. Let R

be a relation defined as follows:

R = {(P | Q, P ‖Q) | P,Q session types}∪ RA ∪ RB

RA = {(a!.P | Q, [a!]P ‖Q), (a!.P | b!.Q′, [a!]P ‖ b!.Q′ ⊕Q′′) | P,Q,Q′, Q′′ session types}
RB = {(P | a!.Q, P ‖ [a!]Q), (a!.P ′ | b!.Q, a!.P ′ ⊕ P ′′ ‖ [b!]Q) | P, P ′, P ′′, Q session types}

Checking that R is a turn-bisimulation is routine. Full details are on page 32. �

We can now establish that the turn-based compliance of session types is equivalent to the classical notion.
This is an immediate consequence of Lemmas 5.9 and 5.10.

Theorem 5.11. P a Q iff P 
Q.

Proof. Straightforward from Lemma 5.10 and Lemma 5.9

5.3. Denotational semantics of session types

We now provide session types with event structure semantics. We follow two approaches: a semantical
one, where we encode the LTS of P ‖Q, and a syntactical one, where we instead encode P and Q in a
syntax-driven fashion, and then combine the resulting event structures. Both approaches have different
advantages: the semantical definition is more succinct, while the syntactical one is compositional. In both
cases, the denotational semantics gives rise to LTSs on event structures which are bisimilar to the LTS of
the turn-based operational semantics of session types in Figure 5. Since the syntactical approach requires
quite involved technicalities, to keep our presentation short we establish in this section the correspondence
result for the semantical approach only, while developing the other one in Section A.

5.3.1. Semantic-based approach

Given an arbitrary LTS Z, we construct an event structure as follows. The event structure JZK is crafted
so that, whenever the LTS has a trace α1α2 · · · , the event structure has a trace (1, α1)(2, α2) · · · (according
to Definition 2.9). Events of JZK augment the LTS actions with their index in the trace so that, given a
configuration C of JZK, we can reconstruct the original trace.

Definition 5.12 (Encoding of LTSs into ESs). Let Z = (Z, A,→, s0) be an LTS with initial state s0.
We define the event structure JZK = (E,#,`, `) as follows:

• E = {(n, α) | n ∈ N, α ∈ A}

• # = {((n, α), (n, β)) | n ∈ N and α, β ∈ A with α 6= β}

• ` = sat(`Z), where `Z= {(X, (n, α)) | s0
snd(X)−−−−−→ s

α−→ and n = |X|+ 1}

• `(n, α) = α

where the partial function snd maps C = {(i, αi)}i∈1..n to 〈α1 · · ·αn〉.

The finite configurations and the traces of the encoding of an LTS have the expected form, as established
by the following lemma.

Lemma 5.13. Let C be a configuration of JZK. Then:

(a) if C is finite, then there exist α1 · · ·α|C| such that C = {(i, αi) | i ∈ 1..|C|}.

(b) if C ′
(n,α)−−−→JZK C, then n = |C ′|+ 1 and C ′ `Z (n, α).
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Proof. For item (a), we proceed by induction on |C|. If |C| = 0, trivial. Otherwise, by Lemma 2.8 there
exists some e ∈ C such that C ′ = C \ {e} ∈ FJZK . By the induction hypothesis, there exist αi such that
C ′ = {(1, α1), . . . , (|C| − 1, α|C|−1)}. Let e = (m,αm). Since C is a configuration of JZK, then C ′ ` e.

By Definition 5.12, there exists X ⊆ C ′ such that X `Z e with s0
snd(X)−−−−−→ s

αm−−→ and m = |X|+ 1. Since C
is conflict-free, we must have m ≥ |C|. Since X ⊆ C ′, we have |X| ≤ |C ′|, hence m = |X|+1 ≤ |C ′|+1 = |C|.
Hence we obtain the thesis m = |C|. Note in passing that this implies X = C ′.

For item (b), by Definition 2.9, we have that C ′
(n,α)−−−→ C implies C = C ′ ∪{(n, α)} with (n, α) 6∈ C ′, and C ′

is finite. Applying item (a) to C ′, C, we have that C ′ = {(i, α′i) | i ∈ 1..|C ′|} and C = {(i, αi) | i ∈ 1..|C|}.
We then obtain (n, α) = (|C|, α|C|), hence n = |C| = |C ′|+ 1. The part of the thesis C ′ `Z (n, α) is implied
by the proof of item (a), where we established X = C ′ and X `Z e = (n, α). �

The following lemma states that the finite traces of the LTS Z correspond (modulo the projection snd)
to the finite traces of JZK.

Lemma 5.14. For all LTSs Z with initial state s0:

(a) s0
λ−→ s =⇒ ∃C, σ : λ = snd(σ) and ∅ σ−→JZK C

(b) ∅ σ−→JZK C =⇒ ∃s : s0
`(σ)−−→ s

Proof. Item (a) is straightforward by induction on the length of λ. Item (b) follows by Lemma 5.13 and by
definition of `Z in Definition 5.12. �

The following auxiliary result relates the finite traces Trfin of an LTS with the set Tr of all its traces
(including the infinite ones). In particular, we establish that the infinite traces of a finitely-branching LTS
are uniquely determined by the finite traces.

Lemma 5.15. Let Z1,Z2 be finitely-branching LTSs. Then, Trfin(Z1) = Trfin(Z2) =⇒ Tr(Z1) = Tr(Z2).

Proof. By contradiction, let η be an infinite trace in Z1 but not in Z2. Every finite prefix of η is a trace
of Z2. Let Z′2 be Z2 restricted to states reachable with any finite prefix of η. The LTS Z′2 contains traces of
arbitrarily large length, and is finitely branching. By König’s lemma [16], Z′2 has an infinite trace η′. The
traces η′ and η share the same finite prefixes, hence they are equal. �

We also establish finite-branchingness and determinism of our encoding. Recall that the LTS →` is
obtained by substituting actions for events in the labels of an LTS.

Lemma 5.16. Let (E,#,`, `) = JZK, for some LTS Z. Then, (JZK,→`
JZK) is deterministic. Furthermore,

if Z if finitely branching, then (JZK,→`
JZK) is finitely branching.

Proof. For determinism, assume that C
α−→ C ′ and C

α−→ C ′′ in the LTS →`
JZK . Then, C

(n′,α)−−−−→ C ′ and

C
(n′′,α)−−−−→ C ′′ in →JZK . By item (b) of Lemma 5.13, it follows that n′ = n′′ = |C| + 1, and C ′ = C ′′ =

C ∪ {(n′, α)}.
For finite-branchingness, by hypothesis there is a finite number of α such that s

α−→ s′ in Z. All the
configurations of JZK are reachable from ∅, hence by item (b) of Lemma 5.14, there is also a finite number

of α (and only one n = |C|+ 1, which is a function of C) such that C
(n,α)−−−→. �

The following theorem relates the denotational and the turn-based operational semantics of session types:
their (action-labelled) LTSs are strongly bisimilar.

Theorem 5.17. For all session types P,Q, we have (P ‖Q,−→→) ∼ (∅,→`
JP ‖QK).

Proof. Since P ‖Q is finitely branching, then by Lemma 5.16 also (∅,→`
JP ‖QK) is finitely branching.

By Lemma 5.14, the two LTSs are finite-trace equivalent, and so by Lemma 5.15 they are trace equiva-
lent. Since they are also deterministic (Lemmas 5.6 and 5.16), they are bisimilar. �
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J1KAρ = ({e}, ∅, sat{(∅, e)}, {(e,A : X)}) where e ∈ EA

JxKAρ = ρ(x) = (E,#,`, `) where E ⊆ EA

Jα.P KAρ = (e,A : α) � JP KAρ where e ∈ EA is a new event

J
⊙

i∈I PiK
A
ρ = �i∈I JPiKAρ where the Ei in JPiKAρ = (Ei, #i, `i, `i) are pairwise disjoint and

⊙
∈ {⊕,+}

Jrec x. P KAρ = fix Γ where Γ(E) = JP KAρ{E/x}

Figure 6: Denotational semantics of session types (operations defined in Section A.3).

LP1 ‖P2MA1A2
ρ = JP1KA1

ρ � JP2KA2
ρ where JPiKAi

ρ = (Ei, #i, `i, `i) are such that E1 ∩ E2 = ∅

Figure 7: Denotational semantics of turn-based configurations (full set of rules in Section A.4).

5.3.2. Syntax-based approach

We give here some intuition on the syntactical approach, leaving the most technical details to Section A.
To encode a turn-based configuration P ‖Q, we first encode the session types P and Q, and then compose
the resulting ESs with the operator �. For configurations having a buffer, such as [a!]P ‖Q, we proceed
in a similar way. Encoding a session type into an ES is almost straightforward (Definition 5.19): events
are occurrences of the actions of the session type; all pairs of events belonging to different branches are in
conflict; and the guard of a branch enables the events in its continuation.

Definition 5.18 (ES semantics of session types). The denotation of session types is defined by the
rules in Figure 6, where ρ is an environment mapping variables x to ESs.

The encoding exploits some standard operators to compose event structures, which are defined in Sec-
tion A.3. Here we simply recall that ‘�’ is the standard choice operator, and ‘�’ is a prefix one. Recursion
is dealt with in the usual way, through fixed points; for this, we exploit the complete partial order on event
structures in Definition A.16.

The definition of the composition operator � for a turn-based configuration P̃ ‖ Q̃ is rather involved
(see Section A.3), though the intuition behind it is fairly simple. The turn-based interaction of session types
depends on their guards and on the one-position buffer: the resulting event structure represents precisely
this interaction. For instance, consider the configuration a!.b!.1 ‖ a?.b?.1. The ES E = Ja!.b!.1K contains
the enabling a! ` b!, hence to fire it in E it is enough to fire a! first. In the encoding of the configuration,
the enabling a! ` b! of E is enriched by adding the events for the coaction of a!, namely a?. The resulting
enabling is {a!, a?} ` b!. The ES E′ = Ja?.b?.1K contains the enabling a? ` b?. In the encoding of the
configuration, we enrich this enabling not only with the events corresponding to a?, but also with the one
triggering b? itself, namely b!. The resulting enabling is then {a!, a?, b!} ` b?. As another example,
consider the configuration [a!]1 ‖ a?.1. The ES associated to a?.1 contains the enabling ` a?. Since the
buffer contains a!, the enabling ` a? is kept as it is (without adding a! in the premises) in the ES associated
to the configuration.

Definition 5.19 (ES semantics of turn-based configuration). The denotation LP1 ‖P2M of turn-based
configurations is defined by the rules in Figure 7, where ρ is an environment mapping variables x to ESs.

The following theorem relates the denotational and the turn-based operational semantics of session types.
Their (action-labelled) LTSs are strongly bisimilar.

Theorem 5.20. For all session types P,Q, we have (P ‖Q,−→→) ∼ (∅,→`
LP ‖QM).

Proof. See Section A.5.
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Example 5.21. We now illustrate with the help of an example the transformation from session types to ESs.
Consider two participants A and B, with session types P = a!⊕ b!.a! and Q = a?.b? + b?.a?, respectively.
According to Definition 5.2, the session type of A is compliant with that of B, while the converse does not hold.
Below we construct the ESs associated to P and Q, and the one associated to the turn-based configuration
P ‖Q. To ease the reading, we decorate actions in P and Q with the events they will be associated with in
the ESs. The events of A have odd indexes, whereas those of B have even ones.

P = a!e1 .1e3 ⊕ b!e5 .a!e7 .1e9 and Q = a?e2 .b?e4 .1e6 + b?e8 .a?e10
.1e12

By Definition 5.19, we have JP KAρ = (EA ,#A ,`A , `A), where (up-to symmetry and saturation):

EA = {e1, e3, e5, e7, e9} #A = { e1#e5, e1#e7, e1#e9,
e3#e5, e3#e7, e3#e9

} `A= { ` e1, e1 ` e3,
` e5, e5 ` e7, {e5, e7} ` e9

}

and where `A(e1) = `A(e7) = A : a!, `A(e5) = A : b!, and the others are labelled with A : X.

Similarly, JP KBρ = (EB ,#B ,`B , `B), where:

EB = ({e2, e4, e6, e8, e10, e12} #B = {
e2#e8, e2#e10, e2#e12

e4#e8, e4#e10, e4#e12

e6#e8, e6#e10, e6#e12

} `B= { ` e2, e2 ` e4, {e2, e4} ` e6

` e8, e8 ` e10, {e8, e10} ` e12
}

and where `B(e2) = `B(e10) = B : a?, `B(e4) = `B(e8) = B : b?, and the other events are labelled B : X.

The event structure associated to P ‖Q is LP ‖QMA,B∅ = (EA ∪ EB , #A ∪#B , `, `A ∪ `B), where:

` =
` e1,` e5, e1 ` e2, e5 ` e8, {e1, e2} ` e3, {e5, e8} ` e7, {e5, e7, e8} ` e10,
{e5, e7, e8, e10} ` e9, {e5, e7, e8, e10} ` e12

The event-labelled transition system of LP ‖QM is depicted below:

e1

e2 e3

e5
e8 e7 e10

e9

e12

e12
e9

5.4. Compliance as agreement

We now exploit the denotational semantics of Section 5.3 to define a transformation from session
types P,Q to contracts C(P ‖Q). While we will follow the semantical approach, our technical develop-
ment only relies on the fact that Theorem 5.17 holds; since this is the case also for the syntactical approach
(Theorem 5.20), all the results below hold for both the encodings.

Hereafter, we assume that A is the participant running P , while B is running Q. The ES in C(P ‖Q) is
obtained through Definition 5.12, and the payoff of a participant A is positive in two cases: either a play is
infinite, or A has fired the action X.

Definition 5.22 (Contract of a session type). For all session types P,Q, we define the contract C(P ‖Q)
as (JP ‖QK,Φ), where:

ΦAσ =

{
1 if σ ∈ E∞ \E∗ or ∃e ∈ σ ∩EA : `(e) = A : X

−1 otherwise
for A ∈ {A,B}

We now prove our main result of this section: compliance in session types is equivalent to the winningness
of eager strategies in the associated contracts.
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Theorem 5.23. P a Q if and only if the eager strategy is winning for A in C(P ‖Q).

Proof. (⇒) Let C(P ‖Q) = (E,Φ). By contradiction, assume that P a Q, but the eager strategy Σ!
A is not

winning for A in E. Since Σ!
A is an innocent strategy (Lemma 4.5), by Definition 4.7 there exists a fair play

σ conforming to Σ!
A such that, ΦAσ < 1 and both A and B are innocent. By Theorem 5.17, the turn-based

semantics may perform `(σ), obtaining P ‖Q `(σ)−−→→. We have the following three cases:

• σ is an infinite trace. This case does not apply, because by Definition 5.22 A would have a positive
payoff.

• P ‖Q `(σ)−−→→ P ′ ‖Q′, and P ′ ‖Q′ is not stuck. This case does not apply since both participants are
innocent.

• P ‖Q `(σ)−−→→ P ′ ‖Q′, and P ′ ‖Q′ is stuck. Since P a Q, by Theorem 5.11 we have P ′ = 0. Then, there
exists an event e ∈ σ such that `(e) = A : X, and so ΦAσ = 1 — contradiction.

(⇐) Let E = JP ‖QK. Assume that the eager strategy Σ!
A is winning for A in E, and that P ‖Q ν−→→ P ′ ‖Q′ 6→ .

We now prove that P ′ = 0. By Theorem 5.17, there exists σ such that ∅ σ−→ σ 6→, with `(σ) = ν, hence both
A and B are innocent in σ. Since no event is enabled after σ, σ is fair and conform to the eager strategy Σ!

A

in E. Since everyone is innocent and the eager strategy is winning, it must be the case that ΦAσ = 1, and
hence there exists e ∈ σ such that `(e) = A : X. This allows us to conclude that P ′ = 0, from which we
conclude that P a Q. �

By the theorem above, it follows that compliance implies agreement, as stated in Corollary 5.24.

Corollary 5.24. If P a Q, then A agrees on C(P ‖Q).

Note that the converse implication does not hold, i.e. the fact that A agrees on C(P ‖Q) does not imply
that P a Q. For instance, for P = a!.c! ⊕ b! and Q = a? + b?, we have that P 6a Q, but A agrees on
C(P ‖Q). Indeed, choosing the branch b! leads to a winning strategy for A.

Moreover, the converse of Corollary 5.24 does not hold also in case we weaken the hypothesis (i.e. P a Q
or P ` Q) and strengthen the thesis (i.e. C(P ‖Q) admits an agreement). The following is a counterexample:

P = a!.e?⊕ b!.(c? + d?) Q = a? + b?.(c!⊕ d!.e?)

Indeed, P and Q are not compliant (in either direction), but A can win by choosing the b!-branch, while B
can win by choosing the c!-branch.

Example 5.25. Recall the session types and their associated ESs from Example 5.21. We can see that A
wins in all the fair plays which conform to the eager strategy Σ!

A:

Σ!
A(σ) =



{e1, e5} if σ = ∅
{e3} if e2 ∈ σ
{e7} if e8 ∈ σ
{e9} if e10 ∈ σ
∅ otherwise

Since Σ!
A is winning, then A agrees on C(P ‖Q). Then, by Theorem 5.23, P a Q. On the contrary, we

notice that B has no winning strategies: indeed, whenever A chooses to perform event e1, then B is obliged
to fire e2 to recover his innocence, and then he gets stuck (and non-successful) when A fires e3. Then,
by Theorem 5.23 it follows that Q 6a P .
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6. Protection

In contract-oriented interactions, participants advertise their contracts to a contract broker. The bro-
ker composes contracts which admit an agreement, and then establishes a session among the participants
involved in them [17]. In such scenario, the broker guarantees that — even in the presence of malicious
participants — no interaction driven by the contract will ever go wrong. At worst, if some participant does
not reach her objectives, then some other participant will be culpable of a contract infringement.

In the above workflow, it is crucial that contract brokers are honest, that is they never establish a session
in the absence of an agreement among all the participants. Recall the scenario of Example 3.5, where Alice
is willing to lend her airplane in exchange of Bob’s bike. In her contract, she could promise to lend the
airplane (unconditionally), and declare that her objective is to obtain the bike. A malicious contract broker
could construct an attack by establishing a session between Alice and Mallory, whose contract just says to
take the airplane and give nothing in exchange. Mallory is not culpable, because her contract declares no
obligations, and so Alice loses.

To overcome this issue, we study when a contract protects a participant from dishonest brokers. Formally,
a contract CA protects A if, whatever contract C is composed by the broker with CA , A has a way to either
win or tie in the composed contract. We start by formalising contract composition.

6.1. Contract composition

Given two contracts C and C′, we denote with C | C′ their composition. This is a partial operation: C

and C′ are composable only if they are not defining payoffs for the same participant. Also, the contracts
must agree on the labelling of events.

Definition 6.1 (Composition of contracts). Let E = (E,`,#, `), and let E′ = (E′,`′,#′, `′). Two
contracts C = (E,Φ) and C′ = (E′,Φ′) are composable whenever:

∀A ∈ PU. Φ(A) = ⊥ ∨ Φ′(A) = ⊥ (6)

∀e ∈ E ∩ E′. `(e) = `′(e) (7)

If C, C′ are composable, we define their composition C |C′ as (E t E′,Φ ∪ Φ′).

The following lemma states that two contracts which both assign obligations to A are not composable.

Lemma 6.2. If C = (E,Φ) and C′ = (E′,Φ′) are composable, then for all e, e′, X,X ′, we have:

X ` e ∈ E ∧ X ′ ` e′ ∈ E′ =⇒ π(e) 6= π(e′)

Proof. Let X ` e ∈ E and X ′ ` e′ ∈ E′. By contradiction, let us assume that π(e) = π(e′) = A.
By Definition 3.1 we have that ΦA 6= ⊥ and Φ′A 6= ⊥, which contradicts condition (6) in Definition 6.1. �

6.2. Definition of protection

Definition 6.3 (Protection). A contract CA protects participant A whenever, for all contracts C compos-
able with CA , A has a non-losing strategy in CA |C.

Note that if A agrees with C, then not necessarily C protects A. For instance, Mallory could join C with
her contract CM, and prevent Alice from borrowing Bob’s bike in C |CM. A sufficient (yet hardly realistic)
criterion for protection would be to declare nonnegative payoffs for all σ. Less trivially, the following example
shows a contract with possible negative payoffs which still offers protection.

Example 6.4. Recall the contract C in Example 3.5. This can be obtained by composing Alice’s contract
CA and Bob’s contract CB , defined in the natural way. The contract CB does not protect Bob. To prove
that, consider e.g. the attacker contract C′ = (E′,ΦC′), where we define E′ with no enablings, and ΦC′ is not
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relevant except for being undefined on B (otherwise C′ and CB would not be composable). Consider then the
contract C′ |CB . There are only two possible strategies for B:

ΣB = λσ. ∅ Σ′B = λσ.

{
{b} if b 6∈ σ
∅ otherwise

The strategy ΣB is losing for B, because B is not innocent under ΣB . The strategy Σ′B is losing as well,
because in the play σ = 〈b〉 (fair and conform to ΣB), no participant is culpable (according to C′ |CB) and
ΦBσ = −1. Hence by Definition 6.3, B is not protected by CB .

Instead, the contract CA protects Alice. To show that, consider a contract C composable with CA . Let
ΣA be the following strategy for A:

ΣA = λσ.

{
{a} if b ∈ σ and a 6∈ σ
∅ otherwise

Let σ be a play in C | CA fair and conform to ΣA . There are two cases:

• b ∈ σ. Since σ is fair for ΣA , then either a ∈ σ, or there exists some e ∈ σ such that e#a. In both
cases, A is innocent in σ. Furthermore, ΦAσ = 1.

• b 6∈ σ. By definition of CA, and since C is not specifying any further obligations for A (otherwise it
would not be composable with CA), then A is not culpable in σ. Also, since b 6∈ σ and a 6∈ σ, then
ΦAσ = 0.

In both cases, ΣA is non-losing for A. Therefore, CA protects A. �

6.3. Protection for Offer-Request payoffs

We now study protection in contracts with Offer-Request payoffs. A necessary condition to being pro-
tected is to specify non-empty offers sets. In fact if A were specifing an empty set of offers, she would lose in
an empty play. Intuitively, A is saying that she wants something by doing nothing in exchange. This means
that when nothing is done, A expects her requests to be satisfied. So even in the case of an empty set of
obligations, A is protected only if she specifies non-empty offer sets.

Example 6.5. Assume that CA has an empty offer associated with a non-empty request:

O0
A = ∅ R0

A 6= ∅

In case the contract of B prescribes no obligations for B, then B is innocent and A loses in all plays where
no events are performed. Hence CA does not protect A, as correctly predicted by Lemma 6.6 below. �

Lemma 6.6. If the contract CA = (E,Φ) with O-R payoffs for A protects A, then ∀h. OhA 6= ∅

Proof. By Definition 6.3, for every contract C composable with CA, A has a non-losing strategy Σ in CA | C.
Let C have no enabling for any of the events in Ri for all i, and let σ be a fair play of CA | C conform to Σ.
Since C has no enablings for any Ri, there exist no h such that RhA ⊆ σ. According to Definition 3.7, the
only way for A to lose is to have OiA ⊆ σ and RiA 6⊆ σ for some i. So, since A does not lose in σ, then for
all i, OiA 6⊆ σ, and we conclude that OiA 6= ∅ for all i. �

A sufficient condition for A to be protected is given in Theorem 6.7: A can promise to do what she
offers in the O-R contract, only after the other participants have fulfilled her requests. More precisely, A is
protected if, whenever she enables an offer OiA, the corresponding request RiA has already been satisfied.

Theorem 6.7. A contract CA = (E,Φ) with O-R payoffs for A protects A if

∀i. ∃e ∈ OiA . (∀Y. Y ` e =⇒ RiA ⊆ Y ) (8)
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Proof. Let Φ be an O-R payoff for A such that (8) holds. Let C be a contract composable with CA . We will
prove that the eager strategy Σ!

A is non-losing for A in CA |C. Let σ be a fair play of CA |C (of course, σ

conforms to Σ!
A). By contradiction, assume that A loses in σ, i.e. by Definition 4.6 and by Definition 3.7:

∃i. OiA ⊆ σ ∧ RiA 6⊆ σ (9)

For the index i given by (9), let e ∈ OiA be the event whose existence is given by (8). Since OiA ⊆ σ, then it
must be σ ` e. By (8) it follows that RiA ⊆ σ — contradicting (9). �

Example 6.8. Condition (8) in Theorem 6.7 is not necessary for protection. Indeed, in a contract for A
with no obligations and non-empty offers, A would be protected, since she could do nothing and non-lose.
Also, if A offers an unreachable event, A is protected since she will never obliged to do what she offers. �

6.4. Agreement and protection cannot coexist

A remarkable feature of finite circular payoffs is that, in each play where all participants win, at some
point there exists a participant A which has performed all the offers in OiA before having obtained all the
requests in RiA. Intuitively, the participant A which makes this “first step” is not protected. The proof
technique exploited by Lemma 6.9 is somehow similar to that used in [18] to prove that fair exchange is
impossible without a trusted third party.

Lemma 6.9. Let C be a contract of participants P, with finite circular O-R payoffs of A1, . . . ,An ∈ P. If σ
is a winning play for P, then there exists some finite prefix η of σ and some k ∈ 1..n such that ΦAkη < 0.

Proof. Since σ is a winning play for P, then by Definition 4.6 no participant is culpable in σ, and so it
must be ΦAσ > 0 for all A ∈ P. By Definition 3.7, σ contains at least a request for all participants in
P′ = {A1, . . . ,An}. Since each request set is finite, then there exists a finite prefix of σ which contains (at
least) a request of each participant in P′. Let η′ be the shortest of such prefixes. Since request sets are
non-empty, it must be η′ = η e, for some η and e.

By the choice of η′, there exists some participant B = Ak and some request R
iB
B such that:

e ∈ RiBB ⊆ η ∪ {e} (10)

∀j : RjB 6⊆ η (11)

otherwise η′ is not the shortest prefix containing a request of each participant. Again, by the choice of η′

for all A ∈ P′ \ {B} we can take iA such that RiAA ⊆ η ∪ {e}. Since Φ is circular, by (1) in Definition 3.8

there exists a function J : P′ → N such that η ∪ {e} ⊇
⋃

A∈P′ R
iA
A ⊇

⋃
A∈P′ O

JA
A . Therefore, OJB

B ⊆ η ∪ {e}.
By Definition 3.7 and by (10), we have that e 6∈ EB, and this in turn implies that e 6∈ OJB

B . From this and

OJB
B ⊆ η ∪ {e} it follows that OJB

B ⊆ η. Since by (11) we have RJB
B 6⊆ η, then by Definition 3.7 we conclude

that ΦBη < 0. �

Lemma 6.9 does not hold if the payoff is non-circular, as illustrated by the following example.

Example 6.10. Consider the following (non-circular) O-R payoff for A, B, C:

O1
A = {a, a′, a′′} O1

B = {b} O1
C = {c}

R1
A = {b, c} R1

B = {a, a′} R1
C = {b}

In a play σ = 〈a a′ b c〉 every participant is winning, but no one is losing any prefix of σ. In particular:

• in σ2 = 〈a a′〉 (and its prefixes) no participant has done all her offers.

• in σ3 = 〈a a′ b〉, A and C have not done all her offers, and B has obtained his requests. �
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The main result of this section follows. Assume that in a contract there is a set participants with finite
circular O-R payoffs. The theorem states that if the contract admits an agreement, then some of these
participants is not protected.

Theorem 6.11. Let C̃ be a contract, let Ci be a contract of Ai, for all i ∈ 1..n, and let C = C1 | · · · |Cn | C̃
have finite circular O-R payoffs for A1, . . . ,An. Then, at most one of the following statements is true:

(a) C admits an agreement;

(b) for all i ∈ 1..n, Ci protects Ai.

Proof. Assume that the statement (a) is true, i.e. all the participants agree on C = C1 | · · · |Cn | C̃. By Def-
inition 4.8, each Ai ∈ {A1, . . . ,An} has a winning strategy Σi in C. Let σ be a fair play of C conforming
to all the Σi. Since all the participants win in σ, by Lemma 6.9 there exists some k ∈ 1..n and some finite
prefix η of σ such that ΦAkη < 0. By Definition 3.7, this amounts to say that there exists some h such that
Ohk ⊆ η and Rhk 6⊆ η.

We now prove that Ck does not protect Ak. To do that, we construct a contract C′ = (E′,Φ′) such that
Ak does not have a non-losing strategy in Ck |C′. The function Φ′ in C′ is almost immaterial: we just require
that it makes C′ composable with Ck. We define the ES E′ so that it comprises some event ẽ not occurring
in C, and such that its enablings and conflicts are the following:

{ ` e | e ∈ η \EAk
} ∪ { ` ẽ}

{e#ẽ | e ∈ EAk
\ η}

Intuitively, C′ enables all the events in η of each participant different from Ak, and also the event ẽ, which is
in conflict with all the events of Ak, except for the events in η. The goal of C′ is to force Ak to perform the
events in η, which results in Ohk being done before Rhk is reached. To implement this goal, the participants
of C′ must also be innocent in η.

By contradiction, assume that Σ is a non-losing strategy for Ak in Ck |C′. Assume that all the participants
in C′ adopt the eager strategy, i.e. all the enabled events are in their strategy. Then, there exists a fair play
ν = 〈e0e1 · · ·〉 of Ck |C′ which (a) conforms to Σ and the eager strategies of C′, and where (b) the first event
in ν is ẽ. Consequently, (c) all the participants are innocent in ν (because the eager strategy is innocent,
by Lemma 4.5). By construction of C′ and by (b), we have ν ⊆ η ∪ {ẽ}; hence, ν is a finite play 〈e0 · · · em〉.
Further, whenever νi

e−→ (for i > 0), then e ∈ η. By (c) and by Definition 4.3:

∀i > 0. ∀e.
(
νi

e−→ =⇒ ∃j ≥ i. ej#e ∨ ej = e
)

(12)

Since νi
e−→ implies e ∈ η, the case ej#e in (12) is not possible. We can then rewrite equation (12) as follows:

∀i > 0. ∀e.
(
νi

e−→ =⇒ ∃j ≥ i. ej = e
)

(13)

We now prove that η ⊆ ν. Let η = 〈e′1 · · · e′m′〉. By induction on i, we prove that ηi ⊆ ν. The base case
i = 0 is trivial. For the inductive case, by the induction hypothesis we have that ηi ⊆ ν, so it remains to
prove that e′i ∈ ν. We have the following two cases:

1. e′i ∈ EAk
. By definition of play, we have that ηi ` e′i in Ck. Since ηi ⊆ ν and CF (ν), then by saturation

we also have ν ` e′i. Therefore, there exists some 0 < j ≤ m such that νj
e′i−→. If j = 0, then ` e′i, and

so also ν1
e′i−→. By (13), we conclude e′i ∈ ν. If j > 0, we exploit directly (13) to infer e′i ∈ ν.

2. e′i 6∈ EAk
. By definition of C′, we have that ` e′i, and so ν1

e′i−→. By (13), we conclude that e′i ∈ ν.

Summing up, there exists a fair play ν of Ck |C′ which conforms to Σ, and where Ohk ⊆ η ⊆ ν. Furthermore,
Rhk 6⊆ ν, because the ES E′ only enables the events in η (plus the event ẽ 6∈ Rhk), while η does not contain
all the events in Rhk . By Definition 3.7, WAkν = ΦAkν < 0, i.e. Ak loses in ν — contradiction. �
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Example 6.12. Consider the contract CA with enabling b ` a and the finite circular O-R payoff O0
A = {a},

R0
A = {b}, and the contract CB with enabling a ` b and payoff O0

B = {b}, R0
B = {a}.

Every participant is protected by her own contract, but the composed contract CA |CB does not admit an
agreement, as correctly predicted by Theorem 6.11. �

Agreement and protection can coexist in contracts with infinite circular O-R payoffs, as shown by the
following example. Intuitively, when an infinite offer OA has to match an infinite request RB, participants
A and B may take turns in doing event in OA ∪ RB. This strategy is winning for both participants (hence
they have an agreement), and protection follows because no participant completes her offer before receiving
the corresponding request.

Example 6.13. Let CA = (EA,ΦA) and CB = (EB,ΦB) be contracts with circular O-R payoffs (with infinite
offers/requests) defined as follows:

OA = {ei | i ∈ N} = RB RA = {ei | i ∈ N} = OB

and let P = {A,B}, π(ei) = A, π(ei) = B for all i ∈ N. Let the ES EA and EB be defined by the following
enablings (and no conflicts):

EA : {` e0} ∪ {ei ` ei+1 | i ≥ 0} EB : {ei ` ei | i ≥ 0}

The contract C = CA |CB admits an agreement. We prove separately that A and B agree on C. Let Σ!
A be the

eager strategy for A. Let σ be a fair play of C conform to Σ!
A . We prove that A wins in σ. By Lemma 4.5,

the strategy Σ!
A makes A innocent in σ. There are two subcases. If B is not innocent in σ, then A wins.

Otherwise, the play σ must be infinite, i.e. σ = {ei}i∈N ∪ {ei}i∈N. Therefore, RA ⊆ σ, and so A wins. To
prove that B has a winning strategy in C we proceed similarly, by choosing the eager strategy Σ!

B for B.

We now show that CA protects A. Let C′ be composable with CA. The eager strategy Σ!
A is non-losing

for A. Indeed, in every fair play σ conform to Σ!
A , if there exists ei ∈ RA 6⊆ σ then ei+1 ∈ OA 6∈ σ, and so

ΦAσ ≥ 0. To prove that CB protects B, we proceed similarly, by choosing the eager strategy Σ!
B for B. �

7. Related work

Several papers address the problem of defining compliance over (various kinds of) behavioural types.
This has given rise to many different notions of compliance: some of them, like the one in Definition 5.2,
are shaped to guarantee the absence of deadlock [15, 1], while some others address different properties.

The notion of compliance proposed in [19] is based on should-testing : it requires that, from any reachable
state, it is always possible to reach a success state. Note that this property is not guaranteed by progress-
based notions. For instance, consider the session types:

P = rec X. (a?.X + b?.1) Q = rec Y. a!.Y

Here, Definition 5.2 states that P is compliant with Q, because P | Q never deadlocks; however, P is not
compliant with Q according to [19], because P can never reach the success state.

The notion of I/O compliance introduced in [20] addresses another issue, i.e. avoiding “vacuous” progress
where P exposes some capabilities, Q cannot interact, and the composition P | Q merely advances via
internal transitions (without synchronisations). For instance, let:

P = (rec X. a!.X)[] Q = b?[]

where we use [] to denote an asynchronous semantics (via unbounded buffers). The process P | Q never
deadlocks, because P continues forever adding messages to the buffer. Thus, P would be compliant with Q
according to progress-based compliance, while P is not I/O-compliant with Q. Whereas the overall frame-
work of [20] abstracts from the process syntax, being defined over generic LTSs, in the special case of LTSs
obtained through session types, synchronous I/O compliance is equivalent to progress-based compliance.

27



Our general encoding of LTSs into event structures (Definition 5.12) suggests that also other notions of
compliance for session types (e.g. the above-mentioned ones) can be related to agreement in game-based
contracts. Doing this would require to adjust the payoff function (the one in Definition 5.22 is specific
for progress-based compliance), and by suitably restricting the class of admissible winning strategies. This
approach to relate compliance to agreement is limited to those cases where compliance is formalised as a
semantic property; it does not apply e.g. when compliance is defined as syntactic duality [21].

When compliance relates two behavioural types, there is a distinction between the asymmetric version,
where only one of the two parties (the “client”) is required to reach success, as in Definition 5.2, and the
symmetric one, where both parties must succeed. A relation between these two variants is established in [22],
which shows that asymmetric progress-based compliance can be defined in terms of the symmetric one.

In the weak compliance relation defined in [6], finite-state orchestrators can resolve external choices or
rearrange messages in order to guarantee progress. Differently to strong (progress-based) compliance, weak
compliance does not seem to be related to agreement. Consider e.g. the session types P = a! ⊕ b! and
Q = b?. While, by encoding these session types to contracts, we obtain an agreement through the strategy
which tells A to fire b!, P is not weakly compliant with Q because no orchestrator can prevent A from
choosing the branch a!. However, P ′ = a!+ b! (which is a legitimate term in [6]) is weakly compliant with
Q, because the orchestrator can resolve the external non-determinism by choosing the branch b!. One way
to formalise weak compliance in game-based contracts would be modelling the orchestrator as a third player
of the game (who can use any strategy to favour the interaction between A and B). This would also require
adapting the construction of the contracts to take into account for the moves of the orchestrator.

Other notions of compliance address calculi featuring e.g. asynchronous communication via unbounded
buffers [23, 20], and multi-party interactions [24, 25, 26]. Since our contracts are inherently multi-party,
they induce a natural notion of compliance for multi-party session types: given P1, . . . , Pn, encode the LTS
of P1 | · · · | Pn into an ES via Definition 5.12, and then say that P1, . . . , Pn are compliant whenever their
eager strategies are winning, along the lines of Theorem 5.23. A relevant question would be that of finding
an equivalent definition of multi-party compliance without passing through the encoding into ES.

Since agreement and protection are mutually exclusive in contracts based on ES (Theorem 6.11), in [27]
a conservative extension of ES featuring circular causality (CES) is proposed to reconcile the two notions.
There, circular dependencies are modelled with a new enabling relation 
. The contract a 
 b (intuitively,
“I will do a if you promise to do b”) reaches an agreement with the dual contract b 
 a, while protecting
the participant who offers it. While in standard ES an event a which causally depends on b can only be
performed after b, in CES the enabling b 
 a allows a to happen before b, under the guarantee that b will
be eventually performed. Using this refined model for contracts, a technique is proposed in [12] such that,
starting from the participants O-R payoffs, constructs a set of contracts which protect their participants,
and still admits an agreement.

In contract-oriented computing [17], interactions between services are driven by contracts. Participants
advertise their contracts to some contract brokers, which are the contract-oriented analogous of service repos-
itories in the Web Service paradigm. Participants wait until the contract broker finds an agreement among
the contracts in its hands, and then they can start interacting (via a multi-party session), by performing
the actions prescribed by their contracts. Differently from most of the approaches based on behavioural
types [8, 28], a contract-oriented service is not supposed to be honest, in that it may not honour its con-
tracts. The idea is that, if a service is not honest, then an external judge may inspect its contracts and
the status of the session. In the case a violation is found, the judge will eventually provide the prescribed
compensations/punishments. Some formal models for contract-oriented computing have been proposed, us-
ing as contracts logical formulae [14], process algebras [17], binary [29], and multi-party session types [30].
Since honesty is undecidable [29], some papers have addressed the problem of devising verification tech-
niques to safely overapproximate it [31, 32]. In the setting of contract-oriented computing, the notion of
protection studied in this paper addresses the issue of providing participants with non-losing strategies when
the contract broker establishes sessions in the absence of an agreement.

The use of games to give semantics to programs and proofs is not new [33]. In particular, concurrent
games were first used in [13] in order to define a model of MALL (multiplicative additive linear logic) enjoying
full completeness. This property requires that not only formulae, but also proofs have an interpretation (a
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morphism) in the model, and it guarantees that each morphism corresponds to an actual proof in the logic.
Compared with sequential games, where a single player can move in a given state of the play, in concurrent
games [13] both players can be in charge of doing a move in a given state. This also happens in our games,
where, after a play σ, any player with an enabled event can perform it. However, our semantics of games is
interleaving (i.e. a play is a plain sequence of events), while the one in [13] is true-concurrent. There is also
a difference in the way strategies are formalised: in our work, strategies map game states (i.e. plays) to sets
of events, while in [13] they map game states to game states. The strategies studied in [34] deal with games
formalized as polarized event structures: for a game A, they are described in terms of a mapping between
another event structure S and A. Such mapping, roughly, constrains the moves of A for both the Player
and the Opponent. To avoid limiting the Opponent in an unreasonable way, further requirements are put
on the strategy, namely receptivity and innocence (a distinct notion from ours). Our strategies are simpler,
albeit less general: in our work, a strategy can be assigned to a specific participant, and mandates only the
events performed by such participant; further, given a trace comprising the previously performed events,
the strategy simply points out which moves the participant intends to do next. The rich mathematical
structure of game states and of strategies is exploited e.g. in [13] to construct morphisms from strategies, as
an intermediate step to prove full completeness. We do not need such a complex construction in our theory,
as our objective is not to give semantics to programs or proofs, but just to use games to model interactions
among mutually distrusted participants.

8. Conclusions

We have proposed a formal framework to represent and reason about contracts. In our setting, a
contract is an event structure, used to model participants’ obligations, and a payoff function, to model
participants’ objectives. A crucial notion is that of agreement, a property that guarantees safe interactions
among participants. We have studied the meaning of agreement in the context of binary session types. In
particular, we have shown that two session types are compliant if and only if their encodings to contracts have
an agreement via an eager strategy (Theorem 5.23). We have then focussed on the property of protection.
Differently from agreement, protection does not always guarantees safe interactions, but at least it allows a
participant to obtain a non-negative payoff in arbitrary, possibly malicious, contexts. A main result is that,
in a certain class of contracts, it is not possible to obtain at the same time agreement and protection for all
participants (Theorem 6.11).

Our correspondence result about agreement in contracts and compliance in session types involves eager
strategies, only. A still open question is whether non-eager strategies are meaningful to define weaker notions
of compliance for session types. This mostly depends on the interpretation of the internal choice operator ⊕.
The usual meaning of an internal choice a!⊕b! of a participant A is that A is willing to opt between the two
choices, and both of them must be available as external choices of the other participant B. Just to give an
example, assume that B is a bartender which only accepts payments in cash, while A is a customer willing
to pay either by cash or by credit card. Under the progress-based notion of compliance (Definition 5.2), the
two session types:

PA = payCash!⊕ payCC! PB = payCash?

are not compliant, and so (by Theorem 5.23) the eager strategy is not winning in C(PA ‖PB). A different
interpretation of the internal choice of A would be the following: A is willing to choose between payCash!

and payCC! if both options are available, but she will also accept to pay cash (resp. to pay by credit card) if
this is the only option available. This interpretation is coherent with the fact that the contract C(PA ‖PB)
admits an agreement, via a non-eager strategy which requires A to renounce to the payCC! alternative.

Another question is whether the notion of protection is applicable to session types. The idea is that
in some byzantine scenarios one participant may be forced to interact with the others in the absence of
compliance. In this scenarios, the participant cannot aim at reaching success: instead, protection should
provide her with a way to limit the damages. For instance, consider the session type:

PA = pay!.receive?⊕ abort!
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If we make PA interact with the session type Q = pay? (with which PA is not compliant), then A should
avoid firing pay!, because doing so will never lead to the expected receive?. In this example, a strategy
which protects A would be the one which only enables abort!. Defining protection for session types can be
done, e.g. by assigning a payoff to each trace of a session type (composed with any context). In the above
example, the payoff is zero for PA and after abort!, it is positive after firing receive?, while it is negative
after pay! but before receive?. By encoding of session types into contracts (Definition 5.22), all the results
about contracts and protection can be exported also for session types. In particular, Theorem 6.11 will
have as a consequence that compliance and protection are mutually exclusive when participants have finite
circular O-R payoffs.

Our notion of contract slightly departs from the commonly accepted meaning of the word “contract”,
namely some entity which has been concretised after a process of “agreement”, and which has after then
become “legally binding”. While we adhere to the principle that contracts are “legally binding”, we also
call contracts the entities used to reach an agreement. For instance, in our view a contract may be the
statement made by a service through its Service Level Agreement — which indeed is a concrete entity even
before any agreement is established.

To further motivate this choice, consider the terminology used in the domain of process algebras. There,
both the atomic entities and their compositions are modelled as processes. For instance, both

P = ā〈v〉. b(x) (an output of v on channel a followed by an input on b)

Q = a(y). b̄〈y + 1〉 (an input on a followed by an output on b)

are processes, as well as their composition P | Q. Now, assume that somehow there is an agreement between
contracts P and Q. Then, P | Q can be interpreted as a contract according to the common meaning. If we
were going to accept the principle that contracts exist only after they have been agreed upon, then a process
P | Q′, where e.g. Q′ = a(x). c̄〈x+ 1〉 (the output is on the “wrong” channel) would not even exist as a
contract. In our theory, we can reason about contracts before, or even in the absence of, an agreement. This
allows us to understand what happens when a service advertises its contract in an environment populated
by malicious adversaries.
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A. Supplementary material and proofs

A.1. Proof of Lemma 5.10

Consider the relation R as defined at page 17:

R = {(P | Q, P ‖Q) | P,Q session types}∪ RA ∪ RB

RA = {(a!.P | Q, [a!]P ‖Q), (a!.P | b!.Q′, [a!]P ‖ b!.Q′ ⊕Q′′) | P,Q,Q′, Q′′ session types}
RB = {(P | a!.Q, P ‖ [a!]Q), (a!.P ′ | b!.Q, a!.P ′ ⊕ P ′′ ‖ [b!]Q) | P, P ′, P ′′, Q session types}

We will prove that R is a turn-bisimulation for s1 = P | Q and s2 = P ‖Q by showing, first, that R is a
turn-simulation for s1 and s2 in Part A, and then, that R−1 is a turn-simulation for s2 and s1 in Part B.

Within each part, we proceed by cases on the form of s1 and s2; and for each case, we show that items
(a), (b),(c) of Definition 5.8 hold. All the symmetric cases are omitted.

Part A:
Case 1: Let s1 = P | Q and s2 = P ‖Q, for P,Q session types.

(a) 1. P | Q −→ a!.P ′ | Q if P −→ a!.P ′, which implies P = a!.P ′⊕P ′′. Hence, since s2 = P ‖Q we have

a!.P ′ ⊕ P ′′ ‖Q A : a!−−−→→ [a!]P ′ ‖Q. By definition of R, we have that (a!.P ′ | Q, [a!]P ′ ‖Q) ∈R.

2. P | Q −→ P ′ | Q′ if P
a!−→ P ′ and Q

a−→ Q′, which implies P = a!.P and Q = a.Q′ + Q′′. Hence,

since s2 = P ‖Q we have a!.P ‖Q A : a!−−−→→ [a!]P ′ ‖ a.Q′ + Q′′
B : a−−→→ P ′ ‖Q′. Since P ′, Q′ are

session types, by definition of R, we have that (P ′ | Q′, P ′ ‖Q′) ∈R.

3. P | Q −→ P ′ | Q, if P −→ 0, which implies P = 1. Hence, since s2 = 1 ‖Q, we have 1 ‖Q A :X−−−→→
0 ‖Q. By definition of R, we have that (0 | Q, 0 ‖Q) ∈R.

(b) 1. P ‖Q A : a!−−−→→ [a!]P ′ ‖Q which implies either (i) P = a!.P ′ ⊕ P ′′ or (ii) P = a!.P ′ with ν =⇒ g.
In the first case (i), if P = a!.P ′ ⊕ P ′′ we have P | Q −→ a!.P ′ | Q. Hence, we proved that also
P | Q can move. In the second case (ii), if P = a!.P ′, for P | Q to move, we must consider Q: if
Q = a.Q′ + Q′′ then P | Q −→ P ′ | Q′. If Q = 1 then P | Q → P | 0. Otherwise, P | Q is stuck,
but so is a!.P ′|Q and by definition of R, we have (a!.P ′|Q, [a!]P ′|Q) ∈R. Hence (b) is proved.

2. P ‖Q A : a−−→→. This case would require P = [a!]P ′ but it does not apply here since we are under
the hypothesis of case 1 and both P and Q are session types.

3. P ‖Q A :X−−−→→ 0 ‖Q if P = 1. Hence, 1 | Q −→ 0 | Q.

(c) To prove (c), let us assume s2 ∈ S2, which implies s2 = 0 ‖0. Then by hypothesis of case 1 we have
s1 = 0 | 0 ∈ S1, which satisfies s1 ∈ S1.

Case 2: Let s1 = a!.P ′ | Q and s2 = [a!]P ′ ‖Q, for P ′, Q session types.

(a) 1. a!.P ′ | Q −→ a!.P ′ | b!.Q′ if Q → b!.Q′, which implies Q = b!.Q′ + Q′′. Hence, s2 =
[a!]P ′ ‖ b!.Q′ +Q′′ is stuck, but already in relation R with a!.P ′ | b!.Q′.

2. a!.P ′ | Q −→ P ′ | Q′ if Q = a.Q′ +Q′′. Hence, [a!]P ′ ‖ a.Q′ +Q′′
B : a−−→→ P ′ ‖Q′. By definition of

R, we have that (P ′ | Q′, P ′ ‖Q′) ∈R.

3. a!.P ′ | Q −→ a!.P ′ | Q′ if Q = 1. Hence, [a!]P ′ ‖Q B :X−−−→→ [a!]P ′ ‖0. By definition of R, we have
that (a!.P ′ | 0, [a!]P ′ ‖0) ∈R.

(b) 1. [a!]P ′ ‖Q B : a!−−−→→ . Not Possible.

2. [a!]P ′ ‖Q B : a−−→→ P ′ ‖Q′ if Q = a.Q′ +Q′′. Hence, a!.P ′ | a.Q′ +Q′′ → P ′ | Q′.

3. [a!]P ′ ‖Q B :X−−−→→ [a!]P ′ ‖0 if Q = 1. Hence a!.P ′ | 1 → a!.P ′ | X.
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(c) To prove (c), let us assume s2 ∈ S2, which implies s2 = 0 | 0. By hypothesis of case 2 this is not
possible.

Case 3: Let s1 = a!.P ′ | b!.Q′ and s2 = [a!]P ′ ‖ b!.Q′ +Q′′, for P ′, Q′, Q′′ session types.

(a) 1. a!.P ′ | Q −→ P ′ | Q′ if Q = a.Q′ +Q′′. Not possible.

2. a!.P ′ | Q −→ a!.P ′ | Q′ if Q = 1. Not possible.

3. a!.P ′ | Q −→ a!.P ′ | b!.Q′ if Q→ b!.Q′, which implies Q = b!.Q′ +Q′′. Not possible.

(b) 1. [a!]P ′ ‖ b!.Q′+Q′′ B : a!−−−→→ [a!]P ′ ‖ [b!].Q′. Then we have s1 stuck, but also (s1, [a!]P ′ ‖ [b!].Q′) ∈R
and [a!]P ′ ‖ [b!].Q′ 6→.

2. [a!]P ′ ‖ b!.Q′ +Q′′
X : a−−−→→ Not possible for any X ∈ {A,B}.

3. [a!]P ′ ‖ b!.Q′ +Q′′
X :X−−−→→ Not possible for any X ∈ {A,B}.

(c) To prove (c), let us assume s2 ∈ S2, which implies s2 = 0 | 0. By hypothesis of case 3, this is not
possible.

Part B:
Case 1: Let s1 = P | Q and s2 = P ‖Q, for P,Q session types.

(a) 1. P ‖Q A : a!−−−→→ [a!]P ′ ‖Q which implies either (i) P = a!.P ′ ⊕ P ′′ or (ii) P = a!.P ′. In the first
case (i), we have P | Q −→ a!.P ′ | Q and by definition of R we have (a!.P ′ | Q, [a!]P ′ ‖Q) ∈R.
In the second case (ii), a!.P ′ | Q is already in relation R with [a!]P ′ ‖Q.

2. P ‖Q A : a−−→→. This case would require Q = [a!]Q′ but it does not apply here since we are under
the hypothesis of case 1 and both P and Q are session types.

3. P ‖Q A :X−−−→→ 0 ‖Q if Q = 1. Hence, P | 1 −→ P | 0 and by definition of R, (P | 0, P ‖0) ∈R.

(b) 1. P | Q −→ P ′ | Q if P −→ a!.P ′, which implies P = a!.P ′⊕P ′′. Hence, we have a!.P ′⊕P ′′ ‖Q A : a!−−−→
→ [a!]P ′ ‖Q. So, s2 moves.

2. P | Q −→ P ′ | Q′ if P
a!−→ P ′ and Q

a−→ Q′, which implies P = a!.P ′ and Q = a.Q′ + Q′′. Hence,

we have a!.P ′ ‖ a.Q′ +Q′′
A : a!−−−→→. So, s2 moves.

3. P | Q −→ P ′ | Q, if P −→ 0, which implies P = 1. Hence, we have 1 ‖Q A :X−−−→→ 0 ‖Q. So, s2 moves.

(c) To prove (c), let us assume s1 ∈ S1, which implies s1 = 0 | 0. Then by hypothesis of case 1 we have
s2 = 0 ‖0 ∈ S2.

Case 2: Let s1 = a!.P ′ | Q and s2 = [a!]P ′ ‖Q, for P ′, Q session types.

(a) 1. [a!]P ′ ‖Q B : a!−−−→→ . Not Possible.

2. [a!]P ′ ‖Q B : a−−→→ P ′ ‖Q′ if Q = a.Q′ +Q′′. Hence, we have a!.P | Q→ P ′ | Q′ and by definition
of R, we have (P ′ | Q′, P ′ ‖Q′) ∈R.

3. [a!]P ′ ‖Q B :X−−−→→ [a!]P ′ ‖0 if Q = 1. Hence a!.P ′ | 1 → a!.P ′ | X and by definition of R, we
have (P ′ | X, P ′ ‖X) ∈R.

(b) 1. a!.P ′ | Q −→ a!.P ′ | b!.Q′ if Q = b!.Q′ +Q′′. Hence, [a!]P ′ ‖Q 6−→→ but a!.P ′ | b!.Q′ R [a!]P ′ |
b!.Q′ +Q′′ and a!.P ′ | b!.Q′ 6→ .

2. a!.P ′ | Q −→ P ′ | Q′ if Q = a.Q′ +Q′′. Hence, [a!]P ′ ‖Q B : a−−→→ P ′ ‖Q′.

3. a!.P ′ | Q −→ a!.P ′ | 0 if Q = 1. Hence, [a!]P ′ ‖Q B :X−−−→→ [a!]P ′ ‖0.
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(c) To prove (c),let us assume s2 ∈ S2, which implies s2 = 0 | 0. By hypothesis of case 2, this is not
possible.

Case 3: Let s1 = a!.P ′ | b!.Q′ and s2 = [a!]P ′ ‖ b!.Q′ +Q′′, for P ′, Q′, Q′′ session types.

(a) 1. [a!]P ′ ‖ b!.Q′ +Q′′
B : b!−−−→→ [a!]P ′ ‖ [b!]Q′. Hence we have (s1, [a!]P ′ ‖ [b!]Q′) ∈R.

2. [a!]P ′ ‖ b!.Q′ +Q′′
X : c−−−→→. Not possible for any X and c.

3. [a!]P ′ ‖ b!.Q′ +Q′′
X :X−−−→→. Not possible for any X.

(b) To prove (b) for case 3, we must check all the possible moves of a!.P ′ | b!.Q′ →, which is stuck.

(c) To prove (c), let us assume s1 ∈ S1, which implies s1 = 0 | 0. By hypothesis of case 3, this is not
possible. �

A.2. Labelled Transition Systems over event structures

In this section we introduce an alternative LTS for event structures, which is based on the notion of
remainder (Definition A.1). This will be needed later on in the proof of Theorem 5.20.

Given an event e ∈ E and an ES E = (E,#,`, `), we introduce the notion of remainder of E and e.
This is another ES, denoted by E[e], where the event e is considered as occurred. The intuition is that the
remainder E[e] is an event structure whose configurations C are such that C ∪ {e} is a configuration of E.

Definition A.1 (Remainder of an ES). For all ESs E = (E,#,`, `) and for all e ∈ E, we define the
ES E[e] as (E′,#′,`′, `′), where:

E′ = E \ ({e} ∪ {e′ | e#e′})
#′ = # ∩ (E′ × E′)
`′ = {(X \ {e}, e′) | X ` e′ ∧ X ⊆ E′ ∪ {e} ∧ e′ ∈ E′}
`′ = `|E′

Further, for all σ = 〈e1 · · · en〉, we define E[σ] as E[e1] · · · [en].

The events of the remainder of E and e are those of E without e and all the events that are in conflict with e.
According to the intuition, the enablings of E[e] are obtained by the enablings X ` e′ of E with e ∈ X: as
the configuration C of E[e] must be such that C ∪ {e} is a configuration of E, we have to be sure that only
events that depend on e in E are enabled in E[e].

By Definition A.1, it immediately follows that E[e] = E whenever e 6∈ E. This observation leads to the
fact that we can calculate E[e] without requiring that e can be actually fired in E, even when e ∈ E.

The notion of remainder naturally induces a Labelled Transition System (LTS) over event structures,
representing their sequential computations. The states of this LTS are event structures, the labels are events,
and the transition relation contains E

e−→ E′ whenever E′ = E[e] for some event e immediately enabled in E.
We will show in Lemma A.5 below that this LTS is equivalent to the one over configurations (Definition 2.9).

Definition A.2 (LTS over ES). We define the LTS (ES,E,→) with the following transition relation:

E
e−→ E[e] if ` e ∈ E

The following lemma establishes a confluence result, namely: given a set of fired events, the order in
which we pick them to build the remainder is irrelevant.

Lemma A.3. Let E = (E,#,`, `), and let a, b ∈ E be such that ¬(a#b). Then, E[a][b] = E[b][a].
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Proof. The case a = b is trivial. Let a 6= b. According to Definition A.1, we have E[a] = (E′,#′,`′, `′) with

E′ = E \ ({a} ∪ {e′ | a#e′})
#′ = # ∩ (E′ × E′) = {(e, e′) | e#e′ ∧ e ∈ E′ ∧ e′ ∈ E′}
`′ = {(X \ {a}, e′) | X ` e′ ∧ X ⊆ (E′ ∪ {a}) ∧ e′ ∈ E′}
`′ = `|E′

Then we have E[a][b] = (E′′,#′′,`′′, `′′), with

E′′ = E′ \ ({b} ∪ {e′ | b#′e′})
#′′ = #′ ∩ (E′′ × E′′) = {(e, e′) | e#′e′ ∧ e ∈ E′′ ∧ e′ ∈ E′′}
`′′ = {(X \ {b}, e′) | X `′ e′ ∧ X ⊆ (E′′ ∪ {b}) ∧ e′ ∈ E′′}
`′′ = `|E′′

Since # is irreflexive and symmetric, and since ¬(a#b) and a 6= b we have:

E′′ = E′ \ ({b} ∪ {e′ | b#′e′})
= E \ ({a} ∪ {e′ | a#e′} ∪ {b} ∪ {e′ | b#′e′})
= E \ ({a, b} ∪ {e′ | a#e′} ∪ {e′ | b#e′ ∧ b ∈ E′ ∧ e′ ∈ E′})
= E \ ({a, b} ∪ {e′ | a#e′} ∪ {e′ | b#e′ ∧ (b ∈ E ∧ b 6= a ∧ ¬(a#b)) ∧ (e′ ∈ E ∧ e′ 6= a ∧ ¬(a#e′))})
= E \ ({a, b} ∪ {e′ | a#e′} ∪ {e′ | b#e′ ∧ (e′ 6= a ∧ ¬(a#e′))})
= E \ ({a, b} ∪ {e′ | a#e′ ∨ b#e′})

Hence, unfolding the definition of #′′, we have:

#′′ = #′ ∩ (E′′ × E′′) = {(e, e′) | e#′e′ ∧ e ∈ E′′ ∧ e′ ∈ E′′}
= {(e, e′) | e#e′ ∧ e ∈ E′ ∧ e′ ∈ E′ ∧ e ∈ E′′ ∧ e′ ∈ E′′}
= {(e, e′) | e#e′ ∧ ¬(e#a) ∧ ¬(e#b) ∧ ¬(e′#a) ∧ ¬(e′#b)}
= # \ {(e, e′) | (e#a) ∨ (e#b) ∨ (e′#a) ∨ (e′#b)}

We can now unfold the definition of `′′, obtaining:

`′′ = {(X \ {b}, e′) | (X, e′) ∈ `′ ∧ X ⊆ (E′′ ∪ {b}) ∧ e′ ∈ E′′}
= {(X \ {a, b}, e′) | (X, e′) ∈ ` ∧ X ⊆ (E′′ ∪ {a, b}) ∧ e′ ∈ E′′}

Resuming, we have obtained: E[a][b] = (E′′,#′′,`′′, `′′) with

E′′ = E \ ({a, b} ∪ {e′ | a#e′ ∨ b#e′})
#′′ = # \ {(e, e′) | (e#a) ∨ (e#b) ∨ (e′#a) ∨ (e′#b)}
`′′ = {(X \ {a, b}, e′) | (X, e′) ∈ ` ∧ X ⊆ (E′′ ∪ {a, b}) ∧ e′ ∈ E′′}
`′′ = `|E′′

Since what we have obtained does not depend from the order of a and b, we have the thesis. �

By using Lemma A.3 in a simple inductive argument we obtain the following corollary: when computing
the remainder of E[e1 · · · en], we can ignore the order of the events, provided that they are conflict-free. This
allows us to use the shorthand E[C] for E[e1 · · · en] whenever {e1, . . . , en} = C and CF (C).

Corollary A.4. Let E = (E,#,`, `), and let σ ∈ E∗ be such that CF (σ). Then:

(a) for all η such that σ = η, E[σ] = E[η];

(b) E[σ] = (Ê, #̂, ˆ̀, ˆ̀), where:

Ê = E \ (σ ∪ {e′ | ∃e ∈ σ. e#e′})
#̂ = # \ {(e, e′) | ∃e′′ ∈ σ. e#e′′ ∨ e′#e′′}
ˆ̀ = {(X \ σ, e′) | X ` e′ ∧ X ⊆ Ê ∪ σ ∧ e′ ∈ Ê}
ˆ̀ = `|Ê

35



The following lemma establishes a connection between the LTSs in Definitions A.2 and 2.9. Given an
ES E, the initial state ∅ of the configuration-based LTS →E is bisimilar to the state E of the ES-based LTS.

Lemma A.5. (∅,→E) ∼ (E,→).

Proof. Let E = (E,#,`, `), and let:

R = {(C,E[C]) | C ⊆fin E ∧ C ∈ FE} (14)

We will prove that R is a bisimulation. Let (C,E[C]) ∈ R. By item (b) of Corollary A.4, we have E[C] =

(Ê, #̂, ˆ̀, ˆ̀), with:

Ê = E \ (C ∪ {e′ | ∃a ∈ C. a#e′}) (15)

ˆ̀ = {(X \ C, e′) | X ` e′ ∧ X ⊆ Ê ∪ C ∧ e′ ∈ Ê} (16)

We have the following two cases:

• move of C. Assume that C
e−→ C ∪ {e}. By Definition 2.9 we have C ` e, e 6∈ C and CF (C ∪ {e}).

Since e 6∈ C and CF (C ∪ {e}), by (15) we obtain e ∈ Ê; and since C ` e, by (16) we obtain (C \C, e) =

(∅, e) ∈ ˆ̀. So, by ˆ̀e and by item (a) of Corollary A.4 it follows that E[C]
e−→ E[C][e] = E[C ∪ {e}].

By definition of R in (14), we conclude that (C ∪ {e},E[C ∪ {e}]).

• move of E[C]. Assume that E[C]
e−→ E[C][e]. By Definition A.2 we have that ˆ̀e. Since e ∈ Ê, then

by (15) we have CF (C ∪ {e}) and e 6∈ C. Since ˆ̀e, by (16) it must be (X, e′) ∈` for some X such
that X ⊆ Ê ∪ C and X \ C = ∅. This implies X ⊆ C, and by saturation we obtain C ` e. Since

C ` e, CF (C ∪ {e}) and e 6∈ C, by Definition 2.9 we obtain C
e−→E C ∪ {e}. By (14), we conclude that

(C ∪ {e},E[C ∪ {e}]). �

A.3. Constructions on event structures

We now review the operations on event structures, in order to prove Theorem 5.20 in Theorem 5.20.
The first construction is the lifting of an event structure. We add a new event to an ES and this one is

the initial event. The resulting event structure is such that the added event is the only one enabled at the
empty configuration and all the other events depend on this added one.

Definition A.6 (Lifting of an ES). Let E = (E,#,`, `) be an ES, and let e be an event not in E. We
define (e, α) � E as the ES (E,#′, sat(`′), `′), where:

E′ = E ∪ {e}
#′ = #

`′ = {(X ∪ {e}, e′) | (X, e′) ∈`} ∪ {(∅, e)}
`′ = ` ∪ {(e, α)}

The definition of sum of ESs, which models the choice, is standard. This operation is like the union of
two event structure, except that the conflict relation is defined in such that, once that a choice has been
made, all the alternatives are discarded.

Definition A.7 (Sum of two ESs). Let E1 = (E1,#1,`1, `1) and E2 = (E2,#2,`2, `2) be two ESs such
that E1 ∩ E2 = ∅. We define their sum E1�E2 as the ES (E,#,`, `) where:

E = E1 ∪ E2

# = #1 ∪ #2 ∪ {(e, e′) | e ∈ Ei ∧ e′ ∈ E \ Ei, with i ∈ {1, 2}}
` = `1 ∪ `2

` = `1 ∪ `2
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Notice that here we do not have to require that the enablings of the resulting ES have to be saturated, as
they are already saturated. The sum operation introduced above is clearly associative and commutative.

Lemma A.8. The operation � on ES is commutative and associative.

In order to define the denotation turn-based configurations we need some auxiliary notions. The first one
establishes when two enabling sets in two ESs can be matched whereas the second introduce an auxiliary
conflict relations among two ESs, intuitively stating when two internal choices belonging to two different
ESs are mutually exclusive. The pairs of events in this conflict relation are those that can be reached in the
same number of steps in both ESs, provided that they are both labeled in PU × (A! ∪ {X}).

Definition A.9. Let E be a set of events, and let ` be a labeling function. We denote with † the minimal
relation among subsets of events such that:

• ∅ † ∅, and

• X ∪ {e} † Y ∪ {e′} if `(e) = co(`(e′)) and X † Y .

Definition A.10 (Turn conflict of ESs). Let E1 = (E1,#1,`1, `1) and E2 = (E2,#2,`2, `2) be two ESs
such that E1 ∩ E2 = ∅. We define the turn-conflict relation ] as

⋃
k≥0 ]

(k) where each ](k) is as follows:

](0) = {(e, e′) | ∅ `i e ∧ ∅ `j e′ ∧ {`i(e), `j(e′)} ⊆ PU × A!}

](k) = {(e, e′) | X `i e ∧ Y `j e′ ∧ X † Y ∧ {`i(e), `j(e′)} ⊆ PU × A! ∧ X ∪ Y ∈ Con(k−1)}
∪ ](k−1)

where Con(k) = {X ⊆fin E1 ∪ E2 | |X| = k ∧ ∀e, e′ ∈ X : (e, e′) 6∈ ](k)}, i, j ∈ {1, 2} and i 6= j.

Example A.11. Consider the following two ESs E1 = (E1,#1,`1, `1) and E2 = (E2,#2,`2, `2) where
E1 = {e1, e3, e5, e7, e9}, E2 = {e2, e4, e6, e8, e10, e12}, the conflict relations are

#1 = { e1#1e5, e1#1e7, e1#1e9,
e3#1e5, e3#1e7, e3#1e9

} #2 = { e2#2e8, e2#2e10, e2#2e12, e4#2e8, e4#2e10

e4#2e12, e6#2e8, e6#2e10, e6#2e12
}

and the enablings of these ESs are

`1 = { `1 e1, e1 `1 e3,
`1 e5, e5 `1 e7, {e5, e7} `1 e9

} `2 = { `2 e2, e2 `2 e4, {e2, e4} `2 e6

`2 e8, e8 `2 e10, {e8, e10} `2 e12
}

Furthermore assume that `1(e1) = `1(e7) = A : a!, `1(e5) = A : b!, and the others events in E1 are labelled
with A : X, whereas `1(e2) = `2(e10) = B : a?, `B(e4) = : b!, `B(e8) = B : b?, and the other events in E2

are labelled B : X.
The ] relation contains the pair (e7, e4) as the first event structure contains the enabling e5 `1 e7, the

second one the enabling e2 `2 e4, {e5} † {e2} and `1(e7), `2(e4) ∈ PU × A!.

We are now ready to introduce the main operation on event structures denoting session types. The event
structure denoting the interaction among session types should mimic the capability of a session type to
perform an internal choice, and of the other to react to this choice, if allowed. This is achieved by defining
the enabling `′. The difference in the treatment of internal and external choice is driven by the fact that in
session types internal choice can always be performed whereas external ones are reactions to internal ones.

Definition A.12 (Turn composition of ES). Let E1 = (E1,#1,`1, `1) and E2 = (E2,#2,`2, `2) be two
ESs such that E1 ∩E2 = ∅, and let E′ ⊆ {e ∈ E1 ∪E2}`i e ∧ `i(e) ∈ PU × (A! ∪ {X}),with i ∈ {1, 2}. Let

37



] be the relation on (E1 × E2) ∪ (E2 × E1) of Definition A.10 computed on E1 and E2. We define the turn
composition E1 � E2 as the ES (E,#,`, `), where:

E = (E1 ∪ E2)

# = (#1 ∪ #2 ∪ ]) ∩ (E × E)

` = (`1 ∪ `2)|E

and ` is obtained by saturating the following relation:

`′ = {(∅, e) | e ∈ E′∧ `i e)} ∪ {({e}, e′) | e ∈ E′ ∧ e′ ∈ E \ E′ ∧ ∅ `i e′ ∧ `i(e
′) = co(`(e))} (a)

∪ {(X ∪ Y, e) | X 6= ∅ ∧ X `i e ∧ `(e) ∈ PU × (A! ∪ {X}) ∧ ∃e′′. Y `j e′′ ∧ X † Y
∧ X ∪ Y ∈ Con} (b)

∪ {(X ∪ Y ∪ {e′}, e) | X 6= ∅ ∧ X `i e ∧ `(e) ∈ PU × A? ∧ ∃e′′. Y `j e′′ ∧ X † Y
∧ X ∪ Y ∪ {e′} ∈ Con ∧ e′ ∈ Ej ∧ `(e′) = co(`(e)) ∧ e′ 6∈ X ∪ Y } (c)

where i, j ∈ {1, 2} and i 6= j.

To obtain a new enabling in the compound event structure we have just one relevant condition, namely that
there must exists two suitable enablings in both components (X `i e and Y `j e′) and X can be matched
with Y . This allows to establish that an enabling involving X ∪ Y and either e or e′ should be in the
enabling relation of the compound event structure. More precisely X ∪ Y ` e (or X ∪ Y ` e′) is introduced
when `(e) ∈ PU × (A! ∪ {X}) (`(e′) ∈ PU × (A! ∪ {X}) respectively), which is the clause (b), whereas when
`(e) ∈ PU× A? or `(e′) ∈ PU× A? then e (e′ respectively) has to be matched by a corresponding e′′ 6∈ X ∪Y
such that `(e′′) = co(`(e)) (`(e′′) = co(`(e)) respectively), and this is the clause (c) of this definition.

Example A.13. Consider again the two event structures of Example 5.21 EA = (EA ,#A ,`A , `A) and EB =
(EB ,#B ,`B , `B). The enablings of these events structures are

`A = { `A e1, e1 `A e3,
`A e5, e5 `A e7, {e5, e7} `A e9

} `B = { `B e2, e2 `B e4, {e2, e4} `B e6

`B e8, e8 `B e10, {e8, e10} `B e12
}

The set E′ is {e1, e5}, and the enablings of EA � EB are

` =
` e1,` e5, e1 ` e2, e5 ` e8, {e1, e2} ` e3, {e5, e8} ` e7, {e5, e7, e8} ` e10,
{e5, e7, e8, e10} ` e9, {e5, e7, e8, e10} ` e12

where, for instance, ` e1 is present as e1 ∈ E′, and e1 ` e2 is present as e1 ∈ E′ and `B e2 (in both
cases the clause (a) of Definition A.12 is used), {e1, e2} ` e3 is derived because e1 `A e3 and e2 `B e4, as
`A(e1) = co(`B(e2)), and then {e1} † {e2} (clause (b) of Definition A.12). Finally {e5, e7, e8} ` e10 derives
from e8 `B e10, e5 `A e7, `A(e7) = co(`B(e10)) and {e5} † {e8} (clause (c) of Definition A.12).

The semantics of turn-based configurations involve an intermediate step that basically uses a one-position
buffer which store the name of the action to be done. We have to specialize the definition of turn composition
to this peculiar situation.

Definition A.14 (Buffered turn composition of ES). Let E1 = 〈E1,#1,`1, `1〉 and E2 = 〈E2,#2,`2, `2〉
be two ES such that E1 ∩E2 = ∅, let a? ∈ A and ~ ∈ {1, 2}. Let E′ = {e ∈ E~ | `~ e ∧ `~(e) ∈ PU × {a?}}
and E′′ = {e ∈ E~ | `~ e ∧ `~(e) ∈ PU × A!}. Let ] be the relation on (E1 × E2) ∪ (E2 × E1) of Defini-
tion A.10 calculated on E1 = 〈E1,#1,`′1, `1〉 and E2 = 〈E2,#2,`′2, `2〉 where (X \ Ẽ, e) ∈ `′i if (X, e) ∈ `i,
with Ẽ = {e ∈ E~ | `~ e}.

We define their buffered turn composition E1�̃
~
{a?}E2 as the ES 〈E,#,`, `〉 where

38



E = (E1 ∪ E2) \ E′′

# = (#1 ∪ #2 ∪ ]) ∩ (E × E)

` = (`1 ∪ `2)|E
and ` is obtained saturating the following relation

`′ = {(∅, e) | e ∈ E′ ∨ `(e) ∈ PU × {X}}
∪ {({e}, e′) | e ∈ E′ ∧ (∅, e′) ∈ `i ∧ `(e) ∈ PU × (A! ∪ {X}) ∧ i 6= ~} (a)

∪ {(X ∪ Y, e) | X 6= ∅ ∧ X `i e ∧ `(e) ∈ PU × (A! ∪ {X})
∧ ∃ê ∈ E~ \ E′′, Y ⊆ E~ \ E′′. Y `~ ê
∧ E′ ∩ Y 6= ∅ ∧ X † (Y \ E′) ∧ X ∪ Y ∈ Con ∧ i 6= ~}

(b)

∪ {(X ∪ Y, e) | Y 6= ∅ ∧ Y ⊆ E~ \ E′′ ∧ Y `~ e ∧ `(e) ∈ PU × (A! ∪ {X})
∧ ∃ê ∈ Ei. X `i e ∧ E′ ∩ Y 6= ∅
∧ X † (Y \ E′) ∧ X ∪ Y ∈ Con ∧ i 6= ~}

(c)

∪ {(X ∪ Y ∪ {e′}, e) | X 6= ∅ ∧ X `i e ∧ `(e) ∈ PU × A?

∧ ∃ê ∈ E~ \ E′′, Y ⊆ E~ \ E′′. Y `~ ê
∧ E′ ∩ Y 6= ∅ ∧ X † (Y \ E′) ∧ X ∪ Y ∪ {e′} ∈ Con

∧ `(e′) = co(`(e)) ∧ e′ 6∈ X ∪ Y ∧ i 6= ~}

(d)

∪ {(X ∪ Y ∪ {e′}, e) | Y 6= ∅ ∧ Y ⊆ E~ \ E′′ ∧ Y `~ e ∧ `(e) ∈ PU × A?

∧ ∃ê ∈ Ei. X `i ê
∧ E′ ∩ Y 6= ∅ ∧ X † (Y \ E′) ∧ X ∪ Y ∪ {e′} ∈ Con

∧ `(e′) = co(`(e)) ∧ e′ 6∈ X ∪ Y ∧ i 6= ~}

(e)

where i, j ∈ {1, 2} and i 6= j.

We pinpoint the main difference among the turn composition and the turn buffered composition. Assume
that one of the two session types may perform an internal choice firing the event e. The enablings of the
event structure E, which is the turn composition of the E1 and E2 denoting the two session types, contains
the ` e and the execution of the event must trigger the execution of the matching external choice in the
other session type (condition (a) of `′ in Definition A.12). Furthermore all the other enabled events are in
conflict with the chosen one, either because these events are guarding other branches in the same session
type, ore because they are internal choices in the other session type. The remainder of this event structure
(E[e]) should perform the corresponding external choice. Assume that this correspond to the event e′. We
must have that E[e][e′] allows again just internal choice. This is captured by condition (a) of Definition A.14.
We have then to calculate all the other enablings, that obviously depend on the internal choice done before
(the buffered turn composition depends on the name of the external action to perform) and on the side
where this action has to be done. The cases (b) – (e) of the above definition just correspond to the two
cases of the previous one, thus cases (c) and (d) are the one corresponding to the case (b) of Definition A.12
and they take into account the side where the event representing the external choice has to be done.

Example A.15. Consider the event structure EB of Example 5.21 and E′A = (E′A ,#
′
A ,`′A , `′A), where E′A =

{e7, e9}, #′A = ∅, `′A= {`′A e7, e7 `′A e9}, `′A(e7) = A : b! and `′A(e9) = A : X.

Take b? ∈ A, then E′ = {e8} and ι = 2. The buffered turn composition E′A�̃
2
{b?}EB has the following set

of events: {e2, e4, e6, e7, e8, e9, e10, e12}, as E′′ is empty. The relation ] is empty as well, hence the conflict
relation is just the union of the two conflict relations. The enablings are:

` = {` e8, e8 ` e7, {e7, e8} ` e10, {e7, e8, e10} ` e9, {e7, e8, e10} ` e12}

where ` e8 and e8 ` e7 are obtained with the clause (a) of Definition A.14, {e7, e8} ` e10 and {e7, e8, e10} `
e12 derive from clause (d) of Definition A.14 ({e7, e8} ` e10 because of e8 `B e10, e7 `′A e9 and {e7} †
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{e8}, and similarly for {e7, e8, e10} ` e12), and finally {e7, e8, e10} ` e9 is obtained using the clause (e) of
Definition A.14 (because of e7 `A e9, e8 `B e10, {e7} † {e8} and {e7, e8, e10} ∈ Con).

A.4. Denotational semantics of session types

Consider the denotational semantics of session types (Definition 5.19). As already noticed, session types
have recursion hence the standard machinery on fixed points is needed. Two event structures can be put in an
ordering relation as follows. Intuitively, when E E E′ then (i) each configuration of E is also a configuration
of E′, and (ii) each configuration of E′ where the events are those of E, is a configuration of E as well. The
resulting relation is a partial order of ESs, and each ω-chain of ESs has a least upper bound [11].

Definition A.16 (Ordering of ESs [11]). Let E = (E,#,`, `) and E′ = (E′,#′,`′, `′) be two ESs. Then
we write E E E′ whenever:

• E ⊆ E′, # ⊆ #′, ` ⊆ `′ and ∀e ∈ E. `′(e) = `(e),

• for all e1, e2 ∈ E, if e1#′e2 then e1#e2, and

• for all X ⊆ E and for all e ∈ E, if X `′ e then X ` e.

By putting the least upper bound of ω-chain of ESs

E1 E E2 E · · · E En E . . .

as
⊔
Ei = (

⋃
iEi,

⋃
i #i, sat(

⋃
i `i),

⋃
i `i) it suffices to say that ESs are a complete partial order. This,

together with the fact that certain operations are continuous (in our case lifting and sum), guarantees
the existence of fixed points. The ES ∅ = 〈∅, ∅, ∅, ∅〉 is the least element of the partial order. Given a
unary operator F on event structures, we say that it is continuous on events iff for every ω-chain of ESs
E1 E E2 E · · · E En E . . . it holds that F(

⋃
iEi) =

⋃
i F(Ei). If furthermore the operator F is monotonic

with respect to E then F is continuous. Given a continuous unary operator F, we can then define its
fixed point standardly using Tarski’s theorem, as event structures with E are a complete partial order with
bottom. The fixed point is denoted by fix Γ =

⊔
F(∅). It is standard to prove that the operators used by

the denotational semantics in Figure 6, i.e. sum and lifting, are continuous.
With respect to the semantics presented in Figure 6, when considering turn-based configurations, we

have to add the denotation of 0, which is obviously J0KAρ = 〈∅, ∅, ∅, ∅〉. The Figure 8 contains the whole
denotational semantics of turn-based configurations.

LP1 ‖P2MAB = JP1KAρ � JP2KBρ where JPiKAi
ρ = (Ei, #i, `i, `i) are such that E1 ∩ E2 = ∅

L[a!]P1 ‖P2MAB = JP1KAρ �̃
2
{a?}JP2KBρ where JPiKAi

ρ = (Ei, #i, `i, `i) are such that E1 ∩ E2 = ∅

Figure 8: Denotational semantics of turn-based configurations (symmetric rules for B omitted).

Observe that the case of the presence in the configuration of the one-position buffer is treated separately,
as in this case the composition of the two event structures has to obey to the conditions given in the turn
buffered composition. We observe that the events enabled at the initial configuration of an ES obtained
by a session type are labelled uniformly:

Lemma A.17. Let P be a session type, and let JP KA∅ = (E,#,`, `) be the associated event structure. Let
E′ = {e ∈ E | ` e}. Then, either `(E′) ⊆ PU × A! or `(E′) ⊆ PU × A? or `(E′) ⊆ PU × {X}.

Proof. An easy inspection on how the ESs are defined in Figure 6. �

We can state precisely what are the kind of labels of the enabled events of an ES stemming from a
turn-based configuration as well.
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Lemma A.18. Let S be a turn-based configuration, and let LSMA = (E,#,`, `) be the associated event
structure. Let E′ = {e ∈ E | ` e}. If E′ 6= ∅ then either `(E′) ⊆ PU×(A!∪{X}) or `(E′) ⊆ PU×(A?∪{X}).

Proof. It follows by an easy inspection of the clause (a) of Definition A.12 and Definition A.14. �

We relate the moves in event structures denoting the turn-based configurations to the turn-style seman-
tics.

Lemma A.19. Let P and Q two session types. Consider E = LP ‖QMAB . Assume that ` e is an enabling
of E, `(e) = A : a! and e ∈ EA . Then there exist two session types P ′ and P ′′ such that P is a! . P ′ ⊕ P ′′

and E[e] is precisely L[a]P ′ ‖QMAB .

Proof. Let P and Q two session types and consider E = LP ‖QMAB . Assume that ` e is an enabling of E,
`(e) = A : a! and e ∈ EA .

As LP ‖QMAB is LP ‖QMAB = JP KA∅ �E′ JQKB∅ , where E′ contains certainly e, it is trivial to observe, using
Lemma A.17, that indeed there exists a session types P ′ and P ′′ such that P is a! . P ′ ⊕ P ′′. Furthermore,
the initial events in JP ′′KA have labels different from a! as P is a session type.

We prove that E[e] is E′ = L[a?]P ′ ‖QMAB .
We distinguish three cases: Q is either b! . Q′ ⊕ Q′′ or 1 or a? . Q′ ⊕ Q′′.

• if Q is b! . Q′ ⊕ Q′′, then E′ contains also events from JQKB∅ and these events are in conflict with e,
hence are eliminated from E[e] (and these are the set E′′ of Definition A.14).

E[e] does not contain any enabling of the form ` e′, as in the definition of `′ in Definition A.12, the
set {({e}, e′) | e ∈ E′ ∧ e′ ∈ E \ E′ ∧ ∅ `i e′ ∧ `i(e

′) = co(`(e))} (clause (a)) is obviously empty.

But E[e] does not contain any enabling at all, as each enabling Z ` e′ of E contains an event in E′

which is in conflict with e. Now it is easy to see that also E′ does not contain any enabling. We have

that L[a?]P ′ ‖QMAB = JP KA∅ �̃
2
{a?}JQK

B
∅ . JQKB∅ does not contain any enabling ` e′ with `2(e′) = B : a!

thus also E′ does not contains any enabling of the form ` e′ as E′ is empty. Consider the set E′′ of
Definition A.14, any enabling in JQKB∅ contains an event in E′′, hence the sets (b) – (e) of the `′ of
this definition are empty.

For the conflicts, it is trivial to see that they are exactly those of E′ as in this case are calculated using
a `′2 based on the `2 of JQKB∅ where the events from E′′ are deleted.

Hence E[e] = E′.

• Q is 1. Then LP ‖1MAB is JP KA∅ � J1KB∅ and this has just enablings of the form ` e as only clause
(a) of Definition A.12 can be applied. The remainder of this executing e labelled as A : a! gives an

ES where the only enabling is the one of J1KB∅ , as defined by JP ′KA∅ �̃
2
{a?}J1K

B
∅ = L[a?]P ′ ‖1MAB . The

conflicts of this ES are clearly those of JP ′KA∅ .

Hence E[e] = E′.

• Q is a? . Q′ ⊕ Q′′. In this case E′ ⊆ EA and E′′ of Definition A.14 is empty.

Let E1 = JP KA∅ = (E1,#1,`1, `1) and E2 = JQKB∅ = (E2,#2,`2, `2).

The enablings of E[e] are those arising from {e} ∪ Z ` e′ of E. Wlog we consider the enablings
{e} ∪ Z ` e′ such that if {e} ∪ Z ′ ` e′ and Z ′ ⊆ Z then Z = Z ′ (those of the `′ of Definition A.12).

We distinguish several cases, according to the clause of Definition A.12 used to obtain the enabling
{e} ∪ Z ` e′.

– the clause (a) of Definition A.12 has been used, hence {e} ` e′ and `(e) = co(`e′). But ` e′ is
generated by clause (a) of Definition A.14.
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– the clause (b) of Definition A.12 has been used. We have two sub-cases, either e′ ∈ E1 or e′ ∈ E2.
Obviously `(e′) ∈ PU × (A! ∪ {X}).
Assume e′ ∈ E1. We know that {e} ∪ Z can be partitioned into X = {e} ∪ Z ∩ E1 and Y =
{e} ∪ Z ∩ E2 such that X † Y . We have also that X `1 e

′ and we know that there is an event ê
such that Y ` ê. Furthermore X ∪ Y is consistent.

Consider now E1[e]. This is precisely JP ′KA∅ and X \ {e} ` e′ is an enabling of this ES. Now, as
E′′ is empty, there exists an ê such that Y `2 ê, but it is easy to observe that, assuming that Y
the event in E′, that precisely X \ {e} † (Y \ E′). But these are the conditions of the clause (b)
of Definition A.14.

Assume instead that e′ ∈ E2. We know that {e} ∪ Z can be partitioned into X = {e} ∪ Z ∩ E1

and Y = {e} ∪ Z ∩E2 such that X † Y . We have also that Y `2 e
′ and we know that there is an

event ê such that X ` ê. Furthermore X ∪ Y is consistent.

Consider now E1[e]. This is precisely JP ′KA∅ and X \{e} ` ê is an enabling of this ES. Now, as E′′

is empty, we know that Y `2 e, but it is easy to observe that, assuming that Y the event in E′,
that precisely X \ {e} † (Y \E′). But these are the conditions of the clause (c) of Definition A.14.

– the clause (c) of Definition A.12 has been used. We have two sub-cases, either e′ ∈ E1 or e′ ∈ E2.
Obviously `(e′) ∈ PU × A?.

Assume e′ ∈ E1. We know that there exists an event e′′ ∈ {e} ∪ Z such that `(e′′) = co(`(e′)),
e′′ ∈ E2 and ({e} ∪ Z) \ {e′′} can be partitioned into X = ({e} ∪ Z) \ {e′′} ∩ E1 and Y =
({e} ∪ Z) \ {e′′} ∩ E2 such that X † Y . We have also that X `1 e

′ and we know that there is an
event ê such that Y ` ê. Furthermore X ∪ Y ∪ {e′′} is consistent.

Consider now E1[e]. This is precisely JP ′KA∅ and X \ {e} ` e′ is an enabling of this ES. Now, as
E′′ is empty, there exists an ê such that Y `2 ê, but it is easy to observe that, assuming that Y
the event in E′, that precisely X \ {e} † (Y \ E′). But these are the conditions of the clause (d)
of Definition A.14.

Assume instead that e′ ∈ E2. We know that there exists an event e′′ ∈ {e} ∪ Z such that
`(e′′) = co(`(e′)), e′′ ∈ E1 and ({e} ∪Z) \ {e′′} can be partitioned into X = ({e} ∪Z) \ {e′′} ∩E1

and Y = ({e} ∪ Z) \ {e′′} ∩ E2 such that X † Y . We have also that Y `1 e
′ and we know that

there is an event ê such that X ` ê. Furthermore X ∪ Y ∪ {e′′} is consistent.

Consider now E1[e]. This is precisely JP ′KA∅ and X \ {e} ` ê is an enabling of this ES. Now, as
E′′ is empty, there exists an ê such that Y `2 e

′, but it is easy to observe that, assuming that Y
the event in E′, that precisely X \ {e} † (Y \ E′). But these are the conditions of the clause (e)
of Definition A.14.

Finally we have to show that the conflict relations coincide. But this is obvious just inspecting how
the turn conflict relation of Definition A.14 is obtained. In fact consider the ] calculated on E1 and E2.
It cannot contain any pair with e. Now consider the turn conflict relation calculated on the enablings
of E1 and on those of E2 where the events enabled with the empty set have been removed. As the
cardinality of the enabling sets is driving this definition the result is exactly the same. �

Lemma A.20. Let P and Q two session types. Consider E = LP ‖QMAB . Assume that ` e is an enabling
of E, `(e) = B : a? and e ∈ EB . Then there exists session types Q′ and Q′′ such that Q is a! . Q′ ⊕ Q′′ and
E[e] is precisely LP ‖ [a?]Q′MAB .

Proof. As the proof of Lemma A.19 �

Lemma A.21. Let P and Q two session types, and let a? ∈ A? be an action. Consider E = L[a?]P ‖QMAB

and assume that it contains an event e ∈ EB such that ` e and `(e) = B : a?. Then there exist session
types Q′ and Q′′ such that Q is a? . Q′ + Q′′ and E[e] is precisely LP ‖Q′MAB .

Proof. Let P and Q two session types, let a? ∈ A?, and consider E = L[a?]P ‖QMAB . Assume that ` e is an
enabling of E, `(e) = B : a? and e ∈ EB .
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As L[a?]P ‖QMAB = JP KA∅ �̃
2
{e}JQK

B
∅ , it is trivial to observe that there are session types Q′ and Q′′ such

that Q is a? . Q′ + Q′′.
We prove that E[e] is E′ = LP ‖Q′MAB . Let E1 = JP KA∅ and E2 = Ja? . Q′ + Q′′KB∅ .
Consider the enabling Z ` e′ of E[e]. This clearly descends from an enabling {e}∪Z ` e′ of E. As before

we consider just those that are not obtained by saturation.
We check how {e} ∪ Z ` e′ is obtained. If Z = ∅ then e′ is any event in E1 such that `1 e′ and

`(e′) ∈ {A} × A!, and clearly ` e′ is an enabling of E′. Assume then that Z 6= ∅.
We have several cases, as {e} ∪ Z ` e′ can be obtained using clause (b) – (e) of Definition A.14.

• assume it is obtained using the clause (b). Then e′ ∈ E1 and X = ({e}∪Z)∩E1 is such that X `1 e
′.

Moreover we know that there exists ê ∈ E2 and Y = ({e} ∪ Z) ∩ E2 is such that Y `2 ê. Now e ∈ Y
and we know that X † (Y \ {e}). But E2[e] contains Y \ {e} ` ê and we have all the ingredients for
clause (b) of Definition A.12.

• assume it is obtained using the clause (c). Then e′ ∈ E2. The reasoning is as above, the clause (b) of
Definition A.12 is used in E′.

• assume it is obtained using the clause (d). Then e′ ∈ E1 and there exists an event e′′ ∈ E2 such that
`(e′′) = co(`(e′)). X = ({e}∪Z)∩E1 is such that X `1 e

′. Moreover we know that there exists ê ∈ E2

and Y = (({e} ∪ Z) ∪ {e′′}) ∩ E2 is such that Y `2 ê. Now e ∈ Y and we know that X † (Y \ {e}).
But E2[e] contains Y \ {e} ` ê and we have all the ingredients for clause (c) of Definition A.12.

• assume it is obtained using the clause (e). Then e′ ∈ E2. The reasoning is as above, the clause (c) of
Definition A.12 is used in E′.

For the conflicts of LP ‖Q′MAB , it is trivial to see that these are precisely those of E[e]. �

Lemma A.22. Let P and Q two session types, and let a? ∈ A? be an action. Consider E = LP ‖ [a?]QMAB

and assume that it contains an event e ∈ EA such that ` e and `(e) = A : a?. Then there exists session
types P ′ and P ′′ such that Q is a? . P ′ + P ′′ and E[e] is precisely LP ′ ‖QMAB .

Proof. As the proof of Lemma A.21. �

We can now prove the Theorem 5.20.

A.5. Proof of Theorem 5.20

We have to show that (P ‖Q,−→→) and (∅,→`
LP ‖QM) are bisimilar. By Lemma A.5, it suffices to show

that (P ‖Q,−→→) and (LP ‖QM,→`) (where the latter is the LTS over ES) are bisimilar.

• Assume S
A : x−−−→→ S′, with x ∈ A! ∪ A? ∪ {X} and S ∼ LSMAB .

Consider x ∈ A!. Hence S must be a! . P ′ ⊕ P ′′ ‖Q. Assume then x is a!.

Consider now La! . P ′ ⊕ P ′′ ‖QMAB . This is the event structure E = Ja! . P ′ ⊕ P ′′KA∅ �E′ JQKB∅ where

Ja! . P ′ ⊕ P ′′KAi

∅ = (E1, #1, `1, `1), JQKB∅ = (E2, #2, `2, `2) and E′ is the subset of E1 ∪ E2

defined as follows: {e ∈ E1 ∪ E2 | `i e ∧ `i(e) ∈ PU × (A! ∪ {X})}. Clearly there exists e ∈ E′

with `1(e) = A : a! and `1 e is in (E1, #1, `1, `1). By Definition A.12 ` e is an enabling of

La! . P ′ ⊕ P ′′ ‖QMAB hence E
`(e)−−−→ E[e].

We show that E[e] = L[a?]P ′ ‖QMAB . There are the following cases, according to the form of Q:

– Q = 1. Then La! . P ′ ⊕ P ′′ ‖1MAB contains only the enablings of the form ∅ ` e′ with e′ ∈ E′. The
resulting event structure after executing e has just the enabling ` e′ with `(e′) = B : X and the

conflict are those arising from JP ′KA∅ . But this ES is precisely L[a?]P ′ ‖1MAB = JP ′KA∅ �̃
2
{`(e)}J1K

B
∅

as {e′ ∈ E2 | `2 e
′ ∧ `(e′) = `(e)} is the empty set.
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– Q = b! . Q′ ⊕ Q′′. Then the events in E′ of E = Ja! . P ′ ⊕ P ′′KA∅ � JQKB∅ are the starting ones of

Ja! . P ′ ⊕ P ′′KA∅ and of Jb! . Q′ ⊕ Q′′KB∅ . The enablings are defined as in Definition A.12, and ]
contains also the pairs (e, e′) with e′ ∈ E′. Hence E[e] has no enabling (as each enabling Z ` ê
in E such that Z 6= ∅ contains an event in E2 ∩ E′) and the conflicts remaining are those arising
from the events in JP ′KA∅ and those in Jb! . Q′ ⊕ Q′′KB∅ calculated using definition A.10 with the

enablings Y `2 ê such that {e′} ∪ Y `2 ê is an enabling of Jb! . Q′ ⊕ Q′′KB∅ , with e′ ∈ E′. It is

easy to see that this ES is precisely the one defined by L[a?]P ′ ‖QMAB .

– Q = a? . Q′ + Q′′. The events enabled in E = Ja! . P ′ ⊕ P ′′KA∅ � Ja? . Q′ + Q′′KB∅ are those in E′

and clearly E′ ⊆ E1.

Consider E[e]. The enablings of this event structure are those of the form Z ` e′ such that {e}∪Z `
e′ is an enabling of E. We show that these are precisely the enablings of JP ′KA∅ �̃

2
{a?}Ja? . Q′ + Q′′KB∅

and E′ = {e ∈ E2 | `2 e ∧ `2(e) = B : a?}. Wlog we consider just the enablings {e} ∪Z ` e′ of
E that are minimal (i.e. there is no enabling Z ′ ` e′ such that Z ′ ⊂ {e} ∪ Z), as others enabling
(not minimal) are obtained by this one by saturation. We have several cases:

∗ if Z = ∅ then the only possibility is that `(e′) = B : a?, but this is the unique enabling with

this characteristic of JP ′KA∅ �̃
2
{a?}Ja? . Q′ + Q′′KB∅ according to condition (a) of Definition A.14.

∗ `(e′) ∈ {A}×A! and e′ ∈ E1. We have that (({e}∪Z)∩E1)†(({e}∪Z)∩E2) (as {e}∪Z ` e′ is an
enabling of E) and, as e′ ∈ E1, there exists an event in e′′ ∈ Z∩E2 such that `2(e′′) = `1(e)!.
We have that ({e} ∪ Z) ∩ E1 `1 e

′ and Z ∩ E2 `2 ê for some ê ∈ E2, as otherwise we would
not have had {e} ∪ Z ` e′, but this is precisely the clause (b) of the ` in Definition A.14
applied to JP ′KA∅ and Ja? . Q′ + Q′′KB∅ .

∗ `(e′) ∈ {B} × A! and e′ ∈ E2. The reasoning is as above: We have that (({e} ∪ Z) ∩ E1) †
(({e} ∪ Z) ∩ E2) and then there exists an event in e′′ ∈ Z ∩ E2 such that `2(e′′) = `1(e)!.
We have that ({e} ∪ Z) ∩ E1 `1 ê and Z ∩ E2 `2 e

′ for some ê ∈ E1, as otherwise we would
not have had {e}∪Z ` e′, and this is again the clause (c) of the `′ in Definition A.14 applied
to JP ′KA∅ and Ja? . Q′ + Q′′KB∅ .

∗ `(e′) ∈ {A} × A? and e′ ∈ E1. Then we know that there must be an event in e′′ ∈ Z such
that `2(e′′) = co(`1(e′)) and furthermore ({e} ∪ Z) ∩E1 `1 e

′, (Z ∩E2) \ {e′′} `2 ê for some
ê ∈ E2, and ((Z ∩ E2) \ {e′′}) † (({e} ∪ Z) ∩ E1), as otherwise {e} ∪ Z ` e′ would not have
been an enabling. But these are precisely the conditions required by the clause (d) of the
relation `′ in Definition A.14 when JP ′KA∅ and JQKB∅ are considered.

∗ `(e′) ∈ {B} × A? and e′ ∈ E2. Similar as above, using clause (e) of the relation `′ in
Definition A.14.

It is routine to check that the conflicts are the correct ones, namely those of JP ′KA∅ �̃
2
{a?}JQK

B
∅ and

those of LP ‖QMAB [e] coincide.

Summing up, if a! . P ′ ⊕ P ′′ ‖Q A : a!−−−→→ [a?]P ′ ‖Q then La! . P ′ ⊕ P ′′ ‖QMAB [e] = L[a?]P ′ ‖QMAB ,

La! . P ′ ⊕ P ′′ ‖QMAB `(e)−−−→ La! . P ′ ⊕ P ′′ ‖QMAB [e] and [a?]P ′ ‖Q ∼ L[a?]P ′ ‖QMAB [e].

Consider x = X, then S is 1 ‖ Q̃ and S′ is 0 ‖ Q̃.

Q̃ can be either a session type Q or 0 or [a?]Q for some Q session type and a? ∈ A?.

– Q̃ isQ for some session type. The ES E = L1 ‖QMAB is J1KA∅�JQ̃K
B
∅ where J1KA∅ = ({e}, ∅, ∅, {(e,X)})

and JQKB∅ = (E2,#2,`2, `2) and certainly e ∈ E′. The enablings of this event structure are, ac-
cording to Definition A.12, of the form ` e′ with e′ ∈ E′ and the conflicts are those of #2∪{(e, e′) |
e, e′ ∈ E′}. Thus E[e] is (E′′,#′′, ∅, `′′) where E′′ = E2\{e′ ∈ E2 | ∃e′ ∈ E2. (e, e′) ∈ {(e, e′) | e, e′ ∈ E′}}
and #′′, `′′ are the restriction of #2 and `2 to the events in E′′. But this is precisely the ES as-

sociated to 0 ‖Q, thus E
`(e)−−→ E[e], E[e] = L0 ‖QMAB and 0 ‖Q ∼ L0 ‖QMAB .
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– Q̃ is 0. The ES E = L1 ‖0MAB is just J1KA∅ � J0KB∅ which is J1KA∅ and the remainder is just the
empty ES, as required

– Q̃ is [a?]Q for some Q session type and a? ∈ A?. L1 ‖ []?QMAB is E = J1KA∅ �̃
1
{a?}J[a?]QKB∅ has

just the enabling allowing to do e. Hence E[e] has no enabling like JnilKA∅ �̃
1
{a?}J[a?]QKB∅ which is

L0 ‖ []?QMAB = E′

Hence E
`(e)−−−→ E[e] and E[e] is precisely LS′MAB .

Consider finally x = a?. Then S is a? . P ′ + P ′′ ‖ [a?]Q. S′ is obviously P ′ ‖Q

The event structure associated to a? . P ′ + P ′′ ‖ [a?]Q is E = Ja? . P ′ + P ′′KA∅ �̃
1
{a?}JQK

B
∅ and E′ 6= ∅

contains just e ∈ E1 such that `(e) = A : a?. Consider E[e]. The enablings Z ` e′ of E[e] are derived
by those of the form {e} ∪ Z ` e′ in E. According to Definition A.14 these enablings are precisely
those arising from Ja? . P ′KA∅ �JQK

B
∅ as the enablings {e}∪Z ` e′ are obtained from enablings in where

the events involved are those of Ja? . P ′KA∅ . The same reasoning applies to the conflict relation, hence

E
`(e)−−−→ E[e], E[e] = LP ′ ‖QMAB . Furthermore P ′ ‖Q ∼ LP ′ ‖QMAB .

• The case S
B : x−−−→→ S′, with x ∈ A! ∪ A? ∪ {X} is the same as above

• Assume now that LSMAB `(e)−−−→ LSMAB [e].

Assume `(e) is of the form A : x with x ∈ A!. S must be a! . P ′ ⊕ P ′′ ‖Q (by Lemma A.18) and
assume that x is a!

– S is a! . P ′ ⊕ P ′′ ‖Q and by Lemma A.19 we then know that LSMAB [e] is L[a?]P ′ ‖QMAB , and

clearly a? . P ′ ⊕ P ′′ ‖Q A : a!−−−→→ [a?]P ′ ‖Q and [a?]P ′ ‖Q ∼ L[a?]P ′ ‖QMAB .

If `(e) is of the form A : x with x ∈ A? then S must be a? . P ′ + P ′′ ‖ [a?]Q (by Lemma A.18) and
assume that x is a?

– S is a? . P ′ + P ′′ ‖ [a?]Q, by Lemma A.22 we then know that La? . P ′ + P ′′ ‖ [a?]QMAB [e] is

LP ] ‖QMAB , and clearly a? . P ′ + P ′′ ‖ [a?]Q
A : a?−−−→→ P ′ ‖Q and P ′ ‖Q ∼ LP ′ ‖QMAB .

If `(e) is A : X then S is 1 ‖ Q̃.

Again we have various cases, depending on Q̃.

– If Q̃ is Q for some session type Q then L1 ‖QMAB [e] has only the enabling ` e′ of JQKB∅ , if any

and the conflicts are those arising from JQKB∅ , as expected. But this is precisely L0 ‖QMAB Thus

clearly 1 ‖Q X−→→ 0 ‖Q and 0 ‖Q ∼ L0 ‖QMAB .

– If Q̃ is 0 then L1 ‖0MAB [e] is the empty event structure. Thus clearly 1 ‖0
X−→→ 0 ‖0 and 0 ‖0 ∼

L0 ‖0MAB .

– If Q̃ is [a?]Q′ for some Q′ session type and a? ∈ A?, then E = L1 ‖QMAB is J1KA∅ �̃
1
{a?}JQ′K

B
∅ which

has as enabling just ` e with `(e) = A : X, and as conflicts those of JQ′KB∅ , but this is just

J0KA∅ � JQ′KB∅ , thus clearly 1 ‖ [a?]Q′
X−→→ 0 ‖ [a?]Q′ and 0 ‖ [a?]Q′ ∼ L0 ‖ [a?]Q′MAB .

The cases where `(e) is of the form B : x are similar to those above (using Lemma A.19 and
Lemma A.21). �

45


	Introduction
	Event structures
	Basic definitions
	Labelled Transition Systems over configurations

	A game-based model of contracts
	Contracts
	Plays
	Some examples
	Offer-request payoffs

	Agreements
	Basic definitions
	Some examples
	Constructions on strategies
	Agreements for Offer-Request payoffs

	Session types as contracts
	Session types and compliance
	Turn-based semantics of session types
	Denotational semantics of session types
	Semantic-based approach
	Syntax-based approach

	Compliance as agreement

	Protection
	Contract composition
	Definition of protection
	Protection for Offer-Request payoffs
	Agreement and protection cannot coexist

	Related work
	Conclusions
	Supplementary material and proofs
	Proof of lem:st:turn-bisimilar
	Labelled Transition Systems over event structures
	Constructions on event structures
	Denotational semantics of session types
	Proof of th:st-to-es


