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We study the existence and regularity of densities for the solution of a nonlinear heat
diffusion with stochastic perturbation of Brownian and fractional Brownian motion type:
we use the Malliavin calculus in order to prove that, if the non linear term is suitably
regular, then the law of the solution has a smooth density with respect to the Lebesgue
measure.
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1. Introduction

Stochastic reaction-diffusion equations with white-noise boundary conditions of
Robin-Neumann type were introduced in the literature in the ’90s of last century,
see the seminal paper by Sowers.1 One of the main issues is the regularity of the
solution inside the domain as well as near the boundary. In a recent paper,2 it was
studied a class of nonlinear heat diffusions with stochastic perturbation of Brownian
and fractional Brownian motion type. In this note, we proceed with the analysis of
such equations, by considering in particular the problem of regularity in the Malli-
avin sense of the solution of such problem. An extension of these results to the
case of stochastic reaction-diffusion equations with Dirichlet boundary conditions
as proposed in3,4 will be given in a subsequent paper.
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In particular, we consider in this paper the following nonlinear diffusion equation
on the half-line

∂

∂t
u(t, x) =

1

2

∂2

∂x2
u(t, x) + f(t, x, u(t, x)), x > 0, t ∈ [0, T ],

∂

∂x
u(t, 0) +

∫
S

g(σ) dBσ,t = 0, t ∈ [0, T ].

(1.1)

for a suitable regular function f (see Hypothesis (4.1)–(4.2)–(4.3) for a precise defi-
nition). The stochastic process Bσ,t is a Gaussian stochastic process on a measurable
space [0, T ]×S; this process can be either a Brownian motion or a fractional Brow-
nian motion with Hurst parameter H > 1/2.
We remark that, as opposite to the papers,1,2 we have chosen to fix the one dimen-
sional domain R+ in order to emphasize the results instead of the technicalities. We
claim that most of the results still holds in the multidimensional case.

We interpret Eq. (1.1) in the sense of Walsh.5 Let gN (t, x, y) and pN (t, x) be
the Green kernel and the Poisson kernel for the heat equation in [0, T ] × D with
Neumann boundary conditions, see Definition 3.1. Then a solution of (1.1) is the
process u(t, x) that satisfies the evolution equation

u(t, x) =

∫ t

0

∫
S

pN (s, x)g(σ) dBs,σ +

∫ t

0

∫
R+

gN (t− s, x, y)f(s, y, u(s, y)) dy ds.

(1.2)
Our main result provides the existence and regularity of the density (with respect
to Lebesgue measure) of the random variable u(t, x) with t ∈]0, T ] and x > 0. Our
approach is rather standard in this context, as we rely on techniques of the Malliavin
calculus and a-priori estimates for the solution.

Stochastic heat equation in a bounded domain in one spatial dimension, with
homogeneous boundary conditions, has been studied by many authors: see, e.g.,
Walsh5 and the problem of existence and regularity of the density for equation
with additive or multiplicative noise has been addressed by many authors: we quote
in particular Pardoux and Zhang,6 Bally and Pardoux,7 Morien8 and Mueller and
Nualart.9 For the multidimensional case, the literature is, in our knowledge, much
scarcer: we quote, for instance, Márquez-Carreras et al.10 and the recent paper by
Marinelli et al.11 Finally, as far as we know this is the first attempt to study a prob-
lem of existence and regularity of the density for solutions of stochastic evolution
equations with boundary noise.

Notation. In the sequel, we shall indicate with C a constant that may varies from line
to line. In certain cases, we write Cα,β,... to emphasize the dependence of the constant on
the parameters α, β, . . . .

2. Preliminaries on Malliavin calculus

Let us recall some basic facts about the Malliavin calculus with respect to (standard
and fractional) Brownian motion; for full details, we refer to.12
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Fix a measurable space (S,S) with a finite measure µ on it, as well as a time
interval [0, T ].

We are given a complete probability space (Ω,F ,P) and a centered Gaussian
family B = {B(h), h ∈ H} defined in Ω. The space H is constructed below.

Recall that a fractional Brownian motion BH = {BH(t), t ∈ [0, T ]} is a centered
Gaussian process with covariance function

RH(t, s) =
1

2
(s2H + t2H − |t− s|2H), s, t ∈ [0, T ].

Let E be the space of step functions on [0, T ]× S. We denote by H the closure
of E with respect to the scalar product

〈111[0,t] × 111A,111[0,s] × 111B〉H = RH(t, s)µ(A ∩B);

notice that in case H = 1/2 then the first component in H is the standard L2 space
with respect to the Lebesgue measure on [0, T ], so that for φ, ψ ∈ H we have

〈φ, ψ〉H =

∫ T

0

∫
S

φ(s, σ)ψ(s, σ)µ(dσ) ds.

In case of a fractional Brownian motion with Hurst parameter H > 1/2 it holds

〈φ, ψ〉H =

∫
S

∫ T

0

∫ T

0

|s− t|2H−2φ(s, σ)ψ(t, σ) dtds µ(dσ),

φ, ψ ∈ H.
Thus, in case H = 1/2, we say that the Gaussian family B is associated to

a Brownian motion process Bs,σ on H and in case H > 1
2 it is associated to a

fractional Brownian motion Bs,σ via the identification

B(φ) =

∫
S

∫ T

0

φ(s, σ) dBs,σ, φ ∈ H.

A F-measurable real valued random variable F is said to be cylindrical if it can
be written as

F = f
(
B(φ1), . . . , B(φn)

)
,

where φi ∈ H and f : Rn → R is a C∞ bounded function. The set of cylindrical
random variables is denoted by S. The Malliavin derivative of F ∈ S is the stochastic
process DF = {Ds,σF, s ∈ [0, T ], σ ∈ S} given by

Ds,σF =

n∑
i=1

φi(s, σ)
∂f

∂xi

(
B(φ1), . . . , B(φn)

)
.

More generally, we can introduce iterated derivatives. If F ∈ S, we set

Dk
t1,...,tk,σ1,...,σk

F = Dt1,σ1
. . . Dtk,σkF.



December 15, 2014 9:49 WSPC/INSTRUCTION FILE dicembre_idaqp

4 Stefano Bonaccorsi, Margherita Zanella

For any p ≥ 1, the operator Dk is closable from S into Lp
(
C([0, T ]× S,R),H⊗k

)
.

We denote by Dk,p(H) the closure of the class of cylindrical random variables with
respect to the norm

‖F‖k,p =

E (|F |p) +

k∑
j=1

E
(∥∥DjF

∥∥p
H⊗j

) 1
p

,

and

D∞(H) =
⋂
p≥1

⋂
k≥1

Dk,p(H).

We also introduce the localized spaces Dk,ploc (H) by saying that a random variable F
belongs to Dk,ploc (H) if there exists a sequence of sets Ωn ⊂ Ω and random variables
Fn ∈ Dk,p(H) such that Ωn ↑ Ω almost surely and such that F = Fn on Ωn.

We then have the following key result which stems from Nualart12 Theorem
2.1.2 and Corollary 2.1.2:

Theorem 2.1. Let F = (F1, . . . , Fn) be a F-measurable random vector such that:

(1) For every i = 1, . . . , n, Fi ∈ D1,2
loc(H);

(2) The Malliavin matrix of the random vector F : Γ =
(
〈DF i, DF j〉H

)
1≤i,j≤nis

invertible almost surely.

Then the law of F has a density with respect to the Lebesgue measure on Rn.
If moreover F ∈ D∞(H) and, for every p > 1,

E
(
|det Γ|−p

)
< +∞,

then this density is smooth.

The following result is useful in the proof of regularity for the solution of the
stochastic differential equation (1.1). We recall here for the sake of completeness. A
proof can be found, for instance, in Nualart12 Lemma 1.5.3.

Proposition 2.1. Let {Fn} be a sequence of variables in Dk,p for some p > 1.
Assume that the sequence Fn converges to F in Lp(Ω) and that

sup
n
‖Fn‖k,p <∞. (2.1)

Then F belongs to Dk,p.
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3. The stochastic convolution process

We are here concerned with the solution of the one dimensional heat diffusion
problem with inhomogeneous white noise boundary condition

∂

∂t
z(t, x) =

1

2

∂2

∂x2
z(t, x), x > 0, t ∈ [0, T ],

∂

∂x
z(t, 0) +

∫
S

g(σ) dBσ,t = 0, t ∈ [0, T ].

(3.1)

With no loss of generality we assume that∫
S

|g(σ)|2 µ(dσ) = 1. (3.2)

Then the solution to (3.1) is given by the stochastic convolution process

z(t, x) =

∫ t

0

∫
S

pN (s, x)g(σ) dBs,σ. (3.3)

Definition 3.1 (The Green and Poisson kernel). The solution of the deter-
ministic problem

∂

∂t
u(t, x) =

1

2

∂2

∂x2
u(t, x) + f(t, x), x > 0, t ∈ [0, T ],

∂

∂x
u(t, 0) + g(t) = 0, t ∈ [0, T ].

(3.4)

is given by the expression

u(t, x) =

∫ t

0

pN (t− s, x)g(s) ds+

∫ t

0

∫
R+

gN (t− s, x, y)f(s, y) dy ds (3.5)

for sufficiently smooth data f and g. In this case, the Green gN and Poisson pN
kernels with Neumann boundary conditions are explicitly given

gN (t, x, y) =
1√
2πt

(
exp(− (x− y)2

2t
) + exp(− (x+ y)2

2t
)

)
,

pN (t, x) =
1√
2πt

exp(−x
2

2t
).

Lemma 3.1. The Poisson kernel pN (s, x) belongs to H for every x > 0, and for
H > 1/2 pN (s, x) belongs to H for every x ≥ 0.
In particular we have the estimate

‖pN (·, x)111(0,t)(·)‖2H ≤ C
∫ t

0

s2H−2e−x
2/s ds (3.6)

valid for any H ≥ 1/2.
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Proof. We may directly compute the relevant integrals; notice that for the case
H > 1/2, due to the monotonicity of pN (s, x) in x, it is sufficient to prove that∫ T

0

∫ T

0

pN (s, 0)pN (t, 0)|t− s|2H−2 dsdt < +∞,

and actually we have that:∫ T

0

∫ T

0

pN (s, 0)pN (t, 0)|t− s|2H−2 dsdt =

∫ T

0

∫ T

0

1

2π
√
ts
|t− s|2H−2 dsdt

=

∫ 1

0

∫ 1

0

1

2πT
√
σρ
T 2H−2|σ − ρ|2H−2T 2 dσ dρ

=
T 2H−1

2π

∫ 1

0

∫ 1

0

1
√
σρ
|σ − ρ|2H−2 dσ dρ = CHT

2H−1. (3.7)

In the Brownian case, we compute∫ T

0

pN (s, x)2 ds =
1

2π

∫ T

0

e−x
2/s ds

s
=

1

2π

∫ ∞
x2/T

e−s
ds

s
≤ C | log(x)|

and this quantity is finite for any x > 0 while it degenerates as x→ 0.

We first provide the global regularity of the solution of problem (3.1).

Theorem 3.1. For any p ≥ 2 the stochastic convolution process z(t, x) belongs to
LpF ((0, T )× R+) = LpF (Ω;Lp((0, T )× R+).

Proof. We start from the identity

E|z(t, x)|p = ‖pN (·, x)111(0,t)(·)‖pH
valid for any H ≥ 1/2 and p ≥ 2. Recall (3.6). Then if p = 2 an application of
Fubini’s theorem leads to the estimate

‖z‖2L2
F

=

∫ T

0

∫
R+

(T − s)s2H−2e−x
2/s dx ds ≤ C T 2H+1/2;

if p > 2 then we first apply Hölder’s inequality for some ε ∈ (0, 1p ) (although it is
really necessary only for H = 1/2), then Fubini’s theorem to get

‖z‖p
LpF
≤ C

∫ T

0

∫
R+

(∫ t

0

∣∣∣s− 2
p−εe−x

2/s
∣∣∣p/2 ds

) (∫ t

0

∣∣∣s− p−2
p +ε+(2H−1)

∣∣∣ p
p−2

ds

) p−2
2

dx dt

≤ C
∫ T

0

∫
R+

t(ε+2H−1) p2
∫ t

0

s−1−ε
p
2 e−

p
2x

2/s dsdxdt ≤ C
∫ T

0

t(ε+2H−1) p2
∫ t

0

s−(1+ε p)/2 dsdt

≤ C
∫ T

0

t(ε+2H−1) p2 t(1−εp)/2 dt ≤ C T (2H−1) p2+
3
2 .

We next prove that the solution is suitably smooth in space. The following
results are proved by appealing to the Kolmogorov’s continuity criterium. Notice
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that there is a difference between the two cases: for the Brownian motion case there
is a discontinuity on the boundary, while in the fractional Brownian motion case
H > 1/2 the process is continuous up to the boundary.

Lemma 3.2. Let H = 1/2. For any ε > 0 and L <∞ there exists a version of the
process x 7→ z(t, x) that is a.s. C∞on [ε, L].

Proof. We estimate first

|pN (s, x)− pN (s, y)| =
∣∣∣∣∫ y

x

∂

∂z
pN (s, z) dz

∣∣∣∣ =

∣∣∣∣∫ y

x

(
−z
s

)
pN (s, z) dz

∣∣∣∣
≤ 1

s
pN (s, x)

|x2 − y2|
2

≤ 1

s
L|x− y| pN (s, x).

Then we observe that

|pN (s, x)− pN (s, y)| ≤ |pN (s, x)− pN (s, y)|1−α|pN (s, x)− pN (s, y)|α

≤ pN (s, x)1−α
∣∣∣∣1spN (s, x)|x− y|L

∣∣∣∣α ≤ pN (s, x)

(
L|x− y|

s

)α
(3.8)

hence, recalling (3.2) and using the Burkholder-Davis-Gundy inequality, we get

E|z(t, x)− z(t, y)|p ≤
[∫ t

0

|pN (s, x)− pN (s, y)|2 ds

]p/2

≤

[∫ t

0

∣∣∣∣pN (s, ε)Lα
1

sα

∣∣∣∣2 ds

] p
2

|x− y|αp ≤ CL

[∫ t

0

e−
ε2

s

s1+2α
ds

] p
2

|x− y|αp

= CL

[
ε−4α

∫ ∞
ε2

t

e−zz2α−1dz

] p
2

|x− y|αp ≤ CL Γ(2α) ε−2pα|x− y|αp

where for the convergence of the Gamma function it is sufficient to require α >

0. Then, Kolmogorov’s continuity theorem guarantees the existence of a Hölder
continuous version of z(t, ·) with Hölder exponent α − 1/p and then, the thesis
follows thanks to the arbitrariness of α > 0 and p ≥ 2.

Following the idea in Sowers,1 we can estimate the irregularity of the process
near the boundary. It holds that even if the process is not regular up to the origin,
if we moltiplicate the process by xα we get a bounded (and continuous) process up
to the origin. More formally we have the following.

Lemma 3.3. Let H = 1/2. For any ε > 0 the process x→ xαz(t, x) is continuous
in [0, L] for any α > 0.

Proof. We aim to prove that

lim
x→0

E|xαz(t, x)|2 = 0.
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We have

lim
x→0

E|xαz(t, x)|2 = lim
x→0

E
∣∣∣∣xα ∫ t

0

∫
S

pN (s, x)g(σ) dBs,σ

∣∣∣∣2
≤ lim
x→0

x2α
∫ t

0

|pN (s, x)|2 ds = lim
x→0

∫ t

0

x2α
e− x

2

s

s
ds.

We perform a change of variables and we get

lim
x→0

E|xαz(t, x)|2 ≤ lim
x→0

x2αΓ[0, x
2

t ] ≈ lim
x→0

x2α log
(
x2

t

)
= 0

which guarantees the convergence for any α > 0.

Lemma 3.4. Let H > 1/2. For any ε > 0 and L <∞ there exists a version of the
process x 7→ z(t, x) that is C∞ on [ε, L].

Proof.
Using the Burkholder-Davis-Gundy inequality and the same estimates used in

the proof of Lemma 3.2, we estimate

E|z(t, x)− z(t, y)|p = E
∣∣∣∣∫ t

0

∫
S

[pN (s, x)− pN (s, y)] g(σ) dBσ,s

∣∣∣∣p
≤
[∫ t

0

∫ t

0

|r − s|2H−2
(
pN (s, ε)Lα

1

sα

)(
pN (r, ε)Lα

1

rα

)
dsdr

] p
2

|x− y|αp

≤ CL|x− y|αp
[∫ t

0

∫ t

0

|r − s|2H−2

sαrα
pN (s, ε)pN (r, ε)dsdr

] p
2

Using a change of variables we estimate∫ t

0

∫ t

0

|r − s|2H−2

sαrα
pN (s, ε)pN (r, ε) dsdr

= (ε2)2H−2α−1
∫ ∞
ε2

t

∫ ∞
ε2

t

|z − w|2H−2zα+ 1
2−2Hwα+

1
2−2He−

z
2 e−

w
2 dzdw

= 2(ε2)2H−2α−1
∫ ∞
ε2

t

∫ z

ε2

t

(z − w)2H−2zα+
1
2−2Hwα+

1
2−2He−

z
2 e−

w
2 dz dw

≤ 2(ε2)2H−2α−1
∫ ∞
0

∫ z

0

(z − w)2H−2zα+
1
2−2Hwα+

1
2−2He−

z
2 e−

w
2 dz dw

(3.9)

We analyze first the inner integral to get∫ z

0

e−
w
2 (z − w)2H−2wα+1/2−2Hdw

= z2H−2+α+1/2−2H+1

∫ 1

0

e−
σz
2 (1− σ)2H−2σα+1/2−2Hdσ

≤ zα−1/2
∫ 1

0

(1− σ)2H−2σα+1/2−2Hdσ =
Γ(2H − 1)Γ(α− 2H + 3/2)

Γ(α+ 1/2)
zα−1/2
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which converges for any H > 1/2 and α > 0.
Then (3.9) is estimated by

2(ε2)2H−2α−1C

∫ ∞
0

e−
z
2 z2α−2Hdz = 2(ε2)2H−2α−1C Γ(2α− 2H + 1)

which converges provided α > H − 1/2. So we get

E|z(t, x)− z(t, y)|p ≤ 2(ε2)2H−2α−1CL,H,α|x− y|αp (3.10)

and we conclude the proof as in Lemma 3.2.

Notice that previous lemma does not imply the smoothness of the solution up
to the origin. In fact, the assumption α > H − 1/2 implies that the right hand side
of (3.10) blows up as ε → 0. Thus we shall consider the regularity of the solution
near the origin in the following lemma.

Lemma 3.5. Let H > 1/2. There exists a version of the process x 7→ z(t, x) that
is continuous up to zero. Moreover it is γ-Hölder continuous with γ < 2H − 1.

Proof. Using as before the Burkholder-Davis-Gundy inequality, estimate (3.8)
(with L = x), and the usual change of variables we have

E|z(t, 0)− z(t, x)|p ≤
[∫ t

0

∫ t

0

pN (s, 0)
x2α

sα
pN (r, 0)

x2α

rα
|r − s|2H−2dr ds

] p
2

≤ Cx2αp
[∫ t

0

∫ t

0

1

sα+
1
2

1

rα+
1
2

|r − s|2H−2dr ds

] p
2

= Cx2αp
(
t2H−2α−1

) p
2

[∫ 1

0

∫ 1

0

1

σα+
1
2

1

ρα+
1
2

|σ − ρ|2H−2dσ dρ

] p
2

≤ Cx2αp
(
t2H−2α−1

) p
2 CH,α

where the term CH,α is finite provided that α < H − 1/2:∫ 1

0

∫ 1

0

1

σα+
1
2

1

ρα+
1
2

|σ − ρ|2H−2 dσ dρ = 2

∫ 1

0

∫ σ

0

1

σα+
1
2

1

ρα+
1
2

(σ − ρ)2H−2 dρ dσ

= 2

∫ 1

0

σ2H−2α−2
(∫ 1

0

r−α−
1
2 (1− r)2H−2 dr

)
dσ

=

(
2

2H − 2α− 1

)
Γ( 1

2 − α)Γ(2H − 1)

Γ(2H − α− 1
2 )

.

By the Kolmogorov’s continuity theorem we conclude that there exists a version of
the process z(t, x) which is a.s. γ-Hölder continuous in x with γ < 2H − 1 on [0, L].

Next, we prove the smoothness in Malliavin’s sense of the process z(t, x). This
is a key step towards the prove of existence of the density.
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Lemma 3.6. The stochastic convolution process belongs to D∞.

Proof. Simply notice that Dδ(u) = u for any deterministic function u ∈ H, where
we use the notation δ(u) for the Wiener integral. Therefore, higher order derivatives
vanishes and the thesis follows.

We finally prove the existence of the density of the random variable z(t, x)

with respect to the Lebesgue measure on R. We shall use the criterion for absolute
continuity stated in Theorem 2.1.

Lemma 3.7. Assume (3.2). Then the random variable z(t, x), x > 0 and t ∈]0, T ],
has a smooth density with respect to the Lebesgue measure on R.

Proof. The thesis follows from Theorem 2.1 and the estimate

‖Dz(t, x)‖2H ≥ δ > 0 a.s.. (3.11)

We may prove (3.11) by a direct computation. First, for H = 1/2, we have∫ t

0

∫
S

|g(σ)pN (s, x)|2 µ(dσ) ds

≥
∫
S

|g(σ)|2 µ(dσ)

∫ t

0

1

2πs
exp(−x2/s) ds =

1

2π
Γ[0, x

2

t ],

where Γ(0, z) is the incomplete Gamma function and 0 < Γ[0, z] <∞ for any z > 0.
Next, in the fractional Brownian motion case H > 1/2, recalling (3.2), we have∫
S

∫ t

0

∫ t

0

|g(σ)|2pN (r, x)pN (s, x)|s− r|2H−2 dsdr µ(dσ)

≥
(∫

S

|g(σ)|2 µ(dσ)

) ∫ t

t/2

∫ t

t/2

exp(−x
2

2s ) exp(−x
2

2r )
1

2π
√
sr
|s− r|2H−2 dr ds

≥ exp(− 2x2

t )

∫ t

t/2

∫ t

t/2

1

2π
√
sr
|s− r|2H−2 dr ds = CH exp(− 2x2

t )t2H−1.

Remark 3.1. The above proof shows, in particular, that in the fractional Brownian
motion case the stochastic convolution term is regular (in the sense of Malliavin
calculus) up to the boundary x = 0, as opposed to the Brownian motion case.

4. Existence of the solution for the nonlinear equation and its
regularity

We consider in this section the nonlinear diffusion equation on the half-line (1.1).
We assume that the function f has the following form

f(t, x, u) = f0(t, x) + f1(t, x)f(u),
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where

f0(t, x) ∈ L∞(0, T ;Lp(R+)), p ≥ 2, (4.1)

f1(t, x) ∈ L∞((0, T )× R+), with ‖f1(t, x)‖∞ ≤ L1 (4.2)

for some L1 < +∞, and

f(u) is Lipschitz continuous and belongs to the class C1(R),

with f(0) = 0 and |∂uf(u)| ≤ L (4.3)

for some L <∞.
In the sequel, in order to improve the regularity of the solution, we shall introduce
the following additional condition, which substitutes (4.3):

f(u) belongs to the class C∞(R), with f(0) = 0 and |∂nuf(u)| ≤ L (4.4)

for any n ≥ 1 and some L <∞.

Theorem 4.1. Assume that Hypothesis (4.1) holds for some p ≥ 2, and take also
(4.2) and (4.3). There exists a unique solution u(t, x) for problem (1.2) that belongs
to LpF ((0, T )× R+) for any p ≥ 2.
Moreover, let p = 2 in (4.1). Then u(t, x) ∈ D1,2, and the derivative Dr,σu(t, x)

satisfies the following equation:

Dr,σu(t, x) = pN (r, x)g(σ)111[0,t](r)

+

∫ t

r

∫
R+

gN (t− s, x, y)∂uf(s, y, u(s, y))Dr,σu(s, y) dy ds. (4.5)

Proof. [Existence and uniqueness of the solution]
Let us consider the Picard approximations of u(t, x) defined as usual

un+1(t, x) =

∫ t

0

∫
S

pN (s, x)g(σ) dBs,σ +

∫ t

0

∫
R+

gN (t− s, x, y)f(s, y, un(s, y)) dy ds.

(4.6)

First, we prove that un(t, x) converges in Lp(Ω) to u(t, x) as n→∞, for every
(t, x) ∈ [0, T ]× R+. So let us estimate, for every p ≥ 2,

E(|un+1(t, x)− un(t, x)|p)

≤E

∣∣∣∣∣
∫ t

0

∫
R+

gN (t− s, x, y) [f(s, y, un(s, y))− f(s, y, un−1(s, y))] dy ds

∣∣∣∣∣
p

.
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Using Hölder’s inequality, then hypothesis (4.2) and (4.3) on f and the trivial
inequality

∫
gN (t, x, y) dy ≤ 1

E(|un+1(t, x)− un(t, x)|p)

≤C

(∫ t

0

∫
R+

gN (t− s, x, y) dy ds

)p−1
·

·
∫ t

0

∫
R+

gN (t− s, x, y) dy sup
(r,y)∈[0,s]×R+

E|un(r, y)− un−1(r, y)|p ds

≤C tp−1
∫ t

0

sup
(r,y)∈[0,s]×R+

E|un(r, y)− un−1(r, y)|p ds.

Defining now

φn+1(t) := sup
(s,x)∈[0,t]×R+

E(|un+1(s, x)− un(s, x)|p), t ∈ [0, T ],

and recalling the above estimates we get

φn+1(t) ≤ CT
∫ t

0

φn(s) ds.

Iterating this inequality it follows that∑
n

φn(t) <∞.

Hence un(t, x) converges in Lp(Ω) as n tends to infinity, uniformly in (t, x) ∈ [0, T ]×
R+. Let us denote the limit by u(t, x). The process u(t, x) is adapted, bounded in
the p-mean and satisfies (1.2), hence it is a solution for (1.1).

Proof. [Global regularity of the solution]
We aim to prove that the solution belongs to LpF ((0, T ) × R+) for any p ≥

2. To this end, we recall from Theorem 3.1 that the stochastic convolution term
indeed is in this space, so it is sufficient to estimate the convolution term. Setting
for simplicity f(s, y, u(s, y)) = ϕ(s, y), we estimate by the continuous version of
Minkowski’s inequality (see for instance Stroock13 Theorem 6.2.14)

E

∣∣∣∣∣
∫ t

0

∫
R+

gN (t− s, x, y)ϕ(s, y) dy ds

∣∣∣∣∣
p

≤

(∫ t

0

∫
R+

(E|gN (t− s, x, y)ϕ(s, y)|p)1/p dy ds

)p
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then by Hölder’s inequality and finally by the estimates on the Green kernel gN

E

∣∣∣∣∣
∫ t

0

∫
R+

gN (t− s, x, y)ϕ(s, y) dy ds

∣∣∣∣∣
p

≤

(∫ t

0

∫
R+

gN (t− s, x, y) dy ds

)p−1(∫ t

0

∫
R+

gN (t− s, x, y)E|ϕ(s, y)|p dy ds

)

≤ tp−1
(∫ t

0

∫
R+

gN (t− s, x, y)E|ϕ(s, y)|p dy ds

)
.

Therefore, taking the integral in R+, we get by an application of Fubini’s theorem∫
R+

E

∣∣∣∣∣
∫ t

0

∫
R+

gN (t− s, x, y)ϕ(s, y) dy ds

∣∣∣∣∣
p

dx

≤
∫
R+

tp−1
∫ t

0

∫
R+

gN (t− s, x, y)E|ϕ(s, y)|p dy dsdx

≤ tp−1
∫ t

0

∫
R+

(∫
R+

gN (t− s, x, y) dx

)
E|ϕ(s, y)|p dy ds ≤ tp−1‖ϕ‖p

LpF ((0,t)×R+)
.

Let us return to (1.2); taking the p-th power and then integrating in dx on both
sides we have

‖u(t, ·)‖p
LpF (R+)

≤ ‖z(t, ·)‖pLp(R+) + tp−1
∫ t

0

‖ϕ(s, ·)‖p
LpF (R+)

ds (4.7)

Recalling the definition of ϕ(s, y) and using the hypothesis (4.1) – (4.3) we have

‖ϕ(s, ·)‖p
LpF (R+)

=

∫
R+

E|f(s, y, u(s, y))|p dy =

∫
R+

E|f0(s, y) + f1(s, y)f(u)|pdy

≤cp

(∫
R+

|f0(s, y)|pdy +

∫
R+

|f1(s, y)|pE|f(u)|pdy

)
≤c‖f0(s, ·)‖pLp(R+) + c sup

(r,y)∈(0,s)×R+

|f1(r, y)|p‖u(s, ·)‖p
LpF (R+)

≤c‖f0‖pL∞(0,T ;Lp(R+)) + c‖f1‖pL∞((0,T )×R+)‖u(s, ·)‖p
LpF (R+)

≤c0 + c1‖u(s, ·)‖p
LpF (R+)

Now we use the above estimate and Gronwall’s inequality to get

‖u(t, ·)‖p
LpF (R+)

≤ C0,T + C1,T ‖z(t, ·)‖pLpF (R+)

and the conclusion follows by taking one more integral on (0, T ).

Proof. [Existence and uniqueness of the Malliavin derivative]
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The proof of this part is based on the convergence result recalled in Proposition
2.1.
Let us consider the Picard approximations of u(t, x) defined by (4.6). Then, in view
of Proposition 2.1, it is sufficient to show that

sup
n

E‖Dun(t, x)‖2H ≤ C < +∞. (4.8)

We proceed by induction starting from (4.6) to get

Dr,σun+1(t, x) = pN (r, x)g(σ)111[0,t](r)

+

∫ t

r

∫
R+

gN (t− s, x, y)∂uf(s, y, un(s, y))Dr,σun(s, y) dsdy (4.9)

which leads to the following estimate

E‖Dun+1(t, x)‖2H ≤ 2‖pN (·, x)g(·)111(0,t)(·)‖2H + 2E ‖φn(t, x; r, σ)‖2H
where, for simplicity, we set

φn(t, x; r, σ) :=

∫ t

r

∫
R+

gN (t− s, x, y)∂uf(s, y, un(s, y))Dr,σun(s, y) dy ds.

We separately estimate the various terms.
Recall from (3.6) the estimate, valid for any H ≥ 1/2,

c(t, x) := E‖pN (r, x)g(σ)111(0,t)(r)‖2H ≤ C
∫ t

0

s2H−2e−x
2/s ds;

now, by the inequality∥∥∥∥∫
E1

f(x, y)µ(dx)

∥∥∥∥
E2

≤
∫
E1

‖f(x, ·)‖E2 µ(dx)

we get

E‖φn(t, x; r, σ)‖2H =E

∣∣∣∣∣
∣∣∣∣∣
∫ t

r

∫
R+

gN (t− s, x, y)∂uf(s, y, un(s, y))Dun(s, y) dy ds

∣∣∣∣∣
∣∣∣∣∣
2

H

≤E

∣∣∣∣∣
∫ t

r

∫
R+

‖gN (t− s, x, y)∂uf(s, y, un(s, y))Dun(s, y)‖H dy ds

∣∣∣∣∣
2

≤CL E

∣∣∣∣∣
∫ t

r

∫
R+

gN (t− s, x, y) ‖Dun(s, y)‖H dy ds

∣∣∣∣∣
2

≤CL
(∫ t

r

∫
R+

gN (t− s, x, y) dy ds

)
·

·

(∫ t

r

∫
R+

gN (t− s, x, y)E ‖Dun(s, y)‖2H dy ds

)

≤CL,T
∫ t

r

∫
R+

gN (t− s, x, y)E ‖Dun(s, y)‖2H dy ds
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(where in the second to last inequality we have used Hölder’s inequality and the
properties of the Green kernel).

Let us now set

vn(t, x) := E‖Dun(t, x)‖2H;

we have, from previous estimates, that

vn+1(t, x) ≤ 2c(t, x) + γ

∫ t

0

∫
R+

gN (t− s, y, x)vn(s, y) dy ds,

where γ = 2L2
1L

2T is a finite constant. Next, we take convolution in both sides with
respect to the Green kernel gN (θ − t, x, z) for some θ > t and z ∈ R+ and we get∫

R+

gN (θ − t, x, z)vn+1(t, x)dx ≤ 2

∫
R+

c(t, x) gN (θ − t, x, z) dx

+ γ

∫ t

0

∫
R+

(∫
R+

gN (θ − t, x, z)gN (t− s, y, x)dx

)
vn(s, y) dy ds.

For this computation, and later references, we state in a separate lemma the
following result.

Lemma 4.1. For any p ≥ 1 set

c̃p(θ, t, z) =

∫
R+

c(t, x)p gN (θ − t, x, z) dx.

Then c̃p(θ, t, z) < +∞ for any z > 0, t ≤ θ and H ≥ 1/2.

Proof.
We have, by definition

c̃p(θ, t, z) ≤ C
∫
R+

(∫ t

0

e−x
2/ss2H−2 ds

)p
gN (θ − t, x, z) dx;

we first apply (in case p > 1) Minkowski’s inequality

c̃p(θ, t, z) ≤ C

∫ t

0

s2H−2

(∫
R+

e−px
2/sgN (θ − t, x, z) dx

)1/p

ds

p

;

then we apply Fubini’s theorem and the properties of Gaussian kernel and we obtain

c̃p(θ, t, z) ≤ C
(∫ t

0

s2H−2+1/2p

[2(θ − t)p+ s]1/2p
exp(− z2

2p(θ − t) + s
) ds

)p
.

This quantity is clearly finite for any t < θ; further, if t = θ then the integral
function simplifies and we have

c̃p(θ, θ, z) ≤ C z2p(2H−1)Γ[1− 2H,
z2

θ
]p. (4.10)
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Setting for simplicity c̃(θ, t, z) := 2c̃1(θ, t, z) and using the Chapman-
Kolmogorov relation we finally get∫

R+

gN (θ − t, x, z)vn+1(t, x) dx ≤ c̃(θ, t, z) + γ

∫ t

0

∫
R+

gN (θ − s, y, z)vn(s, y) dy ds.

Setting now

Φn+1(θ, t, z) :=

∫
R+

gN (θ − t, x, z)vn+1(t, x) dx,

where Φ0 = 0 and Φ1 = c̃, we get

Φn+1(θ, t, z) ≤ c̃(θ, t, z) + γ

∫ t

0

Φn(θ, s, z) ds.

Proceeding recursively we then obtain

Φn+1(θ, t, z) ≤ c̃+ γ

∫ t

0

Φn(θ, s, z)ds ≤ c̃+ γ

∫ t

0

(
c̃+ γ

∫ s

0

Φn(θ, s1, z)ds1

)
ds

≤ c+ γ

∫ t

0

(
c̃+ γ

∫ s

0

(
c̃+ γ

∫ s1

0

Φn−2(θ, s2, z) ds2

)
ds1

)
ds

≤ c̃+

∫ t

0

c̃ ds+

∫ t

0

∫ s

0

c̃ ds1 ds+ γ3
∫ t

0

∫ s

0

∫ s1

0

Φn−2(θ, s2, z)ds2 ds1 ds

≤
n∑
k=0

c̃
tk

k!
+ γn+2

∫ t

0

∫ s

0

∫ s1

0

· · ·
∫ sn

0

Φ0(θ, sn, z)dsn+1 · · · ds

≤ c̃ et + γn+2 tn−1

(n− 1)!
‖Φ0(θ, ·, z)‖2L2(0,t).

Since the second term in the expression above is zero, we have that

Φn+1(θ, t, z) ≤ c̃(θ, t, z)et ≤ c̃(θ, t, z) eT <∞

for any 0 < t ≤ θ ≤ T and any z > 0; recalling the definition of Φn and taking
the limit as t ↑ θ, we get vn+1(t, x) = lim Φn+1(t, t, x) hence the above inequality
proves that, for every n,

sup
n

E‖Dun(t, x)‖2H <∞,

which concludes the proof of (4.8) and, therefore, of the theorem.

In the following results we improve the regularity properties of the solution.
First, we show that the Malliavin derivative is p-mean integrable, for any p ≥ 2.
Later, we show that under suitable assumptions on the nonlinear term, the solution
is smooth in the Malliavin sense, i.e., it belongs to the space D∞.

Theorem 4.2. Assume (4.1) holds for p ≥ 2, as well as (4.2) and (4.3). Then the
random variable u(t, x), for x > 0 and t ∈ (0, T ], belongs to the space D1,p and

E‖Du(t, x)‖pH ≤ Cp <∞.
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Proof. We know from previous results that the solution u(t, x) is p-mean inte-
grable. We therefore aim to prove that

E‖Du(t, x)‖pH <∞.

Recalling that

u(t, x) =

∫ t

0

∫
S

pN (s, x)g(σ) dBs,σ +

∫ t

0

∫
R+

gN (t− s, x, y)f(s, y, u(s, y)) dy ds

(4.11)
and setting

z(t, x) :=

∫ t

0

∫
S

pN (s, x)g(σ) dBs,σ,

F (t, x) :=

∫ t

0

∫
R+

gN (t− s, x, y)f(s, y, u(s, y)) dy ds

we have that

E‖Du(t, x)‖pH ≤ cp (E‖Dz(t, x)‖pH + E‖DF (t, x)‖pH)

that is, using the notation of previous theorem,

E‖Du(t, x)‖pH ≤ cpc(t, x)p/2 + cp E‖DF (t, x)‖pH.

Now, using again Minkowski’s inequality, we have that

E‖DF (t, x)‖pH ≤
(∫ t

r

∫
R+

gN (t− s, x, y)∂uf(s, y, u(s, y))E‖Du(s, y)‖H dy ds

)p
≤ CL,p

(∫ t

r

∫
R+

gN (t− s, x, y) (E‖Du(s, y)‖pH)
1
p dy ds

)p
(4.12)

Set now

v(t, x) := E‖Du(t, x)‖pH,

thanks to the above computations and using Hölder’s inequality, we get

v(t, x) ≤ cp c(t, x)p/2 + CL,p

(∫ t

r

∫
R+

g(t− s, x, y)v(s, y)
1
p dy ds

)p
≤ cp c(t, x)p/2

+ CL,p

(∫ t

r

∫
R+

g(t− s, x, y)dyds

)p−1(∫ t

r

∫
R+

g(t− s, x, y)v(s, y) dy ds

)
≤ cp c(t, x)p/2 + CL,pt

p−1
(∫ t

r

∫
R+

g(t− s, x, y)v(s, y) dy ds

)
Following now the same ideas used in the proof of Theorem 4.1, we do a stochastic
convolution on both sides, obtaining∫

R+

g(θ − t, x, z)v(t, x) dx ≤ c̃p(θ, t, z) + CL,p,T

∫ t

0

∫
R+

g(θ − s, y, z)v(s, y) dy ds
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where

c̃p(θ, t, z) = cp

∫
R+

c(t, x)p/2 gN (θ − t, x, z) dx

is studied in Lemma 4.1. Setting

Φ(θ, t, z) :=

∫
R+

g(θ − t, x, z)v(t, x) dx,

from an application of Gronwall’s lemma (in the t variable) we get

Φ(θ, t, z) ≤ c̃p + C

∫ t

0

Φ(θ, s, z)ds =⇒ Φ(θ, θ, z) ≤ c̃p(θ, θ, z)eCθ

and since lim
t→θ

Φ(θ, t, z) = v(θ, z) it follows

v(θ, z) ≤ c̃p(θ, θ, z)eCθ

and so, recalling estimate (4.10), we conclude that

E‖Du(t, x)‖pH <∞ (4.13)

for all x > 0 and t > 0, for any H ≥ 1/2.

Theorem 4.3. Assume that (4.1) holds for any p ≥ 2 and that (4.2) and (4.4)
holds. Then the random variable u(t, x), x > 0 and t ∈ (0, T ], belongs to the space
D∞ and for all p ≥ 2 and M ≥ 1

E‖DMu(t, x)‖pH⊗M ≤ Cp,M <∞.

Proof.
The proof’s idea is, again, to use the Picard approximation scheme and then

prove that

sup
n

E‖DMun(t, x)‖pH⊗M ≤ Cp,M <∞, (4.14)

for all p > 1 and M ≥ 1. The conclusion follows from successive applications of
Proposition 2.1 for each M ≥ 1.

Estimate (4.14) is proved by induction on M , using the evolution equation for
DMu(t, x) obtained by differentiating (4.9) M times.
For M = 1 it is easily seen that (4.14) holds true, simply by Theorem 4.2. Let us
see explicitly show how estimate (4.14) holds in the case M = 2. Then the general
induction step will be clear. Proceeding by induction we get that the Malliavin
derivative D2un(t, x) takes values in H⊗2 and satisfies

D2un+1(t, x) =

∫ t

0

∫
R+

gN (t− s, x, y)∂2uf(s, y, un(s, y))(Dun(s, y))⊗2 dy ds

+

∫ t

0

∫
R+

gN (t− s, x, y)∂uf(s, y, un(s, y))D2un(s, y) dy ds =: An +Bn
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hence we get

E‖D2un+1(t, x)‖pH⊗2 ≤ cp
(
E‖An‖pH⊗2 + E‖Bn‖pH⊗2

)
.

For the first term, using Minkowski’s inequality, then Hölder inequality and then
Tonelli’s Theorem, we have that

E‖An‖pH⊗2 =

∣∣∣∣∣∣∣∣∫ t

0

∫
R+

gN (t− s, x, y)∂2uf(s, y, un(s, y))(Dun(s, y))⊗2 dy ds

∣∣∣∣∣∣∣∣p
H⊗2

≤
(∫ t

0

∫
R+

gN (t− s, x, y)E‖∂2uf(s, y, un(s, y))(Dun(s, y))⊗2‖H⊗2 dy ds

)p
≤ Ct,p

(∫ t

0

∫
R+

gN (t− s, x, y)E‖∂2uf(s, y, un(s, y))(Dun(s, y))⊗2‖2H⊗2 dy ds

) p
2

≤ Ct,p
∫ t

0

∫
R+

gN (t− s, x, y)E‖∂2uf(s, y, un(s, y))(Dun(s, y))⊗2‖
p
2

H⊗2 dy ds.

By Chauchy-Schwartz inequality we have

E‖∂2uf(s, y, un(s, y))(Dun(s, y))⊗2‖
p
2

H⊗2 ≤
(
E|∂2uf(s, y, un(s, y))|p

) 1
2

(
E‖Dun(s, y)‖2pH

) 1
2

which is finite thanks to hypothesis (4.2) and (4.4) and Theorem 4.2.
So the first term is finite. As regards the second term, proceeding as above we get:

E‖Bn‖pH⊗2 ≤
(∫ t

0

∫
R+

gN (t− s, x, y)∂uf(s, y, un(s, y))E‖D2un(s, y)‖H⊗2
dy ds

)p
≤ CL

(∫ t

0

∫
R+

gN (t− s, x, y)
(
E‖D2un(s, y)‖pH⊗2

) 1
p

dy ds

)p
;

setting now

vn(t, x) := E‖D2
nu(t, x)‖pH⊗2

and using again Hölder’s inequality, we get

vn+1(t, x) ≤ CL,T,p + cp,T,L

∫ t

0

∫
R+

gN (t− s, x, y)vn(s, y) dy ds

and the thesis follows, using the same idea of the proof of Theorem 4.1, by iteration.

5. Existence of the density for the solution of the nonlinear
equation

In this section we prove the existence of the density of the random variable u(t, x)

with respect to the Lebesgue measure on R. We shall use the criterion for absolute
continuity stated in Theorem 2.1 and obtain the following result.

Theorem 5.1. The random variable u(t, x), x > 0 and t ∈ (0, T ], has a density
with respect to the Lebesgue measure on R.
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In order to get some relevant estimate, it is useful to consider a smaller time
interval than (0, t) and consider the H-norm of u(t, x) on (t− δ, t), for some δ > 0

small enough. Then, we define, for every φ ∈ H, the norm

‖φ‖Hδ := ‖111(t−δ,t)(·)φ‖H.

It is then straightforward to get

‖φ‖H ≥ ‖φ‖Hδ .

Proof. [Proof of Theorem 5.1]
The existence of the density follows from Theorem 2.1 and the estimate

E‖Du(t, x)‖2H > 0 a.s. (5.1)

In turn, to prove that (5.1) holds P-a.s., the idea is to prove that

P
(
‖Du(t, x)‖2H < ε

)
→ 0

as ε→ 0.
Observe that, using the same notation as in the proof of Theorem 4.2,

‖Du(t, x)‖2H ≥ ‖Du(t, x)‖2Hδ = ‖Dz(t, x) +DF (t, x)‖2Hδ

≥ 1

2
‖Dz(t, x)‖2Hδ − ‖DF (t, x)‖2Hδ .

Using then Chebyshev’s inequality we have

P
(
‖Du(t, x)‖2H < ε

)
≤ P

(
‖Du(t, x)‖2Hδ < ε

)
≤ P

(
‖DF (t, x)‖2Hδ ≥

1

2
‖Dz(t, x)‖2Hδ − ε

)
≤

E‖DF (t, x)‖2p̃Hδ(
1
2‖Dz(t, x)‖2Hδ − ε

)p̃
Using the estimates obtained in Lemmas Appendix A.1 e Appendix A.2, and

choosing δ such that

1

2
CT,x,δ0δ

2H = 2ε,

for every ε < ε0 = 1
4CT,x,δ0δ

2H
0 , we have

P(‖Du(t, x)‖2H ≤ ε) ≤
CL,p̃,H,T δ

2p̃

εp̃
= CL,p̃,H,T,x,δ0(ε

1
H−1)p̃, (5.2)

and since 1
H − 1 > 0 for any H ∈ [ 12 , 1), the above estimate allows to conclude the

proof.
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6. Smoothness of the density for the solution of the nonlinear
equation

In case the coefficients of the equation are more regular than just Lipschitz continu-
ous, we can prove the smoothness of the density of the random variable u(t, x) that
solves Eq. (1.1) for t > 0 and x > 0, analogously with the result in Lemma 3.7.

Theorem 6.1. Assume that the conditions in Theorem 4.3 holds, i.e., (4.1) holds
for any p ≥ 2, and further (4.2) and (4.4) hold true. Then for each t ∈ (0, T )

and x > 0, the random variable u(t, x) has a density with respect to the Lebesgue
measure that is infinitely differentiable.

Proof. The idea is to apply Theorem 2.1. From Theorem 4.3 we have that u(t, x) ∈
D∞. It remains to prove that E(‖Du(t, x)‖)−p < +∞ for every p ≥ 1. By Nualart12

Lemma 2.3.1, it suffices to prove that, for any q ≥ 2, there exits ε0(q) > 0 such
that, for all ε < ε0,

P(‖Du(t, x)‖2H < ε) < εq

and this condition immediately follows from the estimate (5.2) above, choosing
p̃ = qH

1−H .

Appendix A. Some supplementary lemmas

In this section we prove a couple of lemmas, which are necessary for the proof of
Theorem 5.1; the first one suitably modifies the result in Theorem 4.2 to the space
Hδ.

Lemma Appendix A.1. For every x > 0 and t ∈ [0, T ]

E‖DF (t, x)‖2pHδ < CL,p,H,T δ
2p.

Proof. Recall from Theorem 4.2 that

F (t, x) :=

∫ t

0

∫
R+

gN (t− s, x, y)f(s, y, u(s, y)) dy ds;

we have that

111(t−δ,t)(s)Ds,σF (t, x) = 111(t−δ,t)(s)

∫ t

0

∫
R+

gN (t− r, x, y)∂uf(r, y, u(r, y))Ds,σu(r, y) dy dr

and since Ds,σu(r, x) = 0 for every r < s, we get

= 111(t−δ,t)(s)

∫ t

t−δ

∫
R+

gN (t− r, x, y)∂uf(r, y, u(r, y))Ds,σu(r, y) dy dr.
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Using again Minkowski’s inequality, then Hölder’s inequality and finally Theorem
4.2, we get

E‖DF (t, x)‖2pHδ ≤ CL
(
E
∫ t

t−δ

∫
R+

gN (t− s, x, y)‖111(t−δ,t)D(u(s, y))‖H dy ds

)2p

≤ CL
(∫ t

t−δ

∫
R+

gN (t− s, x, y) dyds

)2p−1 ∫ t

t−δ

∫
R+

gN (t− s, x, y)E‖Du(s, y)‖2pH dy ds

Recall, again from Theorem 4.2, the notation

Φ(θ, t, z) :=

∫
R+

g(θ − t, x, z)v(t, x) dx,

and the bound in (4.13)

E‖Du(t, x)‖2pH ≤ CT,H,x <∞ for all x > 0 and t > 0, for any H ≥ 1/2,

we finally get

E‖DF (t, x)‖2pHδ ≤ CLδ
2p−1

∫ t

t−δ
Φ(t, s, x) ds ≤ CL,p,H,T δ2p

as required.

Next lemma is concerned with the norm of the Malliavin derivative Dz(t, x) of
the stochastic convolution process z(t, x) in the space Hδ and is a refinement of the
results in Lemma 3.7.

Lemma Appendix A.2. Given δ0 > 0, for every δ < δ0 and every x > 0 and
t ∈]0, T ],

‖Dz(t, x)‖2Hδ ≥ CT,x,δ0δ
2H .

Proof. Recall from assumption (3.2) that∫
S

|g(σ)|2 µ(dσ) = 1.

We proceed separately in the cases H > 1/2 and H = 1/2.
In the first, fixed δ0 > 0, for every δ < δ0, we get

‖Dz(t, x)‖2Hδ =

∫ t

t−δ

∫ t

t−δ
|r − s|2H−2pN (s, x)pN (r, x) dr ds

=
1

2π

∫ t

t−δ

∫ t

t−δ
|r − s|2H−2 e

− x2s e−
x2

r

√
rs

dr ds

≥ 1

π
e−

2x2

(t−δ)

∫ δ

0

∫ s

0

|r − s|2H−2√
(t− r)(t− s)

dr ds
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since, trivially, t− r < t implies (t− r)−1/2 > t−1/2,

≥ 1

π
e−

2x2

(t−δ)

∫ δ

0

∫ s

0

|r − s|2H−2√
t(t− s)

dr ds

=
1

π
e−

2x2

(t−δ)

∫ δ

0

s2H−1

(2H − 1)
√
t(t− s)

ds

≥ δ2H e−
2x2

(t−δ)

2πtH(2H − 1)
≥ CT,x,δ0δ2H

as required.
Now we consider the case H = 1/2. It holds, proceeding as in Lemma 3.7,

‖111(t−δ,t)Dz(t, x)‖2H =

∫ t

t−δ
|pN (s, x)|2 ds ≥ Cx δ

and the conclusion follows.
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