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Abstract. We have adapted the non-symmetrized hyperspherical harmonics method
(NSHH) in order to treat light hypernuclei. In the past the method has been applied in the
atomic and nuclear context dealing with identical particle systems exclusively. We have
generalized and optimized the formalism in presence of two different species of particles,
namely nucleons and hyperons. Preliminary benchmark results with a modern realistic
2-body nucleon-hyperon interaction are provided.

1 Introduction

Despite the recent development of hypemuclear physics both in theory and experiment, the actual
knowledge of the hyperon-nucleon (YN) interaction is limited and the amount of data available to de-
fine a realistic YN potential is far from being comparable to the NN case: the standard set employed
in the modern hyperon-nucleon interactions comprises 35 selected Ap low energy scattering data [2]
and a few YN data at higher energies, against the over 4000 NN data in the range 0+350 MeV. Quite a
variety of potential models involving hyperons exist, ranging from purely phenomenological ones [3]
to models based on chiral effective field theory [4]. It is evident the necessity of testing the quality of
these interactions by comparing experimental and theoretical results, like A separation energies of hy-
pernuclei. For such a check ab initio calculations are fundamental, because their results only depend
on the chosen interaction, leading to a clearcut conclusion about the validity of the chosen model.
Our recent progress lies in this direction, providing a new technique to perform ab-initio calcula-
tions in the hypernuclear sector, which presents a few new features compared to the ordinary nuclear
case like, for example, the presence of different particles. As interaction model we have chosen the
potential defined in [1], which includes A — X baryon mixing.

2 NSHH method for hypernuclei

The NSHH method is based on the formalism developed by M. Gattobigio et al. in [5] and later ex-
tended by S. Deflorian et al. in [6]. The wave functions are expressed in hyperspherical Jacobi coor-
dinates and the chosen basis of the Hilbert space is composed by a hyperradial part (we use Laguerre
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Table 1. Separation energies B, in MeV for different hypernuclei and interactions. S stands for the NSC97f YN
interaction as in [1]. §’ and S” differ from S by a factor in the mixing part of the potential.

Van + Vyn Hypernuclens NSHH GEM

AV8'+S 1H 0.19 0.9
AV8'+S’ 1H 035 036
AV8'+S” AH 069 072
AVR'+S \H 229 233

polynomials), a hyperspherical part (the hyperspherical harmonics functions) and the spin-isospin
part. The basis has no good behaviour under particle permutations, so the real problem is the selec-
tion of the physical states we are looking for (fermionic in our case). This is done by using one specific
property of the Casimir operator C(A) of the permutation group S 4, defined as: C(A) = Z;L,.:l P; ia
where 13;]- is the transposition operator for particles i and j. In fact the operator C(A) commutes with
the Hamiltonian and its largest and smallest eigenvalues, A, and A, respectively, correspond to the
symmetric and antisymmetric eigenfunctions. Therefore we consider a pseudo-hamiltonian defined
as: H = H+yC(A). Any eigenvalue EF of H is given by Ef +yA, with x = 5,m,a (m stands for mixed
symmetry). Since we are mainly interested in the ground state of a fermionic system we just have to
put y large enough to make £ the lowest eigenvalue of A and obtain E} by subtracting the quantity
¥4, In this way we do not need the exact diagonalization of H, but we can use much faster procedures
to solve the new eigenvalue problem only for the lowest values (e.g. the Lanczos algorithm).

When we deal with hypernuclei, our system is composed by two species of particles, so the
Casimir operator must act independently on the two subsets. It splits then into two terms: C(A) =
Cun(A = ny) + Cyy(ny), where ny is the number of hyperons. If ny = 1 obviously Cyy = 0.

We then add an effective 2-body interaction procedure [7] based on Lee-Suzuki theory in order to
consider a wide range of potentials which cannot be treated properly with a bare interaction approach.

3 Results

In Table 1 we show the results obtained with the AV8’ NN potential and the NSC97f simulated YN
interaction [1]. Since the latter model uses the X baryon degree of freedom explicitly, it was necessary
to extend part of the NSHH formalism. We show a comparison between our results and the ones
obtained with the Gaussian Expansion Method (GEM) by E. Hiyama et al. in [1].

A more complete and extensive benchmark calculation is in progress, comparing five different ab
initio methods: the present NSHH, the GEM (with E. Hiyama, Riken) the No Core Shell Model (with
D. Gazda, ECT#*), the Auxiliary Field Diffusion Monte Carlo (with D. Lonardoni, Argonne) and the
Faddeev-Yakubowsky method (with A. Nogga, Jiilich).
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