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Abstract—Spectrum sensing in cognitive radio technology con-
sumes a significant amount of time and energy resources. Thus,
it has a direct effect on the achievable throughput and consumed
energy. In case of multi-channel systems, the problem becomes
more affective since both the resources expenditure and the
performance influence of spectrum sensing increase. Considering
energy detection as the spectrum sensing method, a number of
energy samples should be collected from each channel. Unlike
the conventional scheme, the number of samples collected from
each channel should be different due to the variant channel
conditions. In this paper, the number of samples collected from
each channel is optimized based on different setups, namely,
throughput maximization setup, interference minimization setup,
ans sensing energy minimization setup.

I. INTRODUCTION

In the light of the increasing demand on limited spec-
trum resources, cognitive radio (CR) has been proposed as
a smart solution for spectrum shortage problem. CR enables
an efficient usage of the licensed spectrum bands, where it
gives unlicensed users, also called cognitive users (CUs), the
capability to exploit the temporally-unused portions of the
licensed spectrum [1].

The initial necessary process of a cognitive transmission
is called spectrum sensing [2]. Spectrum sensing aims at
identifying the instantaneous spectrum status in order to use
the unoccupied portions. It is greatly important to perfectly
perform spectrum sensing as it guarantees an efficient re-
sources utilization and avoids collisions with the licensed
users. Thus, strict constraints on detection accuracy are set
in CR standards [3].

Spectrum sensing in multi-channel systems spends a signif-
icant portion of time and energy resources due to the large
number of sensed channels [4]. Thus, many works in the
literature have investigated this problem, where some energy-
efficient CSS schemes have been proposed. For example, in
[5], the CUs are divided into non-disjoint subsets such that
only one subset senses the spectrum while the other subsets
enter a low power mode. The energy minimization problem
is formulated as a network lifetime maximization problem
with constraints on the detection accuracy. Another algorithm
for user selection is proposed in [6], where the user subset
that has the lowest cost function and guarantees the desired
detection accuracy is selected. The cost function is related to
the system energy consumption. A distributed approach for
selecting the participating CUs is proposed in [7], where the
expected energy consumption is calculated by each CU prior to
the beginning of the CSS process: if it is lower than a given
threshold, the corresponding CU will participate; otherwise,
it will not participate. The multi-channel spectrum sensing
problem is formulated as a coalition formation game in [8]. A
utility function of each coalition takes into account both the
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sensing accuracy and energy efficiency, and a distributed algo-
rithm is proposed to find the optimal partition that maximizes
the aggregate utility of all the coalitions in the system.

Spectrum sensing can be performed by several methods
such as energy detection, matched-filter-based sensing, and
wavelet-based sensing [9]. The most popular method is energy
detection due to its simplicity and good performance in case
of no prior information about the licensed signal is available
[9]. In energy detection, a number of energy measurements are
taken from the spectrum. Each measurement is called sample.
The average of the collected samples is then compared to
a predefined threshold in order to decide if the channel is
used or not. Intuitively, increasing the number of collected
samples from a specific channel will improve the decision
reliability. However, it requires a longer sensing time and
more energy consumption accordingly. Also, in case of multi-
channel systems, the possible total number of samples should
be proportionally distributed among channels. This is due to
the fact that different channels experience different conditions
and characteristics.

In this work, the number of samples collected from each
channel is optimized based on different setups with different
constraints. The considered setups include : (i) throughput
maximization setup with a constraint on the total number of
samples, (ii) interference minimization setup with a constraint
on the total number of samples, and (iii) sensing energy
minimization setup with a constraint on the average achievable
throughput. In each setup, an approximated formula for the
optimal number of samples is given. Simulation results show
a significant improvement in the performance compared to the
equal distribution of the samples among channels.

The rest of the paper is organized as follows. Section II de-
scribes the system model. The different considered setups for
optimizing the number of samples are discussed in Section III.
Evaluation and simulation results are explored in Section IV,
and the conclusions are drawn in Section V

II. SYSTEM MODEL

Consider a single CU that tries to exploit the unused
channels of a licensed spectrum. The licensed spectrum is
divided into L identical channels. For any channel, the proba-
bility that it is occupied/not occupied by a licensed user is
denoted by P1 and P0, respectively. Aiming at identifying
the unoccupied channels and protecting the licensed users, the
CU should sense the spectrum before using it. The adopted
sensing method in this work is energy detection [9]. In energy
detection, the CU measures the contained energy in each
channel for a specific time. Assume the total time dedicated
for sensing all channels, called sensing time, is denoted by Ts.

While sensing a specific channel, a number of samples
(energy measurements) is collected by the CU. The spectrum
decision (busy or free) is taken by comparing the average of



the collected samples (Ai) from a channel to a predefined
threshold called detection threshold (λ). The decision is busy,
if the samples’ average is larger than the detection threshold.
Otherwise, the CU will identify the corresponding channel as
free, and consequently, use it. Mathematically, the spectrum
decision of the ith channel (di) is expressed as follows

di =

{
busy, if Ai ≥ λ,
free, if Ai < λ.

(1)

The reliability of the made decision is evaluated by two
indicators, namely, detection probability (Pdi) and false-alarm
probability (Pfi). Detection probability of the ith channel
represents the probability of identifying the ith channel as busy
given that it is actually occupied. On the other hand, false-
alarm probability of the ith channel represents the probability
of identifying the ith channel as busy given that it is actually
unoccupied. Considering AWGN channels, both Pdi and Pfi,
can be respectively expressed as follows [10]

Pdi = Q

(
λ− σ2

i − δ2i
(σ2
i + δ2i )/

√
Si

)
(2)

Pfi = Q

(
λ− σ2

i

σ2
i /
√
Si

)
(3)

where Si is the number of samples collected from the ith

channel, σ2
i is the noise variance and δ2i is the variance of the

transmitted signal of the licensed user. The function Q(.) is
given as follows [11]

Q(x) =
1√
2π

∫ ∞
x

exp
(−t2

2

)
dt (4)

According to the interweave CR model [12] adopted in this
paper, the CU will use only the channel that has been identified
as free. Thus, the average achievable throughput in terms of the
amount of successfully delivered data can be given as follows:

D =

L∑
i=1

RTtP0(1− Pfi) (5)

where R is the transmission data rate and Tt is the transmission
time. Notice that we assume the transmitted data will be suc-
cessfully delivered only if the channel is actually unoccupied
and identified as free [13].

Likewise, the consumed energy in spectrum sensing is given
as follows:

Es =

L∑
i=1

Si
fs
Ps (6)

where fs is the sampling frequency and Ps is the sensing
power. Notice that the factor (Sifs ) is equal the sensing time of
the ith channel.

Another important performance indicator is the resultant
interference at the licensed users side. The average interference
energy can be expressed as follows:

I =

L∑
i=1

PtTtP1(1− Pdi) (7)

where Pt is the transmit power.

III. OPTIMIZING THE NUMBER OF SAMPLES PER
CHANNEL

In the conventional spectrum sensing, the total number of
samples (or the total sensing time) is equally divided among
channels. However, such an approach might not attain the
best achievable performance of the spectrum sensing process
either in terms of detection accuracy or resource efficiency.
Thus, there should be an optimal distribution of the samples
among channels such that a specific performance metric is
optimized. In this section we optimize the number of collected
samples from each channel based on two different setups. The
considered setups are throughput maximization and energy
minimization. However, in each setup, a constraint on the other
metrics is considered in order to achieve balance between the
two setups.

A. Throughput Maximization Setup

Throughput is the main metric to describe any wireless
transmission. Thus, throughput maximization has been set as
an objective of many proposed algorithms in different topics in
communications. As for multi-channel CR, in this subsection,
we optimize the number of samples collected per channel for
throughput maximization. However, due to the limited time
resources, maximizing throughput should not yield in a sensing
time that exceeds the available time resources for sensing.
Therefore, a constraint that keeps the total number of samples
under an upper bound should be taken into account.

Using (5), throughput maximizing problem by optimizing
the number of samples per channel can be formulated as
follows

max
Si

L∑
i=1

P0RTt(1− Pfi) (8)

subject to
L∑
i=1

Si ≤ ST (9)

Notice that the through maximization problem given in (8)
is equivalent to a minimization problem of the false-alarm
probability. Similarly, the constraint on the total number sam-
ples acts as a constraint on the energy consumed in spectrum
sensing.

Aiming at solving the maximization problem, we use the
method of Lagrange multipliers. To this end, the Lagrange
function (f(Si, γ)) is defined as follows

f(Si, γ) =

L∑
i=1

P0RTt(1− Pfi)− γ
( L∑
i=1

Si − ST
)

(10)

where gamma is termed as Lagrange multiplier. Conse-
quently, the optimal solution is derived by equalizing the first
derivative of the Lagrange function to zero. The first derivative
of the Lagrange function with respect to Si is derived as
follows

∂f(Si, γ)

∂Si
=

∂

∂Si

( L∑
i=1

P0RTt(1− Pfi) + γ

( L∑
i=1

Si − ST
))

= −P0RTt
∂Pfi
∂Si

− γ
(11)



Now, using the Leibenz-Integral rule, ∂Pfi
∂Si

, which appears
in (11), can be found as follows
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∂Si

=
∂
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By substituting (12) into (11)

∂f(Si, γ)
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(13)
As stated earlier, the optimal value of Si can be found by

setting the value of ∂f(Si,γ)
∂Si

to zero, as follows
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2π

· λ− σ
2
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2
√
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(−(λ−σ2
i
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2
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which can be rewritten as follows

S∗i =


(
λ−σ2

i

σ2
i
· P0 RTt
2
√
2π γ

)2

· exp
(
−
(λ−σ2

i

σ2
i

)2
S∗i

)
, if σ2

i ≤ λ,

0, if σ2
i > λ.
(15)

However, the solution in (15) does not represent a closed
form expression of the optimal S∗i since it still appears in
both sides. On the other hand, it cannot be further analytically
simplified. Therefore, an approximation should be presented.

The presented approximation is based on the well-known
limit of the exponential function

exp(x) = lim
n→+∞

(
1 +

x

n

)n
(16)

Consequently, if we consider n is a very large number, the
exponential function can be approximated as follows

exp(x) ≈
(
1 +

x

n

)n
for a very large n (17)

Now, by applying this to the exponential function in (15),
it can be rewritten as follows

S∗i ≈
(
λ− σ2

i

σ2
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· P0RTt

2
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(18)

By taking the nth root for both sides, (18) can be expressed
as follows

S∗i
1
n ≈

(
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i
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2
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) 2
n

·
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)
(19)

For a very large n, S∗i
1
n ≈ 1. Therefore, (19) can be further

simplified as follows

S∗i ≈


n
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2
√
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)
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0, if σ2
i > λ.

(20)
The equation above represents an approximated expression
of the optimal number of samples for the ith channel that
maximizes the achievable throughput of the CU. It is worth
mentioning that the accuracy of the approximation increases
as n increases, which will be verified in the evaluation section.

B. Interference Minimization Setup

Due to channel conditions including shadowing and multi-
path fading, there is a probability that the made decision is
wrong. The wrong decision can be either a false-alarm or
a missed-detection. While the former degrades the efficient
utilization of the available spectrum (achievable throughput of
the CU), the latter increases the interference at the licensed
users. In the previous subsection, the distribution of samples
among channels has been optimized to increase the achievable
throughput (by decreasing the false-alarm probability), while
minimizing the resultant interference is set as objective of
optimizing the number of samples for each channel in the
following.

Using (7), and similar to (8) and (9), interference minimiza-
tion problem with a constraint on the total number of samples
can be formulated as follows

min
Si

L∑
i=1

P1PtTt(1− Pdi) (21)

subject to
L∑
i=1

Si ≤ ST (22)

Using Lagrange method, (25) can be solved by the same
procedure followed previously to solve (8). After some math-
ematical processes, the simplest solution can be expressed as
follows

S∗i =


(
λ−(σ2

i+δ
2
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)
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0, if σ2
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(23)
Similar to the solution given in (15), the formula obtained

in (23) is not a closed form expression and cannot be obtained
even numerically since γ is unknown. Thus, an approximation
is required. Following the same approximations performed in
(16)-(20), an approximated formula for the optimal number
of samples of the ith channel that minimizes the resultant
interference can be given as follows:

S∗i ≈


n

(
λ−(σ2

i
+δ2)

σ2
i
+δ2
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2
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n
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0, if σ2
i + δ2i < λ.

(24)

C. Energy Minimization Setup

Energy consumption represents a main concern for mobile
users, and it has gained an increasing attention recently. This
is due to the fact that mobile terminals are usually equipped
by a limited energy resources. In this subsection, we optimize
the number of samples per channel for energy minimization
objective in a multi-channel CR system. In order to avoid the
negative effect on the achievable throughput, a lower bound
of the achievable throughput is kept.

energy minimization problem can be formulated as follows

min
Si

L∑
i=1

Si
fs
Ps (25)

subject to
L∑
i=1

P0RTt(1− Pfi) ≥ DT (26)



From (25) and (26), it is clear that energy minimization
problem is equivalent to minimizing the total number of
samples, while the lower bound on throughput represents an
upper bound on the false-alarm probability.

Also, by using Lagrange multiplier method, the optimal
solution can be found by solving the following equation

Ps
fs

+ γ
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2
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Similarly, the approximation in (16) can be used to obtain an
approximated closed form expression of the optimal number
of samples for the ith channel, as follows

S∗i ≈
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n
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·
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IV. EVALUATION AND DISCUSSION

In order to explore the performance of the proposed solu-
tions, let us consider a licensed spectrum of L = 3 channels.
For any of the channels, the probability of being occupied
is P1 = 0.5. The other simulation parameters required to
compute throughput and energy consumption are listed in
Table I. The results of each optimization setup are compared
to the conventional scheme. In the conventional scheme, the
total number of samples is equally distributed among channels.

Table I: Simulation Parameters
Parameter Value Parameter Value

Tt 0.05ms Ps 10mW
Pt 100mW Fs 0.1MHz
λ 1 R 100K bps

A. Throughput Maximization Setup

In this setup, we consider that the total time dedicated
for sensing all channels is equal to 1ms. The variance of
the licensed signal is assumed identical among channels and
equals to δi = 0.1. During simulation, the noise variances
of the first and the second channels are assumed fixed, while
the noise variance over the third channel is left variable, as
indicated below each figure.

Fig. 1 shows the optimal number of the collected sam-
ples from each channel in order to maximize the achievable
throughput versus the noise variance over the third channel.
The shown curves clearly give three observations. The first
observation is that the optimal number of samples for a
specific channel depends not only on the noise variance of
the corresponding channel, but also on the noise variances
of the other channels. Also, it can be observed that once the
noise variance of a channel exceeds the detection threshold (λ),
the optimal number of samples is zero. This can be justified
because if σ2 > λ, the resultant false alarm probability of
the corresponding channel is very high (> 0.5) whatever
the number of samples. Thus, it is optimum not to sense it
in order to maximize the achievable throughput. The third

observation is that the order of the optimal number of channels
is equivalent to the order of the noise variances, where the
channel with worst conditions (high value of σ2) should have
the the longest sensing time (largest number of samples).
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Fig. 1. The optimal number of the samples from each channel versus the
noise variance over the third channel based on throughput maximization setup.
(σ2

1 = 0.45, σ2
2 = 0.65)

Fig. 2 plots the average achievable throughput versus the
noise variance of the third channel. The conventional approach
of distributing the number of samples is considered as a
baseline for comparison. The conventional approach implies
that the total number of samples is equally divided among
channels regardless of their conditions. The results in Fig. 2
show that optimizing the number of samples can increase
the achievable throughput especially if one (or more) of the
channels has a strong noise signal. The achievable throughput
using the derived approximation for the optimal number of
samples is also shown in order to verify its accuracy.
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Fig. 2. The average achievable throughput versus the noise variance of
the third channel based on the conventional approach and the proposed
throughput maximization setup. (σ2

1 = 0.45, σ2
2 = 0.65).

B. Interference Minimization Setup

Similar to the previous setup, in this setup, we consider that
the total time dedicated for sensing all channels is equal to
1ms. The variance of the licensed signal is assumed identical
among channels and equals to δi = 0.1. During simulation, the
sum of the variances of the licensed signal and noise signal of



the first and the second channels are assumed fixed, while it
is left variable for the third channel, as indicated below each
figure.

Based on the interference minimization setup, the optimal
number of samples for each channel versus the sum of the
variances of the licensed signal and noise signal of the third
channel is explored in Fig. 3. As long as the variances’ sum
(σ2

3 + δ23) is less than the detection threshold (λ), the optimal
number of samples is zero. This means that there is no need
to sense the third when σ2

3 + δ23 < λ since the resultant inter-
ference is high (high missed-detection probability) whatever
the number of samples.
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Fig. 3. The optimal number of the samples from each channel versus the sum
of the noise variance and the signal variance over the third channel based
on interference minimization setup. (σ2

1 + δ21 = 1.1, σ2
2 + δ22 = 1.2).

Fig. 4 shows the resultant interference energy versus the
sum of the variances of the licensed signal and noise signal
of the third channel. The results prove the reduction in the
interference that can be attained using the optimal number of
samples especially if one (or more) of the channels has a small
sum of the variances of the licensed signal and noise signal.
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Fig. 4. The average induced interference energy versus the sum of the noise
variance and the signal variance over the third channel in the conventional
approach and the proposed interference minimization setup. (σ2

1 + δ21 =
1.1, σ2

2 + δ22 = 1.2).

C. Sensing Energy Minimization Setup

As described earlier, minimizing the sensing energy is
equivalent to minimizing the total number of samples for the

three channels. In this setup, the constrain on the average
total achievable throughput is set to 3.375Kbps, which is
equivalent to the average sum of the false-alarm probabilities
for the three channel that is equal to 0.55.

Fig. 5 shows the optimal number of samples for each
channel versus the noise variance of the third channel based on
sensing energy minimization setup. The results confirm what
is concluded from Fig. 1: the channel whose noise variance
exceeds λ should not be sensed. Notice that at low values
of σ2

3 , low false alarm probability can be attained by a low
number of samples, while as σ2

3 increases, more samples
should be collected.
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Fig. 5. The optimal number of the samples from each channel versus the
noise variance over the third channel based on sensing energy minimization
setup. (σ2

1 = 0.85, σ2
2 = 0.75)

The consumed energy in spectrum sensing is shown in Fig. 6
versus the noise variance of the third channel for both the
optimal distribution and the conventional distribution of the
samples. A huge reduction can be achieved in the sensing
energy if the optimal distribution is used instead of the equal
distribution of samples among channels.
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Fig. 6. The average consumed energy in spectrum sensing versus the noise
variance of the third channel based in the conventional approach and the
proposed sensing energy minimization setup. (σ2

1 = 0.85, σ2
2 = 0.75).

V. CONCLUSIONS

Optimizing the number of samples of each channel is
investigated in this paper for multi-channel spectrum sensing.



Different setups have been considered, namely, throughput
maximization, interference minimization and energy consump-
tion minimization. Results show that, for throughput maxi-
mization or energy minimization objectives, the channel that
has a noise variance higher than the detection threshold should
not be sensed. Also, the channel whose sum of noise and
licensed signals is less than the detection threshold should
not be sensed if the interference minimization is the main
objective. Moreover, an approximation of the optimal number
of samples for each channel is presented.
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