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Abstract. Let n,N be positive integers such that n < N . We prove a
result about the rectifiability of class C3 of the set of regular values (in
the sense of Clarke) of a Lipschitz map ϕ : Rn → RN .

1. Introduction and statement of main result

In this paper we prove a result about the rectifiability of class C3 of the

set of regular values (in the sense of Clarke) of a Lipschitz map

ϕ : Rn → RN (n < N).

Before we state it, let us recall some basic definitions.

A Borel subset S of RN is said to be an (Hn, n) rectifiable set of class

C3 (or simply: a rectifiable set of class C3), if there exist countably many

n-dimensional submanifolds Mj of RN of class C3 such that

Hn

(
S\
⋃
j

Mj

)
= 0.

Analogously one can define the (Hn, n) rectifiable sets of class Ck, for each

positive integer k. In particular, for k = 1 this notion is equivalent to that

of n-rectifiable set, e.g. by [S, Lemma 11.1].

For γ ∈ I(n,N) and s ∈ Rn, let ∂ϕγ(s) denote the Clarke subdifferential

of the map

ϕγ := (ϕγ1 , . . . , ϕγn) : Rn → Rn

namely

∂ϕγ(s) := co

{
lim
i→∞

Dϕγ(si)

∣∣∣∣Dϕγ(si) exists, si → s

}
compare [CLSW, p.133]. The set ∂ϕγ(s) is said to be “nonsingular” if every

matrix in ∂ϕγ(s) is of rank n. Observe that Dϕγ(s) ∈ ∂ϕγ(s) whenever ϕγ
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is differentiable at s. In particular, Dϕγ(s) is nonsingular provided ∂ϕγ(s)

is nonsingular. Define

R := {s ∈ Rn | ∂ϕγ(s) is nonsingular for some γ}.

We can now state our theorem.

Theorem 1.1. Consider a Lipschitz map

ϕ : Rn → RN (n < N).

Moreover let

c1,i, c2,i : Rn → R\{0} (i = 1, . . . , n)

be a family of locally bounded functions, let

G1,i, G2,i : Rn → RN (i = 1, . . . , n), Hij : Rn → RN (i, j = 1, . . . , n)

be a family of Lipschitz maps and denote by A the set of points t ∈ Rn

satisfying the following conditions:

(i) The map ϕ and all the maps G1,i are differentiable at t;

(ii) The equality

(1.1) Diϕ(t) = c1,i(t)G1,i(t) = c2,i(t)G2,i(t)

holds for all i = 1, . . . , n;

(iii) Moreover one has

(1.2) DjG1,i(t) = c2,j(t)Hij(t)

for all i, j = 1, . . . , n.

Also assume that

(iv) For almost every a ∈ A there exists a non-trivial ball B centered at

a and such that

Ln(B\A) = 0.

Then ϕ(A ∩R) is an (Hn, n) rectifiable set of class C3.

Remark 1.2. As an immediate corollary of Theorem 1.1, we get this result.

Let

ϕ : Rn → RN , G1,i, G2,i, Hij : Rn → RN (i, j = 1, . . . , n)

be a family of Lipschitz maps and let

c1,i, c2,i : Rn → R\{0} (i = 1, . . . , n),

be a family of bounded functions such that the equalities (1.1) and (1.2)

hold almost everywhere in Rn. Then the image ϕ(R) is an (Hn, n) rectifiable

set of class C3.
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Remark 1.3. Let each component ϕi of ϕ : Rn → RN belong to C3(Rn)

and have uniformly bounded gradient ∇ϕi. Moreover let the differential Dϕ

have rank n at each point of Rn. Then the assumptions of Theorem 1.1 are

trivially satisfied by setting

c1,i := 1, c2,i := 1, G1,i := Diϕ, G2,i := Diϕ (i = 1, . . . , n)

and

Hij := D2
ijϕ (i, j = 1, . . . , n)

with A = Rn.

Rectifiable sets of class Ck have been been introduced in [AS] and provide

a natural setting for the description of singularities of convex functions

and convex surfaces, [A, AO]. More generally, it can be used to study the

singularities of surfaces with generalized curvatures, [AO]. Rectifiability of

class C2 is strictly related to the context of Legendrian rectifiable subsets of

RN × SN−1, [Fu1, Fu2, D2, D3]. The level sets of a W k,p
loc mapping between

manifolds are rectifiable sets of class Ck, [BHS]. Applications of rectifiable

sets of class CH (with H ≥ 2) to geometric variational problems can be

found in [D4].

Finally, we would like to explain the reasons of our interest in conditions

(1.1) and (1.2). In the particular case when n = 1, such conditions arised

naturally in the context of one-dimensional generalized Gauss graphs (see

[AST, D1], for the basic definitions and results) and of two-storey towers

of one-dimensional generalized Gauss graphs (see [D4]). After that it was

natural to explore the question of how those assumptions could be general-

ized in order to get results about higher order of rectifiability, including the

case when n ≥ 2. Then a general theorem for curves was provided in [D3],

while in [D5] we started studying the case of general dimension by proving

a result about the rectifiability of class C2. Further results in this direction

can be found in [AS] and [Fu1, Fu2]. Roughly speaking, the very basic idea

and the proof-strategy in the present paper are the same as in [D5] namely:

to use the celebrated Whitney extension Theorem to show that the image

of ϕ is captured, up to Hn measure 0, by countably many high regular im-

ages of Rn. More precisely, the main objective of this work is to get the set

of third order Whitney estimates which allows one to perform the (count-

ably many) extensions of class C3 necessary to show that the image of ϕ is

C3-rectifiable. Such a result is the product of our efforts to prove a general

theorem about rectifiability of class CH in any dimension, which will be the

subject of our future further investigations.
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2. Reduction to graphs

Remark 2.1. Under the hypotheses of Theorem 1.1, let A′ denote the set

of a ∈ A such that there exists a non-trivial ball B centered at a satisfying

Ln(B\A) = 0.

One has

(2.1) Ln(A\A′) = 0

by assumption (iv). Hence, it will be enough to prove that ϕ(A′ ∩R) is an

(Hn, n) rectifiable set of class C3.

Remark 2.2. By the main theorem in [D5], we already know that ϕ(A∩R)

(hence also ϕ(A′ ∩R)) is an (Hn, n) rectifiable set of class C2.

Remark 2.3. Let E be any subset of R and define

Eγ := {s ∈ E | ∂ϕγ(s) is nonsingular}, γ ∈ I(n,N).

Then one obviously has ⋃
γ∈I(n,N)

Eγ = E.

Remark 2.4. If s ∈ Rγ, by the Lipschitz inverse function Theorem (e.g.

[CLSW, Theorem 3.12]), there exist a neighborhood U (in Rn) of s and a

neighborhood V (in Rn) of ϕγ(s) such that

• V = ϕγ(U) and ϕγ|U : U → V is invertible;

• (ϕγ|U)−1 is Lipschitz.

Let γ denote the multi-index in I(N − n,N) which complements γ in

{1, 2, . . . , N} in the natural increasing order and set (for x ∈ RN)

xγ := (xγ1 , . . . , xγn), xγ := (xγ1 , . . . , xγN−n).

Then the map

f := ϕγ ◦ (ϕγ|U)−1 : V → RN−n

is Lipschitz and its graph

Gγf := {x ∈ RN |xγ ∈ V and xγ = f(xγ)}

coincides with ϕ(U).

By virtue of previous remarks, it will be enough to prove the following

claim.
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Theorem 2.5. Under the assumptions of Theorem 1.1, let γ ∈ I(n,N) and

consider a map

g : Rn → RN−n

of class C2. Then ϕ((A′∩R)γ)∩Gγg is an (Hn, n) rectifiable set of class C3.

Remark 2.6. The remainder of our paper is devoted to proving Theorem

2.5. With no loss of generality, we can restrict our attention to the particular

case when γ = {1, . . . , n}.

3. Preliminaries

3.1. Further reduction of the claim. From now on, for simplicity,

G{1,...,n}g , (A′ ∩R){1,...,n}, ϕ{1,...,n}

will be denoted by Gg, F and λ, respectively.

Define

L := ϕ−1(Gg) ∩ F.

Without loss of generality, we can assume that Ln(L) < ∞. Then, by a

well-known regularity property of Ln, for any given real number ε > 0 there

exists a closed subset Lε of Rn with

(3.1) Lε ⊂ L, Ln(L\Lε) ≤ ε,

compare e.g. [M, Theorem 1.10]. Moreover, since Lε is closed, one has

(3.2) L∗ε ⊂ Lε

where L∗ε is the set of density points of Lε. Recall that

(3.3) Ln(Lε\L∗ε) = 0

by a well-known result of Lebesgue. In the special case that L has measure

zero, we define Lε := ∅, hence L∗ε := ∅.
Observe that

Gg ∩ ϕ(F )\ϕ(L∗ε) ⊂ ϕ
(
ϕ−1(Gg) ∩ F\L∗ε

)
= ϕ(L\L∗ε)

hence

Hn (Gg ∩ ϕ(F )\ϕ(L∗ε)) ≤ Hn (ϕ (L\L∗ε))

≤
∫
L\L∗

ε

JnϕdLn

≤ (Lipϕ)nL(L\L∗ε)

≤ ε (Lipϕ)n
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by the area formula (compare [F, §3.2.], [S, §8]), (3.1), (3.2) and (3.3). It

follows that

Hn

(
Gg ∩ ϕ(F )\

∞⋃
j=1

ϕ(L∗1/j)

)
= 0.

Thus, to prove Theorem 2.5, it suffices to show that

ϕ(L∗ε) is an (Hn, n) rectifiable set of class C3

for all ε > 0.

3.2. Further notation. Let us consider the projection

Π : RN → RN−n, (x1, . . . , xN) 7→ (xn+1, . . . , xN).

Moreover set

R(0)
s (σ) := g(λ(σ))− g(λ(s))−

n∑
i=1

Dig(λ(s))
[
ϕi(σ)− ϕi(s)

]
+

− 1

2

n∑
i,j=1

D2
ijg(λ(s))

[
ϕi(σ)− ϕi(s)

] [
ϕj(σ)− ϕj(s)

]
,

R(1)
i;s (σ) := Dig(λ(σ))−Dig(λ(s))−

n∑
j=1

D2
ijg(λ(s))

[
ϕj(σ)− ϕj(s)

]
,

R(2)
ij;s(σ) := D2

ijg(λ(σ))−D2
ijg(λ(s)).

For h = 1, 2, let Gh denote the n× n matrix field such that

[Gh(t)]
j
i := Gj

h,i(t), t ∈ Rn (i, j = 1, . . . , n).

Also let H be the n2 × n matrix field defined by

[H(t)]kij := Hk
ij(t), t ∈ Rn (i, j, k = 1, . . . , n)

where the couples ij (indexing the rows) are ordered lexicographically.

Then consider the (n+ n2)× (n+ n2) matrix field

M :=

[
G1 0
H G1 ⊗G2

]
where the symbol ⊗ denotes the Kronecker product of matrices, [HJ, Sect.

4.2].

For l = 1, . . . , N − n, let D2gl denote the Rn2
-valued field such that[

D2gl(t)
]ij

:= D2
ijg

l(t), t ∈ Rn (i, j = 1, . . . , n)

where the lexicographical order is assumed.

Finally, given a matrix X and a index k, denote by

Rk(X), Ck(X)

the k-th row of X and k-th column of X, respectively.
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4. The derivatives of g in terms of {G1, G2, H}
(under the assumptions of Theorem 2.5, with γ = {1, . . . , n})

Proposition 4.1. Let l ∈ {1, . . . , N − n} and s ∈ L∗ε. Then

(4.1) M(s)
(
Dgl(λ(s)), D2gl(λ(s))

)T
=
(
Gn+l

1 (s), Hn+l(s)
)T

where Gn+l
1 and Hn+l are the the vector fields defined as follows:

Gn+l
1 := (Gn+l

1,1 , . . . , G
n+l
1,n )

and

Hn+l := [Hn+l
ij ]ni,j=1 (in lexicographical order).

Proof. First of all, observe that

g(λ(t)) = Πϕ(t)

for all t ∈ ϕ−1(Gg). Since L∗ε ⊂ A the two members of this equality are both

differentiable at s. Moreover s is a limit point of Lε ⊂ ϕ−1(Gg). It follows

that
n∑
j=1

Djg(λ(s))Diϕ
j(s) = ΠDiϕ(s) (i = 1, . . . , n)

namely
n∑
j=1

Djg(λ(s))c1,i(s)G
j
1,i(s) = c1,i(s)ΠG1,i(s) (i = 1, . . . , n)

by (1.1). Since c1,i(s) 6= 0 (i = 1, . . . , n), we get

(4.2)
n∑
j=1

Djg
l(λ(s))Gj

1,i(s) = Gn+l
1,i (s) (i = 1, . . . , n)

i.e.

(4.3) G1(s)Dg
l(λ(s)) = Gn+l

1 (s).

By the same argument as above, we can differentiate (4.2) and obtain
n∑

j,k=1

D2
jkg

l(λ(s))Dmϕ
k(s)Gj

1,i(s) +
n∑
j=1

Djg
l(λ(s))DmG

j
1,i(s) = DmG

n+l
1,i (s)

for all i,m = 1, . . . , n. By (1.2)
n∑

j,k=1

D2
jkg

l(λ(s))c2,m(s)Gk
2,m(s)Gj

1,i(s)+

+
n∑
j=1

Djg
l(λ(s))c2,m(s)Hj

im(s) = c2,m(s)Hn+l
im (s)

for all i,m = 1, . . . , n, namely

(4.4) [G1(s)⊗G2(s)]D
2gl(λ(s)) +H(s)Dgl(λ(s)) = Hn+l(s).
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We conclude by observing that the system of equalities (4.3) and (4.4) is

equivalent to (4.1). �

In this result we investigate the properties of the matrix field t 7→M(t)−1.

Proposition 4.2. Let s ∈ A be such that Dλ(s) is nonsingular (e.g. s ∈ F ).

Then there exists a nontrivial ball B, centered at s, such that

• For all t ∈ B, the matrices G1(t), G2(t) and M(t) are invertible and

(4.5)

M(t)−1 =

[
G1(t)

−1 0
−[G1(t)

−1 ⊗G2(t)
−1]H(t)G1(t)

−1 G1(t)
−1 ⊗G2(t)

−1

]
• The map

t 7→M(t)−1, t ∈ B
is Lipschitz.

Proof. One has

Dλ(s) =

[ n∏
i=1

c1,i(s)

]
G1(s)

T =

[ n∏
i=1

c2,i(s)

]
G2(s)

T

by (1.1), hence G1(s) and G2(s) are nonsingular. Moreover one has

(4.6) detM = detG1 det(G1 ⊗G2) = (detG1)
n+1(detG2)

n

by [HJ, Sect. 4.2, Problem 1]. Thus

detM(s) 6= 0.

Since the function t 7→ detM(t) is continuous, there exists a nontrivial ball

B centered at s and such that

| detM(t)| ≥ | detM(s)|
2

> 0

for all t ∈ B. As a consequence, M(t) is invertible at every t ∈ B. The

formula (4.5) follows at once observing that, for t ∈ B, the matrix M(t)−1

has to be of the form (recall (4.6))[
G1(t)

−1 0
X(t) [G1(t)⊗G2(t)]

−1

]
with X(t) satisfying

H(t)G1(t)
−1 + [G1(t)⊗G2(t)]X(t) = 0

and finally recalling that

[G1(t)⊗G2(t)]
−1 = G1(t)

−1 ⊗G2(t)
−1

compare [HJ, Corollary 4.2.11]. This concludes the proof of the first claim.

The second one follows by observing that the entries of M are Lipschitz. �
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5. Whitney-type estimates

(under the assumptions of Theorem 2.5, with γ = {1, . . . , n})

Proposition 5.1. Let s ∈ L∗ε and t ∈ A ∩ ϕ−1(Gg) be such that

(5.1) H1([s; t]\A) = 0

where [s; t] denotes the segment joining s and t. Then the following estimate

holds

‖R(0)
s (t)‖ ≤

(
sup
[s;t]

‖c1‖
)(

sup
[s;t]

‖c2‖
)

Λs ‖t− s‖3

where

c1 := (c1,1, . . . , c1,n), c2 := (c2,1, . . . , c2,n)

and Λs is a constant not depending on t.

Proof. First of all, observe that:

• Since s, t ∈ ϕ−1(Gg) one has g(λ(s)) = Πϕ(s) and g(λ(t)) = Πϕ(t);

• Consider the following parametrization of [s; t]

σ : [0, 1]→ Rn, ρ 7→ s+ ρ(t− s).

Then the function ρ 7→ ϕ(σ(ρ)) is Lipschitz, hence it is differentiable

almost everywhere in [0, 1]. Moreover the assumption (5.1) implies

that

(ϕ ◦ σ)′(ρ) =
n∑

i1=1

(ti1 − si1)Di1ϕ(σ(ρ))

at a.e. ρ ∈ [0, 1].

Recalling also (1.1), we obtain

R(0)
s (t) = Πϕ(t)− Πϕ(s)−

n∑
i=1

Dig(λ(s))
[
ϕi(t)− ϕi(s)

]
+

− 1

2

n∑
i,j=1

D2
ijg(λ(s))

[
ϕi(t)− ϕi(s)

] [
ϕj(t)− ϕj(s)

]
=

n∑
h=1

(th − sh)
∫ 1

0

{
ΠDhϕ(σ(ρ))−

n∑
i=1

Dig(λ(s))Dhϕ
i(σ(ρ))+

−
n∑

i,j=1

D2
ijg(λ(s)) [ϕi(σ(ρ))− ϕi(s)]Dhϕ

j(σ(ρ))

}
dρ

that is

(5.2) R(0)
s (t) =

n∑
h=1

(th − sh)
∫ 1

0

c1,h(σ(ρ))Φs,h(σ(ρ)) dρ
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where Φs,h denotes the Lipschitz map defined as follows

(5.3) Φs,h := ΠG1,h−
n∑
i=1

Dig(λ(s))Gi
1,h−

n∑
i,j=1

D2
ijg(λ(s))

[
ϕi − ϕi(s)

]
Gj

1,h.

Now, since Φs,h◦σ is Lipschitz, it is differentiable almost everywhere in [0, 1]

and

(Φs,h ◦ σ)′ =
n∑
k=1

(tk − sk)(DkΦs,h) ◦ σ.

Moreover Φs,h(s) = 0, by (4.2). By (5.3) and recalling (1.2), we get

Φs,h(σ(ρ)) = Φs,h(σ(ρ))− Φs,h(s) =

∫ ρ

0

(Φs,h ◦ σ)′

=
n∑
k=1

(tk − sk)
∫ ρ

0

(DkΦs,h) ◦ σ

=
n∑
k=1

(tk − sk)
∫ ρ

0

(c2,k ◦ σ)(Ψs,hk ◦ σ)

(5.4)

where Ψs,hk is the Lipschitz map defined by

Ψs,hk := ΠHhk −
n∑
i=1

Dig(λ(s))H i
hk+

−
n∑

i,j=1

D2
ijg(λ(s))

{
Gi

2,kG
j
1,h + [ϕi − ϕi(s)]Hj

hk

}
.

Observe that

Ψs,hk(s) = ΠHhk(s)−
n∑
i=1

Dig(λ(s))H i
hk(s)−

n∑
i,j=1

D2
ijg(λ(s))Gi

2,k(s)G
j
1,h(s)

= 0

by (4.4). Hence (for all r ∈ [0, 1])

‖Ψs,hk(σ(r))‖ = ‖Ψs,hk(σ(r))−Ψs,hk(s)‖ ≤ ‖σ(r)− s‖Lip Ψs,hk

= r‖t− s‖Lip Ψs,hk

≤ ‖t− s‖Λs

with

Λs := max
h,k=1,...,n

(
Lip Ψs,hk

)
.

Recalling (5.4), we obtain

‖Φs,h(σ(ρ))‖ ≤
(

sup
[s;t]

‖c2‖
)

Λs ‖t− s‖2.

The conclusion follows at once from (5.2). �
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Proposition 5.2. Let s ∈ L∗ε. Then there exists a nontrivial ball B, centered

at s, such that∥∥∥R(1)
i;s (t)

∥∥∥ ≤ ( sup
[s;t]

‖c2‖
)

Σs‖t− s‖2 (i = 1, . . . , n)

for all t ∈ L∗ε ∩ B such that (5.1) is satisfied, where c2 is defined as in

Proposition 5.1 while Σs is a constant not depending on t and i.

Proof. Since s ∈ L∗ε ⊂ F , there exists a ball B as in Proposition 4.2. Con-

sider

t ∈ L∗ε ∩B
such that (5.1) is satisfied. Then (for l = 1, . . . , N − n)[
R(1)
i;s (t)

]l
= Dig

l(λ(t))−Dig
l(λ(s))−

n∑
j=1

D2
ijg

l(λ(s)) [ϕj(t)− ϕj(s)]

= Ri(G1(t)
−1) •Gn+l

1 (t)−Ri(G1(s)
−1) •Gn+l

1 (s)+

−
n∑
j=1

D2
ijg

l(λ(s)) [ϕj(t)− ϕj(s)]

by Proposition 4.1 and Proposition 4.2. Moreover, if σ is the parametrization

of [s; t] defined above, the function

Π : ρ 7→ Ri(G1(σ(ρ))−1) •Gn+l
1 (σ(ρ)), ρ ∈ [0, 1]

is Lipschitz, hence it is differentiable almost everywhere in [0, 1]. Recalling

(5.1) and denoting with G−11 the map r 7→ G1(r)
−1 (by a convenient abuse

of notation), we obtain

Π′(ρ) =
n∑
q=1

(tq − sq)
{
Ri(DqG

−1
1 ) •Gn+l

1 +Ri(G
−1
1 ) •DqG

n+l
1

}
(σ(ρ))

for a.e. ρ ∈ [0, 1]. By the well-known formula for the derivative of the inverse

matrix field, compare [HJ, (6.5.7)], it follows that

Π′(ρ) =
n∑
q=1

(tq − sq)
{
Ri(G

−1
1 ) •DqG

n+l
1 +

−Ri[G
−1
1 (DqG1)G

−1
1 ] •Gn+l

1

}
(σ(ρ))

=
n∑

m,q=1

(tq − sq)
{

[G−11 ]mi DqG
n+l
1,m − [G−11 (DqG1)G

−1
1 ]mi G

n+l
1,m

}
(σ(ρ))

=
n∑

m,q=1

(tq − sq)
{

[G−11 ]mi DqG
n+l
1,m

−
n∑

h,k=1

[G−11 ]hi (DqG
k
1,h)[G

−1
1 ]mk G

n+l
1,m

}
(σ(ρ))
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for a.e. ρ ∈ [0, 1]. Recalling (1.2), we get

Π′(ρ) =
n∑

m,q=1

c2,q(σ(ρ))(tq − sq)
{

[G−11 ]mi H
n+l
mq +

−
n∑

h,k=1

[G−11 ]hiH
k
hq[G

−1
1 ]mk G

n+l
1,m

}
(σ(ρ))

for a.e. ρ ∈ [0, 1]. It follows that

(5.5)
[
R(1)
i;s (t)

]l
=

n∑
q=1

(tq − sq)
∫ 1

0

c2,q(σ(ρ))Θl
q;s(σ(ρ)) dρ

where Θl
q;s : B → R is the function defined as

Θl
q;s :=

n∑
m=1

{
[G−11 ]mi H

n+l
mq −

n∑
h,k=1

[G−11 ]hiH
k
hq[G

−1
1 ]mk G

n+l
1,m −D2

img
l(λ(s))Gm

2,q

}
.

One has

D2
img

l(λ(s)) =
n∑

c,d=1

[
G1(s)

−1 ⊗G2(s)
−1]cd

im
Hn+l
cd (s)+

−
n∑

b,c,d,e=1

[
G1(s)

−1 ⊗G2(s)
−1]cd

im
Hb
cd(s)

[
G1(s)

−1]e
b
Gn+l

1,e (s)

=
n∑

c,d=1

[
G1(s)

−1]c
i

[
G2(s)

−1]d
m
Hn+l
cd (s)+

−
n∑

b,c,d,e=1

[
G1(s)

−1]c
i

[
G2(s)

−1]d
m
Hb
cd(s)

[
G1(s)

−1]e
b
Gn+l

1,e (s)

by Proposition 4.1 and Proposition 4.2. Hence the following equality holds

n∑
m=1

D2
img

l(λ(s))Gm
2,q(s) =

n∑
c,d=1

[
G1(s)

−1]c
i
Hn+l
cd (s) δdq+

−
n∑

b,c,d,e=1

[
G1(s)

−1]c
i
Hb
cd(s)

[
G1(s)

−1]e
b
Gn+l

1,e (s) δdq

=
n∑
c=1

[
G1(s)

−1]c
i
Hn+l
cq (s)+

−
n∑

b,c,e=1

[
G1(s)

−1]c
i
Hb
cq(s)

[
G1(s)

−1]e
b
Gn+l

1,e (s)

namely

Θl
q;s(s) = 0.
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Moreover Θl
q;s is Lipschitz, by Proposition 4.2. Then, if define

Σs := (N − n) max
q=1,...,n

l=1,...,N−n

(
Lip Θl

q;s

)
,

we get∣∣Θl
q;s(σ(ρ))

∣∣ =
∣∣Θl

q;s(σ(ρ))−Θl
q;s(s)

∣∣ ≤ Σs

N − n
ρ‖t− s‖ ≤ Σs

N − n
‖t− s‖

for all q = 1, . . . , n, for all l = 1, . . . , N − n and for all ρ ∈ [0, 1]. From (5.5)

it finally follows that∥∥∥R(1)
i;s (t)

∥∥∥ ≤ N−n∑
l=1

∣∣∣∣[R(1)
i;s (t)

]l∣∣∣∣ ≤ ( sup
[s;t]

‖c2‖
)

Σs‖t− s‖2.

�

The estimate of the second order remainder term is established in the

following result, which is an immediate conseguence of Proposition 4.2 and

(4.1).

Proposition 5.3. Let s ∈ L∗ε. Then there exists a nontrivial ball B, centered

at s, such that∥∥∥R(2)
ij;s(t)

∥∥∥ =
∥∥D2

ijg(λ(t))−D2
ijg(λ(s))

∥∥ ≤ Γs ‖t− s‖ (i, j = 1, . . . , n)

for all t ∈ L∗ε ∩B, where Γs is a constant not depending on t and i, j.

6. Proof of Theorem 2.5

As we pointed out in Section 3.1, we are reduced to prove that ϕ(L∗ε) is

an (Hn, n) rectifiable set of class C3 (for all ε > 0).

For each positive integer h, define Γε,h as the set of s ∈ L∗ε such that

(6.1) ‖R(0)
s (t)‖ ≤ h‖λ(t)− λ(s)‖3

and

(6.2) ‖R(1)
i;s (t)‖ ≤ h‖λ(t)− λ(s)‖2, ‖R(2)

ij;s(t)‖ ≤ h‖λ(t)− λ(s)‖

for all i, j = 1, . . . , n and for all t ∈ L∗ε satisfying

‖t− s‖ ≤ 1

h
.

Proposition 6.1. One has ⋃
h

Γε,h = L∗ε.
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Proof. The inclusion ⋃
h

Γε,h ⊂ L∗ε

is obvious. In order to prove the opposite inclusion, consider s ∈ L∗ε and let

U and V be as in Remark 2.4. Observe that

‖t− s‖ =
∥∥(λ|U)−1(λ(t))− (λ|U)−1(λ(s))

∥∥
≤ Lip(λ|U)−1 ‖λ(t)− λ(s)‖

(6.3)

for all t ∈ U .

Since s ∈ A′, there exists a non-trivial ball B centered at s such that

B ⊂ U, Ln(B\A) = 0.

By shrinking, if need be, we may also assume that B is as in the claims of

Proposition 5.2 and Proposition 5.3.

We now recall the following fact, proved in [D5]: given a null-measure

subset Z of Rn and s ∈ Rn, one has

H1(Z ∩ [s; t]) = 0

for a.e. t ∈ Rn.

For Z := B\A, we get

H1([s; t]\A) = H1(Z ∩ [s; t]) = 0

for a.e. t ∈ B. Then Proposition 5.1 yields

‖R(0)
s (t)‖ ≤ C ‖t− s‖3

for a.e. t ∈ B ∩ ϕ−1(Gg), where C is a suitable number which does not

depend on t. By continuity we get

‖R(0)
s (t)‖ ≤ C ‖t− s‖3

for all t ∈ B ∩ ϕ−1(Gg). Recalling (6.3) we conclude that

‖R(0)
s (t)‖ ≤ C0 ‖λ(t)− λ(s)‖3, C0 := C

[
Lip(λ|U)−1

]3
for all t ∈ B∩ϕ−1(Gg). Analogously, we can use Proposition 5.2, Proposition

5.3 and (6.3) to deduce the existence of two numbers C1 and C2 which do

not depend on t and are such that

‖R(1)
i;s (t)‖ ≤ C1 ‖λ(t)− λ(s)‖2 (i = 1, . . . , n)

and

‖R(2)
ij;s(t)‖ ≤ C2 ‖λ(t)− λ(s)‖ (i, j = 1, . . . , n)

for all t ∈ L∗ε ∩B.

Hence

s ∈ Γε,h
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provided h is big enough. �

From Proposition 6.1 it follows that

ϕ(L∗ε) =
⋃
h

ϕ(Γε,h)

hence it will be enough to verify that

(6.4) ϕ(Γε,h) is an (Hn, n) rectifiable set of class C3

for all ε and h.

To prove this claim, we first consider a countable measurable covering

{Ql}∞l=1 of Γε,h such that

diam Ql ≤
1

h
for all l, and define

Fl := λ(Γε,h ∩Ql).

If ξ, η ∈ Fl, then there exist two sequences

{sk}, {tk} ⊂ Γε,h ∩Ql

such that

lim
k
λ(sk) = ξ, lim

k
λ(tk) = η.

By (6.1) and (6.2), for all k, one has

‖R(0)
sk

(tk)‖ ≤ h‖λ(tk)− λ(sk)‖3

and

‖R(1)
i,sk

(tk)‖ ≤ h‖λ(tk)− λ(sk)‖2, ‖R(2)
ij,sk

(tk)‖ ≤ h‖λ(tk)− λ(sk)‖

for all i, j = 1, . . . , n. Letting k →∞, we obtain∥∥∥∥g(η)−g(ξ)−
n∑
i=1

Dig(ξ)(ηi−ξi)−1

2

n∑
i,j=1

D2
ijg(ξ)(ηi−ξi)(ηj−ξj)

∥∥∥∥ ≤ h‖η−ξ‖3,

∥∥∥∥Dig(η)−Dig(ξ)−
n∑
j=1

D2
ijg(ξ)(ηj − ξj)

∥∥∥∥ ≤ h‖η − ξ‖2 (i = 1, . . . , n)

and ∥∥∥∥D2
ijg(η)−D2

ijg(ξ)

∥∥∥∥ ≤ h‖η − ξ‖ (i, j = 1, . . . , n)

for all ξ, η ∈ Fl. By the Whitney extension Theorem [St, Ch. VI, §2.3] it

follows that each g|Fl can be extended to a map in C2,1(Rn,RN−n). Then

the Lusin type result [F, §3.1.15] implies that ϕ(Γε,h ∩ Ql) is an (Hn, n)

rectifiable set of class C3. Finally, claim (6.4) follows observing that

ϕ(Γε,h) =
⋃
l

ϕ(Γε,h ∩Ql).
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