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  Abstract
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Diabetes in India has distinct genetic, nutritional, developmental and socio-economic aspects; owing to the fact that changes in gut
microbiota are associated with diabetes, we employed semiconductor-based sequencing to characterize gut microbiota of diabetic
subjects from this region. We suggest consolidated dysbiosis of eubacterial, archaeal and eukaryotic components in the gut
microbiota of newly diagnosed (New-DMs) and long-standing diabetic subjects (Known-DMs) compared to healthy subjects (NGTs).
Increased abundance of phylum Firmicutes and Operational Taxonomic Units (OTUs) of Lactobacillus were observed in Known-DMs
subjects along with the concomitant graded decrease in butyrate-producing bacterial families like Ruminococcaceae and
Lachnospiraceae. Eukaryotes and fungi were the least affected components in these subjects but archaea, except
Methanobrevibacter were significantly decreased in them. The two dominant archaea viz. Methanobrevibacater and
Methanosphaera followed opposite trends in abundance from NGTs to Known-DMs subjects. There was a substantial reduction in
eubacteria, a significant decrease in Bacteroidetes phylum and an increased abundance of fungi in New-DMs subjects. Likewise,
opportunistic fungal pathogens such as Aspergillus, Candida were found to be enriched in New-DMs subjects. Analysis of eubacterial
interaction network revealed disease-state specific patterns of ecological interactions, suggesting the distinct behaviour of
individual components of eubacteria in response to the disease. Further, eubacterial component was found associated with
diabetes-related risk factors like fasting glucose, high triglyceride, low HDL, waist-to-hip ratio and fasting insulin. Metagenomic
imputation of eubacteria depict deficiencies of various essential functions such as carbohydrate metabolism, amino acid
metabolism etc. in New-DMs subjects. Results presented here shows that in the metabolic disorders like diabetes, the dysbiosis
may not be just limited to eubacteria. Due to the inter-linked metabolic interactions among the eubacteria, archaeal and eukarya
in the gut, the dysbiosis may extend into other two domains existing in the gut leading to trans-domain dysbiosis in microbiota.
Our results thus contribute to and expand the identification of biomarkers in diabetes.
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Abstract 1 

Diabetes in India has distinct genetic, nutritional, developmental and socio-economic aspects; 2 
owing to the fact that changes in gut microbiota are associated with diabetes, we employed 3 
semiconductor-based sequencing to characterize gut microbiota of diabetic subjects from this 4 
region. We suggest consolidated dysbiosis of eubacterial, archaeal and eukaryotic components 5 
in the gut microbiota of newly diagnosed (New-DMs) and long-standing diabetic subjects 6 
(Known-DMs) compared to healthy subjects (NGTs). Increased abundance of phylum 7 
Firmicutes and Operational Taxonomic Units (OTUs) of Lactobacillus were observed in 8 
Known-DMs subjects along with the concomitant graded decrease in butyrate-producing 9 
bacterial families like Ruminococcaceae and Lachnospiraceae. Eukaryotes and fungi were the 10 
least affected components in these subjects but archaea, except Methanobrevibacter were 11 
significantly decreased in them. The two dominant archaea viz. Methanobrevibacater and 12 
Methanosphaera followed opposite trends in abundance from NGTs to Known-DMs subjects. 13 
There was a substantial reduction in eubacteria, a significant decrease in Bacteroidetes phylum 14 
and an increased abundance of fungi in New-DMs subjects. Likewise, opportunistic fungal 15 
pathogens such as Aspergillus, Candida were found to be enriched in New-DMs subjects. 16 
Analysis of eubacterial interaction network revealed disease-state specific patterns of 17 
ecological interactions, suggesting the distinct behaviour of individual components of 18 
eubacteria in response to the disease. Further, eubacterial component was found associated with 19 
diabetes-related risk factors like fasting glucose, high triglyceride, low HDL, waist-to-hip ratio 20 
and fasting insulin. Metagenomic imputation of eubacteria depict deficiencies of various 21 
essential functions such as carbohydrate metabolism, amino acid metabolism etc. in New-DMs 22 
subjects. Results presented here shows that in the metabolic disorders like diabetes, the 23 
dysbiosis may not be just limited to eubacteria. Due to the inter-linked metabolic interactions 24 
among the eubacteria, archaeal and eukarya in the gut, the dysbiosis may extend into other two 25 
domains existing in the gut leading to trans-domain dysbiosis in microbiota. Our results thus 26 
contribute to and expand the identification of biomarkers in diabetes. 27 

Keywords: Diabetes, gut microbiota, eubacteria, archaea, eukarya and amplicon sequencing. 28 

  29 
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Introduction 1 

Eubacterial assemblage associated with the human body together with other microbes like 2 
archaea, eukaryotes and fungi are referred to as ‘microbiota’. Trillions of these microbes that 3 
live in our distal gut are believed to be co-evolving with their hosts (Ley et al., 2008). Within 4 
the gut, these microbes are found to have good coordination amongst themselves and their host; 5 
together, their metagenomes contain genes that act as a repertoire of metabolic functions which 6 
influence human health (Clemente et al., 2012). Recent studies have revealed that the gut 7 
microbiota is subjected to variations in the host’s diet (Turnbaugh et al., 2009), genotype (Spor 8 
et al., 2011) and health status (Cénit et al., 2014). Any perturbation in the delicate balance 9 
between microbial consortia and host results in ‘dysbiosis’, sometimes leading to severe 10 
ailments in the host. Thus, gastrointestinal disorders such as Inflammatory bowel disease (Frank 11 
et al., 2007) and colitis (Lucke et al., 2006); metabolic disorders such as obesity (Turnbaugh et 12 
al., 2006) and diabetes (Karlsson et al., 2013; Qin et al., 2012; Zhang et al., 2013) are found to 13 
be associated with the distinct pattern of gut microbiota in which certain OTUs/species are 14 
present in different proportions. 15 

 16 

Although, studies on gut microbiota are largely dominated by eubacteria, in recent years, studies 17 
concerning archaea, (Gaci et al., 2014; Scanlan et al., 2008) fungi (Dollive et al., 2012; Wang 18 
et al., 2014) and eukaryotes (Grattepanche et al., 2014; Pandey et al., 2012) present in the human 19 
gut are being conducted to understand their distribution and possible role in human health. Thus, 20 
archaea such as genus Methanobrevibacter has been linked with human diseases like obesity 21 
(Million et al., 2012) and periodontitis (Lepp et al., 2004). Fungi residing in the gut are too 22 
associated with diseases such as colorectal adenomas (Luan et al., 2015) and, Crohn’s disease 23 
(Li et al., 2014b). Similarly, eukaryotes in the gut are found to be very complex and are linked 24 
with human diseases (Gouba et al., 2014). Thus, besides the fact that reports on gut archaea, 25 
fungi and eukaryotes are lagging behind eubacteria, studies such as these are clear indication 26 
that these microbes together with eubacteria forms a very complex ecosystem in the gut and 27 
their functional role in human health and diseases needs to be evaluated thoroughly.  28 

A study conducted in the Indian population (Patil et al., 2012) suggested compositional 29 
differences in gut microbiota and how it differs from the Western population; hence, efforts to 30 
define gut microbiota in the Indian population regarding different disorders such as diabetes, 31 
are likely to expand our understanding of the role of gut microbiota in aetiology of such 32 
disorders. Indeed, findings based on tagged amplicon sequencing and metagenomics have 33 
established a novel possible contribution of changes in gut microbiota to the aetiology of 34 
diabetes in European and Chinese populations (Karlsson et al., 2013; Qin et al., 2012; Zhang et 35 
al., 2013). But, comprehensive reports on variation in gut microbiome of diabetes-prone Indian 36 
population are lacking. India is one of the global capitals of diabetes with an estimated 69.1 37 
million diabetic patients in year the 2015 (International Diabetes Federation, 2015). The 38 
explosive epidemic of diabetes in India is incompletely explained, although various 39 
contributing factors are suggested. Compared to diabetic patients in the Western world, Indian 40 
diabetic patients have unique and paradoxical characteristics. These include possible 41 
heightened genetic predisposition (Ramachandran et al., 2012), intrauterine undernutrition 42 
(thrifty phenotype) leading to epigenetic predisposition (Yajnik, 2001), the manifestation of 43 
diabetes at an earlier age and at a much lower body mass index (BMI) compared to white 44 
Caucasians (Yajnik, 2004). Diabetes seems to be precipitated in this population by rapid 45 
economic and nutritional transition and rural-urban migrations (Anjana et al., 2011).  46 

 47 

Based on above facts, we hypothesized that the dysbiosis in gut microbiota may not be limited 48 
to just eubacteria but other two domains (Archaea and Eukarya) too are disturbed due to the 49 
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disease condition or vice-versa. In the present study, we investigated the composition of 1 
intestinal microbiota of newly diagnosed (New-DMs) and long-standing diabetic subjects 2 
(Known-DMs) and compared it with normal glucose tolerant subjects (NGTs). We used Ion 3 
torrent PGM sequencing technology, to analyse eubacterial and archaeal 16S rRNA gene, 18S 4 
rRNA gene from eukaryotes and fungal ITS tagged amplicon from faecal samples. 5 

 6 

Material and Methods 7 

Participants and Sample collection 8 

We studied 49 adults, who are parents of children in the Pune Children Study (PCS) conducted 9 
by Diabetes Unit of KEM Hospital Research Centre (Yajnik et al., 1995). They have been 10 
followed up since 1995 along with their children with serial glucose tolerance testing. The 11 
present study refers to clinical and metabolic follow up in 2009. The study and the experimental 12 
protocols followed were approved by Ethics Committee of KEM Hospital Research Centre, 13 
Pune, India (Study number 0847), and separate written informed consent was obtained from 14 
each participant. Inclusion criterion in NGTs group was absence of any apparent acute or 15 
chronic disorders. New-DMs were the participants that were diagnosed with type 2 diabetes 16 
during the routine check-up, were not on anti-diabetic treatment until sample collection and 17 
free from any acute and chronic illness. Known-DMs subjects were known cases of type 2 18 
diabetes in PCS cohort, were on anti-diabetic treatment at least for past one year and free from 19 
any acute and chronic illness. Whereas, general exclusion criterion for all three groups were 20 
subjects undergoing dietary intervention, use of antimicrobial in past three months and major 21 
surgeries of gastrointestinal tract. All participants were admitted to Diabetes Unit the evening 22 
before the investigations. Anthropometry was measured by trained observers according to 23 
standard protocols. The following morning, fasting blood specimens were assessed for plasma 24 
glucose, insulin and lipids. Sixteen known diabetic subjects underwent only fasting and post-25 
breakfast glucose measurements. In the remaining subjects, an oral glucose tolerance test (75 g 26 
anhydrous glucose) was carried out according to the WHO 1999 protocol. Faecal samples were 27 
collected from all participants in a sterile container and preserved at -80 °C until DNA 28 
extraction. 29 

 30 

Measurement of biochemical parameters  31 

Plasma glucose, cholesterol, HDL-cholesterol, and triglyceride concentrations were measured 32 
using standard enzymatic methods (Hitachi 902, Germany). Between-batch coefficients of 33 
variation for all these assays were <3% in the normal range. Plasma insulin was measured using 34 
Delfia technique (Victor 2, Wallac, Turku, Finland). Overweight was defined as BMI ≥25 35 
kg/m2 and <30 kg/m2, and obesity as BMI ≥30 kg/m2. Diabetes mellitus was diagnosed if fasting 36 
plasma glucose ≥126 mg/dl or 120-minute plasma glucose ≥200 mg/dl. Hypercholesterolaemia 37 
was defined as plasma total cholesterol ≥200 mg/dl, hypertriglyceridaemia as plasma 38 
triglyceride concentration ≥150 mg/dl and low HDL-cholesterol as HDL-cholesterol 39 
concentration <40 mg/dl for men and <50 mg/dl for women. Hypertension was defined as 40 
systolic blood pressure (SBP) ≥130 mmHg or diastolic blood pressure (DBP) ≥85 mmHg. 41 

 42 

Sequencing of 16S rRNA gene amplicons  43 

Total community DNA was extracted from each faecal sample using QIAmp DNA Stool Mini 44 
kit (Qiagen, Madison USA) as per manufacturer’s protocol. The PCR amplification and 45 
sequencing of resulting amplicons was performed as described earlier (Bhute et al., 2016). 46 
Briefly, the concentration of extracted DNA was measured using Nanodrop-1000, (Thermo 47 
Scientific, USA). DNA concentration was normalised to 100 ng/µl and used as template for 48 
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amplification of 16S rRNA gene. PCR was set up in 50 µl reaction using AmpliTaq Gold PCR 1 
Master Mix (Life Technologies, USA) and with 16S rRNA V3 region specific bacterial 2 
universal primers: 341F (5'-CCTACGGGAGGCAGCAG-3') and 518R (5'-3 
ATTACCGCGGCTGCTGG-3') (Bartram et al., 2011). Following conditions were used for 4 
PCR: initial denaturation at 94°C for 4 min, followed by 20 cycles of 94 °C for 1 min, 56 °C 5 
for 30 s, and 72 °C for 30 s with final extension at 72 °C for 10 min. PCR products were purified 6 
using Agencourt AMPure XP DNA purification Bead (Beckman Coulter, USA). Resulting PCR 7 
products were end repaired and ligated with sample specific barcode adaptor as explained in 8 
Ion Xpress™ Plus gDNA Fragment Library Preparation user guide. Prior to sequencing, 9 
fragment size distribution and molar concentrations of amplicons were assessed on Bioanalyser 10 
2100 (Agilent Technologies, USA) using High Sensitivity DNA Analysis Kit. All amplicons 11 
were diluted to the lowest molar concentration and pooled into sets of 10 samples. Emulsion 12 
PCR was carried out on Ion OneTouchTM System using Ion OneTouch™ 200 Template Kit 13 
v2 DL (Life Technologies) as explained in Ion OneTouchTM 200 Template Kit v2 user manual. 14 
The resulting template positive Ion Sphere particles were enriched using Ion OneTouch ES 15 
system and sequencing of amplicon libraries was carried out on 316 chips using Ion Torrent 16 
PGM system and Ion Sequencing 200 kit following the user guide: Ion PGM™ Sequencing 200 17 
Kit v2. 18 

 19 

Sequencing of archaeal 16S, eukaryotic 18S and fungal ITS genes 20 

The archeal 16S, eukaryotic 18S and fungal ITS1 genes were PCR amplified using primers 21 
listed in Supplementary Table 1. The resulting PCR products were purified using Agencourt 22 
AMPure XP DNA purification Bead (Beckman Coulter, USA) and quantified using Nanodrop-23 
1000 (Thermo Scientific, USA). Then, PCR products of all NGTs samples (n=19), all New-24 
DMs (n=14) and all Known-DMs (n=16) were pooled by mixing equal quantities of 25 
concentration normalized PCR products. This way we obtained three pools for each archaeal 26 
16S rRNA, eukaryotic 18S rRNA and fungal ITS1. All the pooled samples were then sequenced 27 
using Ion Torrent PGM. Since, fungal ITS amplicons varied in length, we fragmented 100 ng 28 
of it with Ion Shear Enzyme mix (Ion Xpress Plus Fragment Library preparation kit, Life 29 
Technologies) for 20 min and 200 bp size fragments were selected before adapter ligation step 30 
(Tang et al., 2015).  31 

 32 

Sequence processing and bioinformatics analysis of Eubacterial 16S rRNA gene 33 
amplicons 34 

All PGM quality-approved reads from 49 samples were exported as sample specific fastq files 35 
and pre-processed in Mothur pipeline (Schloss et al., 2009) with following conditions: 1) 36 
minimum length - 150bp, 2) maximum length - 200 bp, 3) maximum homopolymer - 5, 4) 37 
maximum ambiguity -0, and 5) average quality score - 20. This way we derived total of 2.1 38 
million high quality amplicon reads from 49 samples; subsequently, these reads were pooled as 39 
single FASTA file for further analysis in QIIME: Quantitative Insights Into Microbial Ecology 40 
(Caporaso et al., 2010). Briefly, reads were binned into Operational Taxonomic Units (OTUs) 41 
at 97% sequence similarity using UCLUST algorithm and single sequence from each OTU was 42 
picked out for further analysis. The PyNAST algorithm was used to align representative 43 
sequences against Greengenes core set; all unaligned and chimeric sequences were excluded 44 
from alignment and downstream analysis. Then lane masking was applied to the alignment to 45 
retain conserved regions of 16S rRNA and phylogenetic tree was inferred using FastTree 2.1.3. 46 
Additionally, all reads were assigned to the lowest possible taxonomic rank by utilising RDP 47 
Classifier 2.2 with a confidence score of 80%. Alpha diversity measures such as Chao1 index 48 
(Chao A, 1984) and Shannon index (Shannon, 1948) were inferred. Phylum level abundance 49 
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data and alpha diversity indices were compared among the three groups using non-parametric 1 
test such as Wilcoxon sum rank test and Kruskal-Wallis rank sum test. To assess beta diversity 2 
among three study groups, we applied phylogenetic distance based UniFrac (both unweighted 3 
and weighted) analysis was used and the results are visualized as Principal coordinate plots. To 4 
determine differentially abundant OTUs among the three groups, OTU table was filtered such 5 
that at least 8 sample will have that OTU to be retained in the OTU table. Kruskal-Wallis rank 6 
sum test was then applied to filtered OTU table containing 1969 OTUs. We next applied 7 
supervised machine learning approach (Random Forest) to identify OTUs that were indicators 8 
of community differences in three groups. This was done by estimating the amount of error 9 
introduced if a particular OTU is removed from a group of indicator OTUs and assigning it an 10 
importance score. We considered only those OTUs as highly discriminative if its mean decrease 11 
in accuracy was greater than 0.002.  12 

 13 

Clustering of samples into Enterotypes 14 

To understand whether disease state has any effect on composition of enterotypes, we applied 15 
original measurements proposed by Arumugam et al. (Arumugam et al., 2011) and as detailed 16 
at http://enterotyping.embl.de (Arumugam et al., 2014) to partition the samples into distinct 17 
enterotypes clusters. Briefly, the genus level abundance data was segregated according to the 18 
three categories, imported in R and clustered using partitioning around medioid (PAM) 19 
algorithm followed by determination of optimal number of clusters by utilizing Calinski-20 
Harabasz (CH) index. Finally results of between class (BC) analyses were visualized as 21 
principal component analysis. Additionally, taxa that influenced partitioning of samples into 22 
enterotypes (drivers of enterotype) were identified based on their abundance in a particular 23 
enterotype. 24 
 25 
Bioinformatics analysis of archaeal 16S, eukaryotic 18S and fungal ITS genes 26 
Most of the steps for analysis of pooled archaeal 16S, eukaryotic 18S and fungal ITS1 genes 27 
were similar as described in section 2.6, except for the fact that QIIME compatible SILVA_111 28 
database (Quast et al., 2013) for archaeal 16S and eukaryotic 18S amplicons and QIIME 29 
compatible UNITE_12_11 database (Kõljalg et al., 2013) for fungal ITS amplicon was used 30 
during the OTU picking step. 31 
 32 
Prediction of ecological relationships 33 

To predict ecological relationships among gut microbiota, microbial association network 34 
showing co-occurrence and co-exclusion pattern was built as described before (Faust et al., 35 
2012). Briefly, genus level abundance data was imported to CoNet plugin (version 1.0.4 beta) 36 
in Cytoscape 3.0.0 environment (Shannon et al., 2003). To produce association network, 100 37 
top and bottom edges were used with two measures of similarity (Pearson and Spearman) and 38 
three measures of dissimilarity (Bray-Curtis, Hellinger and Kullback-Leibler). Spurious 39 
correlations due to compositional structure of relative abundances were avoided by 40 
bootstrapping and re-normalization and resulting networks were combined using Simes method 41 
followed by Benjamini-Hochberg-Yekutieli false discovery rate (FDR) correction with FDR 42 
cut-off of 0.05. Finally, all unstable edges outside the 95% confidence interval of bootstrap 43 
distribution score were removed and network was visualized and suitably edited. 44 

 45 

Metagenomic imputation 46 

For metagenomic imputation, amplicon sequences were binned into OTUs at 97% similarity 47 
using closed-reference OTU picking in QIIME. The resulting OTU table was filtered such that 48 
at least 8 samples will have that OTU to retain it in OTU table. Resulting OTU table was then 49 
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analysed using online tool PICRUSt (Langille et al., 2013) at 1 
http://huttenhower.sph.harvard.edu/galaxy/. PICRUSt (phylogenetic investigation of 2 
communities by reconstruction of unobserved states) is a computational tool that uses marker 3 
gene data for prediction of functional composition of metagenome. Briefly, OTU abundance 4 
table was first normalised for 16S rRNA copy number against known gene copy number for 5 
each OTU. Functional predictions were categorised into KEGG pathways and an annotated 6 
table of predicted gene family counts (KOs) for each sample using predict metagenome tab. 7 
Gene family table then categorised by function and further statistical analysis was performed 8 
in STAMP v2.0.1 (Parks and Beiko, 2010). 9 

 10 

Additional Statistical Analysis 11 

Biochemical and anthropometric parameters were expressed as mean (SD) and ANOVA test is 12 
used to compare differences among the study groups. Different type of data generated through 13 
QIIME was imported and analysed in ade4, vegan and ggplot2 packages within R software (The 14 
R Core Team, 2013) environment. In addition, relationship between biochemical parameters 15 
and microbiota were assessed using PERMANOVA: permutational multivariate analysis of 16 
variance test (Anderson MJ and Walsh DCI, 2013).Covariance between biochemical 17 
parameters dataset and genus abundance dataset was performed by using co-inertia analysis 18 
(Dray et al., 2003), these two datasets were connected to each other owing to the presence of 19 
same subjects. 20 

 21 

Availability of data  22 

Raw sequences generated in the present study are deposited to NCBI SRA under accession 23 
number SRP041693. 24 

 25 

Results 26 

Summary of biochemical parameters 27 

Biochemical and anthropometric characteristics are shown in Table 1. Out of the 49 28 
participants, 19 were NGTs, 14 were New-DMs and 16 were Known-DMs. In the total study 29 
group, 8 participants were obese and 28 were overweight. Twelve participants had 30 
hypercholesterolemia, 16 had hypertriglyceridemia, 45 had low HDL and 8 were hypertensive. 31 

 32 

Altered eubacterial diversity and OTU composition of diabetic subjects 33 

We obtained and analysed 4,111 eubacterial OTUs among the three study groups. Analysis of 34 
alpha diversity indices revealed that overall diversity in New-DMs was noticeably reduced and 35 
both expected (Chao1, p<0.1) and observed (Observed Species, p<0.05) species diversity 36 
indices were significantly lowered in New-DMs and Known-DMs subjects (Figure 1a). Out of 37 
eight bacterial phyla detected, Bacteroidetes (p<0.1) and Proteobacteria (p<0.05) were found 38 
significantly lowered in New and Known-DMs compared to NGTs. We noted that Firmicutes 39 
(p<0.05) tend to be progressively increased from NGTs to New-DMs and then to Known-DMs 40 
(Figure 1b). Kruskal-Wallis test revealed the presence of 83 significantly different OTUs 41 
(p<0.01) of which Prevotella copri, Faecalibacterium prausnitzii and Lachnospiraceae OTUs 42 
were enriched in NGTs whereas Lactobacillus ruminis OTUs were found enriched in Known-43 
DMs (Figure 2a). Moreover, 2 OTUs belonging to genus streptococcus were abundant in New-44 
DMs. Interestingly, the OTUs assigned to Prevotella copri and Lachnospiraceae were found to 45 
be negatively correlated with fasting glucose (Supplementary Table 2). Using UniFrac distance 46 
based PCoA biplots, we demonstrate substantial segregation of the subjects into three groups 47 
based on the presence/absence (Unweighted UniFrac, Figure 2b) and abundance of specific 48 
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bacterial taxa (Weighted UniFrac, Figure 2c).We thus suggest that the presence of discrete 1 
clusters of samples in PCoA biplot is an indication of unique bacterial community structure in 2 
the three study groups. We further observed that OTUs belonging to order Bacteroidales, family 3 
Lachnospiraceae and phylum Bacteroidetes and genus Prevotella were determinative taxa for 4 
segregation of NGTs from New-DMs and Known-DMs subjects on PCoA biplots. It was noted 5 
that Lactobacillus was the crucial contributor for segregation of Known-DMs from rest of the 6 
samples and thus confirms the findings of Kruskal-Wallis test (performed above) demonstrating 7 
enrichment of Lactobacillus ruminis in these subjects. 8 

 9 

Disease state has profound effect of composition of enterotypes: 10 

We were able to stratify the gut microbial communities of NGTs, New-DMs as well as Known-11 
DMs subjects into three distinct enterotypes (E) (Figure 3 and Supplementary Figure 1). As 12 
observed earlier by Arumugam et al., healthy (NGTs) subjects (Figure 3b) grouped into three 13 
enterotypes (E1- Bacteroidetes, E2- Prevotella & E3- Ruminococcus). However, notable 14 
compositional changes were observed in enterotypes of both New-DMs (Figure 3c) and 15 
Known-DMs (Figure 3d) compared to enterotypes of NGTs subjects. Based on the abundance 16 
of the different genera we found that all three enterotypes in these subjects were found to driven 17 
by members of Firmicutes (New-DMs: E1- Lachnospira, E2- Streptococcus and E3- Weissella 18 
& Known-DMs: E1- Veillonella, E2- Lachnospira and E3- Lactobacillus). Notably, the E2 (five 19 
subjects) in New-DMs and E3 (eight subjects) in Known-DMs were dominated by taxa that 20 
were being enriched in these subjects. 21 

 22 

Archaeal, Eukaryotic and fungal dysbiosis 23 
We generated 109,561 good quality archaeal 16S rRNA amplicon reads from three pools of 24 
samples (NGTs, New-DMs and Known-DMs); which clustered into 65 OTUs belonging to 25 
Euryarchaeota and Thaumarchaeota phyla. The former being the most dominated phylum 26 
occupying more than 99% reads of all three groups. We noticed the gradual increase in 27 
Methanobrevibacter (which was also the most abundant taxa in all groups) and associated 28 
decrease in Methanosphaera abundance from NGTs to New-DMs to Known-DMs subjects. 29 
From the three pools of Eukaryotic sequence data, we obtained 41,959 good quality sequences 30 
that clustered into 383 OTUs and could be assigned to four phyla: Chloroplastida, Metazoa, 31 
Stramenopiles, and Metamonada. Members of Stramenophile especially members of genus 32 
Blastocystis were found abundant in all groups. Fungi, particularly members belonging to 33 
Saccharomycetales were abundant in New-DMs compare to NGTs and Known-DMs. For 34 
fungal ITS data, we could obtain 106,185 reads that clustered into 871 OTUs belonging to phyla 35 
Ascomycota being most dominant followed by Basidiomycota and Zygomycota to be least 36 
dominant. From the Ascomycota group; Aspergillus and Emericella, the two alternative forms 37 
of the same fungus predominated most of the sequences (Figure 4). 38 
 39 

Altered microbial composition is associated with clinical parameters 40 

To analyse the effect of different biochemical and anthropometric measurements on sampled 41 
microbiota among the three groups, we used PERMANOVA and Co-inertia analysis. After 42 
applying PERMANOVA test, we discovered that fasting glucose, HDL, triglyceride and waist-43 
hip ratio to be associated with OTU diversity across all samples (Supplementary Table 3). In 44 
the case of Known-DMs, we found HDL, triglycerides and fasting insulin (FINS) and in the 45 
case of New-DMs, oral glucose tolerance test (OGTT) and waist-hip ratio to have an influence 46 
on distinct OTU diversity. Further, the covariance between genus abundance and clinical and 47 
anthropometric parameters were examined using co-inertia analysis (1000 permutations) of 48 
these datasets. This resulted in modest relationship (RV coefficient = 0.219, P-value = 0.196) 49 
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between these datasets (Figure 5). Similar and subsequent analysis were not performed on 1 
simulated datasets of Archaeal, Eukaryotic and Fungal datasets. 2 

 3 

Eubacterial interaction network 4 

Microbiome network containing a total of 108 nodes connected with 174 edges together 5 
representing 46% co-occurrence and 54% of mutual exclusion interactions were obtained. 6 
Further, to measure the scale-freeness of the network, we used fitted power law and obtained 7 
correlation of 0.6 with R-square value of 0.723 (Supplementary Figure 2). This network reveals 8 
that the patterns observed were disease state specific, i.e. majority of the edges were found 9 
clustering within one study group providing a clue that individuals in each group have distinctly 10 
interacting microbiome composition (Figure 6 and Supplementary Table 4). We then filtered 11 
the network to retain nodes positively interacting with each other, assuming that microbes 12 
represented by these nodes will stay together in a given community. In the filtered network of 13 
positively interacting genera, we noticed that a cluster of Lachnospira, Ruminococcus, 14 
Faecalibacterium, Roseburia, Oscillospira, Parabacteroides and Bulleidia to decompose from 15 
NGTs to New-DMs then to Known-DMs (Supplementary Figure 3, 4, 5). We also noted 16 
negative interactions of Lactobacillus in Known-DMs. 17 

 18 

Deficient metabolic activities in New-DMs as revealed by imputed metagenome 19 

Having identified the compositional changes in microbiota with respect to diabetes state we 20 
tested whether these changes are accompanied with selectively fostering or lacking particular 21 
functional capabilities of gut microbiota. Similarities and differences in metabolic capabilities 22 
in gut microbiota were evaluated by making the pair-wise comparison between the diabetes 23 
statuses using two-sided Welch's t-test. Compared to NGTs, metagenome of New-DMs was 24 
found augmented with glycerolipid metabolism, fructose and mannose metabolism, pentose 25 
phosphate pathway, galactose metabolism, glycolysis/gluconeogenesis and arginine and proline 26 
metabolism. Concurrently, these subjects were found to be deficient in many important 27 
metabolic activities such as carbohydrate metabolism (including carbohydrate digestion and 28 
absorption¸ TCA cycle, oxidative phosphorylation, glycan biosynthesis and metabolism¸ 29 
glycosyltransferases), amino acid metabolism (including metabolism of glycine, serine, 30 
threonine, histidine), vitamin B metabolism (including folate, biotin, pyridoxine metabolism), 31 
glutathione metabolism and other functions (Supplementary Figure 6). Compared to Known-32 
DMs, New-DMs were deficient of carbohydrate digestion and absorption, glycosyltransferases 33 
and glutathione metabolism (Supplementary Figure 7). Conversely, they were enriched with 34 
functions unrelated to carbohydrate or amino acid or lipid metabolism compared to NGTs 35 
(Supplementary Figure 8). 36 

 37 

Discussion 38 

The present study is first to report perturbation in the gut microbiota of Indian diabetic subjects 39 
across the three domains of life. Considering the unique characteristics of Indian diabetic 40 
subjects, understanding their gut microbiota will be important to understand the possible role 41 
of gut microbiota in affecting these characteristics. Members of eubacteria such as Prevotella 42 
copri, Lachnospiraceae and Ruminococcaceae families were found significantly abundant in 43 
NGTs subjects. Known-DMs subjects exhibited increased abundance of Firmicutes and OTUs 44 
belonging to genus Lactobacillus. These organisms were seen to have an effect on the 45 
segregation of samples in both unweighted and weighted UniFrac based PCoA biplots. Fungi 46 
prevailed in New-DMs, especially genus Aspergillus, Candida and Saccharomyces were found 47 
enriched in these subjects. We also observed the progressive decline in butyrate-producing 48 
bacteria from NGTs to Known-DMs subjects. These variations in gut microbiota were 49 
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associated with diabetes risk factors such as fasting glucose, high triglycerides, low HDL and 1 
fasting insulin. Additionally, synergistic or antagonistic interactions occurring in gut microbiota 2 
were found specific to the stage of glucose intolerance. Using PICRUSt, we predicted that the 3 
gut microbiome of New-DMs subjects was metabolically disturbed and was lacking in many 4 
necessary functions. 5 

 6 

Increased Firmicutes and proportionate decrease in Bacteroidetes is linked with more energy 7 
harvesting and storage in ob/ob animals (Turnbaugh et al., 2006). Analogous to animal studies, 8 
human obesity is also found to be linked with higher Firmicutes to Bacteroidetes ratio (Ley et 9 
al., 2006). Our finding of increased abundance of Firmicutes in known-DMs is in agreement 10 
with previous reports (Karlsson et al., 2013) but not with findings of Larsen and co-workers, 11 
who reported a decrease in the proportion of Firmicutes (Larsen et al., 2010). Association of 12 
Firmicutes with obesity and diabetes could operate through insulin resistance which is a 13 
common attribute of both the conditions (Pandolfi et al., 2000). 14 

 15 

Analysis of differentially abundant OTUs revealed that NGTs were highly enriched with 16 
Prevotellaceae, Lachnospiraceae and Ruminococcaceae families. Members belonging to 17 
Prevotellaceae such as genus Prevotella contribute significantly to inter-individual variation in 18 
gut microbiota (Arumugam et al., 2011) and increased proportions of Prevotella are associated 19 
with the diet rich in plant-derived complex carbohydrates and fibres such as the diet in Indians 20 
(De Filippo et al., 2010). Additionally, a study in which subjects were kept of dietary 21 
interventions (barley kernel-based bread, which is considered as a rich source of fibres), showed 22 
that there was a significant increase in Prevotella copri and that it was found to be associated 23 
with improvement in glucose metabolism in these subjects (Kovatcheva-Datchary et al., 2015). 24 
Strikingly, several studies on type 1 diabetes, a pathophysiologically different disorder related 25 
to persistent hyperglycemia, are also reporting reduced levels of Prevotella in newly diagnosed 26 
as well as longstanding type 1 diabetic subjects (Alkanani et al., 2015; Mejía-León et al., 2014; 27 
Mejía-León and Barca, 2015). At this moment we could speculate that this could just be a 28 
coincidence or indeed it is linked with hyperglycemia per se which is a common attribute of 29 
type 1 and type 2 diabetes. Members of families Lachnospiraceae and Ruminococcaceae are 30 
known producers of short-chain fatty acids (SCFAs) such as acetate and butyrate. These SCFAs 31 
are known to confer many health benefits; individuals lacking bacterial families producing 32 
SCFAs suffer from many diseases (Morgan et al., 2012). Interestingly, we observed decreasing 33 
trends in the richness of these bacterial families with progressive deterioration of glucose 34 
tolerance (from NGTs to New-DMs to Known-DMs subjects). Presence of these families in the 35 
gut may be essential to foster a "healthy state", and their depletion might have a role in diabetes 36 
development (Remely et al., 2014). Thus, we hypothesise that the decreased abundance of 37 
Prevotella copri and concomitant loss of short chain fatty acids producers in New- and Known-38 
DMs subjects could be linked with glucose intolerance in these subjects as these organisms 39 
were found to be negatively correlated with fasting glucose in our analyses. 40 

 41 

We also found that Known-DMs were enriched with genus Lactobacillus consistent with 42 
previous studies on diabetic subjects in different populations of the world (Larsen et al., 2010; 43 
Lê et al., 2012). Karlsson and co-workers have also demonstrated enrichment of lactobacilli-44 
derived metagenomic clusters (MGCs) in type 2 diabetic patients that they found positively 45 
correlating with fasting glucose and HbA1c. Another large-scale study dealing with the 46 
characterization of over 170 Lactobacillus species from oral cavity showed a higher prevalence 47 
of lactobacilli in diabetic subjects (Teanpaisan et al., 2009) and this increase in Lactobacillus 48 
species has been linked with increased salivary glucose in children with diabetes (Karjalainen 49 
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et al., 1996). Lactobacillus ruminis that we have found to be significantly increased in Known-1 
DMs subjects is a member of indigenous gut microflora (O’ Donnell et al., 2015), and found to 2 
have as high as 16 carbohydrate utilization pathways including those for utilization of glucose, 3 
fructose, mannose, galactose, starch and sucrose (Forde et al., 2011). Thus, as reported earlier, 4 
the catabolic flexibility of this organism towards varied dietary carbohydrates is evident 5 
(O’Donnell et al., 2011). Above facts taken together, indicate that enrichment of the lactobacilli 6 
in gastrointestinal tract of diabetic subjects could be a consequence of higher than usual 7 
concentration of glucose, which needs to be confirmed. 8 

 9 

Besides this, we also show the gradation of NGTs, New-DMs and Known-DMs samples on 10 
UniFrac biplots. These UniFrac biplots were plotted using phylogenetic distance which is 11 
calculated utilizing unique branch-lengths i.e. only those branches that lead to descendants from 12 
one or the other sample but not both samples in a phylogenetic tree were considered (Lozupone 13 
et al., 2011). Hence, we believe that segregation of the samples is robust and could be because 14 
of the above mentioned compositional differences in bacterial communities in these subjects. 15 
We next attempted to group study participants into distinct clusters based on the presence of 16 
unique and dominant gut microbial communities called ‘enterotypes’ (Arumugam et al., 2011). 17 
Currently, the concept of enterotype is generating a lot of debate; different groups have different 18 
opinions about the presence or absence of such discrete cluster in human gut microbiome 19 
(Knights et al., 2014; Moeller et al., 2015). Although, it has been shown earlier that during 20 
identification of enterotypes, various factors influence clustering of subjects into distinct 21 
enterotypes (Koren et al., 2013); we feel that it is beyond the reach of this article to deal with 22 
theories of formation of enterotypes and associated factors affecting their formation, hence, we 23 
performed this analysis as originally proposed (Arumugam et al., 2011). We find substantial 24 
changes in major contributors of enterotype in New- and Known-DMs subjects compared to 25 
NGTs subjects. Especially, we observed E2 in New-DMs and E3 in Know-DMs subjects to be 26 
driven by Streptococcus and Lactobacillus respectively. These findings are important because 27 
clustering of subjects based on the presence of unique and predominated taxa could help us in 28 
identifying disease-related biomarkers, thus it can find its implications in microbiome-based 29 
diagnostics (Knights et al., 2014). 30 

 31 

We next looked into archaeal diversity in the three sample groups; Methanobrevibacter and 32 
Methanosphaera were the most prevalent genera. Methanobrevibacter smithii (M. smithii) and 33 
Methanosphaera stadtmanae are well adapted to the human gut environment, interestingly, the 34 
latter has acquired most of these adaptations through inter-domain lateral gene transfer (Lurie-35 
Weinberger et al., 2012; Samuel et al., 2007). As perceived by us and reported in a previous 36 
study (Turnbaugh et al., 2006), M. smithii has been represented in large proportion along with 37 
increased Firmicutes; it was involved in increased energy harvest through polysaccharide 38 
degradation. Further, the same study noted that this attribute was transmissible such that 39 
microbiota transplantation from obese donor to lean germ-free mice lead to gain in body fat. 40 
Additionally, M. smithii directs polysaccharide utilization by gut inhabitants, leading to the 41 
formation of large pools of SCFAs which is later used by M. smithii for methanogenesis in the 42 
gut with consequent increase in host adiposity (Samuel and Gordon, 2006). Thus, M. smithii 43 
can be a therapeutic target to avoid obesity and associated complications such as diabetes 44 
(Samuel et al., 2007). 45 

 46 

Based on the work we carried out and several other similar studies, gut eukaryotes and fungi 47 
appear to be important components of human gut. Such studies are crucial in the light of 48 
involvement of these organisms in human diseases both inside and outside of gastrointestinal 49 
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tract (Cui et al., 2013). Morphological and molecular phylogenetic-based classification of 1 
eukaryotes show that all eukaryotes originate from one of six super-groups and that most of 2 
them are microscopic in nature (Adl et al.). Although for decades human-associated eukaryotes 3 
are considered harmful to their host, recent examination of eukaryotic communities in the gut 4 
are amending our understanding of this generally neglected component (Hamad et al., 2012; 5 
Pandey et al., 2012; Parfrey et al., 2014). Studies such as these and our findings suggest that 6 
Blastocystis and fungi such as Ascomycota and Basidiomycota are predominant in the human 7 
gut. Fungi such as Candida albicans, Aspergillus fumigatus and Saccharomyces are 8 
opportunistic pathogens known to be exaggerated in immune-compromised people (Gouba and 9 
Drancourt, 2015; Li et al., 2014a). Fungal species mentioned above have also been associated 10 
with various diseases in type 1 (Soyucen et al., 2014) and type 2 diabetic subjects (Aly et al., 11 
1991; Nowakowska et al., 2004) and are probably because of the high blood glucose level in 12 
these subjects. Thus, marked enrichment of fungi belonging to these and other genera in New-13 
DMs subjects are likely due to the poor glycemic control in these subjects. 14 

 15 

We investigated associations between clinical parameters and OTU richness using 16 
permutational multivariate analysis of variance (PERMANOVA). PERMANOVA is 17 
considered a powerful technique in detecting changes in community structure in response to 18 
environmental parameters (Anderson MJ and Walsh DCI, 2013). We observed that fasting 19 
glucose, HDL, triglyceride and waist-hip ratio as largest contributors to the observed variation 20 
in OTU richness. Such correlations between risk factors for diabetes and variation in microbes 21 
in the gut have been previously reported (Zhang et al., 2013) and are also reflected in our 22 
dataset. Thus, it could be relevant in the microbiome-phenotype associations, since, low HDL 23 
and high triglycerides are typical features of dyslipidaemia found in T2D and known risk factors 24 
for cardiovascular disease (Mooradian, 2009). 25 

 26 

We used network analysis to capture specific ecological interactions among the eubacterial 27 
consortium in relation to diabetes status. Such interaction networks can predict the outcome of 28 
community alterations (Faust et al., 2012) and be helpful in designing intervention studies 29 
aimed at altering complex microbial communities to restore the healthy state. In essence, we 30 
are not demonstrating complete coverage of all microbial interactions in the gut; but analysing 31 
the interactions among microbes in the gut will help us understand how these communities 32 
develop or evolve in response to altered physiological and/or metabolic state such as diabetes. 33 
We thus highlight two characteristic features of this network: 1) the nature of the interactions 34 
observed were diabetes state specific and 2) the disintegration of the microbial cluster of genera: 35 
Lachnospira, Ruminococcus, Faecalibacterium, Roseburia, Oscillospira, Parabacteroides, 36 
Bulleidia from NGTs to New-DMs to Known-DMs. Almost all these genera include known 37 
beneficial species having the ability to produce SCFAs as mentioned earlier. Importantly, 38 
metagenomic linkage clusters (MLGs) belonging to these butyrate-producing genera were 39 
found enriched in non-diabetic controls in diabetes associated metagenomic study (Qin et al., 40 
2012). 41 

 42 

Finally, with the bioinformatics tool PICRUSt (Langille et al., 2013) which predicts functional 43 
composition using marker gene data, we had an opportunity to look into imputed metagenome-44 
based discrete functional alteration in eubacterial component of our study subjects. We 45 
observed that New-DMs were severely depleted with metabolic functions involved in 46 
carbohydrate metabolism, amino acid metabolism, various cofactor synthesis and oxidative 47 
stress management. Although PICRUSt can accurately predict metagenomic functions, it is 48 
limited to those sequences that can be accurately mapped to existing Greengenes database and 49 
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does not consider sequences from novel microbial lineages (Langille et al., 2013). Thus, our 1 
explanation on imputed metagenome is limited and interpreted cautiously. 2 

 3 

One of the strengths of our study is the comparison of gut microbiota of different grades of 4 
glucose intolerant subjects from a cohort which is has been followed for the past 20 years, this 5 
allowed a confident separation between newly diagnosed and known diabetic subjects. The 6 
participants are from the similar socioeconomic background and have a predominantly 7 
vegetarian diet. The age and gender distribution in the three groups were similar. One of the 8 
limitations of this study is that we were unable to describe sequential events in gut microbiota 9 
from healthy to diabetic state due to the cross-sectional design of this study. Another limitation 10 
of the study is the relatively small number of participants from one part of the country. Given 11 
the diversity in lifestyles, dietary habits, and social-economic status in the country, this study 12 
underscores a need for nationwide longitudinal studies. Our study is subject to inherent biases 13 
introduced by the use of high-throughput 16S rRNA amplicon sequencing. These include the 14 
region of 16S rRNA gene sequenced, set of primers used for gene amplification and use of 15 
sequence database for taxonomic assignments of the amplicon reads. 16 

 17 

In conclusion, our results add to the growing literature suggesting an association between gut 18 
microbiota and diabetes. Broad similarities between our results and literature reports suggest 19 
that our measurements are reliable and support consistent association across populations. 20 
Additionally, we have broadened the boundaries of diabetes associated gut microbiota by 21 
providing the consolidated description on eubacterial, archaeal and eukaryotic dysbiosis in 22 
these subjects. Given the peculiarities of diabetes in Indians, these results suggest an important 23 
avenue be further explored for causality and possible interventions to prevent or modify the 24 
course of diabetes and related disorders. We anticipate the need for subsequent studies 25 
describing differences in gut microbial communities of diabetes patients from different 26 
populations and identification of relevant population specific biomarkers. 27 
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Figures 1 

Figure 1: Summary of diversity measurements. 1a. Assessment of alpha diversity indices in 2 
NGTs, New-DMs and Known-DMs subjects. 1b: Variation in phylum level abundance, the box 3 
depicts interquartile range between first and third quartiles and the line within box denotes 4 
median. 5 

Figure 2: Differentially abundant OTUs & Beta diversity analysis. 2a. Heatmap of the 6 
differentially abundant OTUs in three study groups as determined by Kruskal-Wallis test. 2b. 7 
Unweighted UniFrac distance based and 2c. Weighted UniFrac distance based PCoA bi-plots; 8 
the grey coloured sphere represent a taxonomic group that influence clustering of samples 9 
(NGTs: green, New-DMs: yellow and Known-DMs: red) in particular area of the PCoA plot 10 
and its size demonstrate abundance of that taxonomic group 11 

Figure 3: Clustering of NGTs, New-DMs and Known-DMs subjects into enterotypes (E). 12 
3a. Clustering of all 49 subjects into enterotypes, NGTs, New-DMs and Known-DMs subjects 13 
are identified as different shapes. 3b. Clustering of NGTs subjects only. 3c. Clustering of New-14 
DMs only and 3d. Clustering of Known-DMs only. Upper panel of each part are showing 15 
projection of first two principal components of between-class analysis and lower panel shows 16 
the driver genera in corresponding enterotypes (E1: green, E2: blue and E3: red). 17 

Figure 4: Assessment of archaea, eukarya and fungi. Heatmap showing abundance of 18 
different members of archaeal, eukarya and fungal components of NGTs, New-DMs and 19 
Known-DMs subjects. 20 

Figure 5: Co-inertia analysis of relationship of genus level abundance and clinical 21 
parameters. Upper panel shows positions of the site on the co-inertia axes using genus (origin 22 
of the arrow) and clinical parameter (arrowheads) co-inertia weights. The shorter the arrow, the 23 
better the concordance between the two projections. The numbers indicate the samples: NGTs 24 
- 1-19, New-DMs - 20-33, Known-DMs - 34-49. Lower pair of plot shows contribution of the 25 
two groups of variable to the canonical space; vectors pointing to the same direction are 26 
correlated. 27 

Figure 6: Significant co-occurrence and co-exclusion relationships at genus level. Each 28 
node represents a bacterial genus; size of the node is proportional to the abundance of the genus 29 
and coloured according to diabetes status (Red: Known-DMs, Yellow: New-DMs and Green: 30 
NGTs). Each edge represents co-occurrence/co-exclusion relationships, edge width is 31 
proportional to the significance of supporting evidence, and colour indicates sign of the 32 
association (red: negative, green: positive). 33 

  34 
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Table1: Biochemical and Anthropometric parameters of the three study groups (Shown in the 1 
table mean±SD). 2 

3 

 NGTs New-DMs Known-DMs 

N 19 14 16 

Age 48.85±5.4 48.64±5.68 50.62±3.49 

BMI kg/m2 25.52±4.0 28.32±2.58a 27.41±3.53 

Waist-hip ratio 0.92±0.088 0.99±0.071 0.96±0.061 

% body fat 35.68±8.21 37.50±6.12 35.46±8.77 

Fasting glucose mg/dl 93.8±8.16 138.07±47.35a 146.81±44.90b 

120 min glucose mg/dl 110.50 (18.40) 250.86±77.76a NA 

PP glucose mg/dl NA NA 226.12±58.43 

Fasting insulin IU/L 9.16±5.69 12.06±6.11 10.94±8.31 

120 min insulin IU/L 71.39±36.60 127.75±183.76 NA 

Systolic BP mmHg 115.66±12.77 114.07±37.81 110.69±31.64 

Diastolic BP mmHg 73.53±10.74 73.43±23.31 70.22±20.34 

Cholesterol mg/dl 166.63±24.06 194.57±44.15a 174.19±38.11 

Triglycerides mg/dl 120.60±58 126.64±54.41 137.18±63.18 

HDL cholesterol mg/dl 38.50±8.15 40.79±7.51 41.06±7.76 
a p value <0.01 for New-DMs vs. NGTs 
b p value <0.01 for Known-DMs vs. NGTs 
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Supplementary Material 1 

Tables: 2 

Supplementary Table 1: Primer used during the PCR amplification of archaeal, eukaryotic 3 
and fungal communities. 4 

Supplementary Table 2: Showing top twenty negative correlations between OTU abundance 5 
and fasting glucose.  6 

Supplementary Table 3: Summary of PERMANOVA test associating clinical parameters with 7 
the OTU abundance.  8 

Supplementary Table 4: Summary number of edges observed among three groups. 9 

 10 

Figures: 11 

Supplementary Figure 1: Optimal number of clusters supporting formation of three 12 
enterotypes in NGTs, New-DMs and Known-DMs subjects. 13 

Supplementary Figure 2: Node degree distributions of the network of co-occurrence, and co-14 
exclusion associations. Node degree indicates the number of links that connect a node to others 15 
in the network. Power law degree distributions means that most nodes have only a few edges 16 
and are often connected by a few high-degree hub nodes. 17 

Supplementary Figure 3: Significant co-occurrence relationships at genus level in NGTs 18 
subjects. Each node represents a bacterial genus; size of the node is proportional to the 19 
abundance of the genus. Each edge represents co-occurrence relationships; edge width is 20 
proportional to the significance of supporting evidence.  21 

Supplementary Figure 4: Significant co-occurrence relationships at genus level in New-DMs 22 
subjects. Each node represents a bacterial genus; size of the node is proportional to the 23 
abundance of the genus. Each edge represents co-occurrence relationships; edge width is 24 
proportional to the significance of supporting evidence.  25 

Supplementary Figure 5: Significant co-occurrence relationships at genus level in Known-26 
DMs subjects. Each node represents a bacterial genus; size of the node is proportional to the 27 
abundance of the genus. Each edge represents co-occurrence relationships; edge width is 28 
proportional to the significance of supporting evidence. 29 

Supplementary Figure 6: Extended error bar plot showing the differentially enriched KOs in 30 
NGTs subjects (green bars) as compared to New-DMs subjects (yellow bars).  31 

Supplementary Figure 7: Extended error bar plot showing the differentially enriched KOs in 32 
NGTs subjects (green bars) as compared to Known-DMs subjects (red bars). 33 

Supplementary Figure 8: Extended error bar plot showing the differentially enriched KOs in 34 
New-DMs subjects (yellow bars) as compared to Known-DMs subjects (red bars). 35 
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