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Abstract — The paper investigates the effect of the interference due to spectral leakage on the frequency 14 

estimates returned by the Interpolated Discrete Fourier Transform (IpDFT) method based on the 15 

Maximum Sidelobe Decay (MSD) windows when harmonically distorted sine-waves are analyzed. The 16 

expressions for the frequency estimation error due to both the image of the fundamental tone and 17 

harmonics, and the frequency estimator variance due to the combined effect of both the above 18 

disturbances and wideband noise are derived. The achieved expressions allow us to identify which 19 

harmonics significantly contribute to frequency estimation uncertainty. A new IpDFT-based procedure 20 

capable to compensate all the significant effects of harmonics on the frequency estimation accuracy is 21 

then proposed. The derived theoretical results are verified through computer simulations. Moreover, the 22 

accuracy of the proposed procedure is compared with those of other state-of-the-art frequency estimation 23 

methods by means of both computer simulations and experimental results.           24 
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1. Introduction 28 

Accurate estimates of harmonically distorted sine-waves are needed in many engineering applications 29 

such as instrumentation, vibration analysis, power systems, and communications. To estimate the 30 

parameters of a multi-frequency signal, Discrete Fourier Transform (DFT)-based methods are usually 31 

preferred to the parametric ones (e.g. autoregressive methods, Pisarenko’s algorithm, MUSIC algorithm, 32 

ESPRIT algorithm, sine-fitting algorithm [1-3]) since they provide accurate estimates, require a smaller 33 

processing effort, and are more robust to signal model uncertainties. Many DFT-based methods have been 34 

proposed in the literature, such as the Interpolated DFT (IpDFT) method [3-10], the phase difference 35 

methods [11-13], the least squares-based methods [14-15], and the energy-based method [16-17].  36 

The IpDFT method is widely adopted to compensate the picket-fence effect due to the intrinsic 37 

frequency granularity of the DFT spectrum [8]. In particular, when a Maximum Sidelobe Decay (MSD) 38 

window is used to reduce spectral leakage [9, 18] the multi-frequency signal parameters can be estimated 39 

by means of simple analytical relationships [9]. By using the IpDFT method, the frequency of each 40 

spectral tone is estimated by interpolating the two largest DFT samples belonging to the corresponding 41 

spectrum peak. The related amplitude and phase parameters are then estimated by using the obtained 42 

frequency value. When analysing harmonically distorted sine-waves, IpDFT frequency estimates can be 43 

affected by spectral leakage from the image components, harmonics, and wideband noise [3, 7, 10]. In 44 

particular, in some applications, such as vibration analysis of low-speed rotating machines, the analysed 45 

signals contain significant harmonic components [3, 4], which may heavily affect the frequency estimation 46 

accuracy. The contribution of the harmonics to frequency estimation uncertainty has been analysed in 47 

[10], where the magnitude of the related frequency estimation error has been derived. In order to further 48 

reduce of the above detrimental effects, the multi-point IpDFT methods have been proposed [19-21]. They 49 

hinder the effect of spectral leakage from both the image of the fundamental component and harmonics by 50 
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weighted the interpolated DFT samples using coefficients related to classical finite difference procedures 51 

[19, 20]. A corrected IpDFT algorithm has been also proposed for that aim [22, 23]. That procedure 52 

estimates the sine-wave frequency by subtracting to the interpolated DFT samples the contributions due to 53 

the image components and harmonics. However, to the best of the authors’ knowledge, expressions for the 54 

contribution of harmonics and wideband noise on the frequency estimator accuracy when the IpDFT 55 

approach is used has not yet published in the scientific literature.  56 

The aim of this paper is twofold. At first the effect of the spectral leakage of both the fundamental 57 

image component, harmonics, and wideband noise on the IpDFT frequency estimator based on a MSD 58 

window are determined. The obtained expressions are then employed to propose a new IpDFT-based 59 

procedure capable to reject interference from other tones on frequency estimation accuracy. 60 

The remaining of the paper is organized as follows. In Section 2 the expressions for the frequency 61 

estimation error due to both the fundamental image component and harmonics and the combined 62 

frequency estimator variance due to the above disturbance components and wideband noise are derived 63 

when the MSD windows are adopted. An IpDFT-based frequency estimation procedure that compensates 64 

the effect of spectral leakage from the fundamental image and significant harmonics is then proposed in 65 

Section 3. In Section 4 the accuracy of the provided expressions is verified through computer simulations. 66 

Moreover, the proposed procedure is compared with the classical IpDFT method, the corrected IpDFT 67 

(IpDFTc) procedure [22, 23], and the multi-harmonic sine-fitting (MHSF) method [24] by means of both 68 

computer simulations and experimental results. Finally, Section 5 concludes the paper. 69 

 70 

2. Analytical expression of the frequency estimation error 71 

 Let us consider the following discrete-time noisy and harmonically distorted sine-wave of length M, 72 

composed by K harmonics and sampled at frequency fs: 73 
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where Ak and ϕk (k = 1, 2,…, K) are respectively the amplitude and the phase of the kth spectral line, f is 74 

the signal normalized or discrete frequency, defined as the ratio f = fin/fs between the continuous-time 75 

signal frequency fin and the sampling frequency fs, and e(⋅) is an additive white Gaussian noise of zero 76 

mean and variance .2
nσ  It is worth noticing that the time reference has been assumed at the centre of the 77 

observation interval (i.e. at time (M – 1)/2) in order to minimize the effect of wideband noise on the estimated 78 

phase [7].  79 

The discrete frequency f can be written as: 80 
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where ν represents the number of observed sine-wave cycles or the normalized frequency expressed in 81 

spectral bins, l is its rounded value and δ (−0.5 ≤ δ < 0.5) is the difference between the above values.  82 

The sampling process can be either coherent (i.e. δ = 0) or non-coherent (when δ ≠ 0) [25]. The latter case 83 

is often encountered in practice due to the lack of synchronization between the analysed continuous-time 84 

waveform and the sampling rate. When non-coherent sampling occurs the discrete spectrum of the signal 85 

(1) is affected by spectral leakage, which can be reduced by windowing, i.e. by multiplying the acquired 86 

signal (1) by a suitable window sequence w(m), m = 0, 1,…, M – 1 [26], so obtaining the windowed signal 87 

xw(m) = x(m)⋅w(m), m = 0, 1,…, M – 1. Cosine-class windows are often adopted, that is [27]: 88 
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where H (H ≥ 2) represents the number of window terms and  ah > 0, h = 0, 1,…, H – 1, are the window 89 

coefficients. 90 

The Discrete-Time Fourier Transform (DTFT) of the windowed signal xw(⋅) is defined as [27]: 91 
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where λ is the normalized frequency, expressed in spectral bins, and Ew(⋅) is the DTFT of the signal 92 

e(m)⋅w(m). 93 

By neglecting the contribution of wideband noise, and using (1), (3), and (4), the following 94 

expression can be achieved for DFT samples at the integer values r of the normalized frequency close to ν: 95 
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The second term in (5) represents the image of the fundamental component while the contribution of the 96 

image components of harmonics has been omitted since simulations showed it is negligible as compared 97 

with the spectral components considered in (5).  98 

In (5), W(⋅) represents the DTFT of the adopted window w(⋅), which for |λ| << M can be expressed as [28]: 99 

( ) ( ) ( )∑
−

= −
−≅

1

0
221sin H

h
h

h

h
aMW

λ
λ

π
πλλ         when |λ| << M. 

(6) 

It is worth observing that, since the time reference is located in the centre of the observation interval, (6) 100 

represents a real-valued and even function, i.e. W(-λ) = W(λ). 101 

In the particular case of the H-term MSD window (H ≥ 2) the coefficients ah are [9]: 102 
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where ( ) !!
!

qqp
pC q

p −
= . The related DTFT (6) can be expressed as [9]: 103 
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 When the signal-to-noise ratio in the frequency domain (equal to the signal-to-noise-ratio in the time 104 

domain multiplied by the number of analyzed samples) is higher than about 18 dB, the integer part l of the 105 

number of observed signal cycles can be exactly determined with high probability by simply applying a 106 

maximum search procedure to the DFT samples |Xw(r)|, r = 0, 1,.., M/2 – 1 [29], [30]. 107 
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 The IpDFT method estimates the term δ of the number of observed signal cycles by firstly 108 

determining the ratio:  109 
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where s = 0 if |Xw(l – 1)| > |Xw(l +1)| and s = 1 if |Xw(l – 1)| < |Xw(l +1)|. 110 

By considering negligible the contributions of the image component and harmonics in (5) are negligible, it 111 

follows that: 112 
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which, using (8), for the H-term MSD window becomes: 113 
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In the following the effect of the fundamental image component, harmonics and wideband noise on 114 

the frequency estimator provided by the IpDFT method based on the MSD windows are separately 115 

analyzed in the case of harmonically distorted sine-waves or noisy and harmonically distorted sine-waves, 116 

respectively. 117 

a) harmonically distorted sine-waves 118 

Due to the spectral interference from both the fundamental image component and harmonics (whose 119 

effect has been neglected in (11)), the returned values are affected by an error (see (A.16) in the 120 

Appendix): 121 
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represents the contribution of the fundamental image component, while: 123 



 7 

( )( ) Kk
W

klkW
Hklk

lH
A
A

k ks

s
ks

k ,,3,2),cos(
)(

))1((
)1()1(

)1()1()1( 1
1

=−
+−

−++−
+−+

−−=∆ ϕϕ
δ

δ
δ

δδδ  
 

(14) 

is the contribution of the k-th harmonic. 124 

It is worth noticing that: 125 

- the errors ∆δ0 and ∆δk are sinusoidal functions of the related tone phase; the corresponding maximum 126 

value are respectively: 127 
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and 128 
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- the error ∆δk depends on δ and it is null when coherent sampling occurs (since the related value of the 129 

window transform is null) or the phase difference ϕk - ϕ1 = ±π/2 rad;  130 

- the error ∆δk  increases as the amplitude Ak increases, l decreases, or k decreases. 131 

 132 

b) noisy and harmonically distorted sine-waves 133 

To evaluate the contribution of noise e(⋅), the number of acquired signal cycles ν is assumed high 134 

enough that the contributions of the fundamental image component and harmonics can be neglected. In 135 

this case the variance of the estimator δ̂ due wideband noise is given by [9]: 136 
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where ENBW and SL(δ) are the Equivalent Noise BandWidth and the Scalloping Loss of the adopted 137 

window, given by [9]:  138 
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and )2/( 22
nASNR σ= is the Signal-to-Noise Ratio. 139 

 Since noise and signal components are related to different physical phenomena, their effects can be 140 

considered statistical independent. Thus, by considering the phases of the fundamental component and 141 

harmonics uniformly distributed in the range [0, 2π) rad, the combined variance of the estimator δ̂  is 142 

[31]: 143 
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where 2/2
max00 δρ ∆=  and Kkkk ,,3,2,2/2

max, =∆= δρ  are the variances of the contributions of the 144 

fundamental component and the kth harmonic to the frequency estimation error, and 2
,ˆ nδσ is given by (17).    145 

From (18) it follows that the contribution of spectral interference from the fundamental image 146 

component and harmonics becomes negligible as compared with the effect of wideband noise when: 147 
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Conversely, when wideband noise prevails, (17) and (18) show that the maximum of 2
δ̂σ  occurs when 148 

coherent sampling occurs [9]. 149 

 150 

3. The proposed IpDFT-based procedure 151 

Since the sidelobe envelope of the H-term MSD window spectrum has a fast decaying rate (i.e. 6(2H - 152 

1) dB/oct), only the lower order harmonics are expected to provide a significant contribution to ∆δ and 153 

.2
δ̂σ  Fig. 1 shows the theoretical expressions for the maximum errors max2δ∆ , max3δ∆ , and 154 

max4δ∆ normalized to A2/A1, A3/A1, and A4/A1, respectively as a function of δ when l = 3 (Fig. 1(a)) and l = 155 

10 (Fig. 1(b)).  The term δ is varied in the range (-0.5, 0.5) with a step of 0.04 cycles and the Hann 156 

window is adopted. 157 
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(a) (b) 

Fig. 1. Theoretical expressions for the maximum errors max2δ∆ , max3δ∆ , and max4δ∆ normalized to A1/A2, 158 
A1/A3, and A1/A4, respectively when (a) l = 3 and (b) l = 10. The Hann window is adopted.  159 

 160 

Fig. 1 shows that, for both values of l, the contribution of the 2nd harmonic always dominates the 161 

others when equal amplitude harmonics are considered. Also, the contribution of the 3rd harmonic 162 

overcome that of the 4th harmonic for most values of δ. Moreover, by comparing Figs. 1(a) and (b), it 163 

follows that the harmonic contributions quickly decreases as l increases. This phenomenon is due to the 164 

rapidly decaying sidelobe level of the Hann window spectrum.  165 

Leveraging on the results derived in the previous Section the frequency estimation procedure described 166 

in the following using pseudocode is proposed: 167 

1) Acquire M samples of the analyzed signal x(m), m = 0, 1, …, M – 1. 168 

2)  Evaluate the windowed signal xw(m)= x(m)w(m), m = 0, 1, …, M – 1, where w(⋅) is the H-term MSD 169 

window. 170 

3)  Evaluate the DFT of the windowed signal xw(⋅) by (4). 171 

4)  Apply a maximum search procedure to the DFT samples to determine the integer part l of the number 172 

of observed cycles. 173 

5) Apply the IpDFT method to determine the estimates for the term ,ˆ
xδ the amplitudes and the phases of 174 

the fundamental and the harmonics, xxA 11 ˆ,ˆ ϕ and ,...3,2,ˆ,ˆ =kA kxkx ϕ  175 

6) Apply (14) to determine the contribution of each harmonic to the estimation error ∆δky, k = 2, 3, …. 176 

7)  Identify the harmonic orders px and qx related to the two errors with greatest magnitude  177 

8) Determine 
xxx qpxx l δδδδν ˆˆˆˆˆ 0 ∆−∆−∆−+=  178 
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9) Remove the estimates of the  px-th and qx-th harmonics from the signal  179 
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10) Perform steps 5) and 6) on signal y(⋅) and estimate the term δ by the following expression: 180 
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where yδ̂ is the estimator of δ obtained by applying the IpDFT method to the signal y(⋅), 
y0δ̂∆ and 

ykδ̂∆  181 

are determined by (13) and (14), respectively, using the harmonic parameters returned by the IpDFT 182 

method and Kh is the set containing the orders of the significant harmonics; the kth harmonic is 183 

considered significant if µδδ /ˆˆ
yy pk ∆≥∆ (e.g. µ = 10 or greater), otherwise its contribution is assumed 184 

negligible; in the previous equation py is the order of the harmonic with the greatest contribution to the  185 

estimation error related to the application of the IpDFT method to the signal y. 186 

 187 

As it can be seen the proposed procedure requires to perform two iterations. The aim of each iteration 188 

is to reduce a fraction of harmonics contribution on the estimation of the term δ. During the first iteration 189 

(steps 1-8) the two harmonics with the greatest contribution to the estimation error are determined, their 190 

parameters are estimated through the IpDFT method, and the estimate of δ corrected from the contribution 191 

of these two harmonics is determined. Then, these contributions are removed from the original signal (step 192 

9), so rejecting the spectral interference from both the harmonics and their images on the estimated value 193 

of δ. It is worth noticing that the two harmonics providing the greatest contribution to the estimation error 194 

have been considered in the procedure in order to achieve very accurate results already after a single 195 

iteration also when the signal is effected by one harmonic of significant amplitude and one harmonic with 196 

lower amplitude, but closely spaced in frequency to the fundamental component.  197 

In the second iteration (step 10) the proposed frequency estimation procedure is applied to the achieved 198 

signal. Further removal of harmonics contribution is no more required, since it assumes a negligible value 199 

as compared to the first iteration one; thus the application of (12)-(14) suffices.  200 

 201 

 202 
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4. Computer simulations and experimental results 203 

 In this Section the accuracies of expressions (12) and (18) are firstly verified by means of computer 204 

simulations. Then, the accuracies of the proposed procedure, the classical IpDFT method [3-10], the 205 

IpDFTc procedure [22, 23], and the MHSF method [24] are compared through both computer simulations 206 

and experimental results. It is worth noticing that in [23] it has been shown that the IpDFTc procedure 207 

provides more accurate frequency estimates than the classical three- and five-point IpDFT methods [19, 208 

20]. The MHSF method is considered in the comparison since simulations showed that it provides a 209 

minimum variance estimator when the analyzed waveform is corrupted by additive white Gaussian noise 210 

and the number of harmonics is a-priori known [29]. Conversely, when the number of harmonics is 211 

unknown the MHSF method, unlike the IpDFT methods, may provide low accuracy estimates. In addition, 212 

it requires a significantly higher processing effort than the considered IpDFT methods. These two aspects 213 

will be also analyzed in this Section.  214 

 215 

4.1. Simulation results 216 

Computer simulations were performed by considering, for each value of ν, the fundamental tone 217 

amplitude A1 = 1, phases of the fundamental and harmonics chosen at random in the range [0, 2π) rad, and 218 

M = 512 samples long data records. The two-term MSD window was adopted and a coefficient µ = 10 was 219 

considered in the proposed procedure. Three iterations were employed in the MHSF method since no 220 

significant accuracy improvement was achieved when using a higher number of iterations. All methods 221 

were applied to the same signal. The noise variance was chosen in such a way to achieve SNR = 50 dB.  222 

When considering harmonically distorted sine-waves the maximum absolute value of the frequency 223 

estimation error is adopted as accuracy parameter. Conversely, a statistical parameter, i.e. the combined 224 

standard deviation of the frequency estimator, is used when waveforms corrupted by wideband noise are 225 

considered. 226 
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Fig. 2 shows the maximum absolute value of the frequency estimation errors, |∆δ|max, returned by 227 

simulations and (12)-(14) as a function of ν for two different signals with harmonics up to the fourth 228 

order. In the first signal the 2nd harmonic prevails (A2 = 0.5, A3 = 0.25, and A4 = 0.125), while in the 229 

second one the 3rd harmonic overcomes the others (A2 = 0.2, A3 = 0.6, and A4 = 0.4). These signals were 230 

considered since situations in which the 2nd or the 3rd harmonics prevails are often encountered in 231 

practice. The normalized frequency ν was varied in the range [2.01, 12) cycles with a step of 0.04 cycles. 232 

For each value of ν, 1000 runs were performed.  233 

As we can see, for both considered signals a very good agreement is achieved between the simulation and 234 

theoretical results. 235 

 236 

 
 

(a) (b) 
Fig. 2. Maximum errors |∆δ|max versus ν  returned by simulations (crosses) and (12)-(14) (solid lines) 237 

when analyzing a sine-wave with amplitude A1 = 1 corrupted by 2nd, 3rd, and 4th harmonics with 238 
amplitudes (a) A2 = 0.5, A3 = 0.25, and A4 = 0.125 or (b) A2 = 0.2, A3 = 0.6, and A4 = 0.4. The phases of the 239 

fundamental and harmonics are chosen at random and the number of analyzed samples is M = 512. The 240 
Hann window is adopted.   241 

 242 

Fig. 3 shows the combined standard deviation of the frequency estimator achieved δσ ˆ , returned by 243 

simulations and (18) as a function of ν for the same signals as in the previous analysis and using the same 244 

simulations conditions.  245 
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(a) (b) 

Fig. 3. Combined standard deviation of the frequency estimator versus ν  returned by simulations (crosses) 246 
and (18) (solid lines) when analyzing a sine-wave with amplitude A1 = 1 corrupted by 2nd, 3rd, and 4th 247 
harmonics with amplitudes (a) A2 = 0.5, A3 = 0.25, and A4 = 0.125 or (b) A2 = 0.2, A3 = 0.6, and A4 = 0.4. 248 

The phases of the fundamental and harmonics are chosen at random, the number of analyzed samples is M 249 
= 512, and SNR = 50 dB. The Hann window is adopted.   250 

 251 

Even in this case a very good agreement is achieved between simulation and theoretical results. Also, in 252 

Fig. 3(a) the combined standard deviation exhibits small oscillations when ν > 8 since the effect of wideband 253 

noise prevails on harmonics. The same behavior can be observed in Fig. 3(b) when ν > 7. Moreover, as we 254 

expected from the theoretical analysis, in the above situations the standard deviation exhibits maxima 255 

when coherent sampling occurs. Conversely, harmonics contribution prevails for small values of ν, 256 

especially when ν < 5. However, this threshold decreases as SNR decreases. 257 

The combined standard deviations of the frequency estimates returned by all the considered methods are 258 

compared in Fig. 4 considering the same noisy and harmonically distorted sine-waves as in Fig. 3. To 259 

analyze the influence of the number of harmonics nh in the MHSF method accuracy, the result obtained 260 

using either nh = 2 or 3 were analyzed. For each value of ν  1000 runs were considered. 261 
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(a) (b) 

 Fig. 4. Combined standard deviations of the frequency estimators versusν  returned by the classical 262 
IpDFT method, the proposed procedure (µ = 10), the IpDFTc procedure, and the MHSF method with nh = 263 
2 or 3, respectively. The signal parameters are: (a) A1 = 1, A2 = 0.5, A3 = 0.25, and A4 = 0.125 and (b) A1 = 264 

1, A2 = 0.2, A3 = 0.6, and A4 = 0.4 .The phases of the fundamental and harmonics are chosen at random, 265 
the number of analyzed samples is M = 512, and SNR = 50 dB. The Hann window is adopted.   266 

 267 
 268 

Fig. 4 shows that the proposed procedure outperforms the IpDFT method and exhibits better 269 

performance than the IpDFTc procedure in most situations when ν < 3.5, while almost the same 270 

performance are achieved for the remaining values of ν (i.e. ν ≥ 3.5) where the parameter estimates are 271 

accurate. Moreover, for 2.5 < ν < 3.5 the combined standard deviation related to the proposed method is 272 

almost constant and has a maximum when δ is close to 0 due to the behavior of the wideband noise effect, 273 

thus confirming that the harmonics have been effectively removed by the proposed procedure. Conversely, 274 

for ν > 3.5 both the proposed and the IpDFTc procedures have almost the same effectiveness in reducing 275 

harmonic contribution. Indeed, in these situations the frequency estimation accuracy is mainly limited by 276 

wideband noise. It is worth noticing that, unlike the IpDFTc procedure, the proposed one is based on the 277 

theoretical contribution of each harmonic to the frequency estimation error.  278 

Many other simulations were performed for different values of harmonic amplitudes. It has been 279 

observed that the proposed procedure outperforms the IpDFTc one in most situations when the harmonic 280 

amplitudes are higher than 10% of the fundamental and ν < 3.5. Only, when the effect of the fundamental 281 
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image component prevails over the harmonics one, the accuracy of the proposed procedure is almost equal 282 

to that ensured by the IpDFTc method when ν < 3.5.  283 

As for the comparison with the MHSF method, the proposed procedure outperforms it when nh = 2, 284 

while it is less accurate when nh = 3. Indeed, the variance of this latter frequency estimator reaches the 285 

asymptotic Cramer-Rao lower bound [29] as soon as ν > 2.5 since no windowing is performed [26]. It is 286 

worth noticing that applying the MHSF method with nh > 3 no further accuracy improvement is achieved, 287 

despite a significant increase in the processing effort.  288 

 289 

4.2. Experimental results 290 

The accuracy of the proposed procedure was compared with the other considered state-of-the-art 291 

methods also through experimental results. In the experimental run, the harmonically distorted sine-waves 292 

are provided by an Agilent 33220A signal generator and acquired using a National Instruments 12-bit data 293 

acquisition board NI 6023. It should be noted that the adopted signal generator employs a 14-bit digital-to-294 

analog converter (DAC) [32]. For sine-wave frequencies smaller than 20 kHz the Total Harmonic 295 

Distortion ratio (THD) is smaller than 0.04% (-68 dBc) and the Spurious Free Dynamic Range (SFDR) is 296 

smaller than -70 dBc [32]. The NI-6023 acquisition board is equipped with a 12-bit successive 297 

approximations analog-to-digital converter (ADC) [33]. The maximum full-scale range and sampling 298 

frequency of the acquisition board are 20 V and 200 kHz, respectively [33]. The full-scale range and the 299 

sampling frequency were set to 10 V and 100 kHz, respectively. The generated sine-waves were affected 300 

by 2nd, 3rd, and 4th harmonics, and additive wideband noise. The fundamental component amplitude was 301 

set to 2 V and the signal frequency was varied in the range [497, 677] Hz with a step of 20 Hz. For each 302 

frequency value, 1000 runs of M = 512 samples each were considered. Thus, the number of acquired sine-303 

wave cycles is in the range ν ∈ (2.5, 3.5), so that l = 3. This range has been chosen to compare the 304 

performances of the considered methods when ν assumes small values, i.e. when the contribution of 305 

harmonics prevails over wideband noise. Two signals were generated, with 2nd and 3rd dominant 306 
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harmonics, respectively. The amplitudes of the fundamental component and the first three harmonics were 307 

estimated by the MHSF(nh = 3) method. These parameters and the Signal-to-Non-Harmonic Ratio 308 

(SNHR) [34] and THD of both these signals are provided in Table 1. 309 

 310 

Table 1.  Amplitudes of the fundamental component, significant harmonics, SNHR and THD for the two 311 
considered signals.  312 

Signal with: A1 [V] A2 [V] A3 [V] A4 [V] SNHR [dBc] THD [%] 

dominant 2nd harmonic  1.35 0.67 0.44 0.24 58 55 

dominant 3rd harmonic  1.11 0.22 0.71 0.62 58 75 

 313 

It is worth noticing that the inaccuracies of the signal generator are negligible as compared with the 314 

considered harmonic amplitudes. Moreover, since the acquisition board has a lower resolution than the 315 

signal generator DAC it is expected that wideband noise superimposed to the acquired signal is mainly 316 

due to the acquisition.  317 

The combined standard deviations of the achieved frequency estimates are shown in Fig. 5 as a 318 

function of the number of observed cycles ν, whose value was determined as the sample mean of the 319 

estimates provides by the MHSF (nh = 3) method. 320 

Like in computer simulations, Fig. 5 shows that the proposed procedure outperforms the IpDFT and the 321 

MHSF(nh = 2) methods in all analyzed conditions, while the IpDFTc procedure is outperformed in most 322 

analyzed conditions. However, the proposed procedure exhibits a lower accuracy than the MHSF method 323 

based on the exact number of harmonics nh = 3. Also, curves in Figs. 4 and 5 show a very similar 324 

behavior, so validating the performed computer simulations.  325 
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(a) (b) 

Fig. 5. Combined standard deviations of the frequency estimates versus ν  returned by the proposed 326 
procedure, the IpDFTc procedure, the classical IpDFT method, and the MHSF method with nh = 2 or 3, 327 

respectively. Sine-wave corrupted by 2nd, 3rd, and 4th harmonics with tones amplitudes: (a) A1 = 1.35, A2 328 
= 0.67, A3 = 0.44, and A4 = 0.24 V or (b) A1 = 1.11, A2 = 0.22, A3 = 0.71, and A4 = 0.62 V. The number of 329 

analyzed samples is M = 512 and the sampling frequency is 100 kHz. The Hann window is adopted.   330 
 331 

4.3. Computational complexity 332 

The processing times required by all the considered methods were also compared. A Matlab 7.1 333 

environment running on a portable computer provided with a 2-GHz processor, 4G - RAM memory, and 334 

equipped with a Microsoft Windows 8.1 operating system was employed. The DFT samples were 335 

calculated directly, i.e. using (4) instead of the fft(⋅) function of Matlab. When considering the signals 336 

analyzed in Fig. 4, the average processing times over 1000 runs are given in Table 2.  337 

 338 

Table 2. Average processing times over 1000 runs required by the considered methods. 339 

 Average processing 

time (ms) 

classical IpDFT method 0.27 

IpDFTc procedure 0.44 

proposed procedure 0.94 

MHSF method 13.1 
 340 
 341 
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Table 2 shows that the processing time required by the proposed method is about 2.1- and 3.5-times 342 

higher than the IpDFTc procedure and classical IpDFT method, respectively. Conversely, the proposed 343 

procedure is 14-times faster than the MSHF method and this ratio is expected to increase when the number 344 

of significant harmonics is higher. In addition, to achieve accurate frequency estimates, the MHSF method 345 

needs the a-priori knowledge of the number of significant harmonics, so further increasing the processing 346 

effort. Thus, we can conclude that the proposed procedure can be advantageously used in the real-time 347 

applications requiring accurate frequency estimates.  348 

 349 

5. Conclusions 350 

 In this paper the expressions for the frequency estimation error due to the spectral interference from 351 

the fundamental image component and harmonics and the estimator combined standard uncertainty due to 352 

the above disturbances and wideband noise have been derived when the MSD windows are adopted in the 353 

IpDFT method. The derived expressions allow us to determine the effect of each harmonic on the 354 

estimated frequency and, as a consequence, to identify which harmonics provide the most significant 355 

contribution. Based on the derived expressions a procedure capable to compensate all the significant 356 

effects of harmonics on the returned frequency estimates has been proposed. The accuracies of the derived 357 

expressions have been verified through computer simulations. It has been shown that the procedure 358 

proposed in this paper outperforms the classical IpDFT method and the IpDFTc procedure when few 359 

signal cycles are analyzed, i.e. when harmonics contribution dominates the effect of wideband noise.  360 

Moreover, despite the proposed procedure exhibits a lower accuracy than the MHSF method when applied 361 

on the exact (or higher) number of harmonics, it requires a much lower processing effort and so it can be 362 

advantageously employed in real-time high-accuracy applications.  363 

 364 

 365 

 366 

 367 
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APPENDIX 368 

Derivation of the analytical expression of the error ∆δ 369 

 370 

 Using (5) and remembering that the window transform (6) is real-valued, it follows that: 371 
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(A.1) 

Let’s assume that the amplitude of the fundamental component is higher than harmonics and that the 372 

number of observed signal cycles ν is higher than the window’s number of terms H. Thus, (6) shows that 373 

the terms containing the factor )(1 ν−rWA  dominate the others. As a consequence, the contributions to 374 

(A.1) due to the second, third, sixth, and seventh terms are negligible and:  375 
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which can be written as:  376 
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expansion of 2/1)1( x−  (i.e. using the approximation 2/1)1( 2/1 xx −≅− ) we achieve: 379 
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Using the substitutions ν = l + δ  and r = l + p, (A.4) becomes: 380 
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 From (9), and neglecting 382 

that difference with respect to  1, (A.5) provides: 383 
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where: 384 
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in which s = 0 if |Xw(l – 1)| > |Xw(l +1)| and s = 1 if |Xw(l – 1)| < |Xw(l +1)|. 385 

Using (8) the following equalities can be achieved: 386 
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Using (A.8) – (A.10) after some algebra (A.7) becomes: 387 



 21 

.)cos())1((
)1()1(

)1()1(

)2cos()2(
)1(2

)1(2
)())1(1(

))(12(

2
1

1

11

1

1





−+−

−++−
−−

+





+

−++
−

−+−
+−

=

∑
=

+

+

+

K

k
k

k
s

s

s

s

s

klkW
A
A

Hklk
k

lW
HlWH

lH

ϕϕδ
δ

ϕδ
δδδ

δε

 

 

(A.11) 

Linearizing (11) we can write: 388 
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while from (11):  390 
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By replacing (A.13) and (A.14) into (A.12) we achieve: 391 
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Finally, using (A.11), (A.15) becomes: 392 
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