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Abstract

This paper studies the use of structural
representations for learning relations be-
tween pairs of short texts (e.g., sentences
or paragraphs) of the kind: the second
text answers to, or conveys exactly the
same information of, or is implied by, the
first text. Engineering effective features
that can capture syntactic and semantic re-
lations between the constituents compos-
ing the target text pairs is rather complex.
Thus, we define syntactic and semantic
structures representing the text pairs and
then apply graph and tree kernels to them
for automatically engineering features in
Support Vector Machines. We carry out
an extensive comparative analysis of state-
of-the-art models for this type of relational
learning. Our findings allow for achiev-
ing the highest accuracy in two differ-
ent and important related tasks, i.e., Para-
phrasing Identification and Textual Entail-
ment Recognition.

1 Introduction

Advanced NLP systems, e.g., IBM Watson system
(Ferrucci et al., 2010), are the result of effective
use of syntactic/semantic information along with
relational learning (RL) methods. This research
area is rather vast including, extraction of syntac-
tic relations, e.g., (Nastase et al., 2013), predicate
relations, e.g., Semantic Role Labeling (Carreras
and Màrquez, 2005) or FrameNet parsing (Gildea
and Jurafsky, 2002) and relation extraction be-
tween named entities, e.g., (Mintz et al., 2009).

Although extremely interesting, the above
methods target relations only between text con-
stituents whereas the final goal of an intelligent
system would be to interpret the semantics of
larger pieces of text, e.g., sentences or para-
graphs. This line of research relates to three

broad fields, namely, Question Answering (QA)
(Voorhees and Tice, 1999), Paraphrasing Identifi-
cation (PI) (Dolan et al., 2004) and Recognition
of Textual Entailments (RTE) (Giampiccolo et al.,
2007). More generally, RL from text can be denied
as follows: given two text fragments, the main
goal is to derive relations between them, e.g., ei-
ther if the second fragment answers the question,
or conveys exactly the same information or is im-
plied by the first text fragment. For example, the
following two sentences:
- License revenue slid 21 percent, however, to
$107.6 million.
- License sales, a key measure of demand, fell 21
percent to $107.6 million.
express exactly the same meaning, whereas the
next one:
- She was transferred again to Navy when the
American Civil War began, 1861.
implies:
- The American Civil War started in 1861.

Automatic learning a model for deriving the re-
lations above is rather complex as any of the text
constituents, e.g., License revenue, a key measure
of demand, in the two sentences plays an important
role. Therefore, a suitable approach should ex-
ploit representations that can structure the two sen-
tences and put their constituents in relation. Since
the dependencies between constituents can be an
exponential number and representing structures in
learning algorithms is rather challenging, auto-
matic feature engineering through kernel methods
(Shawe-Taylor and Cristianini, 2004; Moschitti,
2006) can be a promising direction.

In particular, in (Zanzotto and Moschitti, 2006),
we represented the two evaluating sentences for
the RTE task with syntactic structures and then ap-
plied tree kernels to them. The resulting system
was very accurate but, unfortunately, it could not
scale to large datasets as it is based on a compu-
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tationally exponential algorithm. This prevents its
application to PI tasks, which typically require a
large dataset to train the related systems.

In this paper, we carry out an extensive exper-
imentation using different kernels based on trees
and graphs and their combinations with the aim of
assessing the best model for relation learning be-
tween two entire sentences (or even paragraphs).
More in detail, (i) we design many models for RL
combining state-of-the-art tree kernels and graph
kernels and apply them to innovative computa-
tional structures. These innovative combinations
use for the fist time semantic/syntactic tree ker-
nels and graph kernels for the tackled tasks. (ii)
Our kernels provide effective and efficient solu-
tions, which solve the previous scalability problem
and, at the same time, exceed the state of the art
on both RTE and PI. Finally, our study suggests
research directions for designing effective graph
kernels for RL.

2 Related Work

In this paper, we apply kernel methods, which en-
able an efficient comparison of structures in huge,
possibly infinite, feature spaces. While for trees, a
comparison using all possible subtrees is possible,
designing kernel functions for graphs with such
property is an NP-Hard problem (i.e., it shows the
same complexity of the graph isomorphism prob-
lem) (Gartner et al., 2003). Thus most kernels
for graphs only associate specific types of sub-
structures with features, such as paths (Borgwardt
and Kriegel, 2005; Heinonen et al., 2012), walks
(Kashima et al., 2003; Vishwanathan et al., 2006)
and tree structures (Cilia and Moschitti, 2007;
Mahé and Vert, 2008; Shervashidze et al., 2011;
Da San Martino et al., 2012).

We exploit structural kernels for PI, whose task
is to evaluate whether a given pair of sentences is
in the paraphrase class or not, (see for example
(Dolan et al., 2004)). Paraphrases can be seen as
a restatement of a text in another form that pre-
serves the original meaning. This task has a pri-
mary importance in many other NLP and IR tasks
such as Machine Translation, Plagiarism Detec-
tion and QA. Several approaches have been pro-
posed, e.g., (Socher et al., 2011) apply a recursive
auto encoder with dynamic pooling, and (Madnani
et al., 2012) use eight machine translation metrics
to achieve the state of the art. To our knowledge no
previous model based on kernel methods has been

applied before: with such methods, we outperform
the state of the art in PI.

A description of RTE can be found in (Giampic-
colo et al., 2007): it is defined as a directional
relation extraction between two text fragments,
called text and hypothesis. The implication is sup-
posed to be detectable only based on the text con-
tent. Its applications are in QA, Information Ex-
traction, Summarization and Machine translation.
One of the most performing approaches of RTE 3
was (Iftene and Balahur-Dobrescu, 2007), which
largely relies on external resources (i.e., WordNet,
Wikipedia, acronyms dictionaries) and a base of
knowledge developed ad hoc for the dataset. In
(Zanzotto and Moschitti, 2006), we designed an
interesting but computationally expensive model
using simple syntactic tree kernels. In this pa-
per, we develop models that do not use external
resources but, at the same time, are efficient and
approach the state of the art in RTE.

3 Structural kernels

Kernel Machines carry out learning and classifi-
cation by only relying on the inner product be-
tween instances. This can be efficiently and im-
plicitly computed by kernel functions by exploit-
ing the following dual formulation of the model
(hyperplane):

P
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vector coefficients, o

i

and o are two objects, � is
a mapping from the objects to feature vectors ~x

i

and �(o
i

) · �(o) = K(o
i

, o) is the kernel func-
tion implicitly defining such mapping. In case
of structural kernels, K maps objects in substruc-
tures, thus determining their size and shape. Given
two structures S1 and S2, our general definition of
structural kernels is the following:

K(S1, S2) =

X

s1✓S1,s2✓S2,si2S
k

iso

(s1, s2), (1)

where s
i

are substructures of S
i

, S is the set of ad-
missible substructures, and k

iso

determines if the
two substructures are isomorphic, i.e., it outputs 1
if s1 and s2 are isomorphic and 0 otherwise.

In the following, we also provide a more
computational-oriented definition of structural
kernels to more easily describe those we use in our
work:
Let the set S = {s1, s2, . . . , s|S|} be the substruc-
ture space and �

i

(n) be an indicator function,
equal to 1 if the target s

i

is rooted at node n and
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equal to 0 otherwise. A structural-kernel function
over S1 and S2 is

K(S1, S2) =

X

n12NS1

X

n22NS2

�(n1, n2), (2)

where N
S1 and N

S2 are the sets of the S1’s and
S2’s nodes, respectively and

�(n1, n2) =

|S|X

i=1

�
i

(n1)�i

(n2). (3)

The latter is equal to the number of common
substructures rooted in the n1 and n2 nodes.
In order to have a similarity score between 0
and 1, a normalization in the kernel space, i.e.,

K(S1,S2)p
K(S1,S1)⇥K(S2,S2)

is usually applied. From a

practical computation viewpoint, it is convenient
to divide structural kernels in two classes of algo-
rithms working either on trees or graphs.

3.1 The Partial Tree Kernel (PTK)

PTK (Moschitti, 2006) generalizes a large class
of tree kernels as it computes one of the most
general tree substructure spaces. Given two trees
S1 and S2, PTK considers any connected subset
of nodes as possible feature of the substructure
space, and counts how many of them are shared
by S1 and S2. Its computation is carried out by
Eq. 2 using the following �

PTK

function:
if the labels of n1 and n2 are different
�

PTK

(n1, n2) = 0; else �

PTK

(n1, n2) =

µ
⇣
�2

+

X

~

I1,

~

I2,l(~I1)=l(~I2)

�d(~I1)+d(~I2)

l(~I1)Y

j=1

�PTK(c
n1(

~I1j

), c
n2(

~I2j

))

⌘

where µ,� 2 [0, 1] are two decay factors, ~I1 and
~I2 are two sequences of indices, which index sub-
sequences of children u, ~I = (i1, ..., i|u|), in se-
quences of children s, 1  i1 < ... < i|u|  |s|,
i.e., such that u = s

i1 ..si|u| , and d(

~I) = i|u| �
i1 + 1 is the distance between the first and last
child. The PTK computational complexity is
O(p⇢2|N

S1 ||NS2 |) (Moschitti, 2006), where p is
the largest subsequence of children that we want
to consider and ⇢ is the maximal outdegree ob-
served in the two trees. However the average run-
ning time tends to be linear for natural language
syntactic trees (Moschitti, 2006).

3.2 Smoothed Partial Tree Kernel (SPTK)

Constraining the application of lexical simi-
larity to words embedded in similar structures

provides clear advantages over all-vs-all words
similarity, which tends to semantically di-
verge. Indeed, syntax provides the necessary
restrictions to compute an effective semantic
similarity. SPTK (Croce et al., 2011) gen-
eralizes PTK by enabling node similarity
during substructure matching. More formally,
SPTK is computed by Eq. 2 using the following
�

SPTK

(n1, n2) =

P|S|
i,j=1 �

i

(n1)�j

(n2)⌃(s
i

, s
j

),
where ⌃ is a similarity between structures1. The
recursive definition of �

SPTK

is the following:
1. if n1 and n2 are leaves �

SPTK

(n1, n2) =

µ��(n1, n2);
2. else �

SPTK

(n1, n2) = µ�(n1, n2)⇥
⇣
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+

X

~
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~
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�
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), c
n2(
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))

⌘
,

where � is any similarity between nodes, e.g., be-
tween their lexical labels, and the other variables
are the same of PTK. The worst case complexity
of SPTK is identical to PTK and in practice is
not higher than O(|N

S1 ||NS2 |).

3.3 Neighborhood Subgraph Pairwise

Distance Kernel (NSPDK)

When general subgraphs are used as features in a
kernel computation, eq. 1 and 2 become computa-
tionally intractable (Gartner et al., 2003). To solve
this problem, we need to restrict the set of consid-
ered substructures S. (Costa and De Grave, 2010)
defined NSPDK such that the feature space is
only constituted by pairs of subgraphs (substruc-
tures) that are (i) centered in two nodes n1 and n2

such that their distance is not more than D; and
(ii) constituted by all nodes (and their edges) at
an exact distance h from n1 or n2, where the dis-
tance between two nodes is defined as the num-
ber of edges in the shortest path connecting them.
More formally, let G, N

G

and E
G

be a graph and
its set of nodes and edges, respectively, the sub-
structure space S = S

G

(H,D) used by NSPDK
in eqs 2 and 3 is:

{(�
h

(n), �
h

(n0)) : 1  h  H,n, n0 2 N
G

,

d(n, n0)  D},

where �
h

(n) returns the subgraph obtained by ex-
ecuting h steps of a breadth-first visit of G starting
from node n and d(n, n0) is the distance between
two nodes in the graph. Note that (i) any feature

1Note that this generalizes Eq. 3.
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of the space is basically a pair of substructures;
and (ii) there is currently no efficient (implicit) for-
mulation for computing such kernel. In contrast,
when H and D are limited, it is simple to compute
the space S

G

(H,D) explicitly. In such case, the
complexity of the kernel is given by the substruc-
ture extraction step, which is O(|N

G

|⇥ h⇢ log ⇢).

3.4 Kernel Combinations

Previous sections have shown three different ker-
nels. Among them, NSPDK is actually an ex-
plicit kernel, where the features are automatically
extracted with a procedure. In NLP, features are
often manually defined by domain experts, who
know the linguistic phenomena involved in the
task. When available, such features are important
as they encode some of the background knowledge
on the task. Therefore, combining different feature
spaces is typically very useful. Fortunately, ker-
nel methods enable an easy integration of different
kernels or feature spaces, i.e., the kernel sum pro-
duces the joint feature space and it is still a valid
kernel. In the next section, we show representa-
tions of text, i.e., structures and features, specific
to PI and RTE.

4 Representations for RL from text

The kernels described in the previous section can
be applied to generic trees and graphs. Auto-
matic feature engineering using structural kernels
requires the design of structures for representing
data examples that are specific to the learning task
we want to tackle. In our case, we focus on RL,
which consists in deriving the semantic relation
between two entire pieces of text. We focus on
two well-understood relations, namely, paraphras-
ing and textual implications. The tasks are simply
defined as: given two texts a1 and a2, automati-
cally classify if (i) a1 is a paraphrase of a2 and/or
(ii) a1 implies a2. Although the two tasks are lin-
guistically and conceptually rather different, they
can be modeled in a similar way from a shallow
representation viewpoint. This is exactly the per-
spective we would like to keep for showing the ad-
vantage of using kernel methods. Therefore, in the
following, we define sentence representations that
can be suitably used for both tasks and then we
rely on structural kernels and the adopted learning
algorithm for exploring the substructures relevant
to the different tasks.

4.1 Tree Representations

An intuitive understanding of our target tasks
suggests that syntactic information is essential to
achieve high accuracy. Therefore, we consider
the syntactic parse trees of the pair of sentences
involved in the evaluation. For example, Fig. 1
shows the syntactic constituency trees of the
sentences reported in the introduction (these
do not include the green label REL and the
dashed edges). Given two pairs of sentences,
p

a

= ha1, a2i and p
b

= hb1, b2i, an initial kernel
for learning the tasks, can be the simple tree
kernel sum, e.g., PTK(a1, b1) + PTK(a2, b2)

as was defined in (Moschitti, 2008). This kernel
works in the space of the union of the sets of all
subtrees from the upper and lower trees, e.g.:

a1:
�
[PP [TO [to::t]][NP [QP [$

[$::$]][QP [CD [107.6::c]]]]]], [PP

[TO][NP [QP [$][QP [CD [107]]]]]], [PP

[TO][NP [QP [QP [CD]]]]], [PP [NP [QP

[QP]]]], ...
 

S

a2:
�
[NP [NP [DT [a::d]] [JJ [key::j]

NN]][PP]], [NP [NP [DT] [JJ NN]][PP]], [NP
[NP [JJ NN]][PP]], [NP [NP [NN]][PP]],

[NP [NP [JJ]][PP]], ...
 

However, such features cannot capture the rela-
tions between the constituents (or semantic lexical
units) from the two trees. In contrast, these are es-
sential to learn the relation between the two entire
sentences2.

To overcome this problem, in (Zanzotto and
Moschitti, 2006), we proposed the use of place-
holders for RTE: the main idea was to annotate the
matches between the constituents of the two sen-
tences, e.g., 107.6 millions, on both trees. This
way the tree fragments in the generated kernel
space contained an index capturing the correspon-
dences between a1 and a2. The critical drawback
of this approach is that other pairs, e.g., p

b

, will
have in general different indices, making the rep-
resentation very sparse. Alternatively, we experi-
mented with models that select the best match be-
tween all possible placeholder assignments across
the two pairs. Although we obtained a good im-
provement, such solution required an exponential
computational time and the selection of the max

2Of course assuming that text meaning is compositional.
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Figure 1: Text representations for PI and RTE: (i) pair of trees, a1 (upper) and a2 (lower), (ii) combined
in a graph with dashed edges, and (iii) labelled with the tag REL (in green). The nodes highlighted in
yellow constitute a feature for the NSPDK kernel (h = 1, D = 3) centered at the nodes ADVB and
NP-REL.

assignment made our similarity function a non-
valid kernel.

Thus, for this paper, we prefer to rely on a more
recent solution we proposed for passage reranking
in the QA domain (Severyn and Moschitti, 2012;
Severyn et al., 2013a; Severyn et al., 2013b), and
for Answer Selection (Severyn and Moschitti,
2013). It consists in simply labeling matching
nodes with a special tag, e.g., REL, which
indicates the correspondences between words.
REL is attached to the father and grandfather
nodes of the matching words. Fig. 1 shows
several green REL tags attached to the usual
POS-tag and constituent node labels of the parse
trees. For example, the lemma license is matched
by the two sentences, thus both its father, JJ,
and its grandfather, NP, nodes are marked with
REL. Thanks to such relational labeling the
simple kernel, PTK(a1, b1) + PTK(a2, b2), can
generate relational features from a1, e.g., [NP

[NP-REL [JJ-REL] NN]][PP]], [NP [NP-REL

[NN]][PP]], [NP [NP-REL [JJ-REL]][PP]],...
If such features are matched in b1, they provide
the fuzzy information: there should be a match
similar to [NP [NP-REL [JJ-REL]] also between
a2 and b2. This kind of matches establishes a sort
of relational pair features.

It should be noted that we proposed more
complex REL tagging policies for Passage Re-
ranking, exploiting additional resources such as
Linked Open Data or WordNet (Tymoshenko et
al., 2014). Another interesting application of this
RL framework is the Machine Translation Evalua-
tion (Guzmán et al., 2014). Finally, we used a sim-
ilar model for translating questions to SQL queries
in (Giordani and Moschitti, 2012).

4.2 Graph Representations

The relational tree representation can capture re-
lational features but the use of the same REL
tag for any match between the two trees prevents
to deterministically establish the correspondences
between nodes. For exactly representing such
matches (without incurring in non-valid kernels
or sparsity problems), a graph representation is
needed. If we connect matching nodes (or also
nodes labelled as REL) in Fig. 1 (see dashed
lines), we obtain a relational graph. Substructures
of such graph clearly indicate how constituents,
e.g., NPs, VPs, PPs, from one sentence map into
the other sentence. If such mappings observed
in a pair of paraphrase sentences are matched
in another sentence pair, there may be evidence
that also the second pair contains paraphrase sen-
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tences.
Unfortunately, the kernel computing the space

of all substructures of a graph (even if only con-
sidering connected nodes) is an intractable prob-
lem as mentioned in Sec. 3.3. Thus, we opt for the
use of NSPDK, which generates specific pairs
of structures. Intuitively, the latter can capture re-
lational features between constituents of the two
trees. Figure 1 shows an example of features gen-
erated by the NSPDK with parameters H =

1, D = 3 (the substructures are highlighted in
yellow), i.e., [ADVB [VP] [RB]], [NP-REL [VP]

[CD-REL] [NN-REL]].

4.3 Basic Features

In addition to structural representations, we also
use typical features for capturing the degrees of
similarity between two sentences. In contrast,
with the previous kernels these similarities are
computed intra-pair, e.g., between a1 and a2. Note
that any similarity measure generates only one fea-
ture. Their description follows:
– Syntactic similarities, which apply the cosine
function to vectors of n-grams (with n = 1, 2, 3, 4)
of word lemmas and part-of-speech tags.
– Kernel similarities, which use PTK or SPTK
applied to the sentences within the pair.

We also used similarity features from the
DKPro of the UKP Lab (Bär et al., 2012), tested
in the Semantic Textual Similarity (STS) task:
– Longest common substring measure and Longest
common subsequence measure, which determine
the length of the longest substring shared by two
text segments.
– Running-Karp-Rabin Greedy String Tiling pro-
vides a similarity between two sentences by count-
ing the number of shuffles in their subparts.
– Resnik similarity based on the WordNet hierar-
chy.
– Explicit Semantic Analysis (ESA) similar-
ity (Gabrilovich and Markovitch, 2007) repre-
sents documents as weighted vectors of con-
cepts learned from Wikipedia, WordNet and Wik-
tionary.
– Lexical Substitution (Szarvas et al., 2013):
a supervised word sense disambiguation system
is used to substitute a wide selection of high-
frequency English nouns with generalizations,
then Resnik and ESA features are computed on the
transformed text.

4.4 Combined representations

As mentioned in Sec. 3.4, we can combine ker-
nels for engineering new features. Let K be PTK
or SPTK, given two pairs of sentences p

a

=

ha1, a2i and p
b

= hb1, b2i, we build the following
kernel combinations for the RTE task:

(i) K+
(p

a

, p
b

) = K(a1, b1) + K(a2, b2), which
simply sums the similarities between the first
two sentences and the second two sentences
whose implication has to be derived.

(ii) An alternative kernel combines the two
similarity scores above with the product:
K⇥

(p
a

, p
b

) = K(a1, b1) · K(a2, b2).

(iii) The symmetry of the PI task requires differ-
ent kernels. The most intuitive applies K
between all member combinations and sum
all contributions: all+

K

(p
a

, p
b

)=K(a1, b1) +

K(a2, b2) + K(a1, b2) + K(a2, b1).

(iv) It is also possible to combine pairs of
corresponding kernels with the product:
all⇥

K

(p
a

, p
b

) = K(a1, b1)K(a2, b2) +

K(a1, b2)K(a2, b1).

(v) An alternative kernel selects only the best be-
tween the two products above: M

K

(p
a

, p
b

) =
max(K(a1, b1)K(a2, b2), K(a1, b2)K(a2, b1)).
This is motivated by the observation that
before measuring the similarity between
two pairs, we need to establish which
a

i

is more similar to b
j

. However, the
max operator causes M

K

not to be a
valid kernel function, thus we substi-
tute it with a softmax function, which
is a valid kernel, i.e., SM

K

(p
a

, p
b

) = soft-
max(K(a1, b1)K(a2, b2), K(a1, b2)K(a2, b1)),
where softmax(x1, x2) =

1
c

log(ecx1
+ ecx2

)

(c=100 was accurate enough).

The linear kernel (LK) over the basic features
(described previously) and/or NSPDK can be of
course added to all the above kernels.

5 Experiments

5.1 Setup

MSR Paraphrasing: we used the Microsoft Re-
search Paraphrase Corpus (Dolan et al., 2004) con-
sisting of 4,076 sentence pairs in the training set
and 1,725 sentence pairs in test set, with a distri-
bution of about 66% between positive and negative
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Vs Test 5 Fold Cross Validation
Kernel Acc (%) P R F1 Acc (%) P R F1

w
ithoutR

EL
tagging

LK 75.88 0.784 0.881 0.829 75.54± 0.45 0.786± 0.009 0.876± 0.019 0.828± 0.004
GK 72.81 0.720 0.967 0.825 72.49± 1.22 0.723± 0.014 0.957± 0.011 0.824± 0.008

SMP T K 72.06 0.722 0.943 0.818 72.04± 1.08 0.725± 0.009 0.940± 0.017 0.819± 0.009
SMSP T KLSA

72.12 0.722 0.943 0.818 72.56± 1.10 0.731± 0.010 0.937± 0.017 0.821± 0.009
SMSP T KW2V

71.88 0.719 0.946 0.817 72.23± 1.07 0.727± 0.009 0.938± 0.017 0.820± 0.009
all⇥P T K 71.42 0.718 0.939 0.814 71.57± 0.86 0.724± 0.007 0.933± 0.015 0.815± 0.008

all⇥SP T KLSA
72.29 0.725 0.941 0.819 72.06± 0.62 0.730± 0.007 0.928± 0.014 0.817± 0.006

all⇥SP T KW2V
71.59 0.717 0.947 0.816 71.61± 0.76 0.725± 0.008 0.931± 0.013 0.815± 0.007

all+P T K 70.78 0.716 0.930 0.809 70.76± 0.91 0.720± 0.008 0.924± 0.017 0.809± 0.009
all+SP T KLSA

71.48 0.720 0.934 0.813 71.42± 0.91 0.727± 0.008 0.920± 0.020 0.812± 0.009

all+SP T KW2V
70.72 0.714 0.935 0.809 71.19± 1.22 0.723± 0.010 0.927± 0.018 0.812± 0.011

MP T K 72.17 0.725 0.935 0.817 72.31± 0.67 0.731± 0.007 0.930± 0.015 0.819± 0.007
MSP T KLSA

72.00 0.725 0.934 0.816 72.32± 0.44 0.732± 0.006 0.927± 0.014 0.818± 0.005
MSP T KW2V

71.71 0.722 0.933 0.814 71.99± 0.96 0.730± 0.008 0.926± 0.016 0.816± 0.008

w
ith

R
EL

tagging

GK 75.07 0.752 0.933 0.833 74.69± 2.52 0.749± 0.029 0.940± 0.008 0.834± 0.018
SMP T K 76.17 0.765 0.927 0.838 75.42± 0.86 0.771± 0.007 0.903± 0.012 0.832± 0.008

SMSP T KLSA
76.52 0.767 0.929 0.840 75.62± 0.90 0.772± 0.007 0.905± 0.013 0.833± 0.007

SMSP T KW2V
76.35 0.766 0.929 0.839 75.64± 0.77 0.771± 0.004 0.907± 0.012 0.833± 0.007

all⇥P T K 75.36 0.767 0.905 0.830 74.76± 0.71 0.769± 0.006 0.892± 0.016 0.826± 0.008
all⇥SP T KLSA

75.65 0.770 0.903 0.831 74.83± 0.92 0.771± 0.009 0.891± 0.011 0.826± 0.008

all⇥SP T KW2V
75.88 0.772 0.905 0.833 75.26± 0.81 0.771± 0.008 0.898± 0.011 0.830± 0.008

all+P T K 74.49 0.762 0.895 0.824 73.99± 1.04 0.767± 0.010 0.880± 0.013 0.820± 0.009
all+SP T KLSA

75.07 0.767 0.899 0.827 73.87± 0.85 0.766± 0.009 0.880± 0.010 0.819± 0.007

all+SP T KW2V
75.42 0.772 0.894 0.829 74.16± 0.75 0.768± 0.008 0.882± 0.012 0.821± 0.007

GK+SMSP T KW2V
76.70 0.782 0.901 0.837 76.12± 0.96 0.787± 0.008 0.885± 0.015 0.833± 0.009

LK+GK 78.67 0.802 0.902 0.849 77.85± 1.00 0.804± 0.008 0.886± 0.015 0.843± 0.009
LK+SMSP T KW2V

77.74 0.794 0.899 0.843 77.52± 1.41 0.802± 0.011 0.885± 0.016 0.841± 0.011
LK+GK+SMSP T KW2V

79.13 0.807 0.901 0.852 78.11± 0.94 0.811± 0.005 0.879± 0.016 0.844± 0.009
(Socher et al., 2011) 76.8 � � 0.836 � � � �

(Madnani et al., 2012) 77.4 � � 0.841 � � � �

Table 1: Results on Paraphrasing Identification

examples. These pairs were extracted from top-
ically similar Web news articles, applying some
heuristics that select potential paraphrases to be
annotated by human experts.
RTE-3. We adopted the RTE-3 dataset (Giampic-
colo et al., 2007), which is composed by 800 text-
hypothesis pairs in both the training and test sets,
collected by human annotators. The distribution
of the examples among the positive and negative
classes is balanced.

5.1.1 Models and Parameterization

We train our classifiers with the C-SVM learning
algorithm (Chang and Lin, 2011) within KeLP3, a
Kernel-based Machine Learning platform that im-
plements tree kernels. In both tasks, we applied
the kernels described in Sec. 4, where the trees are
generated with the Stanford parser4.

SPTK uses a node similarity function
�(n1, n2) implemented as follows: if n1 and n2

are two identical syntactic nodes � = 1. If n1

and n2 are two lexical nodes with the same POS
tag, their similarity is evaluated computing the
cosine similarity of their corresponding vectors in
a wordspace. In all the other cases � = 0. We
generated two different wordspaces. The first is

3
https://github.com/SAG-KeLP

4
http://nlp.stanford.edu/software/corenlp.shtml

a co-occurrence LSA embedding as described in
(Croce and Previtali, 2010). The second space is
derived by applying a skip-gram model (Mikolov
et al., 2013) with the word2vec tool5. SPTK
using the LSA will be referred to as SPTK

LSA

,
while when adopting word2vec it will be indicated
with SPTK

W2V

. We used default parameters
both for PTK and SPTK whereas we selected
h and D parameters of NSPDK that obtained
the best average accuracy using a 5-fold cross
validation on the training set.

5.1.2 Performance measures

The two considered tasks are binary classification
problems thus we used Accuracy, Precision, Re-
call and F1. The adopted corpora have a prede-
fined split between training and test sets thus we
tested our models according to such settings for
exactly comparing with previous work. Addition-
ally, to better assess our results, we performed a 5-
fold cross validation on the complete datasets. In
case of PI, the same sentence can appear in mul-
tiple pairs thus we distributed the pairs such that
the same sentence can only appear in one fold at a
time.

5
https://code.google.com/p/word2vec/
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Vs Test 5 Fold Cross Validation
Kernel Acc (%) P R F1 Acc (%) P R F1

w
ithoutR

EL
tagging

LK 62 0.608 0.729 0.663 62.94± 5.68 0.635± 0.057 0.679± 0.083 0.652± 0.049
GK 55.375 0.555 0.651 0.599 55.63± 1.81 0.564± 0.022 0.612± 0.087 0.584± 0.032

PTK+ 56.13 0.560 0.676 0.612 54.13± 3.26 0.547± 0.024 0.637± 0.051 0.587± 0.027
SPTK+

LSA 56.88 0.566 0.683 0.619 53.63± 2.50 0.543± 0.024 0.622± 0.060 0.578± 0.027
SPTK+

W2V 56.63 0.563 0.683 0.617 54.06± 2.34 0.546± 0.022 0.634± 0.060 0.585± 0.026
PTK⇥ 55.88 0.558 0.671 0.609 52.81± 1.99 0.535± 0.025 0.623± 0.055 0.574± 0.028

SPTK⇥LSA 56.25 0.561 0.671 0.611 53.56± 2.09 0.543± 0.022 0.616± 0.065 0.576± 0.026
SPTK⇥W2V 55.25 0.554 0.646 0.597 52.50± 1.77 0.533± 0.027 0.619± 0.071 0.571± 0.034

w
ith

R
EL

tagging

GK 61.63 0.603 0.734 0.662 59.81± 3.84 0.599± 0.037 0.678± 0.071 0.634± 0.026
PTK+ 66.00 0.627 0.829 0.714 67.75± 7.17 0.655± 0.067 0.817± 0.038 0.725± 0.046

SPTK+
LSA 65.38 0.622 0.824 0.709 67.81± 7.30 0.656± 0.069 0.816± 0.036 0.725± 0.047

SPTK+
W2V 66.38 0.629 0.837 0.718 68.00± 7.15 0.658± 0.068 0.816± 0.039 0.726± 0.046

PTK⇥ 66.13 0.629 0.827 0.714 67.75± 7.37 0.658± 0.071 0.804± 0.038 0.722± 0.049
SPTK⇥LSA 66.00 0.629 0.822 0.712 68.00± 7.62 0.661± 0.074 0.808± 0.039 0.725± 0.049
SPTK⇥W2V 67.00 0.636 0.834 0.722 67.69± 6.95 0.658± 0.069 0.804± 0.040 0.722± 0.043

GK+SPTK⇥W2V 66.38 0.634 0.815 0.713 66.00± 6.79 0.648± 0.069 0.769± 0.034 0.701± 0.044
LK+GK 62.25 0.609 0.737 0.667 62.06± 5.49 0.620± 0.051 0.702± 0.053 0.656± 0.036

LK+SPTK⇥W2V 66.13 0.628 0.829 0.715 68.25± 7.54 0.663± 0.076 0.816± 0.032 0.728± 0.047
LK+GK+SPTK⇥W2V 66.00 0.633 0.800 0.707 66.31± 7.35 0.652± 0.075 0.770± 0.053 0.703± 0.052

(Zanzotto et al., 2009) 66.75 0.667 � � � � � �
(Iftene and Balahur-Dobrescu, 2007) 69.13 � � � � � � �

Table 2: Results on Textual Entailment Recognition

5.2 Results on PI

The results are reported in Table 1. The first col-
umn shows the use of the relational tag REL in
the structures (discussed in Sec. 4.1). The second
column indicates the kernel models described in
sections 3 and 4 as well as the combination of the
best models. Columns 3-6 report Accuracy, Pre-
cision, Recall and F1 derived on the fixed test set,
whereas the remaining columns regard the results
obtained with cross validation. We note that:

First, when REL information is not used in the
structures, the linear kernel (LK) on basic fea-
tures outperforms all the structural kernels, which
all perform similarly. The best structural kernel is
the graph kernel, NSPDK (GK in short). This
is not surprising as without REL, GK is the only
kernel that can express relational features.

Second, SPTK is only slightly better than
PTK. The reason is mainly due to the ap-
proach used for building the dataset: potential
paraphrases are retrieved applying some heuristics
mostly based on the lexical overlap between sen-
tences. Thus, in most cases, the lexical similarity
used in SPTK is not needed as hard matches oc-
cur between the words of the sentences.

Third, when REL is used on the structures, all
kernels reach or outperform the F1 (official mea-
sure of the challenge) of LK. The relational struc-
tures seem to drastically reduce the inconsistent
matching between positive and negative examples,
reflecting in remarkable increasing in Precision. In
particular, SM

SPTKLSA achieves the state of the

art6, i.e., 84.1 (Madnani et al., 2012).
Next, combining our best models produces a

significant improvement of the state of the art, e.g.,
LK +GK +SM

SPTKW2V outperforms the result
in (Madnani et al., 2012) by 1.7% in accuracy and
1.1 points in F1.

Finally, the cross-validation experiments con-
firm the system behavior observed on the fixed
test set. The Std. Dev. (specified after the ± sign)
shows that in most cases the system differences are
significant.

5.3 Results on RTE

We used the same experimental settings performed
for PI to carry out the experiments on RTE. The
results are shown in Table 2 structured in the same
way as the previous table. We note that:

(i) Findings similar to PI are obtained.

(ii) Again the relational structures (using REL)
provide a remarkable improvement in Ac-
curacy (RTE challenge measure), allowing
tree kernels to compete with the state of the
art. This is an impressive result consider-
ing that our models do not use any exter-
nal resource, e.g., as in (Iftene and Balahur-
Dobrescu, 2007).

(iii) This time, SPTK⇥
W2V

improves on PTK by
1 absolute percent point.

6The performance of the several best systems improved
by our models are nicely summarized at http://aclweb.
org/aclwiki/index.php?title=Paraphrase_
Identification_(State_of_the_art)
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(iv) The kernel combinations are not more effec-
tive than SPTK alone.

Finally, the cross-fold validation experiments con-
firm the fixed-test set results.

6 Discussion and Conclusions

In this paper, we have engineered and studied
several models for relation learning. We utilized
state-of-the-art kernels for structures and created
new ones by combining kernels together. Addi-
tionally, we provide a novel definition of effective
and computationally feasible structural kernels.
Most importantly, we have designed novel com-
putational structures for trees and graphs, which
are for the first time tested in NLP tasks. Our ker-
nels are computationally efficient thus solving one
of the most important problems of previous work.

We empirically tested our kernels on two of the
most representative tasks of RL from text, namely,
PI and RTE. The extensive experimentation us-
ing many kernel models also combined with tradi-
tional feature vector approaches sheds some light
on how engineering effective graph and tree ker-
nels for learning from pairs of entire text frag-
ments. In particular, our best models significantly
outperform the state of the art in PI and the best
kernel model for RTE 3, with Accuracy close to
the one of the best system of RTE 3.

It should be stressed that the design of previous
state-of-the-art models involved the use of several
resources, annotation and heavy manually engi-
neering of specific rules and features: this makes
the portability of such systems on other domains
and tasks extremely difficult. Moreover the un-
availability of the used resources and the opacity
of the used rules have also made such systems very
difficult to replicate.

On the contrary, the models we propose enable
researchers to:

(i) build their system without the use of spe-
cific resources. We use a standard syntactic
parser, and for some models we use well-
known and available corpora for automati-
cally learning similarities with word embed-
ding algorithms; and

(ii) reuse our work for different (similar) tasks
(see paraphrasing) and data.

The simplicity and portability of our system is a
significant contribution to a very complex research
area such as RL from two entire pieces of text.

Our study has indeed shown that our kernel
models, which are very simple to be implemented,
reach the state of the art and can be used with large
datasets.

Furthermore, it should be noted that our mod-
els outperform the best tree kernel approach of the
RTE challenges (Zanzotto and Moschitti, 2006)
and also its extension that we proposed in (Zan-
zotto et al., 2009). These systems are also adapt-
able and easy to replicate, but they are subject to
an exponential computational complexity and can
thus only be used on very small datasets (e.g., they
cannot be applied to the MSR Paraphrase corpus).
In contrast, the model we proposed in this paper
can be used on large datasets, because its kernel
complexity is about linear (on average).

We believe that disseminating these findings
to the research community is very important, as
it will foster research on RL, e.g., on RTE, us-
ing structural kernel methods. Such research has
had a sudden stop as the RTE data in the latest
challenges increased from 800 instances to sev-
eral thousands and no tree kernel model has been
enough accurate to replace our computational ex-
pensive models (Zanzotto et al., 2009).

In the future, it would be interesting defining
graph kernels that can combine more than two sub-
structures. Another possible extension regards the
use of node similarity in graph kernels. Addition-
ally, we would like to test our models on other
RTE challenges and on several QA datasets, which
for space constraints we could not do in this work.
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