THE SET OF REGULAR VALUES (IN THE SENSE OF
CLARKE) OF A LIPSCHITZ MAP. A SUFFICIENT
CONDITION FOR THE RECTIFIABILITY OF CLASS C&.

SILVANO DELLADIO

ABSTRACT. Let n, N be positive integers such that n < N. We prove a
result about the rectifiability of class C® of the set of regular values (in
the sense of Clarke) of a Lipschitz map ¢ : R* — RV,

1. INTRODUCTION AND STATEMENT OF MAIN RESULT

In this paper we prove a result about the rectifiability of class C? of the
set of regular values (in the sense of Clarke) of a Lipschitz map

¢ :R* — RN (n < N).

Before we state it, let us recall some basic definitions.

A Borel subset S of RY is said to be an (H",n) rectifiable set of class
C3 (or simply: a rectifiable set of class C?), if there exist countably many
n-dimensional submanifolds M; of R of class C® such that

H" (S\ U Mj) = 0.

Analogously one can define the (%", n) rectifiable sets of class C¥, for each
positive integer k. In particular, for k£ = 1 this notion is equivalent to that
of n-rectifiable set, e.g. by [S, Lemma 11.1].
For v € I(n, N) and s € R™, let 9¢7(s) denote the Clarke subdifferential
of the map
= (") R 5 R”

namely

07 (s) :== co{ lim D¢?(s;) | D7 (s;) exists, s; — 3}

1—>00

compare [CLSW, p.133]. The set d¢7(s) is said to be “nonsingular” if every
matrix in Jg7(s) is of rank n. Observe that Dy (s) € d¢”(s) whenever ¢?
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2 S. DELLADIO

is differentiable at s. In particular, Dy?(s) is nonsingular provided 9¢7(s)

is nonsingular. Define
R :={s € R"|0¢"(s) is nonsingular for some ~}.
We can now state our theorem.

Theorem 1.1. Consider a Lipschitz map
¢ R"—>RY  (n<N).
Moreover let
Cl,,C2 :R" —>R\{0} (Z: 1,...,n)
be a family of locally bounded functions, let
GLZ‘,GQJ‘Z]R"—)RN (izl,...,n), HijZRn%RN (Z,j:]_,,n)
be a family of Lipschitz maps and denote by A the set of points t € R"
satisfying the following conditions:
(i) The map ¢ and all the maps G4 ; are differentiable at t;
(ii) The equality
(1.1) Dip(t) = c1i(t)G1i(t) = c2i(t)Ga(t)
holds for all1=1,...,n;
(iii) Moreover one has
(12) Dle,i(t) == Cg,j(t)HZ(t)
foralli,j=1,...,n.
Also assume that
(iv) For almost every a € A there exists a non-trivial ball B centered at
a and such that
L"(B\A) = 0.
Then (ANR) is an (H™,n) rectifiable set of class C3.

Remark 1.2. As an immediate corollary of Theorem 1.1, we get this result.
Let

@:RH%RN, G17i,G27i,Hilen—>RN (2,]:1,,n)
be a family of Lipschitz maps and let
C1,i,C24 Rn%R\{O} (l: 1,...,n),

be a family of bounded functions such that the equalities (1.1) and (1.2)
hold almost everywhere in R”. Then the image (R ) is an (H", n) rectifiable

set of class C3.
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Remark 1.3. Let each component ¢; of ¢ : R® — RY belong to C3(R")
and have uniformly bounded gradient V,. Moreover let the differential Dy
have rank n at each point of R". Then the assumptions of Theorem 1.1 are

trivially satisfied by setting
ci=1, cy:=1, Gii:=Dyp, Ga;:= Dy (i=1,...,n)

and

H;; ::D-Qjap (i,j=1,...,n)

)

with A = R"™.

Rectifiable sets of class C* have been been introduced in [AS] and provide
a natural setting for the description of singularities of convex functions
and convex surfaces, [A, AO]. More generally, it can be used to study the
singularities of surfaces with generalized curvatures, [AO]. Rectifiability of
class C? is strictly related to the context of Legendrian rectifiable subsets of
RN x S¥=1 [Ful, Fu2, D2, D3]. The level sets of a W” mapping between
manifolds are rectifiable sets of class C*, [BHS]. Applications of rectifiable
sets of class CH (with H > 2) to geometric variational problems can be
found in [D4].

Finally, we would like to explain the reasons of our interest in conditions
(1.1) and (1.2). In the particular case when n = 1, such conditions arised
naturally in the context of one-dimensional generalized Gauss graphs (see
[AST, D1], for the basic definitions and results) and of two-storey towers
of one-dimensional generalized Gauss graphs (see [D4]). After that it was
natural to explore the question of how those assumptions could be general-
ized in order to get results about higher order of rectifiability, including the
case when n > 2. Then a general theorem for curves was provided in [D3],
while in [D5] we started studying the case of general dimension by proving
a result about the rectifiability of class C?. Further results in this direction
can be found in [AS] and [Ful, Fu2]. Roughly speaking, the very basic idea
and the proof-strategy in the present paper are the same as in [D5] namely:
to use the celebrated Whitney extension Theorem to show that the image
of ¢ is captured, up to ‘H" measure 0, by countably many high regular im-
ages of R™. More precisely, the main objective of this work is to get the set
of third order Whitney estimates which allows one to perform the (count-
ably many) extensions of class C® necessary to show that the image of ¢ is
C3-rectifiable. Such a result is the product of our efforts to prove a general
theorem about rectifiability of class C*! in any dimension, which will be the

subject of our future further investigations.
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2. REDUCTION TO GRAPHS

Remark 2.1. Under the hypotheses of Theorem 1.1, let A" denote the set
of a € A such that there exists a non-trivial ball B centered at a satisfying

L"(B\A) = 0.
One has
(2.1) LM(A\A) =0

by assumption (iv). Hence, it will be enough to prove that p(A’NR) is an
(H™, n) rectifiable set of class C3.

Remark 2.2. By the main theorem in [D5], we already know that ¢(ANR)
(hence also (A’ N'R)) is an (H",n) rectifiable set of class C?.

Remark 2.3. Let E be any subset of R and define
EY :={s € E|0¢(s) is nonsingular}, v € I(n,N).

Then one obviously has

U E'=E.

v€l(n,N)

Remark 2.4. If s € R7, by the Lipschitz inverse function Theorem (e.g.
[CLSW, Theorem 3.12]), there exist a neighborhood U (in R") of s and a
neighborhood V' (in R™) of ¢7(s) such that

o V=0 (U)and ©?|U : U — V is invertible;
e (©7|U)~! is Lipschitz.

Let 7 denote the multi-index in I(N — n, N) which complements v in
{1,2,..., N} in the natural increasing order and set (for z € RY)

= (2. ), V= (a7, p TN,
Then the map
fi=¢ o (QU)™:V - RN
is Lipschitz and its graph
Gl ={re RY |27 € V and 27 = f(27)}
coincides with ¢(U).

By virtue of previous remarks, it will be enough to prove the following

claim.
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Theorem 2.5. Under the assumptions of Theorem 1.1, let v € I(n, N) and
constder a map

g:R" - RN
of class C*. Then o((A'NR)Y)NGY is an (H",n) rectifiable set of class C°.
Remark 2.6. The remainder of our paper is devoted to proving Theorem

2.5. With no loss of generality, we can restrict our attention to the particular
case when v = {1,...,n}.

3. PRELIMINARIES

3.1. Further reduction of the claim. From now on, for simplicity,

will be denoted by G,, F' and A, respectively.
Define

L:=¢'(G,)NF.

Without loss of generality, we can assume that £"(L) < oco. Then, by a
well-known regularity property of L", for any given real number € > 0 there
exists a closed subset L. of R™ with

(3.1) L.CL, LM(L\L.) < ¢,

compare e.g. [M, Theorem 1.10]. Moreover, since L. is closed, one has
(3.2) LI C L.

where LY is the set of density points of L.. Recall that

(3.3) Lr(LALE) =0

by a well-known result of Lebesgue. In the special case that L has measure
zero, we define L. := (), hence L := ().
Observe that

Gy No(F)\@p(LY) C ¢ (¢71(Gy) N F\LY) = p(L\L})
hence

H" (Gg N o(F)\p(L7)) <H" (¢ (L\L7))
< JnpdLl"
< / xR
< (Lipp)"L(L\L7)
<e(Lipp)"
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by the area formula (compare [F, §3.2.], [S, §8]), (3.1), (3.2) and (3.3). It

follows that
H” (gg A 90 \ U 1/] )

Thus, to prove Theorem 2.5, it sufﬁces to show that
@(L*) is an (H",n) rectifiable set of class C*
for all € > 0.
3.2. Further notation. Let us consider the projection
II:RY - RV, (x1,...,2n) = (Tpg1, -, TN).

Moreover set

RO(0) == g(A0)) = g(A(s)) — Z Dig(A(s)) [¢'(0) = ¢'(s)] +

- Z D2g(A(s)) [¢'(0) — ¢'(s)] [¢(0) — ¢ (s)],
R (0) := Dig(A(0)) — Z D2g(\(s)) [¢7(0) — ¢*(5)] ,

Ri7u(0) = Dijg(Mo >> Diig(A(s)).
For h = 1,2, let G}, denote the n x n matrix field such that
Gh()]] = Gj,(1),  teR"  (i,j=1,...,n)
Also let H be the n? x n matrix field defined by
k. _ g7k n DL
[H(t)]” T Hz](t)7 teR (Zvjak_]-u"wn)
where the couples ij (indexing the rows) are ordered lexicographically.

Then consider the (n + n?) X (n + n?) matrix field

Gy 0
H G ®G,

where the symbol ® denotes the Kronecker product of matrices, [HJ, Sect.
4.2].
Forl=1,...,N —n, let D?¢' denote the R"*-valued field such that

[ngl(t)] = D”g( ) teR"” (1,7=1,...,n)

|

where the lexicographical order is assumed.
Finally, given a matrix X and a index k, denote by

Ry, (X), Cu(X)
the k-th row of X and k-th column of X, respectively.
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4. THE DERIVATIVES OF ¢ IN TERMS OF {G1,Gs, H}
(UNDER THE ASSUMPTIONS OF THEOREM 2.5, WITH v = {1,...,n})

Proposition 4.1. Letl € {1,...,N —n} and s € L. Then
(A1) M(s) (D (M) D (N(s) = (G(s). B (5))"
where GT and H™ are the the vector fields defined as follows:
Gith= (G G
and
H" [HZ’;HL i1 (in lexicographical order).
Proof. First of all, observe that
g(A(t)) = Hep(t)
for all t € p=1(G,). Since Lt C A the two members of this equality are both

differentiable at s. Moreover s is a limit point of L. C ¢~ !(G,). It follows
that

Zng(A(S))ij(S) =1IDip(s)  (i=1,...,n)
namely

Z D;g(A(s))eri )G{Z(s) = ¢1(s)IIG 4(s) (i1=1,...,n)

by (1. ) Since ¢1,(s) #0 (1 =1,...,n), we get

(4.2) ZD]g NGL(s) = Gil'(s)  i=10m)

le.

(4.3) G1(s)Dg'(A(s)) = G (s).

By the same argument as above, we can differentiate (4.2) and obtain
D> Ding (M) Do () Gi(s) + Zng ) DG i(5) = DG (5)
k=1

foralli,m =1,...,n. By (1.2)

Z D%9' (A(5))c2n ()G 1 (8)GY i(5)+

7,k=1
+ Z D;g (A(8))Comn($) Hiy (5) = com(s)Hpt ()

for all 7, m = 1,...,n, namely

(44)  [Gi(s) ® Ga(s)] D*¢'((s)) + H(s)Dg'(A(s)) = H"'(s).
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We conclude by observing that the system of equalities (4.3) and (4.4) is
equivalent to (4.1). O

In this result we investigate the properties of the matrix field ¢t — M (t)~!.

Proposition 4.2. Let s € A be such that DX(s) is nonsingular (e.g. s € F).
Then there exists a nontrivial ball B, centered at s, such that
e Forallt € B, the matrices G1(t), Go(t) and M(t) are invertible and
(4.5)
M(t)fl — B Gl(t):l _ B 0 B
—[Gi() " @ Gao(t) M H ()G (1) Gi(t) ' @ Ga(t)!

e The map
tes M) teB
18 Lipschitz.

Proof. One has

n n

DAs) = | [ ento)] 6" = | [ eaits)] o

i=1 =1

by (1.1), hence G1(s) and Go(s) are nonsingular. Moreover one has

(46) det M = det G1 det(G1 X GQ) = (det Gl)"+1(det Gg)n
by [HJ, Sect. 4.2, Problem 1]. Thus
det M (s) # 0.

Since the function ¢ — det M () is continuous, there exists a nontrivial ball
B centered at s and such that

| det M(t)] >

det M
e o)

for all t € B. As a consequence, M (t) is invertible at every ¢t € B. The
formula (4.5) follows at once observing that, for ¢t € B, the matrix M (t)~!
has to be of the form (recall (4.6))

Gy(t)! 0
X))  [Gi) @ Ga(t)]™

with X (t) satisfying

H)G1(t) ™+ [G1(t) @ Go()] X (t) =0
and finally recalling that

[G1(t) @ Go(1)] ™! = Gi(t) " @ Go(t) ™

compare [HJ, Corollary 4.2.11]. This concludes the proof of the first claim.
The second one follows by observing that the entries of M are Lipschitz. [
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5. WHITNEY-TYPE ESTIMATES
(UNDER THE ASSUMPTIONS OF THEOREM 2.5, WITH v = {1,...,n})

Proposition 5.1. Let s € L* andt € AN¢~*(G,) be such that

(5.1) H([s:t]\A) =0
where [s;t] denotes the segment joining s and t. Then the following estimate
holds
RO < (splerd) (sup leal ) e = o
where

1= (11, C1m), ca = (C21,---,C2n)

and Ay is a constant not depending on t.

Proof. First of all, observe that:

e Since s,t € p1(G,) one has g(A(s)) = Iy(s) and g(A(t)) = Tp(t);
e Consider the following parametrization of [s; ]

o:[0,1] — R", pr s+ p(t—s).

Then the function p — ¢(o(p)) is Lipschitz, hence it is differentiable
almost everywhere in [0, 1]. Moreover the assumption (5.1) implies
that

n

(poo)(p)=> (t" = s")Dip(a(p))

at a.e. p € [0, 1]. :
Recalling also (1.1), we obtain
RO(t) = p(t) Z Dig(X (1) — ¢'(s)] +
-5 Z Di;9(A\(s)) [#'(t) — ' ()] [¢7(8) — ¢’ (5)]

’L]l

n

= (th—sh)/o {HDhgo Zng $)) D' (o (p))+

h=1

— > Dig(As)) [#'(0(p) — Spi(s)]Dh<Pj(U(P))} dp

,j=1

that is

(5.2) RO@M) = 3 (t" - 5" / en(0(9)Bun(o(p)) dp
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where @, ;, denotes the Lipschitz map defined as follows

(5.3) @y :=TG1p— Y Dig(A(s) Z D3g(A(9) [¢' = ¢'(5)] G-
=1 3,7=1
Now, since @ j, 00 is Lipschitz, it is differentiable almost everywhere in [0, 1]

and
n

(Panoo) => (" =) (Dpdop) oo

k=1
Moreover @, ,(s) =0, by (4.2). By (5.3) and recalling (1.2), we get

B.1(0(0)) = Bun(o(p)) — Bunls) = / (@00

—~
ot
W~
~—
I

[

(th — sM) /0 p(chbs,h) o0

Ed

S

[y

(i — ) / (2 00) (o 0.0)

Ed

where W, 5, is the Lipschitz map defined by

U,k = 1IHp, — ZDig()‘(S»HfiLk—i_

i=1
- Z D}g(M(s)) { GGl + @' — ¢ ()1 Hj } -
2,7=1
Observe that
U, ni(s) = IlHpi(s Zng s))Hjy (s Z Dwg é,k(5>G{,h<5)

i,7=1

=0
by (4.4). Hence (for all r € [0, 1])
[Wenk(a(r)l = [[Wenk(o(r)) = Venr(s)]| < llo(r) — sl Lip ¥y i
= 7|t — s|| Lip Wy
< ||t — ]| As
with
A = mlax . (Lip ‘I’s,hk)

Recalling (5.4), we obtain
0.4l < (suplead ) A =l

The conclusion follows at once from (5.2). O
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Proposition 5.2. Let s € L:. Then there exists a nontrivial ball B, centered
at s, such that

[=2) < (sup||c2||)z||t—sr|2 (=1,....n)

for all t € L: N B such that (5.1) is satisfied, where ¢y is defined as in
Proposition 5.1 while X4 is a constant not depending on t and .

Proof. Since s € LY C F, there exists a ball B as in Proposition 4.2. Con-
sider

teL:NB
such that (5.1) is satisfied. Then (for [ =1,...,N —n)

RA®)] = D (A0 - Z D26 (M) [ (1) — ()]
RGO« GE D) — RAGH) ) » G0+
- Z D2 &) [ (1) — (5]

by Proposition 4.1 and Proposition 4.2. Moreover, if ¢ is the parametrization
of [s;t] defined above, the function

I:p— Ri(Gi(o(p) ) s G (0(p),  pe0.1]

is Lipschitz, hence it is differentiable almost everywhere in [0, 1]. Recalling
(5.1) and denoting with G;' the map r — G1(r)~! (by a convenient abuse

of notation), we obtain

II(p) = Y (1= s") {Ri(D,G1") @ Gi™ + Ri(GT") @ DG} (a(p))
q=1
for a.e. p € [0, 1]. By the well-known formula for the derivative of the inverse
matrix field, compare [HJ, (6.5.7)], it follows that

II(p) =) (1" = s){Ri(Gy") ® D,GTH+
— Ri[GTH(D,G1)G1'] & G } o (p))
= Y ("= s {[GT" DG — [GrH(D,GOGT G (0(p)

n

-3 (- sq){[Gll]Q”DqG’f,ﬁi

m,q=1

s [Gl1]?<DqG’f,h>[G111?6&5}(0@»

k=1
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for a.e. p € [0, 1]. Recalling (1.2), we get

W(p)= > caglo(p))(tt - sQ>{[G;1]rH%l+
T
hk=1

for a.e. p € [0, 1]. It follows that

55 [REO] =0 = [ erfol)l. () dr

q=1

where ©/., : B — R is the function defined as

oL :=Z{[G;11?H;zzl— S (GP LGP G — D <A<s>>G;7q}.
One has
D2,d'(\(s) = 3 [Gils) ™ ® Gals) ] HIF (s)+
— Y [Gils) T @ Gals) M5 HEy(s) [Ga(s)T]; Grit(s)
b,c,d,e=1
=N [Gi(s) VS [Gals) 7S HE (s)+
ST [Gis) Y [Gals) Y HE(s) [Gas) 7Y Grt(s)
b,c,d,e=1

by Proposition 4.1 and Proposition 4.2. Hence the following equality holds

n

ZDzmg §)) Gy (s) = Z [G1(s) 7]} Hy(5) dag+

n

— Y [Guls) ]S HY(s) [Gals) '], Grt'(s) dag

b,c,d,e=1

namely



C3-RECTIFIABILITY OF THE REGULAR VALUES SET 13

Moreover @é;s is Lipschitz, by Proposition 4.2. Then, if define
Y :=(N—n) Jmax (Lip©L,) .

,,,,,

we get

6,(0(0))] = B (o(p)) — O, (5)] < = s

forallg=1,...,n,foralll =1,..., N —n and for all p € [0, 1]. From (5.5)
it finally follows that

Irto] < 3 [ < (spte) sae -
st
U

The estimate of the second order remainder term is established in the

following result, which is an immediate conseguence of Proposition 4.2 and
(4.1).

Proposition 5.3. Let s € L.. Then there exists a nontrivial ball B, centered
at s, such that

|RE®| = D590 = DRgA) | < Tulit =5l (o =L.om)

forallt € LN B, where I'y is a constant not depending ont and i, .

6. PROOF OF THEOREM 2.5

As we pointed out in Section 3.1, we are reduced to prove that ¢(L}) is
n (H", n) rectifiable set of class C? (for all £ > 0).
For each positive integer h, define I'; ;, as the set of s € L such that

(6.1) IRO @) < BIAE) — A(s)|?
and
62)  R®I < AIAE) =A% IRELE] < RIAE) = A(s)]|

forall 7,7 =1,...,n and for all ¢ € L} satisfying
It —sl <=
—s —.
~h

Proposition 6.1. One has

Jron =1Lz
h
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Proof. The inclusion
U Fs,h C L:
h

is obvious. In order to prove the opposite inclusion, consider s € L} and let
U and V be as in Remark 2.4. Observe that

(63 [t = s[l = |(A\T) T (A@) = NT)TH(AB))]|

< Lip(A[U) " [[AE) = A(s)]]

forallt € U.
Since s € A’, there exists a non-trivial ball B centered at s such that

BcCU, L"(B\A) = 0.

By shrinking, if need be, we may also assume that B is as in the claims of
Proposition 5.2 and Proposition 5.3.

We now recall the following fact, proved in [D5]: given a null-measure
subset Z of R™ and s € R", one has

HY(ZN[s;t]) =0

for a.e. t € R™.
For Z := B\ A, we get

H([s:t\A) = H(Z N [s54]) = 0

for a.e. t € B. Then Proposition 5.1 yields

IR @) < Clt = s
for a.e. t € BNy (G,), where C is a suitable number which does not
depend on t. By continuity we get

IRO®I < C It - sl
for all t € BN 1(G,). Recalling (6.3) we conclude that

IRO@] < ColAt) = AN, Co:=C [Lip(AU)~]

for all t € BNy ~'(G,). Analogously, we can use Proposition 5.2, Proposition
5.3 and (6.3) to deduce the existence of two numbers Cy and Cy which do

not depend on ¢ and are such that

IR O <IN = AS)? (i=1,...,n)

and
IRELOI < CoA®) = A& (ij=1,....n)
forallt € LI N B.
Hence
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provided h is big enough. (I

From Proposition 6.1 it follows that
= U o(len)
h

hence it will be enough to verify that
(6.4) @(T.p) is an (H",n) rectifiable set of class C*

for all € and h.
To prove this claim, we first consider a countable measurable covering

{Qi}2, of I'.j, such that
diam Q; < %
for all [, and define
Fr o= MTen N Q).

If £&,n € Fy, then there exist two sequences
{seh {te} CTen NQ
such that
liin A(sk) =&, lilgn Atg) =n.
By (6.1) and (6.2), for all k, one has
IR ()l < AlIAE) = A(si)])®

and
IR ()l < RN = AGse)l% IR, (t) Il < RlIAE) — Als)l|
forall 7,7 =1,...,n. Letting £ — oo, we obtain
\gm)— > D) —€)-3 3 Dagl©)—€ )~ < him—el”.
=1 1] 1
Dt - ZD”g &) <hlm—e?  G=1...n)
and

for all £,n € F;. By the Whitney extension Theorem [St, Ch. VI, §2.3] it
follows that each g|F; can be extended to a map in C%*(R", RY~"). Then
the Lusin type result [F, §3.1.15] implies that o(I'.p, N Q) is an (H",n)
rectifiable set of class C3. Finally, claim (6.4) follows observing that

n = Je@nn Q).
z
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