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Abstract — This paper investigates the accuracy of the sine-wave parameter estimators provided by the 

Weighted Three-Parameter Sine-Fit (W3PSF) algorithm when a generic cosine window is adopted. Simple 

expressions for the estimators are derived, which allows a very simple implementation of that algorithm.  

Moreover, it is shown that the W3PSF algorithm can be well approximated by the classical weighted 

Discrete Time Fourier Transform (DTFT) when the number of analysed waveform cycles is high enough. 

Under that constraint the asymptotic mean square errors (MSEs) of the estimated parameters and the 

expected sum-squared fitting error can also be evaluated with good accuracy using very simple 

expressions. Then, the statistical performances of the W3PSF algorithm and the classical 3PSF algorithm 

are compared through computer simulations in the case of noisy or noisy and harmonically distorted sine-

waves. The performed analysis allows us to identify when the W3PSF algorithm outperforms the classical 

3PSF algorithm. 
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1. Introduction 

Many engineering applications require accurate estimates of the parameters of noisy sine-waves. To 

this aim sine-fit algorithms based on the least squares approach are often adopted [1-15]. Indeed, these 

algorithms are quite simple to implement and return asymptotically efficient estimates when the analysed 

sine-wave is affected by additive white Gaussian noise [1]. Two different sine-fit algorithms are available 
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in the literature, that is the three-parameter sine-fit (3PSF) algorithm and the four-parameter sine-fit 

(4PSF) algorithm [3-6], according to the number of sine-wave parameters to be estimated. Both 

algorithms are recommended in the IEEE Standards for the dynamic characterization of digitizing 

waveform recorders [3] or analog-to-digital converters [4]. The 3PSF algorithm assumes that the sine-

wave frequency is a-priori known, and the remaining waveform parameters are estimated through a linear 

least-square approach. Conversely, the 4PSF algorithm estimates also the sine-wave frequency, thus 

resulting in a non-linear least-square problem, whose solution is achieved iteratively. When the sine-wave 

frequency is known with uncertainty, a criterion for the selection of the most accurate algorithm has been 

derived in [7] on the basis of the parsimony principle [2]. The analytical expressions for the sine-wave 

parameter estimators provided by the 3PSF algorithm are given in [5]. Unfortunately, they are quite 

complicated unlike other approaches, such as those based on the Discrete Fourier Transform (DFT) [16-

31]. In practice, the sine-waves are often affected by narrow-band disturbances, such as harmonics or 

inter-harmonics. To reduce the detrimental effect on these disturbances the analysed waveform is often 

weighted  by means of a suitable window function, in both non-parametric and parametric methods [1, 2, 

16-18, 20, 22, 27-29].  Unfortunately, to the best of the authors’ knowledge, the accuracy of the weighted 

sine-fit algorithms has not yet been analysed in the scientific literature. This is the aim of this paper. At 

first closed form expressions for the sine-wave parameter estimators returned by the Weighted 3PSF 

(W3PSF) algorithm are derived assuming that a generic H-term cosine window (H ≥ 1) is adopted. The 

obtained expressions are simple linear combinations of the values of the weighted Discrete Time Fourier 

Transform (DTFT) evaluated at DC and at the sine-wave frequency. They allow us to analyse the effect of 

both narrow-band disturbances and wideband noise on the accuracy of the estimated sine-wave 

parameters. In particular, it is shown that the W3PSF algorithm and the classical weighted DTFT return 

almost the same estimates when quasi-coherent sampling occurs or when the number of analysed sine-

wave cycles is high enough. As a consequence, the expressions for the asymptotic (high number of 

samples) Mean Square Errors (MSEs) of the parameter estimates returned by the W3PSF algorithm and 

the related expected sum-squared fitting error [8] are easily achieved.  

The paper is organized as follows. In Section 2 the expressions for the sine-wave parameter estimators 

returned by the W3PSF algorithm are derived and some remarks about the effect of narrow-band 

disturbances on the parameter estimation accuracy are drawn. Moreover, simple expressions for the 

asymptotic MSEs of the estimated parameters and the expected sum-squared fitting error provided by the 

W3PSF algorithm when the number of sine-wave cycles is high enough are provided in Section 3. In 

Section 4 the MSEs of the estimated parameters and the expected sum-squared fitting error of the W3PSF 

algorithm and the classical 3PSF algorithm are compared to each other in the case of noisy or noisy and 

harmonically distorted sine-waves. As a result, conditions under which the W3PSF algorithm outperforms 
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the classical 3PSF algorithm are identified. Also, the MSEs returned by simulations are compared with the 

derived expressions. Finally, Section 5 concludes the paper.  

                 

2. The W3PSF algorithm 
 The analyzed discrete-time noisy sine-wave is modelled as: 
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where s(⋅) is the discrete-time sine-wave of amplitude A, frequency f, and phase φ,  d  is the  offset and e(⋅) 

is an additive white Gaussian noise with zero mean and variance 2σ . Without loss of generality an odd 

number of acquired samples M is assumed, so that the time reference can be set exactly in the center of the 

observation interval, thus simplifying the derived expressions (as it will be shown in the following).   

The sine-wave frequency f is chosen in the range (0, 0.5) to satisfy the Nyquist theorem. It can be 

expressed as: 
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where fin is the frequency of the acquired continuous-time sine-wave,  fs is the sampling frequency (both 

expressed in Hz), ν is the number of acquired signal cycles or the sine-wave frequency expressed in bins, l 

is the rounded value of ν, and δ  = ν - l, with δ ∈[-0.5, 0.5). In particular, δ = 0 when coherent sampling 

occurs. 

 The sine-wave s(⋅) can be also re-written as: 
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(3) 

where φjAep
∆
= . 

 It is well-known that the influence on the estimated sine-wave parameters of narrow-band 

disturbances can be reduced by weighting the analysed signal x(⋅) by a suitable window function. In this 

paper the cosine class windows (H ≥ 1) are considered [32, 33], that is:  
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where ch , h = 0, …H - 1 are the window coefficients and H ≥ 1 is the number of window terms. Note that 

the particular case H = 1 corresponds to the rectangular window, i.e. to the absence of the weighting. 

The three-parameter sine-fit approach assumes that an estimate ν̂  of the number of acquired sine-

wave cycles is known a-priori [3-7] The following theorem holds. 
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Theorem 1 
The estimators for the sine-wave complex-amplitude p and the offset d returned by the W3PSF algorithm 

are: 

( ),)0()ˆ( )ˆ(
)0(~

2ˆ ~13
*
~12~11 www XXX

W
p ανανα ++=  

(5) 

and 

( ),)0()ˆ( )ˆ(
)0(~

1ˆ ~33
*
~13~13 www XXX

W
d ανανα ++=  

(6) 

where )(~ ⋅wX is the Discrete Time Fourier Transform (DTFT) of the analysed signal weighted by the 

squared window )(~)(2 mwmw = , )(~
⋅W is the DTFT of the squared window )(~ ⋅w , and 
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in which  
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The proof of that theorem is given in Appendix A. 

 

Since φjAep = , the expressions for the sine-wave amplitude and phase estimators can be easily derived 

from (5): 
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It is worth noticing that the expressions (9), (10), and (6), for the estimators ,ˆ,ˆ φA  and d̂  are 

explicitly related to the DTFT of the analyzed waveform weighted by the squared window )(~ ⋅w . 

Moreover, they are simpler than those published in the literature in the particular case of the rectangular 

window [5]. In addition, these expressions do not require the calculation of the pseudoinverse matrix, as 

occurs when using the classical least-squares approach. 

Using mathematical induction it is easy to show the following 

Proposition 

The squared window of a H-term cosine window (H ≥ 2) with coefficients ch, h = 0, 1, …, H - 1 is a (2H – 1)-

term cosine window with coefficients: 
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,  while NNPGw is the Normalized Noise Power Gain parameter of 

the original window. 

 

Other window figures of merit that will be used in the following, are the Normalized Peak Signal Gain 

(NPSG) and the Equivalent Noise BandWidth (ENBW). For the squared window )(~ ⋅w the parameters 

NPSG, NNPG, and ENBW are expressed as follows [32]: 
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and [32]: 
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It is worth to observe that 0)ˆ(~
≅νW  and 0)ˆ2(~

≅νW  when a suitable window is used, a sufficiently 

large number of samples M is acquired and enough sine-wave cycles ν  are observed (i.e. M >> ν >> 1).  

In that case (8) returns a ≅ 0 and b ≅ 0, which replaced in (7) leads to α11 ≅ α33 ≅ 1, and α12 ≅ α13 ≅ 0. 

Thus, (9), (10), and (6) provide: 
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respectively, which coincide with the expressions used to the classical weighted DTFT algorithm.  

In fact, under the assumed constraints the spectral interference from the sine-wave image component 

become negligible, so that the W3PSF and the classical weighted DTFT algorithms return very close 



 6 

parameter estimates. It is worth noticing that the expressions (15)-(17) hold also in coherent or 

quasicoherent (i.e when δ ≅ 0) sampling mode since in these modes we have l≅ν̂ . 

It is worth observing that )(~ νW  and )2(~ νW  assume significant values when ν is small. Thus (5)-(8) 

show that the sine-wave parameter estimators returned by the W3PSF algorithm are heavily affected by 

the term )ˆ(*
~ νwX , which is related to the image component. Moreover, its contribution increases as the 

error ννν −=∆ ˆ  of the a-priori estimate of the sine-wave frequency increases, as shown by (A.12). This 

effect is more evident when the rectangular window is used due to its high spectrum sidelobe level.  

 

3. Accuracy of the W3PSF algorithm 
 In this Section the MSE of the sine-wave parameter estimators returned by the W3PSF algorithm and 

the related sum-squared fitting error are evaluated under the assumption that (15)-(17) hold, which occurs 

in the case of coherent or quasi-coherent sampling or when the number of observed sine-wave cycles ν is 

high enough. In particular, the MSEs of the estimators returned by the W3PSF algorithm are expressed by 

the following 

 

Theorem 2 

The asymptotic MSEs for the estimators Â , φ̂ , and d̂ returned by the W3PSF algorithm when the number 

of observed sine-wave cycles is high can be approximated by: 
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where ννν −=∆ ˆ and )2/( 22 σASNR = is the Signal-to-Noise Ratio.  

The proof of that theorem is given in Appendix B.  

 

From (18)-(20) it follows that ]ˆ[φMSE and ]ˆ[dMSE do not depend on ∆ν  [1], unlike ]ˆ[AMSE . The 

same holds for the sine-wave phase, even though it can be shown that the independence of ν occurs 

because the time reference has been set exactly in the center of the observation interval.  
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The obtained MSEs are compared with the lower bound MSEs for unbiased estimators, which 

corresponds to the asymptotic Cramér-Rao Lower Bounds (CRLB) [1]: 
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Expression (18) confirms that, when a high accuracy frequency estimate is available (i.e. 0ˆ ≅∆ν ), 

the bias is almost null and so the statistical efficiency of the amplitude estimator (i.e. the ratio between the 

CRLB and the ]ˆ[AMSE ) is almost equal to wENBW~/1 . Similarly, expressions (19) and (22), and (20) and 

(23) show that the statistical efficiencies of the phase and offset estimators are almost equal to wENBW~/1 .  

The fitting error is defined as [8]: 
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where )(ˆ ⋅s is the fitting sine-wave given by: 
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in which Â , φ̂ , and d̂ are the estimated amplitude, phase, and offset parameters. 

The sum-squared fitting error is defined as [8]: 
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and its expected value is given by the following 

 

Theorem 3 
The asymptotic expected sum-squared fitting error obtainable by the W3PSF algorithm when the number 

of observed sine-wave cycles is high can be approximated by: 

).ˆ(
6

3][
22

2~
νπσγ MSEA

M
ENBWE w +≅  

(27) 

The proof of that theorem is given in Appendix C. 
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In particular, when the rectangular window is adopted ( 1~ =wENBW ), (27) coincides with the related 

expression derived in [8], that is:  
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As simulations show, (27) holds with good accuracy also in the case of harmonically distorted sine-waves 

since the contribution of harmonics to the sine-wave parameter estimates is negligible when windowing is 

applied and a suitably high number of sine-wave cycles are observed.  

Observe also that (18), (19), (20), and (27) show that the reduction of the influence of narrow-band 

disturbances on the estimation accuracy provided by windowing, increases the estimator sensitivity to 

wideband noise by a factor which is related to the ENBW of the square of the adopted window.  

 

4. Computer simulations 
 The aim of this Section is to verify through computer simulations the accuracies of the expressions 

derived in the previous two Sections and to compare the performance of the W3PSF and the 3PSF 

algorithms when noisy or noisy and harmonically distorted sine-waves are analysed. Sine-waves used in 

the simulations have amplitude A = 1 and offset d = 0.1. 

 Firstly the results returned by the 3PSF and W3PSF algorithm implemented using both the classical 

least squares procedure and the proposed relationships are compared to each other. Fig. 1 shows the 

expected sum-squared fitting error E[γ] obtained by the considered algorithms as a function of ν when the 

rectangular window or the two-term Maximum Sidelobe Decay (MSD) window (known also as the Hann 

window) [33] are used and M = 17 and 129, respectively. The waveform SNR is 40 dB and ∆ν = 7⋅10-3 

cycles. In this case the second term in (27) is higher than the first one so that the effect of frequency 

uncertainty prevails on wideband noise. The frequency ν was varied in the range [1.01, 6) with a step of 

0.1. For each considered value of ν, 10000 values of the phase φ were chosen at random in the range      

[0, 2π) rad. The theoretical values returned by (27) and (28) for the rectangular and the two-term MSD 

windows, respectively, are also reported in the figure. 
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 (a)  (b) 

  
(c) (d) 

Fig. 1. Expected sum-squared fitting error obtained by simulations and the proposed analysis versus the 

number of observed sine-wave cycles ν : 3PSF algorithm and equation (28) for M = 17 (a) and M = 129 

(c); W3PSF algorithm based on the Hann window and equation (27) for M = 17 (b) and M = 129 (d). Noisy sine-

waves with SNR = 40 dB, sine-wave frequency known a-priori with error ∆ν = 7⋅10-3 cycles, phase selected at 

random. 

 

Fig. 1 shows that in the considered cases both the classical and the proposed implementations of the 

W3PSF algorithm return the same expected sum squared fitting error E[γ]. This behaviour is obtained for 

all the considered windows regardless of the ν, M, and ∆ν values. Also, the obtained E[γ] values exhibit 

larger oscillations when ν  is small. This is due to a stronger effect on the returned estimates of the image 

component, which increases as ∆ν increases. Conversely, for high values of ν  the contribution of the 

image component becomes negligible with respect to noise and the obtained values of E[γ] are very close 

to the theoretical ones.  
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In the following the MSEs of the sine-wave parameter estimators provided by the W3PSF algorithm 

and the expected sum-squared fitting error are compared with the related values returned by the 3PSF 

algorithm in order to identify when the W3PSF algorithm can be advantageously applied. Fig. 2 shows the 

MSEs for the amplitude (Fig. 2(a)), phase (Fig. 2(b)), offset (Fig. 2(c)) and expected sum-squared fitting 

error (Fig. 2(d)) returned by the 3PSF and the W3PSF algorithms as a function of ∆ν when considering 

noisy sine-waves characterized by SNR = 30 dB or 60 dB, respectively, M = 65 samples, and ν = 11.25 

cycles. Both simulation results and values returned by eqs. (18) - (20) and (27) are shown. Also, the 

related asymptotic CRLB values (21)-(23) are shown in Figs. 2(a)-(c). ∆ν was varied in the range [-0.06, 

0.06] with a step of 4⋅10-3 cycles. For each value of ν, 10000 values of the sine-wave phase were chosen at 

random in the range [0, 2π) rad. 

Fig. 2 shows that the previous theoretical analysis well explains the simulation results. Indeed, the 

number of observed sine-wave cycles and the number of analysed samples M are high enough to ensure 

that the MSE values returned by simulations are very close to the related theoretical values. 

More specifically, Figs. 2(a)-(c) show that the 3PSF algorithm outperforms the W3PSF algorithm 

when the sine-wave frequency is known with high accuracy, and the range of values of ∆ν  in which this 

happens decreases as SNR increases. This is not the case for the ]ˆ[φMSE  and SNR = 30 dB, in which the 

3PSF algorithm performs better for all considered values of ∆ν. This behaviour occurs because the 

W3PSF algorithm exhibits a higher sensitivity to wideband noise and a lower sensitivity to sine-wave 

frequency uncertainty. Also, it is worth observing that the ]ˆ[φMSE  and ]ˆ[dMSE values are almost 

independent of ∆ν, as follows from expressions (19) and (20). When SNR = 30 dB, the ]ˆ[AMSE  is almost 

independent of ∆ν because the contribution to estimation uncertainty of wideband noise prevails over the 

limited frequency accuracy. Also, the amplitude estimation bias provides a negligible contribution with 

respect to the related standard deviation. Conversely, when SNR = 60 dB, the ]ˆ[AMSE  depends on ∆ν  

and the related estimation bias is no more negligible. Moreover, MSEs of the phase and offset estimators 

returned by the 3PSF algorithm exhibit variations due to the effect of the image component, which tends 

to increase as ∆ν increases. As for the expected sum-squared fitting error, Fig. 2(d) shows that when the 

contribution of wideband noise prevails, i.e. when the frequency accuracy is high, the 3PSF algorithm 

outperforms the W3PSF algorithm.  

It is also worth observing that when the sine-wave frequency is known with high accuracy (i.e. ∆ν is 

small so that the contribution of wideband noise dominates the estimation uncertainty) the MSEs of the 

estimators provided by the 3PSF algorithm are very close to the related CRLBs. Moreover, the range of 

∆ν  values in which this is true increases as SNR decreases. Also, the phase estimator is quite robust with 
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respect to the detrimental effect of image component. Conversely, the MSEs of all estimators returned by 

the W3PSF algorithm are higher than the related CRLB values, as we expected from the theoretical 

results. 

 

  
(a) (b) 

  
(c) (d) 

Fig. 2.  Values of ]ˆ[AMSE  (a), ]ˆ[φMSE  (b), ]ˆ[dMSE (c), and E[γ] (d) obtained by using the 3PSF algorithm 

and the W3PSF algorithm based on the Hann window versus ∆ν . Both simulation results and values returned 

by equations (18), (19), (20), and (27) are reported. Also, the related asymptotic CRLB values are shown using 

a solid line. Noisy sine-waves with SNR = 30 dB (solid line) or 60 dB (dotted line), M = 65 samples, ν  = 11.25 

cycles, phases selected at random.  

 

 

Fig. 3 shows the MSEs of the sine-wave parameters returned by the W3PSF algorithm based on the 

two- and three-term MSD and Minimum Sidelobe Level (MSL) windows as a function of ∆ν . The related 
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CRLB values are also reported. The simulation parameters are the same as in the previous figure, except that 

the waveform SNR is 50 dB.  It is worth to remember that the H-term MSD and MSL windows have the 

highest sidelobe decay rate (equal to 6(2H – 1) dB/octave) and the smallest maximum sidelobe level, 

respectively, among the cosine windows with a given number H of coefficients [33]. The wENBW~  values 

of the two- and three-term MSD windows are equal to 1.9444 and 2.6265, respectively, while the values 

of that parameter for the two- and three-term MSL windows are equal to 1.8223 and 2.3920, respectively.    

 

  
(a) (b) 

 
(c) 

Fig. 3.  Values of ]ˆ[AMSE  (a), ]ˆ[φMSE (b), ]ˆ[dMSE (c) obtained by using the W3PSF algorithm based on 

the two- and three-term MSD and MSL windows versus ∆ν . Both simulation results and values returned by 

equations (18), (19), and (20) are reported. Also, the related asymptotic CRLB values are shown using a solid 

line. Noisy sine-waves with SNR = 50 dB, M = 65 samples, ν = 11.25 cycles, phases selected at random.  
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Fig. 3 shows that the MSEs returned by simulations are very close to the theoretical ones for all for 

the considered values of ν and M. In particular, Fig. 3(a) and (18) show that when ∆ν is small, the 

contribution of wideband noise dominates. Thus, the amplitude estimation MSE is proportional to wENBW~  

and the two-term MSL window provides the most accurate results among the considered windows. 

Conversely, when ∆ν  increases the influence of frequency uncertainty prevails on wideband noise and the 

three-term MSD window provides the best accuracy due to its higher sidelobe decay rate.  

Also, Fig. 3, together with (19) and (20), show that the MSEs of the phase and offset estimators are 

mainly affected by wideband noise and are almost proportional to the wENBW~  parameter, so that the best 

accuracy is achieved when the two-term MSL window is used.  

 Finally, Fig. 3 quantify the price that must be paid in terms of loss of statistical efficiency (i.e. MSE 

increase with respect to the CRLB) to reduce the effect of frequency inaccuracy and narrow band 

disturbances by means of windowing. The effectiveness of windowing in reducing these detrimental 

effects is analysed in Fig. 4, in which the same simulation parameters as in Fig. 2 are considered, except 

that the analysed waveforms exhibit a Total Harmonic Distortion THD = 10% due to a 2nd, a 3rd, and a 

4th harmonic with amplitudes in the ratios 4:2:1, respectively. For each value of the frequency ν the 

phases of the fundamental and harmonic components are chosen at random in the range [0, 2π) rad.  Again 

the previous theoretical analysis well explains the simulation results. Figs. 4(a)-(c) show that the 3PSF 

algorithm outperforms the W3PSF algorithm when the sine-wave frequency is known with high accuracy 

and SNR = 30 dB, except for the estimated phase for which the 3PSF algorithm performs better for almost 

all the considered values of ∆ν. This behaviour occurs because the W3PSF algorithm exhibits a higher 

sensitivity to wideband noise and a lower sensitivity to both sine-wave frequency uncertainty and 

harmonics. Conversely, when SNR = 60 dB the W3PSF algorithm outperforms the 3PSF algorithm for 

almost all the considered value of ∆ν. Indeed, in this case the contribution to estimation uncertainty of 

harmonics dominates the effects of both wideband noise and limited frequency accuracy, so that 

windowing is effective. Also, the MSEs of the phase and offset estimators provided by the 3PSF algorithm 

exhibit large variations due to the effect of the image component and harmonics, which prevail over that 

due to wideband noise when SNR = 60 dB. 

Fig. 4(d) shows that the 3PSF algorithm slightly outperforms the W3PSF algorithm only when SNR = 30 

dB and ∆ν is very small, otherwise both algorithms provide almost the same expected sum-squared fitting 

error. This behaviour occurs because the contribution due to wideband noise dominates the effects of both 

harmonics and frequency uncertainty only for very small values of ∆ν. Conversely, when SNR = 60 dB 

and very small ∆ν values are available, the W3PSF algorithm performs better since the contributions of 
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both harmonics and frequency uncertainty prevail over the effects of wideband noise, thus making 

windowing effective.  

 

  
(a) (b) 

  
(c) (d) 

Fig. 4. Values of ]ˆ[AMSE  (a), ]ˆ[φMSE (b), ]ˆ[dMSE (c), and E[γ] (d) obtained using the 3PSF algorithm and 

the W3PSF algorithm based on the Hann window versus ∆ν. Both simulation results and values returned by 

equations (18), (19), (20), and (27) are reported. Noisy and harmonically distorted sine-waves with SNR = 30 dB 

(solid line) or 60 dB (dotted line), THD = 10%. M = 65 samples, ν = 11.25 cycles, phases selected at random.  

 

 To better understand the effect of windowing on distorted sine-waves, the performance of the 3PSF 

algorithm and the W3PSF based on the Hann window algorithm have been compared when observing a 

small number of sinewave cycles. Figs. 5 and 6 shows the same accuracy parameters considered in the 

previous figures as a function of ν in the case of noisy (Fig. 5) or noisy and harmonically distorted sine-

waves (Fig. 6) when SNR = 30 dB or SNR = 60 dB, respectively, and ∆ν = 10-3 cycles. It is worth noticing 
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that the contribution of the wideband noise dominates when SNR = 30 dB, i.e. the first term in (27) 

prevails on the second one. Conversely, when SNR = 60 dB the effect of the frequency uncertainty 

overcomes that due to wideband noise. The values of ν  vary in the range [1.01, 6) with a step of 0.1, 

while the other simulation parameters are the same as in Fig. 2. The related CRLBs for the amplitude, 

phase, and offset estimators are also shown in Fig. 5.  

 

  
(a) (b) 

  
(c) (d) 

Fig. 5. Values of ]ˆ[AMSE  (a), ]ˆ[φMSE (b), ]ˆ[dMSE (c), and E[γ] (d) obtained by using the 3PSF algorithm 

and the W3PSF algorithm based on the Hann window versus the number of observed sine-wave cycles ν . 

Both simulation results and values returned by equations (18), (19), (20), and (27) are reported. Also, the 

related asymptotic CRLB values are shown in Figs. (a), (b), and (c) using a solid line. Noisy sine-waves with 

SNR = 30 dB (solid line) or 60 dB (dotted line), ∆ν = 10-3 cycles, M = 65 samples, phases selected at random.  
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(a) (b) 

  
(c) (d) 

Fig. 6. Values of ]ˆ[AMSE  (a), ]ˆ[φMSE (b), ]ˆ[dMSE (c), and E[γ] (d) obtained using the 3PSF algorithm and 

the W3PSF algorithm based on the Hann window versus the number of observed sine-wave cycles ν. Both 

simulation results and values returned by equations (18), (19), (20), and (27) are reported. Noisy and harmonically 

distorted sine-waves with SNR = 30 dB (solid line) or 60 dB (dotted line) and THD = 10%. ∆ν = 10-3 cycles, M = 

65 samples, phases selected at random.  

 

If noisy sine-waves are of concern, Fig. 5 shows that the 3PSF algorithm outperforms the W3PSF 

algorithm when SNR = 30 dB since the effect of wideband noise on the estimation accuracy dominates. 

Also, the MSEs returned by simulations performed applying the W3PSF algorithm are very close to the 

respective theoretical values. Conversely, when SNR = 60 dB, the MSEs related to the 3PSF algorithm 

oscillates because of the effect of the image component, while those related to the W3PSF algorithm are 

almost equal to the theoretical ones when ν ≥ 3. For the considered values of ∆ν and M, the MSEs of the 

amplitude and phase estimators returned by the 3PSF algorithm are slightly smaller than those achieved by 
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the W3PSF algorithm when ν > 3.5. This occurs because of the higher sensitivity to wideband noise due to 

windowing.  

As stated before, wideband noise dominates estimation uncertainty when SNR = 30 dB. Therefore, 

windowing is useless and the MSEs of the estimators returned by the 3PSF algorithm almost achieve the 

related CRLBs. Conversely, when SNR = 60 dB, the contribution of wideband noise is comparable with 

that the effect of the image component and harmonics in most situations so that windowing is 

advantageous.  

Fig. 5(d) shows that the 3PSF algorithm achieves a smaller expected sum-squared fitting error E[γ] 

than the W3PSF algorithm when SNR = 30 dB. This result agrees with those reported in Figs. 5 (a)-(c). 

Conversely, both algorithms return almost the same E[γ] value when SNR = 60 dB and ν > 2.5. Also, the 

values of E[γ] for the W3PSF algorithm returned by simulations and theoretical analysis are very close to 

each other for both considered SNR values when ν > 2.5.  

It is worth noticing that behaviours very similar to those reported in Fig. 5 have been obtained for the 

other windows used in Fig. 3. 

Noisy and harmonically distorted sine-waves are of concern in Fig. 6. When SNR = 30 dB the MSEs 

related to the 3PSF algorithm exhibits large variations, while those related to the W3PSF algorithm are 

almost constant and very close to the theoretical value for ν > 3. Moreover, the 3PSF algorithm 

outperforms the W3PSF algorithm when the number of observed cycles ν  is small. This occurs because 

the Hann window exhibit a wider spectrum mainlobe than the rectangular window. For the remaining 

values of ν the performances of both algorithms are often very close to each other since the effect of 

wideband noise is slightly higher than that due to narrow band disturbances. When SNR = 60 dB, the 3PSF 

often algorithm outperforms the W3PSF algorithm when 1 < ν < 2, again because of the wider spectrum 

mainlobe of the Hann window. Conversely, the advantage of windowing is evident when ν > 2. In 

particular, the MSEs of the amplitude, phase, and offset estimators returned by the W3PSF algorithm are 

very close to their theoretical values when ν > 4, ν > 4, and ν > 3, respectively. 

As for E[γ],  the values returned by the 3PSF algorithms exhibit large variations for both values of 

SNR, while those related to the W3PSF algorithm almost coincides with those predicted by theory when ν 

> 3. In this case the 3PSF and W3PSF algorithms exhibit very close accuracies when SNR = 30 dB, while 

the W3PSF algorithm largely outperforms the 3PSF algorithm when SNR = 60 dB. 

It is worth to observe that by increasing the number of analyzed samples M (e.g. using M > 250) the 

effect of wideband noise decreases and the W3PSF algorithm outperforms the 3PSF algorithm in most 

situations also when SNR = 30 dB.  
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5. Conclusions 

        Simple expressions for the sine-wave parameter estimators provided by the W3PSF algorithm based 

on a H-term cosine window (H ≥ 1) have been proposed in the paper. Specifically, the parameter 

estimators have been expressed as linear combinations of the values of the weighted DTFT of the analysed 

waveform evaluated at DC and at the sine-wave frequency. This result is of interest from a practical point 

of view since it enables low-cost and real-time implementations of the algorithm. Moreover, when the 

number of analysed waveform cycles is high enough, it has been shown that the derived relationships are 

well approximated by the estimators returned by the weighted DTFT. Under that constraint, simple 

expressions providing accurate values for the asymptotic MSEs of the amplitude, phase, and offset 

estimators returned by the W3PSF algorithm have been proposed. Also, approximated expressions for the  

asymptotic expected sum-squared fitting error have been obtained. The accuracies of the derived 

expressions have been verified through computer simulations. Both theoretical and simulation results 

showed that the classical 3PSF algorithm outperforms the W3PSF algorithm when the contribution to 

estimation accuracy due to wideband noise prevails over the effects of both the uncertainty of the 

employed waveform frequency and narrow-band disturbances. Conversely, windowing is advantageous 

when the influence of limited frequency accuracy and narrow-band disturbances dominate.  

 

 

Appendix A 

Expressions for the parameter estimators provided by the W3PSF algorithm  

 

It is worth observing that the weighted sine-wave can be expressed as follows: 

,
2
1 WQPWx =  

(A.1) 

where W is the diagonal matrix formed by the samples of the adopted window w(⋅), 
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(A.3) 

in which N = (M - 1)/2, and 

,]2[ * TdppP =  (A.4) 

The least squares solution of (1) can then be expressed as [1]: 
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where QWQW ⋅= is the observation matrix and H and -1 denotes the Hermitian and inverse operators, 

respectively. The number of acquired signal cycles ν̂  is assumed to be a-priori known. 

After some matrix manipulations we obtain: 
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where )(~
⋅W is the DTFT of the squared window )(~ ⋅w ,  
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in which )(~ ⋅wX is the DTFT of the windowed signal )(~ ⋅wx . 

The DTFT of the squared window )(~ ⋅w  is defined as [34]: 
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which for |λ| << M is well approximated by [35]: 
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where hc~ are the coefficients of the squared window )(~ ⋅w , given by (11).  Observe that )(~ λW is a real-

valued even function. 

The DTFT of the windowed signal is defined as: 
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and, neglecting the contribution of the wideband noise e(⋅), can be expressed as: 
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in which the second term represents the contribution of the image component. 



 20 

It is worth noticing that W
H

W QQ is a symmetric and Hankel matrix. Its inverse, obtained by means of the 

Symbolic Math Toolbox of MATLAB, is given by: 
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By replacing (A.8) and (A.13) into (A.5) it follows: 
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from which (5) and (6) are finally obtained. 

 

 

Appendix B  

Expressions for the asymptotic mean square error of the parameter estimators provided by the 

W3PSF algorithm  

 

• Asymptotic mean square error of the amplitude estimator 

The mean square error of the amplitude estimator is given by: 

],ˆvar[]ˆ[]ˆ[ 2 AAbiasAMSE +=  (B.1) 

where ]ˆ[Abias and ]ˆvar[A  are the bias and the variance of the estimator .Â  

By applying the law of uncertainty propagation [36] to (15) it follows: 
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where 2
~wXσ is the variance of the  magnitude of the DTFT sample )ˆ(~ νwX , which is given by [37]: 
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Since wNPSGMcMW ~0
~)0(~ ⋅== , using (14) and (B.3), (B.2) becomes: 
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As for the estimator bias, from (15) it follows that: 
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where E[⋅] denotes the expectation operator.  

We have [38]: 
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where .ˆ ννν −=∆   Since the second term in (B.6) is small when the SNR is high, using the first order 

Taylor series, 2/11 xx +≅+ , and (B.2), the following result can be achieved: 
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In practice ∆ν  is very small. In this case we have 
6
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1. Thus, (A.10) provides: 
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and (B.7) becomes: 
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(B.9) 

Since the values of 2σ and ν2∆  are assumed small, the term containing their product is negligible as 

compared to the others. Thus, replacing (B.9) in (B.5) and using wNPSGMW ~)0(~
⋅=  and (14) we obtain: 
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where SNR = A2/(2σ2) is the Signal-to-Noise Ratio of the analysed waveform. The last term in (B.10) 

represents the contribution of wideband noise which becomes negligible with respect to the contribution 

due to a-priori known waveform frequency ν̂  when a sufficiently high number of samples M are 

considered.  Thus, from (B.10) it easily follows that the amplitude estimator bias is given by: 

.~
~)1(

6
]ˆ[ 2

22

1 0
2

2

νπ
∆






 −
+≅ ∑

−

=

H

h

h
h

c
c

h
AAbias  

(B.11) 

Thus, using (B.4) and (B.11) the expression (18) can be finally derived. 
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• Asymptotic mean square error of the phase estimator 

 Since )(~ λW is a real-valued function, the estimator φ̂  given by (16) does not depend on ν̂ . In 

addition, computer simulations showed that for noisy sine-waves we have ]ˆ[]ˆ[ φφ stdbias << , so that: 

].ˆvar[]ˆ[ φφ ≅MSE  (B.12) 

From (16) the phase estimator variance due to wideband noise is given by [37]: 
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Assuming ∆ν negligible, since wNPSGMcMW ~0
~)0(~

⋅=⋅= , by using (14) and (15) we obtain: 
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By replacing (B.14) in (B.12) the expression (19) is then derived. 

 

• Asymptotic mean square error of the offset estimator 

From (17) it follows that the offset estimator does not depend on the waveform frequency ν̂ . Thus, it 

follows that the related mean square error is due only to wideband noise. Using a derivation similar to the 

one used above to analyse the influence of noise on amplitude estimator, it results that the bias of the 

offset estimator is half that of the amplitude estimator, i.e.:  
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Similarly, from (17) and since the variance of )0(~wX  is twice the value returned by (B.3), we obtain:  

.1]ˆvar[ 2
~σwENBW

M
d ≅  

(B.16) 

By comparing (B.15) with (B.16) and remembering that we are analyzing a high number of waveform 

samples M, we have ]ˆ[]ˆ[ dstddbias << . Thus:  

].ˆvar[]ˆ[ ddMSE ≅  (B.17) 

Finally, by replacing (B.16) in (B.17) the expression (20) is obtained. 
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Appendix C  

Expression for the asymptotic expected sum-squared fitting error returned by the W3PSF 

algorithm 

 

 Since the sine-wave phase φ is referred to the centre of the observation interval, when a large number 

of samples are analysed and the number of waveform cycles is high enough, the sum-squared fitting error 

is given by [8]: 
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where Â , φ̂ , and d̂ are the amplitude, phase, and offset parameters estimated by the SW3PSF algorithm, 

,ˆ AAA −=∆ φφφ −=∆ ˆ , and .ˆ ddd −=∆  

By taking the expectation of (C.1) we have: 
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By replacing (18) – (20) in (C.2) we obtain: 
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Observe that ν2∆ is assumed to be small. Thus, the last term in (C.3) can be neglected as compared with 

the second term and expression (27) is finally obtained. 
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