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Abstract The article presents a few recent developments advanced by the authors in a few key areas of
stochastic modeling of solute transport in heterogeneous aquifers. First, a brief review of the Lagrangian
approach to modeling plumes longitudinal mass distribution and temporal (the breakthrough curve) mass
arrival, is presented. Subsequently, transport in highly heterogeneous aquifers is analyzed by using a
recently developed predictive model. It relates the non-Gaussian BTC to the permeability univariate pdf and
integral scale, with application to the MADE field observations. Next, the approach is extended to transport
of reactive solute, combinnig the effects of the random velocity field and multirate mass transfer on the
BTC, with application to mass attenuation. The following topic is modeling of the local concentration field
as affected by mixing and dilution due to pore scale dispersion. The results are applied to the analysis of
concentration measurements at the Cape Cod field experiment. The last section incorporates the results of
the preceding ones in health risk assessment by analyzing the impact of concentration prediction on risk
uncertainty. It is illustrated by assessing the effect of identification of macrodispersivity from field characteri-
zation and transport modeling, upon the probability of health risk.

1. Introduction

In 1986, WRR has published a special issue (Vol.22, 9S) on “Trends and Directions in Hydrology.” Two articles
were devoted to the emerging field of stochastic modeling of groundwater flow and transport, covering its
first decade [Dagan, 1986; Gelhar, 1986]. To underscore the pace of development of the subject, a graph
with number of articles published by WRR, as function of year was presented [Dagan, 1986, Figure 3]: alto-
gether, around 125 papers appeared in the period 1975-1984. In the following 30 years, leading to present
days, the field has undergone a tremendous expansion, as witnessed for instance by the publication of 3
monographs [Dagan, 1989; Gelhar, 1993; Rubin, 2003]. It will be difficult to count the number of papers
addressing the stochastic approach published by different journals in this period, the leading role of WRR
notwithstanding. Nevertheless, to illustrate the point, we shall refer to the citations of the monograph by
Dagan [1989], which is indicative of the extent of the literature on the topic. Thus, according to the ISI Web
of Science, the book was cited around 1300 times in the period 1990-2014, out of which 830 citations were
of articles in journals and proceedings categorized as belonging to Water Resources. Among these around
410 papers were published in WRR, and this is of course only a partial count. The expansion of the field was
not only quantitative, but also reflected by the diversity of the covered topics.

The present article does not attempt to review this vast opus, but rather concentrates on a few central
topics addressed by publications of the authors, focusing on recent developments. Still, these recent works
have in common a few principles set forth 30 years ago [e.g., Dagan, 1982a, 1984]. Limiting the discussion
to 3-D transport, they can be enumerated as follows: spreading of solute plumes is caused by spatial hetero-
geneity of aquifer properties, primarily of the hydraulic conductivity K; the latter is modeled as space ran-
dom function characterized by its statistical moments and in particular the univariate PDF and the two
point covariance, which have to be identified by field characterization; the Eulerian fluid velocity V field is
also random and has to be derived by solving the equations of flow, in terms of K; transport of a solute
plume is solved by the Lagrangian approach (particle tracking in its numerical version) by using V; solute
plumes spreading is quantified in terms of spatial or temporal distributions, which are dominated by
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ical PDF (adapted from Fiori et al., 2015). background by starting with a few field

findings, result of K characterization;
subsequently it renders the transport equations and the solute concentration distribution, with illustration
by a few simple results obtained in the past for spreading in weakly heterogeneous aquifers. Section 3 is
concerned with recent developments on transport in highly heterogeneous formations, including the analy-
sis of the MADE field experiment. Section 4 deals with reactive transport, concentrating on quantitative
characterization of various types of reaction and their incorporation in the pertinent equations. Section 5
addresses the statistical characterization of local concentration and particularly dilution, solutions of trans-
port equations. Section 6 deals with health risk analysis due to aquifer contamination and builds to a large
extent on the previous sections. The concluding section 7 summarizes the article.

2. Background

The present section is devoted primarily to the recapitulation of the basic transport equations derived by
the Lagrangian approach. The section sets definitions and notations on one hand and serves as starting
point for the developments of the following sections, on the other hand. Most of the material can be traced
back in different publications, e.g., Dagan [1989], and references will be called only in specific cases.

2.1. Aquifer Random Structures

The statistical characterization of the logconductivity spatial distribution Y(x), regarded as a stationary ran-
dom space function, was the subject of many field investigations. Freeze [1975] pointed out that field data
indicate that the univariate Y PDF is approximately normal and characterized by (Y)=In K and the variance
o, where (-) stands for the ensemble mean and Kj is the geometric mean. Tables summarizing values of
these parameters for a few aquifers can be found for instance in Rubin [2003]. The value of ¢? is indicative
of the level of aquifer heterogeneity and it plays an important role in modeling (see sections 2 and 3).

The Y structure is completely characterized by the joint PDF of its values at any set of points and the associ-
ated moments. The simplest is the two point covariance Cy=a%py,, where the autocorrelation py depends
on the interval (lag) vector r for stationary random Y. In turn, for an axisymmetric py, the horizontal and ver-
tical integral scales I and /,, respectively, are the important global parameters. Various field identified values,
of the order of meters, can be found for instance in Rubin [2003].

The usual amount of field measurements of K, even for detailed surveys carried out for transport experi-
ments, is not large enough to allow for identification of higher statistical moments. Since numerical simula-
tions and theoretical developments require the complete statistical characterization of Y, it is common to
adopt the multi-Gaussian model, i.e. the Y values at any set of points is a multivariate normal vector, such
that the knowledge of Kz and Cy is sufficient to characterize it. Other structural models, like the bimodal
one or blocks (section 3) were also considered. Altogether, characterization by field measurements and their
analysis is an important and expanding field of research.

To illustrate the univariate field determined Y PDF, we present in Figure 1 the histogram for the MADE experi-
mental site (see section 3) which is highly heterogeneous (o2 = 6.9). The data were obtained from a large
number of measurements obtained with the aid of the recently developed DPIL (direct push injection logger)
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technology [Bohling et al., 2012]. The fit by a lognormal K distribution seems to be quite accurate, except devi-
ations at the extreme values, which might have been caused by technical problems. A recent study (Fiori
et al., submitted manuscript, 2015) determined that their impact on the solute plume prediction is negligible.

In the following we assume Y stationarity and adopt the univariate lognormal model in order to focus the
discussion.

2.2, The Eulerian Velocity Field

The first step in modeling transport according to the general approach outlined in the Introduction is the
derivation of the Eulerian velocity field V(x) (for simplicity steady flow is assumed). This is achieved by solv-
ing the flow equations (Darcy’s law and mass conservation)

q(x) = —K(x)Vh(x), V-q(x) =0 (M

where h is the pressure head and q is the specific discharge vector. The solution of (1) for h is sought in a
domain x € Q, for appropriate conditions on the boundary 9Q. Subsequently, the Eulerian velocity field is
given by V = q/0, where 0 is the effective porosity, assumed to be constant.

Due to the randomness of K, equation (1) is stochastic, and the solution V(x) is random and characterized in terms
of various statistical moments. We shall concentrate here on natural gradient flows which can be approximated
by a constant mean head gradient (Vh)=—1J and the corresponding uniform mean velocity U = (V)=K.J/0.
The effective conductivity K.r depends on the K structure and its derivation is the topic of a vast literature. In con-
trast, a notable example of strongly nonuniform flow, of considerable interest in applications, is well flow. The deri-
vation of the nonstationary V(x) in this case is a difficult task and the topic is one of ongoing research.

We assume that the random and stationary V(x)=U-+u(x), where u is the stationary fluctuation, was deter-
mined, as a prerequisite to solving transport.

2.3. Formulation of Transport Equations (Lagrangian Approach)
The local concentration C(x, t) (defined at the Darcy scale) of an inert solute satisfies the Eulerian balance
equation

OC(x,t)
ot

+V(x) - VC(x,t)=V.(D4sC(x,t)) )]

where Dy is the tensor of pore scale dispersion coefficients. We refer to (2) as to the local Advection-
Dispersion Equation (ADE), to be solved under initial condition of injection in a volume Q.

However, we follow the Lagrangian approach (also known as particle tracking in the numerical context) by
which the concentration satisfies [see e.g., Dagan, 1989]

dC(x, t)=dMod[x—X(t,b)] 3)

where dM, is the mass of a solute particle injected at b € Qy and x = X;(t, b) is the equation of its trajec-
tory. Equation (3) stipulates that the particle moves along the trajectory, while conserving its mass. We con-
sider instantaneous injection at t = 0 and initial C=Co(b), such that dMy=Codb, while My is the total mass;
it is easy to generalize (3) for continuous injection.

Without loss of generality injection takes place on an area A in the injection plane x =0, normal to the
mean velocity U(U, 0, 0), such that dMy=mq(b)db, where b is a 2-D coordinate in Ay and mg is mass/area.
Thus, the solution of (3) can be written as follows

C(x, t)=J mo(b)d[x—X.(t,b)]db (4)
Ao

The extension to an injection volume €, can be achieved by considering a plume of infinitesimal thickness

db, such that my=Cydb, and subsequent additional integration over b, in (4).

We consider two modes of injection [e.g., Kreft and Zuber, 1978]: in the resident one my is deterministic and
given, the simplest case considered here being mo=M/Ao=const; in the flux proportional mode my is ran-
dom and proportional to the local velocity i.e. mo=(Mo/Ao) [Vo(b)/V,] where Vo=V,(0,b). Here and in the
sequel we assume that the area Ay is sufficiently large relative to the integral scale to warrant exchange of
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space and ensemble averaging (ergodic plume) such that \70=(1/A0)J"A0V0(b)db =~ U. The impact of the
injection mode is felt up to a distance x for which V, and X; are correlated [see e.g., Jankovi¢ and Fiori,
2010]. The issue of nonergodic plumes and the related uncertainty is a topic of great interest which is not
addressed in the present article.

The trajectory equation can be written as follows

dX; dX o dX
= =_"4 = =
dt V. (t,b) 4 TWd, with dt V(X;) and X:(0)=b (5)

where V| is the Lagrangian velocity, and wy is a velocity of a Brownian motion associated with Dy (2). In the
discrete, particle tracking mode, (5) is usually written as AX;=AX+AXy, with AX= V(X;)At whereas AXy is
a normal vector of zero mean and of variance a3, =2DqAt.

The impact of the pore scale dispersion on the local concentration C is considered in section 5. The discus-
sion here is focused on plume spreading as quantified by the various spatial or temporal moments for
which the impact of pore scale dispersion is usually small. Thus X;=X in (5) and the advective trajectory
equation becomes

t

X(t,b)=b+Ut+X, X’=J ulX(t)]dt (6)
0

with X'(t, b) the random trajectory fluctuation.

Thus, for injection in a finite volume Qg the concentration field is given by

C(x, t):J Co(b) 9[x—X(t,b)]db (7)
Qo

For Co=const the integral in (7) becomes an indicator of value Cy in the volume Qq(t) determined by the

fluid trajectories originating from Qo, and zero outside. For the assumed incompressible flow and constant

0, the total volume is conserved and so is the mass. Thus, C has a bimodal distribution C=C, for x € Q and

C = 0 outside; this property will be explored in section 5.

Focusing on the resident injection mode and planar injection, the first spatial moment (i.e. the plume cent-
roid equation), is evaluated using (4) and given by

R()= MLOL XC(x, t)dx= Alo L X(t, b)db = (X)=Ut ®)

In a similar manner (4) leads to the second central moments as follows

1 .
Si(t)= WOJ (xi—Ri) (5 —R))C(x, t)dx = X;(t) = (X;(t,b)X](t,b)) (i,j=1,2,3) )
Ao
An important particular case is of X being characterized by a Gaussian PDF f(X, t), of mean Ut and covari-

ance matrix Xj. Then, by (4) the mean concentration (C(x, t))=Mof (x, t) satisfies

o(C(x, 1)), 0(C(x, 1)) _ JOHCt)) 1 dXG(T)

Equation (10), though similar to (2), is an upscaled ADE and Dj(t), the macrodispersion coefficients, are
larger by orders of magnitude than the pore scale D,,. Furthermore, if D; become constant, transport is
coined as Fickian. Determining the conditions under which (10) is obeyed and then relating Dj to the per-
meability structure, are central topics of stochastic modeling.

A related transport measure is the relative mass arrival at a control plane normal to the mean flow at x; =x
'I 00 (o o] o0
M(x,t)= —J } J C(x, t)ax (1)
MO x J—o0 -0

which can be rewritten by using (3) and (4) as
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M(x, t):MloL mo(b) Hix—X; (t, b)db (12)

where H is the Heaviside function.

We further narrow the focus by concentrating on the longitudinal spreading since the transverse was found
to be of much smaller extent. Defining by m(x, t)=(1/Mo) [ [ C(x, x>, X3, t) dx,dx3=—0M/x, the longitudi-
nal relative mass distribution, we find from (10) that in the Gaussian case and an ergodic plume for which
m = (m), it satisfies the ADE

om(x,t)  Om(x,t) Pm(x,t) . 1dX(t)

o U ox o Wt D=y

where oy =D, /U is known as longitudinal macrodispersivity. It is emphasized that pore scale dispersion has
generally a small effect upon M or m.

=D, (13)

A different and useful related methodology to quantify longitudinal transport is by the breakthrough curve
(the BTC) defined as the relative mass discharge at the control plane p(x,t)=0M/dt (dimension 1/T), such
that M is the cumulative BTC.

The BTC can be conveniently related to the Lagrangian kinematics by defining the travel time 7(x, b) of a
fluid particle from the injection plane to the control plane at x by the equation x—X(t, b)=0. However, the
random t can be derived directly from the Eulerian velocity field by integration along streamlines y=#(x, b)
, z={(x, b) and using the relationship dt=dx/Vx(x, 1, {) [e.g., Cvetkovic and Dagan, 1994].

The mass arrival is related to the travel time by

1
M(x, t)=—J mo(b)H[t—1(x, b)]db (14)
Mo Ja,
stipulating that solute particles which have crossed the control plane at t > 7 contribute to M. Then, the
BTC is given by

M _ 1

H(Xv t): ot _M_O

J mo(b)ylt, 7]db with y=46(t—71) (15)
Ao

The contribution of the elementary mass dMy=modb injected at t = 0 in A to the BTC, through the inter-
section between the streamtube originating at db and the control plane at x, is therefore given by

_ modb

d
M Mo

p(t,7) with y=0(t—1) (16)

Equation (16), paralleling (3) for resident concentration, states that for advective transport the mass element
dMy=modb crosses the control plane at t=7. It will be generalized in section 4 for reactive transport for
which y(t, 7) has a different expression.

It is seen that y, as well as y and M, satisfy the linear equation

dy Oy
L R e
(5. =0 (17)

with boundary condition y(t,0)=4(t), which can be easily generalized to continuous injection and will be
used as starting point in section 4.

For flux proportional injection and with the definition of the travel time PDF
f(T,X):(1/U)J V()f.(‘l,'7 Vo)dVo (18)

where f(z, Vp) is the joint PDF of first passage time and V,, we get in (15) by averaging (u)=f(t,x), i.e. the
mean BTC is equal to the travel time PDF (for the assumed ergodic plumes u = (u)). Again, the impact of
local-scale dispersion on p is usually small [see e.g., Fiori et al., 2011].

For Fickian transport f(z,x) is Inverse Gaussian of mean (t)=x/U and variance o2, and p satisfies (13) with
o= (U2/2)daf/dx.
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It is emphasized that in applications in which one is interested in the average concentration in an outlet
(e.g. a pumping well) the BTC u=0M/ot, or the associated longitudinal relative mass distribution
m=—90M/0x, are providing the required information.

2.4. Transport in Weakly Heterogeneous Aquifers

Various simple results were obtained in the past for weakly heterogeneous aquifers for a2 < 1. This has
been achieved by a first order expansion of K in the flow equations (1), i.e. K/Ks=exp (Y’) is approximated
by 1+Y’, where Y'=Y—(Y). This leads to a great simplification, allowing for instance the derivation of ana-
lytical expressions of the macrodispersivity o, and other results (the topic is covered by an extensive litera-
ture summarized in the aforementioned monographs). It is worthwhile to recall a few important results
[Dagan, 1989]: (i) the trajectory fluctuation X; is Gaussian for Y’ normal at any time and becomes so for suffi-
ciently large time for any Y’ distribution; (ii) the upscaled ADE (13) is obeyed with the longitudinal macrodis-
persivity growing with time and stabilizing at an asymptotic constant value (Fickian transport) after a
“setting time.” The shape of ¢, (t) is weakly dependent on that of py and on anisotropy ratio f=1,// [see e.g.,
Dagan, 1989, Figure 4.6.4]; (iii) the asymptotic value is given by o, =d%l, a very robust result which is inde-
pendent of the logconductivity PDF and the anisotropy ratio. Field experiments and numerical simulations
validated the first order theoretical results regarding o, (t) for lognormal K and a7 as large as unity.

3. Advective Transport in Highly Heterogeneous Formations

The results obtained for weakly heterogeneous formations, discussed above, were both insightful and use-
ful, being the first available tools for modeling transport in heterogeneous aquifers. They were able to clarify
and quantify the dependence of relevant transport quantities (e.g., macrodispersivity and the BTC) on a few
key structural features, like e.g., Kg, ! and ¢2. However, the first order results have limitations and are gener-
ally unable to predict some important transport features that have been observed in numerical simulations
and experiments, e.g., the highly skewed and non-Gaussian BTC, apparent anomalous transport and the
long pre-Fickian transport regimes, to mention some. Thus, both theoretical and experimental works, and
most noteworthy the MADE experiment mentioned in section 2.1, have motivated the need to move
beyond the weakly heterogeneous paradigm, into the complex field of flow and transport in highly hetero-
geneous porous formations (i.e. large ¢2).

Many theoretical models for transport in highly heterogeneous media have been developed in the last two
decades [e.g., Cushman and Ginn, 1993, 2000; Berkowitz and Scher, 1995; Benson et al., 2000; Harvey and Gor-
elick, 2000]. Most models are focused on the BTC prediction, and their common feature is that they use
proxy mechanisms and parameters to capture the non-Gaussian behavior of transport, e.g., multirate reac-
tive transport (see section 4). The use of proxy mechanisms circumvents the need to solve numerically the
flow and transport equations recapitulated in section 2, which is a formidable task for high ¢%; hence it can
be regarded as a “top-down” (or “downward”) approach, which is opposite of the “bottom-up” (or “upward”)
approach in which flow and transport are explicitly solved starting from the K structure [e.g., Klemes, 1983].
In this paper we follow the “bottom-up” approach, as also indicated by the title, and illustrate results by
using a theoretical model that we have developed in the last decade, namely MIM-SCA. The model is physi-
cally based and explicitly solves both flow and transport for highly heterogeneous systems. As a conse-
quence, the transport predictions are directly related to the underlying flow and K parameters from which
the model is built. A brief description of the model follows, while further elaboration and details are pro-
vided in previous papers [Dagan et al., 2003; Fiori et al., 2006, 2011; Cvetkovic et al., 2014], and particularly in
a concise form in the supporting information of Cvetkovic et al. [2014].

The heterogeneous porous formation is modeled as a three-dimensional lattice of adjacent rectangular
blocks of longitudinal and transverse side 2/ and vertical one 2/,, of random independent K (see Figure 2).
Thus the K(x) field can be represented as a sum of indicators equal to K; inside the block /, and zero outside,
explaining the choice of the denomination MIM (Multi Indicator Model) for such a structure. The model is
quite general since it allows to represent a given univariate PDF f(K) (in particular the lognormal distribu-
tion) and integral scale /.

Solute is instantaneously injected over a large planar area Ay > I? transverse to the mean flow U at x=0
and is detected at a control plane, at distance x from the injection plane. The solute BTC u(x, t) = (u(x,t))
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Mean héad gragiars i the travel time 1(x) distribution of sol-
T Ty ute particles, from the injection to the
,Injection plane Control plane .

NN N control plane (see section 2.3). The
numerical solution of the flow and
transport equations is very demanding
in terms of computer resources [see
02,  Jankovic et al., 2003].

{ """""""""""""""" at the control plane is equivalent to

A relatively simple solution for flow can
be obtained by adopting the self-

z consistent approach, which is well
X known in the literature on heterogene-

Y ous media, i.e. to superimpose the
Figure 2. lllustration sketch of the domain and the conceptual Multi Indicator velocity fields pertaining to isolated
Model (adapted from Fiori [2014]). blocks submerged into a uniform

matrix of conductivity K,. Then, the
self-consistent argument requiring that the mean velocity is equal to U is invoked, rendering the back-
ground conductivity K, equal to the effective conductivity K. [e.g., Dagan, 1979; Dykaar and Kitanidis, 1992;
Jankovic et al., 2013]. We employ for K. the solution by [Dagan, 1989, equations (3.4.30) and (3.4.32)]
derived for spheroidal inclusions, which is computed by a simple algorithm for any given univariate f(K).

The approach was adapted to transport by assuming that a planar plume is injected far upstream of an iso-
lated block of conductivity K, surrounded by a uniform matrix of conductivity Ko, with uniform velocity U at
infinity. After solving for the velocity field, an element of the plume captured by the streamtube crossing
the inclusion central plane is followed until its shape stabilizes and travels with velocity U far downstream
the inclusion [see e.g., Dagan and Fiori, 2003, Figure 4]. With A,, the area of the cross section of the stream-
tube far downstram from the inclusion (the wake), transport could be characterized by two parameters: the
travel time residual 7', which is approximately constant in the wake [Fiori et al., 2007; Cvetkovic et al., 2014,
for a cubical inclusion], and the ratio w between A,, and the inclusion cross sectional area A. (A.=4/> for
cubes). Analytical expressions were obtained for U/l and w as functions of the conductivity contrast k=K/
Ko [Fiori and Dagan, 2003; Cvetkovic et al., 2014]. Subsequently, the mass flux for the entire plume is
obtained by superimposing the results obtained for isolated blocks and the interaction is accounted for by
the self-consistent argument, i.e. by adopting Ko =K. The final result for the mass flux at a control plane at
x=25I, where S is the number of blocks, is given by [see Cvetkovic et al., 2014, equation (15)]

s
W’lt))u=<w(1ﬁ) o(K3)...0(Ks) 5{1‘—2 [ZUI-H’(KS)} }> (19)

s=1

Thus, (19) states that the total travel time residual is the sum of those pertaining to the S blocks while the
contributing mass results from the product of the “capture factors” w. Subsequently, u = (u) is easily deter-
mined for a given univariate PDF f(K) by a convolution in the Laplace or the Fourier transforms domains.
The same approach can be conveniently cast in a Monte Carlo and random walk procedure [Cvetkovic et al.,
2014]. The resulting 1 (19) was determined for K lognormal as function of the flow and structural parame-
ters U, a$ and /. While (19) is formulated for a control plane at an integer number of blocks, the procedure
can be easily extended to any distance by an interpolation procedure. Similarly, the spatial mass distribution
m(x, t) can be derived from u(x,t) [see e.g., Fiori et al., 2013]. A different model extension, which includes
the impact of pore-scale dispersion was presented by Fiori et al [2011]. The model was tested against
numerical simulations [Jankovi¢ et al., 2006; Fiori et al., 2006, 2007; Jankovi¢ and Fiori, 2010; Fiori et al., 2011]
and laboratory or field experiments [Fiori et al., 2013]. Herein illustrations of a few results.

The first quantity of interest is the longitudinal macrodispersivity o, which can be easily obtained from the
second temporal moment of y. Figure 3 displays o, as function of 2 for a few values of Pe = Ul/Dy, with D4
the local dispersion coefficient (the procedure is outlined in Fiori et al. [2006] and Jankovic et al. [2009]). It is
seen for g7 <2 the weak heterogeneity result o, =2/ (see section 2.4; black dashed line) is an excellent
approximation of o, well beyond its presumed limits. The reason was explained in Fiori et al. [2003] and is
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Figure 3. Asymptotic longitudinal macrodispersivity o, for 3-D heterogeneity as function of the logconductivity variance a2, for a few val-
ues of the Peclet number Pe=UI/D,. The dashed line depicts the first order result aL:a$I (adapted from Jankovic et al. [2009]).

as follows: the linear expansion around Y’'=0 leads to an overestimation of the travel time residual ' for
large Y’, while it underestimates 7’ for low Y’. When the contributions are symmetrically averaged over high
and low Y’, like in the normal distribution, there is a compensation of errors, leading to a robust estimate of
Dy = 62/(2x)=o4 U (13). A similar effect was found numerically by Bellin et al. [1992]. Also, consistent with
the first order approach [Berglund and Fiori, 1997], o, depends weakly on Pe for small to moderate degree of
heterogeneity. When heterogeneity is high (a3 = 2), o, becomes large and it strongly depends on Pe. The
faster than linear growth of o, with o2 is caused mainly by the solute retention in the low conductive zones,
where the solute is practically immobilized, leading to a significant growth of t and therefore of «;. In such
cases, molecular diffusion is quite effective in transferring the solute away from those zones, reducing the
growth of t; this explains the strong impact of Pe on macrodispersivity. The solute retention has also a very
strong influence on the “setting time” (see section 2.4), which can be extremely large [see e.g., Fiori et al.,
2003, Figure 4], such that transport may seem to be anomalous for any reasonable application.

A more complete description of transport is provided by the entire p(x, t) (i.e. the BTC). The injection mode
(resident concentration or flux proportional) also impacts the BTC [Demmy et al., 1999; Jankovi¢ and Fiori,
2010], and we focus here on the flux proportional injection mode. Figure 4 reproduces the BTC for 62=1, 2,
4,8, 16 and at the control plane distance x = 80/ [Fiori et al., 2006]. At such distance, the weak heterogeneity
approximation predicts an inverse Gaussian BTC, of mean t=x/U. The Gaussian shape is indeed a rather
valid approximation for o¢ =<1 (not shown), while it rapidly deteriorates for increasing o2, as shown in
Figure 4. Thus, the first-order analysis is less robust for the shape of the BTC than for «;. When ¢ = 1 the

BTC significantly deviates from the
0.035 symmetric, Gaussian shape, exhibiting

ﬂ - 1000 a strong asymmetry. The latter mani-

0.03 1 17 L fests in two major features: a strong
0.025 tailing and a pronounced early peak.

The tailing is due to the late solute

0.02 arrivals, which in turn are caused by

0.015 the solute retention by the low con-

] ductivity/velocity areas, as previously

0.01 described. The total mass of the

0,005 “trapped” solute increases with a?, i.e.

U1 with the degree of heterogeneity, due

0 to the increase of the relative volume

0 50 100 150 200 250 of the low-K zones. Such retention

Figure 4. The solute flux y(t; x) as function of time for ¢ =1, 2,4, 8, 16; the con- mechanisms lead to an apparent
trol plane is at x// = 80 (adapted from Fiori et al. [2006]). anomalous, power-law tailing [e.g.,
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Figure 5. Relative mass arriving at the control plane before t=(7) /2=x/(2U) as function of the control plane distance x, for a few values
of the log-conductivity variance azv; MIM-SCA prediction (solid lines) and numerical results (dots) (adapted from Fiori and Jankovic [2012]).

Bouchaud and Georges, 1990], for large a2, as visible in the insert of Figure 4. While this circumstance is of
some interest for specific applications, e.g., aquifer remediation, the solute mass confined in the tail is any-
way rather small.

In turn, the early peak arrival, occurring at t < x/U, is caused by the emergence of channeling and preferen-
tial flow, particularly in strongly heterogeneous porous media. Connected, high velocity patterns naturally
emerge in such media; they are flow-related and their longitudinal extend can be much larger than the con-
ductivity integral scale [ [Fiori and Jankovic, 2012]. Heterogeneity has indeed a considerable impact on the
emergence of channeling patterns, and connectivity is enhanced in 3-D structures as compared to 2-D
ones. Thus, a significant fraction of the solute mass travels faster than the mean, reaching the control plane
at a time shorter than expected; this circumstance may have an impact on applications, e.g., risk assessment
(see section 6). The above feature is further illustrated in Figure 5 which shows the relative mass which
arrives at x at times t < (1)/2, i.e. with twice the mean velocity U, for a few values of the logconductivity var-
iance a2, for both MIM-SCA (solid lines) and numerical simulations (dots). It is seen that more and longer
connected channels emerge for increasing a7, leading to stronger preferential flow and more mass arriving
at the control plane ahead of mean arrival time (7).

We emphasize, however, that tailing, preferential flow and in general non-Gaussianity are transient features
for the setup considered here, and all the BTCs of Figure 4 eventually converge to Gaussian at sufficiently
large control plane distances x, with a convergence rate inverse proportional to a2. For large 7, the conver-
gence to Gaussian can be so slow that transport may look as anomalous for any conceivable application.
Fiori et al. [2007] have shown that genuine anomalous transport (in which the BTC never converges to Gaus-
sian) for pure advection only occurs for conductivity distributions fx ~ K° for K — 0, with exponent in the
range —1 < § < 0; in turn, anomalous transport is not possible in presence of local scale dispersion or
molecular diffusion, as the latter “destroys” the very long retention times which are responsible for tailing
and slow (or lack of) convergence to Gaussian.

Many of the above features occurring in highly heterogeneous formations were observed at the MADE
site [Boggs et al., 1992; Adams and Gelhar, 1992], a highly heterogeneous formation (0\2( =6.6) which
motivated most of the research on transport in highly heterogeneous formation of the last two decades.
The first experiment (MADE-1) resulted in a series of 6 snapshots of the longitudinal relative mass distri-
bution m(x,t). MIM-SCA was applied to the MADE experiment by Fiori et al. [2013], who employed the
K statistics based on DPIL data (Figure 1) [Bohling et al., 2012], while the flow data were inferred from
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Figure 6. Longitudinal mass distribution m(x; t) at the MADE site: experimental results (black) and theoretical prediction (MIM-SCA, blue line) for the six sampling rounds of the MADE-1
experiment (a)-(f) (adapted from Fiori et al. [2013]).

the original papers; the resulting set of parameters was U = K.rJ/0=0.032 m/d, 62 = 6.6, | =10.2 m, and
no fitting was performed. The theoretical and experimental m(x,t) for the six sampling rounds of the
MADE experiment are shown in Figure 6. There was a serious problem with mass recovery, which went
down to 43% at t = 503 days. Fiori [2014] argued that a possible explanation for the poor mass recovery,
besides those offered by Adams and Gelhar [1992], is the difficulty of detection of “fast” channels by the
network of monitoring wells; such channels are few and typically carry a larger fraction of mass than
their share of their relative volume. Thus, the poor mass recovery is mostly concentrated at the large
distances from the injection plane. We note that the spatial behavior of m displays an early peak and a
long downstream tail features as previously discussed, which are captured by MIM-SCA approximate
model. A “perfect” agreement between theory and experiments is not possible for MADE, because of
the reasons mentioned in Fiori et al. [2013]. Nevertheless, the predictive ability of MIM-SCA is quite
remarkable, in view of the complete lack of calibration and use of structural parameters solely. Most
important, it may serve as a useful tool to grasp the most significant transport features occurring in het-
erogenous formations, no matter the degree of heterogeneity, in a relative simple and physically based
manner, as briefly summarized in this section.
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4, Reactive Transport

Solute transport by groundwater will always involve some degree of mass transfer into essentially immobile
zones located on the grains and/or being part of the intra-granular (matrix) porosity. When applying tracer
tests for aquifer characterization, the choice of tracers and time scales of the tests are typically such that
mass transfer processes are deliberately minimized so that full focus may be set on the physical (hydrody-
namic) components of transport (advection and macro-dispersion).

In applications related to groundwater quality with a broad range of contaminants however the relatively large
time scales involved will allow for the mass transfer to develop over time. Organic contaminants for instance
will in most cases be sorbing to the solid phase and will be subject to some type of loss, or degradation due to
microbial activity. Inorganic contaminants such as metals do not degrade however as a rule are subject to rela-
tively strong sorption. An important class of metals are radionuclides that will in most cases strongly sorb as
well as be subject to decay. Pathogens on the other hand, will be more or less subject to a mass transfer pro-
cess in form of attachment-detachment onto the solid phase, but also to a net loss over time.

Applications related to risk assessment that involve organic or inorganic contaminants as well as pathogens,
will as a rule involve contaminants/solutes that in some way are transformed (are nonconservative) and/or
are subject to mass transfer that combines sorption and diffusion. The sorption process will depend on the
micro-scale composition and structure of the solid phase, and may involve complicated geochemical reac-
tions that influence sorption or biodegradation; such complex geochemical reactions however are outside
the scope of this work.

Our present discussion builds on three-dimensional fluid trajectories (or stream tubes) as a basic hydrodynamic
feature of groundwater flow in heterogeneous aquifers. The main focus is quantifying expected BTC for single
species, denoted by (i) that averages u (15)-(16) (with = (1) for the assumed ergodic plumes), generalized
however for mass transfer as well as linear decay or degradation. Emphasis will be on linear models for low
(trace) concentrations, and on (semi)analytical expressions that are general yet simple for implementation.

4.1. Transport With Mass Transfer Along Trajectories

Along the lines of the preceding sections, we consider the transport of a dissolved tracer in a spatially vari-
able three-dimensional, steady-state velocity field V(x) with a mean drift set parallel to the x-axis, i.e.,
U= (V1), and (V1) =(V53)=0; the initial tracer concentration in the domain is null. In a heterogeneous aqui-
fer the variability of V is primarily due to variability in the hydraulic conductivity K, whereas in a fractured
rock formation, V is usually considered nonzero only in fractures along a three-dimensional network with
random hydraulic properties.

It has been shown in section 2 that the BTC p(x,t) can be expressed with the aid of the function y for unit
mass pulse injection with y(t)=06(t) at =0 (or x=0), into an initially solute-free domain (see equation
(16)). In this section, y is generalized for reactive transport by rewriting (17) as follows

O O __ 0

T TS with boundary condition y(t, 0)=4(t) (20)

where y* is the contribution to du at the control plane at x, resulting from the solute undergoing reaction.
The simplest kinetic model is of first-order mass transfer with a single (or uni-) rate [Cvetkovic and Shapiro,
1990; Cvetkovic and Dagan, 1994]

oy*
ot

=ko(Ay—y") (21)

where ko [1/T] is the backward exchange rate and Ak is the forward exchange rate. Thus, one of the illustra-
tions considered by Cvetkovic and Dagan [1994] is of spheres of equal radius occupying the fraction A of
immobile volume, while k, was related to the diffusion between the mobile and immobile phases. Toward
solving (20), equation (21) is rewritten in the Laplace Transform (LT) domain as

e koA
! S+k0

(22)

where s is the LT variable and “hat” denotes LT.
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Table 1. Memory Function Derived From a Multirate Model With the Pareto Equation (22) is a particular case of the
Type | Rate Distribution® generalized linear equilibrium sorption
Multirate Mass Transfer With model proposed in chromatography
Pareto Type | Distribution [Villermaux, 1974]
$(k) ik o
(k > ko) =97 (23)
Memory function
(Laplace Transform domain) where g(t) is the “memory function”
9() . . 2R (1,v,v+1, =) le.g., Cvetkovic, 2012]. In the equilibrium
Memory function (real domain) R R
90 VE, (t) case there is no memory, such that g=
Limits of ¢ 1 A and g(t)=Ad(t), whereas for (22) g=
t—-00<v<) g—t" _
S 00> 1) s const koA/(s+ko), g(t)=koAexp (—ko t). Thus,
t— oo g—0 the solution of (20)—(21) in the LT
Limits of v domain with (23) is given by
v=1/2 Corresponds to Fickian diffusion
into a finite matrix S(s.t)=exp {—1s[1+g(s (24)
v#£1/2 Corresponds to non-Fickian diffusion /(57) P [ 5 )}}
gaidismEy: Cvetkovic and Dagan [1994, Figure 2]
v>1 Corresponds to first-order kinetics

have explored the properties of y(t, 1),
displaying the transition from advection
y=0(t—7) to equilibrium (retardation)
y=0[t—(1+A)1].

“The memory function g, times t and t,, the Laplace Transform variable s
are all normalized with the characteristic rate ko.

The solution y(x, t) based on the unirate linear model (22) cannot reproduce the behavior of diffusive mass
transfer especially into immobile zones of complex structure. Exchange with multiple rates was proposed as
a heuristic model for capturing trapping in solids [Noolandi, 1977; Schmidlin, 1977] and applied more
recently for groundwater transport [Haggerty and Gorelick, 1995]; Carrera et al., 1998; Haggerty and Meigs,
2000; Cvetkovic and Haggerty, 2002]; it is modeled by the memory function as

g(s)=AJL (k) dk i.e. g(t)=AJk P (k) e dk (25)

stk

with multiple sites of different relative volume and rate k. The most general model considered here is of a
continuous k and corresponding A¢(k), where ¢ (k) [T] stands for the PDF of exchange rates k. When nor-
malized, the memory function is a PDF of return times for tracer particles to the mobile zone, once these
have been immobilized. It can also be interpreted as the kinetic partitioning in the LT domain as noted in
(22) [Villermaux, 1974]. Though different distributions ¢(k) may be considered [Haggerty and Meigs, 2000;
Cvetkovic and Haggerty, 2002; Cvetkovic, 2012], for convenience we adopt in this work a truncated power-
law in form of a Pareto type | distribution, i.e.,

k3
k)= k> ko (26)

where v > 0 is the exponent and kg [1/T] is the smallest exchange rate (the properties are provided in Table 1).
Clearly, the kinetics of mass transfer in (24) is controlled by ¢ (k). The simplest case ¢(k)=0d(k—ko) yields (22).

The solution y (24) is conditional on a given 1, pertaining to a streamline, which itself is a random variable
due to spatial variability of K, as discussed in section 2. With the dependence of the discharge u upon y
given in (15), its mean is obtained by averaging y over the t ensemble. The PDF f(z, x) is defined by (18) for
flux proportional injection. Hence, ensemble averaging in (24) yields

(3(s,x))=(exp { —7s[1+g(s)]}) =F [s(1+(5)),x] (27)

with mo=(Mo/A0)Vo/U in (15) while f stands for the LT with respect to . For a large injection area A, we
obtain from (27) for the BTC

jl,5) = (1.9} = - | ((5.0)ab=Fls(1+3(5) (28)

The solution (28) can be easily generalized for continuous injection at x = 0 or for nonuniform mass distribu-
tion over Ao. Hence, the general equation (28) averages the mass flux (discharge) over three-dimensional
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random trajectories, accounting for mass transfer along them; this is referred to as the Lagrangian Stochas-
tic Advection-Reaction (LaSAR) methodology, or approach.

4.2, lllustration Examples

In the following we wish to illustrate the applicability of (28), by selecting specific forms of f and g. Let the
hydrodynamic transport to be governed by the special case of Fickian macrodispersion with f(z,x) being
the inverse Gaussian PDF for advective travel time t

(x—Ur)?

ool s
2(moy U)'/213/2 P 4oy Ut

] i.e.f(s,x)=exp {LU U )} (29)

20(L

f(t,x)=

that is obtained as the solution of the advection-dispersion equation (ADE) with injection and detection in
the flux [Kreft and Zuber, 1978]. Note that the coefficient of variation for T with PDF defined in (29), CV,, is
related to the  macro-dispersivity as

a) ’ DaShed:‘I-G\ ko=1E-4 CV.=+/2 0y /x.
4 V:1/5 As for the memory function, we adopt ¢(k) as

0.100 the Pareto type | PDF (26), which yields a close-

! form expression for the memory function in real
0.010 [} and LT domains (Table 1).

1 4.2.1. Expected Breakthrough
0.001 / Expected breakthrough (or mass discharge) was
10_4 ,I obtained by numerical inversion of the LT (27),

0.1 1 10 100 with (25)-(26) and g is given in Table 1. Consider
the case of relatively large macro-dispersion with
o /x=0.125 where (1) = t,,=x/U is to be used
for normalizing time. The black dashed curve in
Figure 7 shows the dimensionless expected break-
through curve for pure advection-dispersion, i.e.,
without mass transfer.

In Figures 7, we show the effect of the two key
mass transfer parameters k, (lower bound cut-off
rate) and the exponent v (v=1/2 corresponds to
mass transfer by Fickian diffusion), for a wide
range of ky and v. The exponent v has a strong
0.1 1 10 100 effect only for small ko; when kq is large, equilib-
rium mass transfer is attained and v has no
impact (black curve in Figure 7). For small ko,

C) kinetic effects are strong and the BTC is very sen-
1 v=2 sitive to v. For v=2, the mass transfer corre-
sponds to the first-order kinetic model. Fickian
0.100 mass transfer with v=1/2 and small k, corre-
sponds to diffusion in a large matrix (blue and
0.010 red curves in Figure 7b). As the volume of the
immobile zone diminishes by increasing ko, the
0.001 BTC converges to the first-order exchange and
-4 eventually to the equilibrium case (black curves

10 0.1 1 10 100 in Figure 7).

4.2.2. Moment Analysis
Figure 7. Expected breakthrough curves (28) with f (29) and g given An interesting perspective on the eXPeCted .BTC
in Table 1, for different values of the dimensionless cut-off rate ko, and the effect of coupled processes is obtained
and for different multirate exponents: (a) v=1/5; (b) v=1/2; (c) v = 2. by analyzing first few moments. Moments are
The case of pure advection-dispersion governed by the ADE (i.e., . . A
inverse-gaussian distribution, (29)) is also included as the dashed readlly obtained from (28) by derivation. The first
curve. three noncentral moments of u (28) are:
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2Av

my=(1+A); m2=m

+(1+A) (1+CQv3) (30)

_6Av +6A(1+A)v
k2(2+v)  ko(1+v)

m; (1+QV3) +(1+A)° (143 CV2+3 V%) 31)
where from the coefficient of variation and the skewness of the BTC are readily computed. Note that all
times are normalized by (1) = 1p,.

Relative effects of hydrodynamic transport and mass transfer are illustrated in Figure 8, for two levels
of macro-dispersion with o, /x=0.005 and o, /x=0.125, respectively. Both the CV and skewness of the
BTC clearly indicate that roughly ko=1 (dimensionless kg is in effect the Damkohler number) defines
the limit for the significance of mass transfer kinetics. For low ko the CV and skewness are dominated
by mass transfer with macro-dispersion having a small effect, whereas for large k, the shape of the
BTC is entirely controlled by macro-dispersion, irrespective of the nature of the mass transfer as con-
trolled by exponent v. The CV is mildly sensitive to the exponent v, whereas skewness is controlled
entirely by ko.

4.2.3. Solute Attenuation

Hydrodynamic transport (advection and dispersion), mass transfer and transformation (loss) jointly define
an attenuation (or self-purification) process where the total mass (relative to M) discharged at the control
plane x over all time M(x)=[," u(t,x)dt is less than the total injected mass Mo, i.e, M<1. Full self-
purification is achieved over a given domain if M = 0 and no self-purification is present if M ~ 1. A conven-
ient measure of the coupled processes is the attenuation index defined at x as a; = —In (M) [Cvetkovic,
20711al.

Let the solute be subject to linear decay with 4 [1/T] as the decay (loss) rate for transport quantified by (28);
we shall assume for simplicity that 2 is the same in the mobile and immobile phases. The expected BTC
with decay is obtained from (27) by replacing s with s+ /. In the limit s — 0, we obtain the solute mass frac-
tion discharged across the control plane at x, i.e, M/My= (%), and

a(x) = —Infu(2,x)]= L{ {1 +LJQW} 1/2—1} (32)

ZOCL

where g(4) is the LT of the memory function as a function of the decay rate / since s — 0. Equation (32) is a
particular case of a more general formulation which can be used for relatively simple computations to study
for instance the sensitivity of contaminant attenuation (or aquifer self-purification capacity) to a wide range
of models and parameters, such as Fickian or non-Fickian macroscopic dispersion [Cvetkovic, 2011b], kineti-
cally controlled mass transfer and linear decay. For simplicity, we shall assume for illustration that transport
is Fickian, and consider mass transfer rates distributed by the Pareto type | PDF with Fickian diffusive
exchange (v=1/2) (Table 1) and for fixed A = 10.

Figure 9 shows the sensitivity of the attenuation index g, (32) on the macro-dispersivity and the cutoff rate
ko. Clearly, the effect of macro-dispersivity depends on the rate k: for a large ko =100, equilibrium prevails
and the attenuation is strongest. With onset of kinetics and decreasing ko, attenuation diminishes as does
the impact of macro-dispersivity. Thus the largest effect of macro-dispersion is under conditions of small or
nonexistent kinetic effects; the kinetic effect enhances overall dispersion of transport and reduces the rela-
tive impact of macro-dispersivity.

4.3. Generalization

The preceding derivations can be generalized in a few directions. Thus, nonlinear reaction is a possible one,
e.g., the case of nonlinear equilibrium considered by Dagan and Cvetkovic [1996]. A different extension is
for nonuniform reaction properties in the domain 0—x, unlike the uniform one assumed in (21). This can be
achieved by segmentation of the interval between x =0 and x, assuming different reaction parameters
along each segment and then deriving i as a convolution [e.g., Molin and Cvetkovic, 2010; Molin et al.,
2010]. Finally, the Lagrangian formulation of transport along trajectories using advective travel time and
LaSAR methodology can also be used for general reactions [Cvetkovic, 1997; Malmstrom and Martinet, 2004]
These extensions are not considered in the present article.
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BTC coefficient of variation 5. Local Concentration and Dilution
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In the preceding sections we considered the

Solid: CV1=0.1 impact of formation heterogeneity, pore scale
Dashed: CV1=05 | dispersion and reactions on the the global
transport measures like the longitudinal mass

10 ¢

1t distribution m(x,t) or the BTC u(x, t). These are
Blue v=1/5 robust measures which are sufficient to deter-
0.10} Redv=1/2 mine, for instance, the concentration in the

Green v=2 water extracted by a pumping well which cap-
tures the contaminant plume. Furthermore, as
shown in section 3, pore scale dispersion has
Iog[kO] a negligible impact on u for weakly heteroge-

neous aquifers while it affects primarily the

long tail (of very low volume) in highly hetero-
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o
Y /
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BTC skewness geneous one. In contrast, in the present sec-
b) 100 ' ' ' i tion we consider the spatial distribution of the
Solid: CV1=0.1 local concentration C within the plume,
10} Dashed: CV1=0.5 | whose maximal admissible value may serve
for regulatory purposes. This topic, still under
11 T T T active research, is also related to the determi-
Blue v=1/5 S nation of effective transverse pore scale dis-
0.10| Redv=1/2 | persion coefficients at field scale.
Green v=2 5.1. Concentration Probability Density
0.01 4 3 2 1 0 1 2 Function
Iog[kO] We consider first the PDF of local concentra-
tion C (of support volume of Darcy’s scale)
Figure 8. Coefficient of variation and skewness of the expected break- which is a random spatial variable, whose PDF
through curve computed from (30)-(31), for different multirate exponent is given as follows, in absence of pore-scale

v and different advective travel time coefficient of variation CV,, as a
function of the dimensionless multirate cut-off rate ko: (a) coefficient of
variation; (b) skewness.

dispersion [Dagan, 1982b]

f(C)= {1 - Q} o(C)+ Q&(C—Co) (33)
Go Co

where G, is the initial constant concentration and (C) is the ensemble mean concentration. For Fickian transport

the latter is Gaussian, solution of (10), and characterized entirely by the macrodispersion tensor. For highly heter-

ogeneous formations (C) can be determined approximately from u(x, t) by adopting some assumptions on the

plume transverse shape, task awaiting further investigations. The mean concentration can be also regarded as

representative of a space average over a sufficiently large volume, as discussed in the sequel.

As shown in the discussion in section 2

I 40 following equation (7), (33) is exact irre-
x spective of the type of heterogeneity
8 30 characterizing the spatial distribution of
< K. Hence, the variance and the coeffi-
g 20 cient of variation resulting from (33) are
'% given by
5
10

3 A=(OG(C))  CVem 5=
% 0 ko:O.QOOO1 ‘ ‘ :ﬁ ¢ 0 » Ve ©

0.0 0.1 0.2 0.3 0.4 0.5 (34)

macro-dispersivity a Equation (34) shows that uncertainty is

larger at the fringe of the plume and it
Figure 9. lllustration of the attenuation index (32) as a function of dimension- . ith ti The | Ve |
less macro-dispersivity o, /x, for different dimensionless cut-off rates ko, and increases with time. The larger C, less
selected values of A, 7, v, x and 7. representative is (C) of the actual local
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concentration. In particular, CVc computed at the plume center x=b +U t, where b is the center of mass of
the injection volume, increases with time without bounds [Fiori and Dagan, 2000]. Notwithstanding the the-
oretical value of this solution as an upper bound, the effect of pore-scale dispersion should be included due
to its effect in controlling, through dilution, the local concentration. Indeed, the solution for pure advective
transport predicts the spreading of the plume in the form of “thin fingers” [see e.g., Jankovic et al., 2003, Fig-
ure 2] and at their boundary the concentration jumps from C, to zero. Transverse pore scale dispersion is
effective in smearing these discontinuities. However, the actual value of the coefficients at field scale,
though small, of order 1073m, is still much larger than the laboratory determined values, and difficult to
identify.

The inclusion of pore scale dispersion changes dramatically the behavior of CV at large times. Fiori and
Dagan [2000] obtained the following approximate expression of CV( at large times

fPe Int

WVeo—
2\/§¢)23D) t

witht'=tU/I (35)

for three-dimensional heterogeneous formations. In (35) =1,/ is the anisotropy ratio and and the function
@23[)) assumes values between 0 and 1, depending on f and Pe=U[/D4, where D, is the pore scale disper-
sion coefficient assumed isotropic and equal to the transverse component, since the longitudinal one has a
small to negligible impact [Fiori, 1996].

Pore scale dispersion causes the coefficient of variation to decline, at large times, as Int’/t'. Fiori and Dagan
[2000] noticed that this asymptotic limit is attained at exceedingly large times (i.e. for t' > 1000). In addition,
CV peaks at intermediate times (t' ~ 10) and its value increases with Pe. The main conclusion of this analy-
sis is that uncertainty of point concentration may be large at any time relevant to applications. The effect of
conditioning on solute concentration, which may introduce some benefits, reducing for example, uncer-
tainty in proximity of the measurement points [see e.g., Graham and McLaughlin, 1989; Deng et al., 1993;
Dagan et al., 1996], is not considered here.

Obtaining the concentration PDF at a given location in the presence of pore scale dispersion proved to be
difficult. It can be argued that in case of a uniform injection it should be bounded by the binary distribution
(33) at the initial time and a Gaussian distribution for t — oo, when the plume is very diluted and the domi-
nant dispersion mechanism is pore scale dispersion. In view of these constraints, and other evidences
emerging from the analysis of the evolution in time of the maximum concentration in the field scale tracer
tests at Borden and Cape Cod, Fiori [2001] argued that the Beta distribution can be a good model for the
concentration PDF. Numerical validation of this hypothesis has been provided in a few subsequent works
[e.g., Fiorotto and Caroni, 2002; Tonina and Bellin, 2008]. A theoretical demonstration supporting the choice
of the Beta distribution, based on a phenomenological equation resembling the conditions in which trans-
port takes place in heterogeneous formations, has been proposed by Bellin and Tonina [2007]. This is an
active field of research and although recent results show that the Beta model approximates very well the
concentration PDF, its generality cannot be confirmed [see e.g., Dentz and Tartakovsky, 2010; Boso et al.,
2014]. In a recent study, de Barros and Fiori [2014] developed a general expression of the concentration CDF
whose theoretical moments recovers the expressions of the moments obtained from the Beta PDF.

Along these lines the PDF of the reduced variable z=C/C, assumes the following form [Bellin and Tonina, 2007]

Clp] I'[q]

where T'[r]= [ t""'e"dt is the Euler Gamma function and the constants p and g are given by p=(Z)/f,
and g=(1—(Z))/B,, where B, depends on the variance of Z, 62=0c2/CZ, through the following expression

(5)= 1L prp(q_g)ra 6)

02
b - Y

The coefficient f, given by (37) is the main factor controlling the shape of the concentration PDF (36). In
the absence of pore scale dispersion ¢ — (Z)[1—(Z)], such that f, — oo and consequently
f(z) — (2)0(1—2z)+[1—(Z)]d(z), which is the dimensionless version of equation (33), as required. On the

other hand for 62 — 0, 8, — 0 such that the PDF of z tends to a normal distribution with mean (Z) and
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variance o2, which leads to: f(z)=3[z—(Z)], since for ¢ — 0 the normal distribution converges to the Dirac
delta distribution.

Pore scale dispersion controls the transition from the binary distribution, characteristic of the initial condi-
tion, to the unimodal normal resembling shape occurring at larger times and further to the ergodic deter-
ministic solution C=(C) observed at exceedingly large times when o2 — 0. The setting times at which
these conditions are reached reduces with Pe. Section 6 will illustrate how to employ the concentration PDF
to evaluate human health risk. Similarly, Rubin et al. [1994] and Bellin et al. [1994] showed that the sampling
volume has an impact similar to pore scale dispersion on the concentration PDF, with the important differ-

ence that it manifests since the injection and not only after a rather long setting time.

The support volume of local concentration has a characteristic size equal to the Darcy’s scale. When larger
sampling devices are used, the concentration variance reduces as an effect of averaging over a larger sup-
port volume. The effect of the sampling volume on the concentration moments depends chiefly on two fac-
tors: the source dimensions and the size of the sampling device. The effect of the sampling support volume
shall be briefly illustrated in section 6.

5.2. Frequency Distribution of Solute Concentration

When dealing with risk analysis and remediation, a quantity of interest is the fraction of the plume volume
where a given threshold concentration is exceeded. The larger such a volume, the larger is the risk that this
threshold is actually exceeded at a given location. The volume in which a given concentration C,, is exceeded
is given by definition (see details in Boso et al. [2013]) V(G )= [,H[C(x, t)—Cy]d x, with Q the flow domain
and H is the Heaviside function. Accordingly, the probability of not exceeding a given concentration Cg;, is
defined as

V(Ccrit)

~7:C(C < Ccrir):1 - V(C*)

(38)

where V(C*) is the volume of the plume, defined as the one in which the concentration is above the detec-
tion limit C*. An approximation of F¢ is provided by the frequency distribution of a sample of concentration
measurements under the hypothesis that their supporting volume is the same and that they are evenly dis-
tributed through the plume, such that the entire plume is sampled.

By using numerical simulations Bellin and Tonina [2007] showed that the frequency (38) is well approxi-
mated by the Beta model (36) with the parameters p and g obtained by replacing the mean (Z) and var-
iance o2 into the expressions for p and g and (37) by the corresponding spatial moments

1 2 > 2
C(x, t)" dx—Z(t 39
TET e O 200 39

J C(x,t)dx; S3(t)=
v(C)

The moments (39) can be obtained either by theoretical models of concentration distribution (as will be shown
later) by numerical simulations or by using experimental data. Bellin and Tonina [2007] showed that the Beta
model (36), with the parameters obtained as described above, represents accurately the frequency distribution
obtained by solving numerically the transport equation in a heterogeneous formation. Similarly, the Beta model
(36) obtained by substituting the sample moments, i.e. the moments computed by using the concentration
measurements included in the data set, into the expressions (37) of p and g provides a good match with the
experimental frequency distribution at Cape Cod [Bellin and Tonina, 2007], as shown in Figure 10.

These results show that the key parameters for approximating the frequency distribution of the solute con-
centration are the spatial mean and variance of the reduced variable Z(x,t)=C(x, t)/Co, both changing in
time. While the spatial mean reduces continuously, the spatial variance first increases, reaches a peak, and
than decreases progressively to zero at exceedingly large times, when the plume behaves as a Gaussian
plume.

An effective theoretical model of the spatial moments can be obtained by replacing the actual concentra-
tion C in equation (39) with the following approximation of the ensemble mean of the Lagrangian concen-
tration [Fiori, 2001; Boso et al., 2013] based on first order approximation
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Clx,t) = (Co(&, t:e=0)=Co] [ m(&1 ) (40)
i=1

where

1 §+Li/2 | §—L/2
ni(&;; 1) 2{erf[ ZWm(t;O)] erf[ TG O)]} (41)

and C, is the constant initial concentration in a rectangular volume of sides L; (i=1, 2, 3). In equation (41)
Wei(t; 0)=X;(t)+2Dg it —Z;i(t; 0), such that W, ;=0 in the absence of pore scale dispersion. The variable &=
x—P(c,t) is the spatial coordinate relative to the centroid P of the particle that at time t = 0 was released
at x=c within the source volume, the latter being defined as follows [Fiori, 2001]:
P(c,t)=lim s_o [,n Co(c+y)X:(t;c+y) dy, where A is a small volume of solute, which in the definition of
the Lagrangian concentration is assumed to be composed by a large number of particles (for additional
details, see Fiori [2001]). In words, dilution is modeled by following each Darcy-scale solute particle belong-
ing to the initial plume and focusing on the mass exchanges between the examined particle and the sur-
rounding ones.

Equation (40) resembles the solution of the ADE in a homogeneous formation with the second spatial
plume moments replaced by the moments W;. Similarly to the concentration variance discussed in section
5.1, the hypothesis of vanishing distance between the two particles is employed here in the expression for
Z; in order to allow for the analytical treatments leading to equation (40). Notice that this expression cannot
provide the estimate of the concentration at a given fixed position, but it is very useful to provide global
estimates, such at the frequency distribution of the concentration and global dilution metrics, such as the
dilution index, as will be discussed in the ensuing section.

5.3. Dilution Index

Dilution is an important parameter representative of the decay of local concentration and therefore its
quantification has attracted a great deal of attention, following the introduction of the dilution index by
Kitanidis [1994] and the following application to reactive solutes by Kapoor et al. [1997]. According to Kitani-
dis [1994] the dilution index is defined as

E(t):exp{—JQ Cﬁl&i’ t)!n [(Cﬁlf/i t))}dé} (42)

where My=Cy Vp is the mass of solute released instantaneously within the volume V, and Q is the flow
domain. The dilution index, given by equation (42) is the exponential of the plume’s entropy.

The theoretical framework developed by Fiori [2001] and already used in section 5.2 can be applied also to
obtain a first-order semi-analytical solution of the dilution index in a heterogeneous formation for instanta-
neous solute injection within a small source V; in an unbounded domain [de Barros et al., 2015]:

N oo
E(t)—exp{—Zj (&, )i ni(éivt)déi} (43)

i=1 —0o0

This expression has been obtained under the same simplifying assumptions employed in the expression for
the concentration variance and frequency distribution discussed above and has been successfully verified
against accurate numerical solutions in two-dimensional heterogeneous aquifers [de Barros et al., 2015] and
experimental data from the first Cape Cod experiment, as discussed in the sequel.

5.4. Application to Cape Cod Data

The first Cape Cod experiment [LeBlanc et al., 1991; Hess et al., 1992] provided a valuable data set to validate
the previous theoretical developments and the Beta model introduced in section 5.1. The aquifer is weakly
heterogeneous (63=0.24) with a pronounced vertical anisotropy, i.e. I=3.5m and /,=0.19m [Hess et dl.,
1992], f=1I,/1=0.054. The source volume dimensions are L3=6.31, in the vertical direction and L;=L,=1.11
in the horizontal direction. The relatively large vertical dimension poses a limitation to the use of the above
models, which have been developed under the assumption of a small source volume. Details on the
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1 T T T computation of the one and two-
particle moments, based on the
09p 1 experimental analysis of the tracer
08l h test presented by Garabedian et al.
[1991] are provided in the work by

0.7 ] Boso et al. [2013].

06l ] Figure 10 compares the CDF
N obtained with the Beta model and
505 1 the experimental concentration CDF

ol 1 237 days after the injection,

obtained by neglecting concentra-
0.3F ] tions smaller than 0.5mg/I, identi-
fied as not reliable by Garabedian
0.2r ] et al. [1991]. The Beta model has
o1k —— Lagrangean model ] been applied by substituting into
> 8 o Field data (40) the approximated expressions
0 800 -} = = . for one- and two-particle moments
10 10 10 10 . .
(C-CY(C,C) obtained as shoyvn |n‘Boso et al.
[2013]. The resulting estimate of the
Figure 10. Empirical (experimental) and theoretical concentration CDFs of the solute concentration has been used into
plume of the first Cape Cod experiment at 237 days from injection. C*=0.5mg// is equation (39) to obtain the spatial

the threshold below which concentration measurements have been considered not

reliable by LeBlanc et al. [1991]. concentration mean and variance,

which are then used into equation

(36) of the concentration PDF, which
integrated provides the theoretical CDF shown in Figure 10 with a continuous line. The match between the
experimental and the theoretical CDF, estimated by the Beta model is remarkable, providing a solid experi-
mental validation of the theoretical developments outlined in section 5.1.

The evolution of the dilution index at the Cape Cod provided by equation (43), with the one- and two-
particle moments obtained as described above for the computation of the concentration CDF, is compared
in Figure 11 with the estimate of the dilution index obtained by Thierrin and Kitanidis [1994] from the con-
centration measurements and recently updated by de Barros et al. [2015].

Also in this case, the Lagrangian concentration provides a satisfying estimate of the overall spatial distribu-
tion of the solute concentration, such as to represent satisfacorily the dilution index. Though the computa-
tions are based on the Lagrangian coordinates &; their uncertainty, however, becomes immaterial for global
quantities such as the frequency distribution and the dilution index.

6. Probabilistic Human Health Risk Assessment

One of the primary concerns related to subsurface contamination is its impact on human health. Improper
waste disposal of toxic chemicals or accidental spills pose a risk to groundwater resources and consequently
human health. For such reasons, it is important to properly predict solute migrational patterns and the pollu-
tant concentration at an environmentally sensitive location (e.g., control plane or observation well). Once the
solute plume reaches the environmentally sensitive target, humans can be exposed to contamination through
different pathways such as water ingestion, dermal contact and inhalation. Previous sections presented meth-
ods to predict flow and transport in heterogeneous aquifers. In this section, we focus in applying these con-
cepts to assess human health risk in a probabilistic manner. These stochastic tools may serve risk managers to
assess the likelihood that a contamination event will lead to adverse health effects in humans.

Let C, denote the concentration that humans will be exposed to at a environmentally sensitive target during
a certain exposure time window. In applications, C, is taken as the peak of the flux-averaged concentration
breakthrough curve at a given location while in some studies, C. is the maximum of the exposure duration
averaged concentration breakthrough curve [see Maxwell and Kastenberg, 1999; Hassan et al., 2001; Maxwell
et al, 2008]. The definition of C, will depend on the application at hand and the regulatory agency risk
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10* . guidelines. For the purpose of this work,

0 Theoretical we will consider the peak of the concen-
eoretica

Experimental tration breakthrough curve at the envi-

ronmentally sensitive target.

As described in sections 1 and 2, the lack
of a full characterization in Y(x) leads to
J uncertainty in V(x) and consequently in
C(x,t) [e.g, Dagan, 1989; Rubin, 2003].
Therefore C, is also a random quantity
since it is directly linked to C(x,t).
Human physiological and behavioral
parameters are other sources of uncer-
tainty in the overall health risk metric
[e.g., Maxwell and Kastenberg, 1999; Max-
well et al, 1999; Tartakovsky, 2007; de
Barros and Rubin, 2008; Tartakovsky,
2013]. This implies that individuals con-
suming contaminated groundwater also
contribute to the overall uncertainty in
risk assessment since human physiology

E (m®)

1 1
0 10° 10° .
, and toxicology are not fully understood
Time (days) 27 -
and each individual may have different
Figure 11. Temporal evolution of Dilution index E in the first Cape Cod experi- exposure and response to a certain
ment. The theoretical expression (43) with Pe=380 (solid line) is compared with chemical. As a consequence, human

the recent estimate based on experimental proposed by [de Barros et al., 2015] . .
(open symbols), which revisits the original estimate by Thierrin and Kitanidis health risk (which depends on C. and
[1994]. health-related parameters) is subject to

uncertainty and quantified stochastically
through its low order statistical moments or through its PDF (or equivalently, its cumulative distribution func-
tion, the CDF).

For the purpose of illustration, let us consider a scenario where an individual is exposed to a hypothetical
carcinogenic substance through the water ingestion pathway. In this case, the risk metric of interest is the
increased lifetime cancer risk (ILCR). The ILCR quantifies the probability that an exposed individual will con-
tract cancer over a lifetime [USEPA, 1989]. In general, the USEPA recommends 1076 or 10™* as threshold val-
ues for ILCR [USEPA, 1989, 2001]. Normally, if ILCR >10"%, remediation actions are required. Note that other
measures of health risk could be employed in lieu of the ILCR. In order to quantify ILCR, we adopt the linear
ILCR model recommended by the USEPA [USEPA, 1989]

ILCR = SC. with > 0, (44)

where the parameter f§ contains all the health-related variables relevant for the water ingestion pathway. It
is defined as

IR EFXED
) X (45)

= X X [ —
f = fm X CPF (BW AT

with f,, denoting the metabolized fraction [McKone and Bogen, 1991], CPF is the cancer potency factor for
the specific contaminant, IR is the water ingestion rate, BW is the body weight, EF corresponds to the expo-
sure frequency, ED is the exposure duration and the average lifetime is given by AT. Details pertaining these
parameters can be found in the literature [e.g., USEPA, 1989, 2001]. Given the stochasticity of (44), ILCR will
be characterized through its CDF, namely F:

Fr(ro) = Prob[ILCR < r,] (46)

where r, is a given regulatory threshold value (with typical values ranging from 107 to 10~#). Equation (46) is
a useful tool since it allows contaminant site managers to evaluate the probability that ILCR is below a given
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1.0 regulatory threshold value r,. The risk CDF
! (46) can be determined by establishing a
0.8t ---- A/1=0.05 I.' probabilistic map between C, and ILCR,
- - A/1=0.15 I," see equation (44):
u 06 — A/1=0.2 '.' . .
o ! F(ro) = Prob {ce < —°] =Fc (—") (47)
© 04 p B
where the concentration CDF is given by
0.2 Fec, see section 5.1. The ILCR CDF (47)
can be evaluated through Monte Carlo
0-91 0'_5 p 0'_5 p 0'_4 simulations [e.g., Maxwell and Kastenberg,

1999; Maxwell et al., 1999; de Barros et al.,
ILCR 2009] or analytically by mapping random

variables [de Barros and Fiori, 2014] or
Figure 12. Cumulative distribution function (CDF) for the increased lifetime . del f dri
cancer risk (ILCR) as a function of the vertical scale of sampling device A, see assuming a CDF model for F; [e'g" Andri-
section 5.1. Results obtained for a 3-D heterogeneous flow field with ¢3=0.2, cevi¢ and Cvetkovié¢, 1996; de Barros and

isotropic Y covariance (exponential), point source injection and Pe=10°. The Rubin, 2008] Analytical or semi-analytical
risk CDF was determined using the methodology developed in de Barros and ! K ’ O
Fiori [2014]. The dimensionless vertical sampling device length is given by A /. expressions for the first two statistical

moments of risk (e.g., mean and variance)
are also available in the literature [Andricevi¢ and Cvetkovi¢, 1996; de Barros and Rubin, 2008; de Barros and
Fiori, 2014]. Incorporating the effects of human physiological and behaviorial uncertainties can be achieved
by marginalization of the risk CDF (47) as done in de Barros and Rubin [2008] and by using a nested Monte
Carlo approach [Maxwell and Kastenberg, 1999].

Determining the CDF in (47) requires knowledge of the concentration CDF F¢. Section 5.1 provides details
on how to statistically characterize the concentration at any point in space and time. One approach is to
assume the CDF model of F¢ (e.g. Beta, lognormal, etc) and use the concentration mean and variance as
fitting parameters (see section 5.1). The second approach is to use a fully derived F¢ by mapping random
variables [e.g., Dentz and Tartakovsky, 2010; Boso et al., 2014; de Barros and Fiori, 2014].

If the sampling support volume is small and ¢% < 1, then F¢ can be approximated by the Beta CDF
described in section 5.1 [Fiori, 2001; Bellin and Tonina, 2007]. As the sampling volume increases, the concen-
tration CDF departs from the bimodal distribution, with large predominance of the extreme values C=0
and C = (p, to a unimodal, Gaussian-like distribution. The departure from bimodality reflects the larger
range of concentration values and a larger entropy. In particular, Rubin et al. [1994] and Bellin et al. [1994]
showed that if the sampling volume increases, the uncertainty in the concentration can be approximated
by a Gaussian PDF (for % < 1) [see also Schwede et al., 2008]. As discussed in de Barros and Fiori [2014], the
support volume of the sampling device will have a strong effect on the tails of the concentration CDF which
are related to extreme events and of relevance to human health risk assessment.

Using the Lagrangian concentration framework, see section 5, de Barros and Fiori [2014] fully derived F¢ as
a function of sampling device volume which can be substituted in equation (47). Figure 12 illustrates the
ILCR CDF based on the F¢ developed in de Barros and Fiori [2014]. Results are depicted for a nonreactive
substance released from point source in a steady-state flow in a 3-D aquifer with ¢4 = 0.2, isotropic expo-
nential covariance and Pe = 10°. The health risk CDF is shown in Figure 12 for different vertical sizes of the
sampling device A. For this specific illustration, the concentration CDF is evaluated at a fixed time
(tU/1=0.5) at an environmentally sensitive target centered with the contaminant source. The value of f is
consistent with the data in the literature [Maxwell and Kastenberg, 1999; de Barros et al., 2009] and is approx-
imately equal to 0.0012 in all upcoming illustration examples.

Figure 12 shows that the effect of the sampling device becomes noticeable at high risk values (ILCR > 1074).
Higher values of ILCR are associated with events with high concentration. For larger sampling volumes, the
probability that the lower concentration values are observed increases. This is mainly due to two mechanisms.
First, when the scale of the sampling device increases, the variability of the concentration is reduced. Second,
for this specific case of a point source release, the sampling device helps to diminish the concentration by
sampling more streamlines. For ILCR < 10™*, the solute concentration values are small and the risk CDFs
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9.x 10-5| display similar values for the sampling device
volume values investigated. Additional dis-
cussion on the impact of the sampler’s vol-

) 7.x107¢r ume on concentration statistics can be found

S in the literature [e.g, Dagan, 1989; Rubin

5% 100} et al, 1994; Rubin, 2003; Tonina and Bellin,

2008].

3.x10-6F Alternatively, the ILCR can be stochastically

0 0'5 1 1'5 2 characterized in terms of the statistics of the

peak flux averaged concentration observed

oL at the control plane. The flux averaged con-

Figure 13. Expected increased lifetime cancer risk as a function of the lon- centration [Kreft and Zuber, 1978] can be

gitudinal macrodispersivity «;. Results obtained for an ergodic plume expressed as Cr(t; x)=Mo u(t;x)/Q, where
released in a 3-D heterogeneous flow field. Transport is purely advective . . .

(Pe — o). My is the initial total solute mass and p is the

total relative solute mass discharge crossing
the control plane situated at the longitudinal position x and Q,, is the steady state volumetric water dis-
charge. The statistical moments of u have been subject of intense study [e.g., Dagan et al., 1992; Cvetkovic
et al., 1992; Andricevic and Cvetkovic, 1998] as discussed in sections 2-4 and applied in human health risk
assessment [Andricevi¢ and Cvetkovic¢, 1996; de Barros and Rubin, 2008; Molin and Cvetkovic, 2010; Molin
et al.,, 2010]. As described in section 2 (see equation (18) and the ensuing paragraph), (i) = f(t; x), the travel
time distribution, and closed form expressions were given for Inverse Gaussian (appropriate to weak hetero-
geneity by equation (29)) and by the convolution (19) for high heterogeneity. We can obtain the mean and
variance of ILCR by replacing C,, in equation (44), with the peak of the flux averaged concentration at the
control plane

2
(ILCR) = BQ—A:V’O <nr1>ag< u(t; x)> and o} z= (ﬂO—A:,’o) Var{ntLag( y(t;x)} (48)
with (max ¢op(t;x)) and Var[maxou(t;x)] corresponding to the mean and variance of the maximum
value (over time) of total relative solute discharge crossing the control plane. It is emphasized that in the
present article we focused the discussion on ergodic plumes for which u 2 (i) such that a2 ; is negligible.
Analysis of the impact of nonergodic plumes, not discussed here, can be found, e.g., in Cvetkovic et al.
[1992], Andricevic and Cvetkovic [1998], Cvetkovic and Dagan [1994] and Fiori et al. [2002].

We illustrate the use of (48) for an ergodic contaminant plume (e.g., with characteristic dimensions much

larger than /) for which u(t; x) ~ (u(t; x))=f(t; x) such the expected cancer risk is

Mo max f(t; x). (49)

w >0

ILCR =

Figure 13 shows the expected ILCR based on equation (49). The computation of the ILCR is obtained by
using the inverse Gaussian PDF (29), which is fully characterized by the uniform-in-the-mean longitudinal
velocity U and the macrodispersivity o, =a?2/ for weakly heterogeneous aquifers (see section 2). The control
plane is situated at x=20/ m, the mean longitudinal velocity is U= 4.5 m/d and the injected mass is
M, = 2500 g. The result depicted in Figure 13 illustrates how the ILCR is diminished with increasing o, thus
emphasizing the importance of characterizing the structure of Y and appropriate models which relate it to
transport, in order to quantify risk.

As an additional remark, we point out that an appealing feature of the stochastic theory presented in sections
2-5 is the flexibility to incorporate site characterization data which is important to reduce the uncertainty in
the health risk metric and other environmental performance metrics [e.g., Rubin, 1991; Rubin and Dagan,
1992; de Barros et al., 2012]. Relevant questions associated with site characterization and risk analysis are: How
much site characterization is needed in order to provide a reliable risk estimation? Given that financial resources
are limited, how should risk managers and decision makers allocate resources toward uncertainty reduction in the
final risk estimation? Addressing the latter is particularly challenging given the contribution of additional sour-
ces of uncertainty (e.g., health parameters) in the overall risk end-point. Hence, the stochastic framework is
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particularly important to help decision makers best allocate resources to reduce both the uncertainty of the
prediction of interest (i.e. human health risk) and the likelihood of wrong decision.

The effect of hydrological data acquisition in human health risk error reduction was investigated in the litera-
ture [Maxwell et al., 1999; de Barros and Rubin, 2008; de Barros et al., 2009, 2012]. For instance, the Lagrangian
framework presented in sections 2-4 was employed in de Barros and Rubin [2008] to analyze the impact of
conditioning the ILCR CDF (47) on hydraulic conductivity measurements. Several works [Maxwell et al., 1999;
de Barros and Rubin, 2008; de Barros et al., 2009, 2012] showed how key parameters controlled the worth of
hydrogeological data in reducing the uncertainty of human health risk predictions. These works showed that
the value of hydrogeological information in human health risk was particularly sensitive to the scale of the sol-
ute plume, the sampling device support volume, the well pumping rate, local scale dispersion and finally, the
location of the environmentally sensitive target. de Barros et al. [2009] discussed the importance of the ratio
between the scale of the capture zone (induced by the pumping rate of the well) and the scale of the source
zone on determining the value of Y measurements in reducing the overall risk uncertainty. The role of plume
ergodicity in site characterization was also analyzed within the context of human health risk [Maxwell et al.,
1999; de Barros et al., 2009]. It was shown that under nonergodic transport conditions, uncertainty reduction
in human health risk benefited more from hydrogeological data acquisition as opposed to additional charac-
terization from the human health-related parameters [de Barros et al., 2009].

The need for additional site characterization data will also depend on the type of adverse health effect
caused by the contaminant and the manner in which the concentration is being modeled (resident vs
flux-averaged) [de Barros and Rubin, 2008]. If the prediction of interest is chronic health effects due to long
exposure periods, then global features of the breakthrough curve may suffice. On the other hand, if one is
interested in acute effects in short exposure periods (e.g., such as a neurotoxin), data acquisition campaigns
aimed at characterizing local fluctuations of the conductivity field and solute transport pathways may
improve the prediction of peak concentrations at the environmentally sensitive target. The key point is that
site characterization efforts will depend on the prediction goal upon which decisions will be made [see dis-
cussions in de Barros and Rubin, 2008; de Barros et al., 2009; Nowak et al., 2010].

7. Summary

The present article can be regarded as a follow up of the review of the first decade of stochastic modeling
of flow and transport [Dagan, 1986], published in “Trends and Directions in Hydrology” special issue of
WRR. It follows the same basic tenets: aquifer logconductivity Y is modeled as a stationary random space
function; its univariate pdf and two point covariance are determined by field characterization; the velocity
field is determined by solving the stochastic flow equations, for a mean uniform head gradient; transport is
modeled in the Lagrangian framework (particle tracking); the solution for the solute concentration serves
for probabilistic risk assesment.

The present article is not a comprehensive review, but it rather reports recent advances forwarded by the
authors in a few key areas, as detailed by sections in the following.

Section 2 recapitulates the basic approach and serves as starting point for the rest. It emphasizes quantifica-
tion of advective transport of plumes by the BTC (breakthrough curve) at control planes, in terms of fluid par-
ticles travel time, besides the usual spatial mass distribution measures. It makes a clear distinction between
two notions, which sometimes lack a clear definition in the literature: on one hand, the local stochastic ADE at
Darcy's scale, with advection driven by the random Eulerian velocity field and mixing modeled by pore scale
dispersion, and on the other hand the deterministic upscaled ADE with advection by the constant mean veloc-
ity and spreading by macrodispersion. The solution of the latter leads to Gaussian plumes and is valid under
limiting conditions, the main one being weak heterogeneity (52 =< 1). Another important well known property
revealed by the first order analysis is that longitudinal macrodispersivity depends, besides %, on the longitu-
dinal integral scale of Y, and to a lesser extent on the shape ot the two point covariance or the anisotropy ratio
(this reminds the dependence of spreading in turbulence upon the large eddies).

Section 3 deals with transport modeling in highly heterogeneous aquifers (6% > 1), topic of intensive recent
research. It is focussed on the results obtained by the authors for the aquifer structure coined as MIM (Multi
Indicator Model): an ensemble of rectangular blocks of independent random Y and longitudinal size 2/. It can
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model heterogeneous aquifers of arbitrary Y univariate pdf and integral scale /. An approximate analytical
solution of flow and transport is obtained by the SCA (self-consistent approximation), as superposition of solu-
tions for isolated blocks surrounded by a homogeneous matrix of effective properties. The MIM-SCA model is
applied to the MADE experiment in a predictive mode, by using the field identified Y parameters and mean
head gradient. The predicted plumes longitudinal mass distribution agree satisfactorily with the measured
ones, with no parameter fitting. The MIM-SCA model provides insight into a few major features like the non-
Gaussian, highly skewed BTC, with a long tail caused by the large residence time in low conductivity blocks. It
reveals the presence of flow induced high velocity channels which carry more mass than their relative volume,
explaining fast arrival at the control plane. Pore scale dispersion, which has negligible effect on the BTC for
weak heterogeneity, impacts the tail by transferring solute from the low conductivity blocks.

Section 4 extends the model to transport of reactive solutes. The main approach, coined as LaSAR
(Lagrangian Stochastic Advection-Reaction), incorporates in the BTC both advection (in terms of the ran-
dom fluid particles travel time) and reaction by a time dependent source term. The most general consid-
ered model for reaction is linear kinetic of first-order, multirate mass transfer. The latter is charachterized
by a few parameters: the ratio between the total immobile to mobile volumes and a pdf continuous distri-
bution of transfer rates between sites, modeled as a truncated power-law in form of a Pareto type | distri-
bution. An analytical solution is obtained in the Laplace domain which is illustrated by a few applications:
the impact of different parameters (spreading by macrodispersivity and the reaction parameters) on the
BTC, similarly for BTC moments and the attenuation of plume mass by decay added to the other
mechanisms.

Section 5 deals with modeling of local concentration C, as affected by dilution caused by pore scale disper-
sion (primarily the transverse one). While the pdf of C is bimodal and of maximal variance at the source, it
tends asymptotically to to a Gaussian one, governed by pore scale dispersion, at very large travel times. A
Beta distribution is proposed to describe the transition, with parameters depending on the C mean and var-
iance, which in turn depend on advective spreading and pore scale dispersion. Additional measures to char-
acterize dilution are the relative volume exceeding a given threshold and the dilution index. The latter are
computed approximately and the outcome is compared favorably with the detailed measurements at the
Cape Cod site. These are advances in a topic which is undergoing active research.

The last section 6, integrates the results of the former ones, by examining the impact of contaminant con-
centration upon risk to human health. The central topic is the dependence of the probability of increased
lifetime cancer risk (ILCR) upon concentration. The uncertainty stems from both the one affecting concen-
tration, solution of transport, and the parameters quantifying health risk. By adopting a linear model
between ILCR and threshold concentration, the expression of the ILCR cumulative probability distribution
(CDF) is considered in a few applications. Thus, one of major interest, is the dependence of the CDF on a3
via the rate of spreading as characterized by macrodispersivity, justifying the effort invested in site charac-
terization and development of transport models. Other examined applications are the impact of the
sampled volume of contaminated water upon risk uncertainty as well as the reduction of the latter by con-
ditioning on site data collection.

The partial list of topics examined in the paper, with a selective presentation reflecting the authors own
works, underscores the tremendous progress achieved by stochastic modeling in the last 30 years. While all
the sections bring up recent advances, it is clear that none can be viewed as concluding the topic.

It seems to us that future work has to be concentrated in two main directions. The first one is to integrate
the accumulated considerable knowledge, as illustrated by the present study, and available in many others,
toward application by practitioners. The other one is further advancement by research on the many issues
which are still open, a few of them indicated by the developments presented by this article.
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