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Abstract — One of the most accurate phasor estimation procedures recently proposed in the literature is 

the so-called Taylor Weighted Least Squares (TWLS) algorithm, which relies on a dynamic phasor model 

of an electrical waveform at nominal frequency. In this paper an extension of the TWLS algorithm (called 

Generalized TWLS, or GTWLS, algorithm) to a generic (not only nominal) reference frequency is described 

and the accuracies of the returned estimates are analyzed through meaningful simulations, performed in 

different steady-state and dynamic testing conditions according to the Standard IEEE C37.118.1-2011 

about synchrophasor measurement for power systems and its Amendment IEEE Standard C37.118.1a-

2014. It is shown that the accuracy of the Total Vector Error (TVE), Frequency Error (FE), and Rate-of-

change-of-Frequency Error (RFE) normally decreases as the deviation between the reference frequency 

and the true waveform frequency decreases. Furthermore, a two-step procedure for accurate estimation of 

the phasor parameters is proposed. In the first step the waveform frequency is estimated by a classical 

Interpolated Discrete Fourier Transform (IpDFT) algorithm. The second step then returns an estimate of 

the phasor parameters by applying the TWLS algorithm based on the frequency estimate returned by the 

first step. It is shown that the proposed procedure, called GTWLS-IpDFT algorithm, can comply with the P-

class or the M-class of performances in all the considered testing conditions when an appropriate number 

of waveform cycles is considered and the most significant disturbances are removed from the analyzed 



waveform. Finally, uncertainties of the proposed estimators and the IpD2FT algorithm recently presented 

in the literature are also compared.            

 

Index terms — Phasor measurement, Error analysis, weighted least squares, Fourier transform, 

parameter estimation, power system monitoring. 

 

I. INTRODUCTION 

 

The next-future extensive diffusion of nonlinear loads and distributed micro-generation, as well as the 

increasing energy demands due to new components (e.g., electrical vehicles) is progressively leading to 

new technologies and methodologies for electrical power grid monitoring and protection. Among the many 

research challenges that need to be tackled to optimize energy distribution and ensure reliable protection, 

high-accuracy, low-latency waveform parameters have to be measured at the same time in different 

geographically distributed points of the electrical network. This task can be performed by the so called 

Phasor Measurement Units (PMUs), i.e. smart devices able to measure various parameters of the 

waveforms at their input by processing waveform samples acquired in observation intervals synchronized 

to the Universal Coordinated Time (UTC) [1]. These devices constantly provide relevant data about crucial 

waveform quantities such as phasor amplitude and angle, waveform frequency, and Rate-Of-Change-Of-

Frequency (ROCOF). In particular, frequency and ROCOF measurements are needed by the Phasor Data 

Concentrators (PDCs) to estimate at common reference time the waveform phasor values in distinct points 

of the grid. Indeed, different PMUs (because belonging to different performance classes or made by diverse 

manufacturers) may estimate waveform quantities using observations of different duration. As a 

consequence, the PDCs receive values at different reference time with different phase shifts that, hence, 

need to be properly estimated and compensated by integrating both frequency values (once) and ROCOF 

values (twice) over time. 



The main PMU performance parameters are specified in the IEEE Standard C37.118.1-2011 for 

synchrophasor measurements [2] and in its recent Amendment IEEE Standard C37.118.1a-2014 [3]. In the 

following these documents are simply referred to as the Standard. According to the Standard, two PMU 

performance classes exist, i.e. the P-class (faster and generally less accurate, devoted to grid protection 

operations) and the M-class (slower and requiring better steady state accuracy, more appropriate for 

measurement applications). The main parameters suggested in the Standard to assess phasor measurement 

accuracy in both steady-state and dynamic conditions are the Total Vector Error (TVE), the Frequency Error 

(FE), and the ROCOF Error (RFE). Moreover, the maximum overshoot (or undershoot), the response time, 

and the delay time are proposed to assess the phasor measurement performances in transient conditions. P-

class and M-class performance requirements are quite different and they are specified in the Standard in 

terms of the above listed parameters when measurement is performed in steady-state, dynamic, and 

transient conditions modeling situations commonly encountered in practice.  It is worth noticing that the M-

class of performances generally requires wider ranges of operating conditions and higher steady state 

accuracy than the P-class of performances.  

Standard requirements are hard to meet because of two contrasting issues. On one hand, the need for 

tracking physiological phasor fluctuations demands observation intervals as short as few waveform cycles. 

On the other hand, accurate steady-state estimation of the status of the power network requires very small 

measurement uncertainties. Moreover, even stricter requirements are expected in next-generation power 

distribution networks. In this complex scenario, measuring waveform amplitude, phase, frequency, and 

ROCOF is still an open problem.  

Most of the modern PMUs estimate the phasor amplitude and phase, the waveform frequency, and the 

ROCOF using digital signal processing techniques based on the Discrete Fourier Transform (DFT) of a 

record of waveform samples. Unfortunately, all these techniques are based on a static phasor model and so 

they are very sensitive to phasor amplitude and angle fluctuations often occurring in modern power grids 

[4], [5]. This is especially true when waveform frequency and ROCOF are of concern [6]. Therefore, 

research efforts are currently focused on the development of novel measurement algorithms based on 



dynamic phasor models [6] – [12]. Very accurate phasor measurements can be achieved by using the so-

called Taylor Weighted Least Squares (TWLS) algorithm [8] even though observation intervals as short as 

two waveform nominal cycles are considered [13]. In the TWLS algorithm the analyzed waveform is a-

priori weighted by a suitable window [7], [8] and the nominal frequency is used as reference frequency in 

the adopted waveform model [8]. Recently, it has been shown that more accurate phasor, frequency, and 

ROCOF estimates can be achieved when the reference frequency coincides with the true waveform 

frequency [14]. In particular, raw discretization of the allowed reference frequency range has been proposed 

in order to evaluate a-priori the matrix employed by the TWLS estimator, which considerably reduces the 

required processing effort.  Nevertheless, a comprehensive analysis of the effect of the chosen reference 

frequency value on the estimation accuracy has not performed yet in the scientific literature. In this paper, 

the Generalized TWLS (GTWLS) algorithm is firstly analyzed as an extension of the classical TWLS 

algorithm obtained by modeling the acquired waveform as a sine-wave at a generic, but a-priori known, 

reference frequency. The accuracies of the related phasor, frequency, and ROCOF estimators are then 

analyzed as a function of the Frequency Deviation (FD) defined as the difference between the instantaneous 

waveform frequency and the adopted reference frequency. To this aim meaningful Monte Carlo simulations 

built upon steady-state or dynamic testing conditions specified in the Standard are considered.  

A two-step procedure for phasor parameters estimation is then proposed. In the first step a classical 

Interpolated Discrete Fourier Transform (IpDFT) [15] – [19] algorithm is applied in order to achieve an 

initial estimate of both the waveform frequency and some other parameters useful to remove relevant 

disturbances from the acquired waveform, thus reducing their detrimental effect on measurement accuracy. 

In the second step, possible disturbances are effectively removed from the acquired waveform and the 

phasor parameters of interest are estimated by applying to the achieved waveform the GTWLS algorithm. 

In particular, the frequency estimated in the first step, or its value rounded to the closest integer, is 

employed as reference frequency. The performance of the proposed procedure, called GTWLS-IpDFT 

algorithm, and the GTWLS algorithm based on the true waveform frequency are then compared. Also, the 

performances of the GTWLS-IpDFT algorithm are compared with both P-class and M-class performance 



requirements and insights useful to select the best window and the optimal observation length are provided. 

Finally, the accuracies of the proposed estimators are compared with those returned by the IpD2FT 

algorithm recently proposed in [12].  

The paper is organized as follows. In Section II the dynamic phasor model and the GTWLS algorithm 

are shortly described. In Section III the accuracy of the phasor, frequency, and ROCOF estimators provided 

by the GTWLS algorithm is analyzed as a function of the frequency deviation in the case when the 

rectangular or the Hann windows weight the acquired data. In Section IV the GTWLS–IpDFT algorithm is 

described and an accuracy comparison with the GTWLS algorithm based on the true waveform frequency 

is performed. Moreover, two GTWLS-IpDFT estimators that comply with either the P-class or the M-class 

of performances in all the considered testing conditions are derived. Moreover, the accuracies of the 

proposed estimators and the IpD2FT algorithm are compared. Finally, Section V concludes the paper.  

 

 

II. WAVEFORM MODEL AND GENERALIZED TWLS ALGORITHM  

  

A general dynamic and noisy electrical waveform x(t) at frequency f  can be represented by referring to 

a generic frequency f0  by means of the following model: 

             ),( 2Re)( Re)()(2cos)( 00 22 tetptetattfttatx tfjttfj      (1)

where Re{∙} is the operator returning the real part of its (complex valued) argument, p(t) represents the so-

called dynamic phasor related to the reference frequency f0, a(t) and (t) are the phasor amplitude and 

angle, respectively,  is the waveform phase, and (t) represents a disturbance signal which includes 

harmonics of the fundamental component, inter-harmonics, and additive wideband noise. It is worth 

observing that possible DC offset is not included in the waveform model (1) - even though it could be 

significant, especially for current phasor estimation - because it can be easily estimated and removed from 

the acquired data, even in off-nominal conditions,  if suitable windowing is used.  



From (1) it follows that: 

    ,2)(2)( 0 FDtfftt    (2)

where the Frequency Deviation FD is defined as the difference between the true (instantaneous) waveform 

frequency f and the considered reference frequency f0, i.e. FD = f – f0. Observe that, in principle, f0  may 

assume any value. When f0  is equal to the nominal frequency fn (i.e., 50 or 60 Hz), the related synchronized 

phasor p(t) is called the synchrophasor.  

In order to track phasor variations over time, the phasor p(t) defined at a time distance t = t  tr from 

the reference time tr can be approximated by its complex Taylor’s series expansion about tr, truncated to the 

Kth order term, i.e.,  
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k tp , k = 1,…,K, is the k-th order derivative of p(t) computed at the reference time, which is 

assumed at the center of an observation interval of duration T.  

Let us assume that the waveform x(t) is acquired at the sampling frequency fs, which is chosen in such 

a way that an integer number J of nominal waveform cycles is observed, that is, J = Tfn = 2Nh fn/fs, in which 

2Nh = Tfs is an even number and M = 2Nh + 1 is the overall number of acquired samples. Thus, if an integer 

number of samples per cycle N = fs/fn is acquired, it follows that 2Nh  = JN.  

If multiple acquisitions are considered, the coefficients of the phasor Taylor’s polynomial (3) related 

to the r-th reference time can be estimated by the WLS approach as [8]: 
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represents the vector whose entries are the WLS estimates of  
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respectively. In (4) the vector xr is expressed as 
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while the entries of the matrix AK, of dimension Mx2(K + 1), are defined as in [8], except that in the 

exponential terms the normalized frequency sn ff /2  is substituted by sff /2 0 , and W is the diagonal 

matrix formed by the values of the chosen window w() [8]: 

 .)()1()0()1()( hhhh NwNwwNwNwdiagW    (8)

In (4) and (5), ()* , ()H and ()T denote the conjugation, the Hermitian, and the transposition operators, 

respectively. Also it is worth noticing that the matrix W becomes the identity matrix when the rectangular 

window is used [7]. 

The Generalized TWLS algorithm described above allows to estimates phasor related parameters such 

as the frequency deviation and the ROCOF by means of the following relationships [12]: 
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Then, the algorithm total vector error TVE, frequency error FE, and ROCOF error RFE are given by: 
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respectively. 

 



III. ACCURACY OF THE GENERALIZED TWLS ALGORITHM   

  

In this Section the accuracy of the GTWLS algorithm is analyzed as a function of the deviation FD 

between the instantaneous value of the waveform frequency f at the center of the analyzed data record and 

the reference frequency f0. Specifically, the algorithm accuracy is assessed by evaluating the TVE, FE, and 

RFE parameters through extensive Monte Carlo simulations, which were performed assuming that: 

 the reference time at which every phasor is estimated is located exactly at the center of the 

considered observation window; 

  the rectangular window and the Hann (i.e. the two-term Maximum Sidelobe Decay (MSD)) window 

[20] are adopted; 

  the waveform amplitude is 1 pu, the nominal frequency fn is 50 Hz, the sampling frequency fs is 1200 

Hz (i.e. N = 24 samples/cycle); 

   one-, two-, three-, and four-nominal cycle observation interval lengths are considered (i.e. J = 1, 2, 3 

or 4); the related overall number of acquired samples is M = 25, 49, 73, and 97, respectively;  

   the phasor Taylor’s series is truncated to the order K = 2, that is only the terms of the Taylor 

expansion strictly needed to compute the estimates of FD and ROCOF in (9) and (10) are used;  

  the magnitudes of the TVE, FE, and RFE parameters are evaluated repeatedly by shifting the 

observation window sample by sample, and considering an overall record of fixed length. However, 

the same results have been achieved when considering observation windows shifted by more than 

one sample or even not overlapped observation windows. 

Simulations conditions are inspired to the worst-case values specified in the Standard for the M-class of 

performances [2], [3], but they are sometimes even worse, i.e.: 

i) Fundamental tone only, with a maximum off-nominal frequency of 5 Hz. 

ii) Fundamental tone at nominal frequency affected by only a 2nd-order or a 3rd-order harmonic of 

amplitude equal to 10% of the fundamental, as required by M-class of performances. Higher 



harmonic orders are not considered because simulations showed that their effect on estimation accuracy 

is much smaller. The initial phases of the harmonics are chosen randomly in the range [0, 2) rad. 

iii) Fundamental tone at nominal frequency affected by amplitude modulation (AM). The modulating 

signal is a sine-wave of amplitude equal to 10% of the fundamental and frequency 5 Hz. 

iv) Fundamental tone at nominal frequency affected by phase modulation (PM). The modulating signal 

is a sine-wave of amplitude 0.1 rad and frequency 5 Hz. 

v) Fundamental tone with frequency changing linearly from the nominal value fn to fn  5 Hz, at a rate 

of 1 Hz/s.  

vi) Fundamental tone at frequency f affected by an out-of-band interference at frequency fih and 

amplitude equal to 10% of the fundamental. The frequency fih is varied in the ranges [10, fn - RR/2] and 

[fn + RR/2, 2f ) Hz. Different values for the waveform frequency  f  are considered, i.e.  f = fn = 50 

Hz, f = fn - RR/20 and f = fn + RR/20.  

In steady-state and modulation testing the magnitudes of the TVE, FE, and RFE parameters were 

determined over 960 subsequent records shifted each other sample by sample, while a 6000 subsequent 

records were considered in the frequency ramp testing, in order to achieve an observation interval duration 

of 5 s as required by the Standard. The estimated magnitudes for the TVE, FE, and RFE were also 

compared with the related thresholds specified in the Standard.  

 In Tab. I the results returned by the GTWLS algorithm when f0 = 50 Hz (i.e. when the classical 

TWLS algorithm is employed) are given. The related thresholds specified in the Standard are also reported 

for comparison (shadowed rows). 

 
 
 
 
 
 
 
 
 
 
 



Table I. Maximum magnitude of the TVE, FE, and RFE values returned by the GTWLS algorithm based on 
the rectangular or the Hann windows when f0 = 50 Hz (i.e. when it coincides with the classical TWLS 
algorithm) and J = 1, 2, 3, or 4 cycles. The simulation parameters are chosen according to the worst-case 
conditions specified in the Standard for the P-class or the M-class of performances, respectively.  

 
Rectangular window Hann window 

P-class M-class P-class M-class 

Test type  J 
TVE 
max 
(%) 

FE 
max 

(mHz) 

RFE 
max 

 (Hz/s) 

TVE 
max 
(%) 

FE 
 max 

(mHz) 

RFE 
max 

(Hz/s) 

TVE 
max 
(%) 

FE
max 

(mHz)

RFE 
max 

 (Hz/s) 

TVE 
max 
(%) 

FE 
 max 

(mHz) 

RFE
max 

(Hz/s) 

off-nomin. 
frequency  

1 0.01 5.1 0.52 0.15 75 7.1 0.01 5.9 0.45 0.19 85 5.5 

2 0.01 14.0 0.36 0.14 216 6.7  0.00 4.8 0.35 0.08 73 5.5  

3 0.03 30.2 0.45 0.59 455 8.2 0.00 10.0 0.00 0.04 152 0.2 

4 0.06 52.4 0.49 1.47 762 8.6 0.00 17.5 0.01 0.13 264 0.2 

Std. thresh.  1 5 0.4 1 5 0.1 1 5 0.4 1 5 0.1 

2nd 
harmonic 

3 0.13 19.8 1.70 1.31 199 17.0  0.12 7.1 5.33 1.20 72.1 53.3  

4 0.08 11.5 0.63 0.84 116 6.3  0.01 0.9 0.31 0.13 8.8 3.1  

 

3rd 
harmonic 

1 0.22 93.6 28 2.2 948 280 7.7 3103 1103 77 1105 8104 

2 0.10 24.5 3.4 1.0 245 33.7 0.01 1.8 1.48 0.15 17.9 14.8 

3 0.06 11.2 0.94 0.62 112 9.4  0.00 0.1 0.04 0.01 1.3 0.4  

4 0.04 6.4 0.38 0.44 64 3.8 0.00 0.0 0.00 0.00 0.2 0.0 

Std. thresh.   1 5 0.4 1 5(1)-25(2)  1 5 0.4 1 5(1)-25(2) 

amplitude 
modulation 

1 0.00 0.2 0.12 0.02 2.7 1.9 0.00 0.3 0.16 0.02 3.9 2.4 

2 0.00 0.2 0.03 0.01 2.3 0.5 0.00 0.0 0.04 0.01 0.7 0.6 

3 0.00 0.2 0.04 0.04 2.6 0.6  0.00 0.0 0.00 0.00 0.1 0.0  

4 0.00 0.2 0.04 0.11 2.9 0.6  0.00 0.0 0.00 0.01 0.0 0.0  

phase 
modulation 

1 0.00 0.5 0.06 0.02 8.4 0.9 0.00 0.6 0.06 0.02 9.9 0.9 

2 0.00 1.4 0.03 0.01 21.5 0.7 0.00 0.5 0.04 0.01 7.5 0.6  

3 0.00 3.0 0.05 0.04 45.4 1.1  0.00 1.0 0.01 0.00 15.4 0.4  

4 0.00 5.3 0.06 0.11 77.2 1.8  0.00 1.8 0.02 0.01 27.1 0.8  

Std. thresh.  3 60 2.3 3 300 14 3 60 2.3 3 300 14 

Note: Threshold values are related to RR  20 (1) or RR > 20 (2). 

 

The following conclusions can be derived from the achieved results: 

- in off-nominal frequency, modulations, and ramp-frequency testing conditions, the accuracies of the 

TVE, FE, and RFE parameters increases as the |FD| decreases; however the GTWLS algorithm has a 

low sensitivity to FD as long as |FD| is less than about 1 Hz; 



- in the off-nominal frequency and ramp-frequency testing conditions when the reference frequency is 

close to the waveform frequency the GTWLS algorithm provides much more accurate estimates than the 

classical TWLS algorithm; when f0 = f, estimation errors are negligible, while only phasor estimates 

comply with both P-class and M-class performances when the classical TWLS algorithm is applied, i.e. 

f0 = 50 Hz (see Tab. I); 

- in the modulations testing conditions, the parameters returned by the GTWLS algorithm with f0 = f 

are almost equal to those returned by the classical TWLS algorithm since, according to the Standard, we 

have f0 = fn and f = fn in the AM testing, while in the PM testing f varies in the range [fn – 0.1, fn + 0.1] 

Hz.   

-  errors achieved in harmonic and in the out-out-band interference testing conditions are high because the 

model (1) does not explicitly include these disturbances;  

- when considering the 2nd harmonic testing, all the phasor parameter estimates comply with the P-

class and the M-class requirements (in this last case related to RR > 20 readings/s) only when J = 4 and 

the Hann window is used; conversely, when the 3rd harmonic testing is concerned, the Standard 

requirements are satisfied only when J = 3 and 4 and the Hann window is employed (see Tab. I);    

- in the out-of-band interference testing, the achieved maximum TVE and FE values are much higher 

than the related Standard thresholds for all the considered observation interval lengths.  

Moreover, simulation results show that in the off-nominal frequency, harmonics, modulations, and 

frequency ramp testing the GTWLS algorithm based on the Hann window is capable to return estimates 

compliant with both P-class and M-class of performances when observing J = 1, …, 4 cycles, but an 

accurate a-priori waveform frequency estimate is needed and, when present, possible low order harmonics 

must be removed from the acquired data. Accurate waveform frequency estimates can be achieved by using 

the classical Interpolated Discrete Fourier Transform (IpDFT) algorithm [15]-[18], which is simple to apply 

and very fast to perform. This algorithm returns the parameters of each component of a multifrequency 

signal by compensating both spectral leakage and picket-fence effects by using windowing and evaluating 

the ratio between the two largest DFT samples of the corresponding spectrum peak, respectively. In the 



next Section this algorithm is used to provide an initial frequency estimate to the GTWLS algorithm. 

Accordingly, the whole related procedure is called the GTWLS-IpDFT algorithm.  

 

IV. ACCURACY OF THE GTWLS-IpDFT ALGORITHM  

 

 In the IpDFT algorithm, the frequency of a spectral component is estimated as a function of the ratio 

between the two highest DFT spectral samples [15] – [17]. This function can be expressed using a simple 

analytical expression when the cosine class Maximum Sidelobe Decay (MSD) windows are adopted [17]. 

The two-term MSD window, or Hann window, is employed in the proposed algorithm. However, the 

frequency estimated in off-nominal frequency conditions can be significantly affected by the spectral 

interference from the image component or possible harmonics and interharmonics when the number of 

acquired waveform cycles is small. Windowing can effectively reduce this detrimental effect when the 

frequency distance between the fundamental and the interfering spectral tones is greater than the 

normalized width of the window spectrum mainlobe, which is equal to H + 1,  where H is the number of 

cosine window terms (H = 2 for the Hann window) [16]. The worst case occurs in the presence of second 

harmonic, for which the above constraint is satisfied if the number of observed waveform cycle J is at least 

equal to H + 1. Thus, when the Hann window is adopted, at least J = 3 cycles should be acquired to achieve 

accurate IpDFT frequency estimates.  However, in practice this constraint does not affect the estimator 

performances because of the algorithm robustness to frequency changes, which usually are slower than 

phasor variations. 

    In the following, the accuracies of the phasor, frequency, and ROCOF estimates returned by the 

GTWLS-IpDFT algorithm are analyzed through extensive Monte Carlo simulations and compared with 

both the P-class and the M-class requirements [2], [3]. The waveform frequency is firstly estimated by 

means of the IpDFT algorithm based on the Hann window applied to J cycles long observations, except 

when J = 1 or 2, for which three waveform cycles are considered in the IpDFT algorithm, while only the 

one or two cycles are used as input to the GTWLS algorithm. The pseudocode of the applied procedure for 



J  3 is given in Fig. 1. In steps 3 and 4 of the procedure the parameters of the 2nd harmonic are estimated 

and then this component is removed from the acquired data, respectively. However, if an out-of-band 

interference is detected, a similar approach can be used to remove it from the analyzed waveform. 

 

Step 1: Acquire M samples belonging to J cycles of the analyzed signal x(m), m = 0, 1, …, M – 1, where M = 
Jfs/fn + 1. 

Step 2: Determine the windowed signal xw(m)= x(m)w(m), m = 0, 1, …,M – 2, where w(m) is the Hann window. 

Step 3: Apply the IpDFT algorithm to the windowed signal xw() to obtain the estimated frequency f̂  and 

the estimated amplitude 2Â  and phase 2̂  of the 2nd-order harmonic of the analyzed waveform. 

Step 4: Remove the 2nd order harmonic and determine the new analyzed signal: 

.1,,1,0),ˆ/ˆ4cos(ˆ)()(~
22  MmfmfAmxmx s   

Step 5: Determine the phasor amplitude and phase, FD, and ROCOF by applying the GTWLS algorithm 
(4), (9), (10), and (11) to the signal )(~ x  and considering as reference frequency the estimated 

value f̂  or its rounded value. If the rounded frequency value is used the matrix KA
~

 in (4) can be 

computed a-priori. The most suitable window can be the Hann or the Hamming window, depending 
on the observation length and the kind of disturbances applied to the analyzed waveform.   

Fig. 1. Pseudocode of the proposed GTWLS-IpDFT algorithm. 

 

The maximum magnitude of the TVE, FE, and RFE values returned by the GTWLS-IpDFT algorithm are 

reported in Tab. II. The parameters considered in the performed simulations were chosen according to the 

worst-case conditions specified in the Standard for the P-class or the M-class of performances, respectively 

[2], [3]. The related thresholds specified in the Standard are also given in Tab. II for comparison. The 

results related to off-nominal frequency and ramp-frequency testing conditions are not reported in Tab. II 

since they assume negligible values. It is also worth noticing that results almost equal to those reported in 

Tab. II are achieved when the GTLWS algorithm is applied using the true value of the waveform 

frequency. This fact can be easily explained by considering that in most of the considered testing conditions 

the IpDFT algorithm provides enough accurate frequency estimates and the GTWLS algorithm exhibits low 

sensitivity to FD as long as its absolute value is less than about 1 Hz. 

 



Table II. Maximum magnitude of the TVE, FE, and RFE values returned by GTWLS-IpDFT algorithm 
based on the rectangular or the Hann windows and J = 1, 2, 3 or 4 cycles. The waveform frequency was 
estimated by applying the IpDFT method based on the Hann window to three cycles long observations 
except when J = 4 when all the four cycles were considered. The simulation parameters are chosen 
according to the worst-case conditions specified in the Standard for the P-class or M-class of performances, 
respectively. Errors related to static off-nominal frequency and frequency ramp tests are negligible and not 
reported.  

 
Rectangular window Hann window 

P-class M-class P-class M-class 

Test type  J 
TVE 
max 
(%) 

FE 
max 

(mHz) 

RFE 
max 

 (Hz/s) 

TVE 
max 
(%) 

FE 
 max 

(mHz) 

RFE 
max 

(Hz/s) 

TVE 
max 
(%) 

FE 
max 

(mHz) 

RFE 
max 

 (Hz/s) 

TVE 
max 
(%) 

FE 
 max 

(mHz) 

RFE
max 

(Hz/s) 

2nd 
harmonic 

1(1) 0.00 0.00 0.00 0.00 0.0 0.0 0.00 0.0 0.00 0.00 0.0 0.0 

2(1) 0.00 0.00 0.00 0.00 0.0 0.0 0.00 0.0 0.00 0.00 0.0 0.0 

3(2) 0.13 19.8 1.70 1.31 198 16.9  0.12 7.1 5.33 1.21 72.1 53.3  

4(2) 0.08 11.5 0.63 0.84 115 6.3  0.01 0.9 0.31 0.13 8.8 3.1  

 

3rd(3) 
harmonic 

1 0.22 93.6 28.0 2.2 947 281 7.7 3103 1103 77 1105 9104 

2 0.10 24.5 3.4 1.0 245 33.6 0.01 1.8 1.48 0.15 17.8 14.8 

3 0.06 11.2 0.94 0.62 112 9.4  0.00 0.1 0.04 0.01 1.3 0.4  

4 0.04 6.4 0.38 0.44 64.1 3.8 0.00 0.0 0.00 0.00 0.2 0.0 

Std. thresh.  - 1 5 0.4 1 
5(4)-
25(5) 

 1 5 0.4 1 
5(4)-
25(5) 

 

amplitude 
modulation 

1 0.00 0.2 0.12 0.02 2.8 1.8 0.00 0.3 0.16 0.02 4.0 2.4 

2 0.00 0.2 0.03 0.01 2.3 0.5 0.00 0.0 0.04 0.01 0.7 0.6 

3 0.00 0.2 0.04 0.04 2.6 0.6  0.00 0.0 0.00 0.00 0.1 0.0  

4 0.00 0.2 0.04 0.11 2.9 0.6  0.00 0.0 0.00 0.01 0.0 0.0  

phase 
modulation 

1 0.00 0.5 0.06 0.02 8.4 0.9 0.00 0.6 0.05 0.02 9.8 0.8 

2 0.00 1.4 0.03 0.01 21.6 0.7 0.00 0.5 0.04 0.01 7.5 0.6 

3 0.00 3.0 0.05 0.04 45.8 1.1  0.00 1.0 0.01 0.00 15.3 0.4  

4 0.00 5.3 0.06 0.11 78.0 1.9  0.00 1.8 0.02 0.01 26.9 0.8  

Std. thresh. - 3 60 2.3 3 300 14 3 60 2.3 3 300 14 

Notes   (1):  Errors related to the 2nd order harmonic testing and  J = 1 or 2 cycles are well above the related Standard thresholds, 
so errors of estimates achieved after harmonic removal are reported. Errors values compliant with the related P-class 
requirements (but not with the M-class requirements) are achieved for J = 2 cycles if the IpDFT algorithm is based 
on 2 waveform cycles.  

(2): Errors related to the 2nd order harmonic testing and  J = 3 or 4 cycles are negligible after harmonic removal, so 
errors of estimates achieved without harmonic removal are reported. 

(3): Errors related to the 3rd order harmonic testing are negligible after harmonic removal, so errors of estimates achieved 
without harmonic removal are reported. 

(4): Threshold values related to RR  20. 
(5): Threshold values related to RR > 20. 

 



Tab. II also shows that more accurate estimates are obtained when the Hann window is adopted in the 

GTWLS algorithm. Thus, the rectangular window will not be more considered in the following. 

Conversely, in order to provide insights useful for the choice of the best two-term cosine window to be used 

in the GTWLS algorithm, results returned by either the Hann or the Hamming windows are discussed.  

These two windows have been selected since they exhibit very different spectral features: the former 

provides the maximum sidelobe decay rate, while the latter exhibits the minimum sidelobe level within the 

class of two-term cosine windows [20]. Anyway, the IpDFT frequency estimation is always based on the 

Hann window. 

      Compliance of the proposed algorithm to either P-class or M-class of performances is discussed in the 

next subsections. Notice that, due to the low sensitivity of the GTWLS-IpDFT algorithm to FD in most of 

the considered testing conditions, we can expect that almost the same estimation accuracy is achieved when 

the reference frequency employed in the GTWLS algorithm coincides with either the frequency estimate f̂  

returned by the IpDFT algorithm or its closest integer value, i.e. )ˆ( fround . This choice produces a 

significant impact on the required processing effort. Indeed, if the estimated frequency f̂ is used, the matrix 

KA
~

in (4) needs to be computed each time the GTWLS algorithm is implemented. Opposite, if the rounded 

frequency value is adopted as reference frequency, within the threshold specified in the Standard there are 

at most 11 different integer frequency values so the related matrices KA
~

 can be computed a-priori, stored 

in the system memory and read by the digital processor when needed. In this case the GTWLS algorithm 

requires about 6M – 6 real products and 6M – 9 real additions to return the phasor parameters. Moreover, 

the processing effort required by the IpDFT algorithm must be taken into account. Generally it includes the 

effort related to both the raw search of the spectrum peak and the estimation of the related tone parameters. 

However, since in practice a high number of samples M is considered, most of the processing effort related 

to the IpDFT algorithm is due to the calculation of the employed DFT samples, that is about 6M real 

products and additions by spectrum sample. Thus, most of the processing time required by the GTWLS-

IpDFT based on rounded waveform frequency is due to the IpDFT algorithm.    



A.  P-class of performances compliance  

When considering P-class of performances, harmonics are the most severe disturbances implied in the 

analyzed testing conditions. From Tab. II it follows that, in the considered situations, the GTWLS-IpDFT 

algorithm complies with the P-class requirements for J = 2-4 only when the low order harmonics are 

removed from the analyzed waveform. When J = 1 cycle, the number of harmonics to be removed from the 

analyzed waveform could be high. Thus, this situation is not considered in the following. Conversely, when 

J = 2 cycles, both the 2nd and the 3rd harmonics should be removed, while only the 2nd harmonic has a 

significant effect on estimation accuracy and should be removed when J = 3 or 4 cycles.  

As for the estimation latency, since the reference time is exactly in the middle of the observation 

interval, then the estimated parameters are returned with a delay equal to half the observation interval 

length (i.e. J/(2fn) seconds) plus the processing delay. However, this last contribution can be often 

considered negligible with respect to the duration of the waveform cycle. According to the Standard, the 

maximum PMU reporting latency for P-class of performances is equal to 2/RR seconds. Hence, the 

GTWLS-IpDFT algorithm complies with the Standard requirements in all the considered situations and J = 

1 - 4 (except when RR = 50 readings/s and J = 4) if the harmonics are removed. In the following, the 

performances achieved for J = 2-4 cycles are analyzed 

The robustness of the proposed algorithm when multiple severe disturbances concurrently occur has 

also been analyzed. In Tab. III the results returned when the analyzed waveform is affected by 2nd 

harmonic and possibly by off-nominal frequency, amplitude or phase modulations are reported in the case 

when the Hann or the Hamming windows are employed in the GTWLS algorithm. Testing conditions are 

chosen according to the worst-case parameters specified in the Standard for the P-class of performances. In 

particular, the off-nominal frequency was set to 48 Hz. The thresholds specified in the Standard 

respectively for harmonic, off-nominal frequency, and modulation testing conditions are also given in Tab. 

III. 

 
 



Table III. Maximum magnitude of the TVE, FE, and RFE values returned by GTWLS-IpDFT algorithm 
based on the Hann or the Hamming windows and 2nd-order harmonic removal. The GTWLS algorithm 
employs as reference frequency the estimate returned by the IpDFT algorithm (estimated frequency) or its 
rounded value (rounded frequency). The simulation parameters are chosen according to the worst-case 
conditions specified in the Standard for the P-class of performances.  

  Hann window Hamming window 

Test type  J 
TVE 
max 
(%) 

FE 
max 

(mHz) 

RFE 
max 

 (Hz/s) 

TVE 
max 
(%) 

FE 
max 

(mHz) 

RFE 
max 

 (Hz/s) 

 

off-nominal + 2nd harm. 
(estimated frequency) 

2 0.35 55.3 7.6 0.26 41.9 3.24 

3 0.08 5.3 0.16 0.04 3.4 0.08 

4 0.00 0.3 0.00 0.00 0.2 0.01 

 

off-nominal + 2nd harm. 
(rounded frequency) 

2 0.35 55.2 7.6 0.26 41.8 3.23 

3 0.08 5.4 0.16 0.04 3.4 0.08 

4 0.00 0.3 0.00 0.00 0.2 0.01 

Std. thresh.  - 1 5 0.4 1 5 0.4 

AM + 2nd harmonic 
(estimated freq.) 

2 0.03 1.05 2.58 0.03 0.80 1.61 

3 0.01 0.13 0.28 0.00 0.09 0.13 

4 0.00 0.06 0.01 0.00 0.07 0.01 

AM + 2nd harmonic 
(rounded freq.) 

2 0.03 1.05 2.58 0.03 0.80 1.61 

3 0.01 0.11 0.28 0.00 0.07 0.13 

4 0.00 0.01 0.01 0.00 0.01 0.01 

PM + 2nd harmonic 
(estimated freq.) 

2 0.05 9.27 1.58 0.04 7.39 1.00 

3 0.01 1.42 0.31 0.01 1.49 0.17 

4 0.00 1.81 0.02 0.00 2.21 0.03 

PM + 2nd harmonic 
(rounded freq.) 

2 0.05 9.41 1.59 0.04 7.53 1.00 

3 0.01 1.42 0.31 0.01 1.50 0.17 

4 0.00 1.83 0.02 0.00 2.23 0.03 

Std. thresh. - 3 60 2.3 3 60 2.3 

 

Tab. III shows that the results returned by using the two different windows are almost equal. In particular, 

in the off-nominal frequency testing when either the Hann or the Hamming windows are used and J = 2 

cycles the achieved FE and RFE estimates are much higher than the related thresholds. Conversely, when 

the Hann window is used and J = 3 cycles are considered, the magnitude of the achieved FE is a bit higher 

than the related Standard threshold, while the magnitudes of the estimation errors are much smaller than the 

related Standard thresholds in all the remaining testing conditions. In addition, when the Hamming window 



is adopted with J = 3 cycles the returned estimates are smaller than the Standard thresholds in all the 

considered testing conditions. Finally, both the Hann and the Hamming windows allows to comply with the 

Standard requirements when J = 4 cycles. 

 Furthermore, the performances of the proposed algorithm have been assessed also in transient 

conditions by considering waveform amplitude or phase step changes accordingly to the Standard. The 

achieved worst-case phasor amplitude overshoot or undershoot (expressed as percent of the step magnitude) 

and phasor, frequency, and ROCOF response times are given in Tab. IV for both the Hann and the 

Hamming windows. The thresholds specified in the Standard are also reported for comparison. The initial 

phase of the analyzed waveform was linearly varied in the range [0, 2) rad with a step of /50 rad and the 

worst-case values of the transient performance parameters were determined when the step change is -10% or 

+10%  for amplitude steps, and -10°  or +10° when considering phase steps.  

Table IV. Absolute value of the worst-case overshoot or undershoot, and phasor, frequency, and ROCOF 
response times returned by GTWLS-IpDFT algorithm based on the Hann or the Hamming windows when 
the analyzed waveform exhibits an amplitude or a phase step. The GTWLS algorithm employs as reference 
frequency the estimate returned by the IpDFT algorithm (estimated frequency) or its rounded value 
(rounded frequency). 

 Hann window Hamming window 

Test type  J 
Overshoot/ 
undershoot 

(%) 

Phasor 
 response time 

(nominal 
cycles) 

Frequency 
 response 

time 
(nominal 
cycles) 

ROCOF 
 response 

time 
(nominal 
cycles) 

Overshoot/ 
undershoot 

(%) 

Phasor 
 response 

time 
(nominal 
cycles) 

Frequency 
 response 

time 
(nominal 
cycles) 

ROCOF 
 response 

time 
(nominal 
cycles) 

magnitude step  
(estimated freq.)  

2 0.8 0.5 1.54 1.71 0.6 0.6 1.83 1.96 

3 0.7 0.8 2.29 2.46 0.6 0.8 2.63 2.92 

4 0.5 0.9 2.92 3.16 0.5 1.0 3.25 3.75 

magnitude step  
(rounded freq.) 

2 0.8 0.5 1.54 1.71 0.6 0.6 1.83 1.96 

3 0.7 0.8 2.33 2.46 0.6 0.8 2.75 2.96 

4 0.5 0.9 2.96 3.17 0.5 1.0 3.42 3.75 

phase step  
(estimated freq.) 

2 5.3 1.5 2.58 2.75 4.8 1.4 2.75 2.83 

3 5.7 1.4 2.46 2.58 4.8 1.0 2.96 2.96 

4 4.8 1.1 3.21 3.37 3.7 1.2 3.79 3.96 

phase step  
(rounded freq.) 

2 5.4 1.5 2.71 2.75 4.8 1.4 2.83 2.83 

3 5.8 1.4 2.46 2.58 4.9 1.0 2.96 2.96 

4 4.9 1.1 3.29 3.37 4.4 1.2 3.96 3.96 

Std. thresh.  - 5 2 4.5 6 5 2 4.5 6 



Tab. IV additionally shows that the results obtained when considering the estimated or the rounded 

frequencies are very close each other. Moreover, the proposed algorithm based on the Hann window 

complies with the P-class requirements in all the considered conditions, except for phase step change and J 

= 2 or 3. Conversely, by adopting the Hamming window, compliant estimates are achieved in all the above 

testing conditions, even though the frequency and ROCOF response times are a bit higher than those 

achieved using the Hann window. 

The delay times related to the step changes have also been analyzed. When amplitude and phase steps 

are of concern, the achieved maximum delay time were 1.67 ms and 2.5 ms, respectively. Thus, all the 

achieved values are always smaller than the minimum threshold specified in the Standard, i.e. 5 ms, which 

is related to RR = 50 readings/s. 

 

B.  M-class of performance compliance  

When considering M-class of performances, out-of-band interference is the most severe condition 

among the analyzed ones. TVE and FE are the parameters specified in the Standard to assess estimator 

performances in the related testing condition. In particular, the frequency of the out-of-band interference fih 

belongs to the ranges [10, fn - RR/2] and [fn + RR/2, 2f ), while the fundamental frequency f is in the range  fn 

 RR/20. Thus, the minimum frequency distance between the two components is fmin = min fih –f  = 9RR/20 

Hz. In order to obtain accurate estimates of the interfering component parameters by the IpDFT algorithm 

(so allowing an effective removal of this disturbance from the acquired waveform as specified in the 

pseudocode reported in Fig. 1 for the 2nd-order harmonic) the absolute value  of the difference between 

the number of observed cycles of the interfering tone and the fundamental must be greater than about min 

= H + 1 (H = 2 for both the Hann and the Hamming windows) [16]. Observing that min = Jfmin /fn, 

where J is the number of observed nominal cycles, it follows that the minimum required value for J must be 

greater than about 20(H + 1)fn/(9RR). Assuming H = 2 and the RR values specified in the Standard (i.e. 

10, 25, and 50 readings/s), the minimum number of waveform cycles to be acquired is J = 34, 14, and 7, 



respectively. It is worth noticing that all these choices largely complies with the upper bound on latency 

specified in the Standard,  which is equal to 7/RR. In the following the maximum RR value specified in the 

Standard is considered, that is RR = 50 readings/s, and the Hann window is used. In Tab. V the magnitudes 

of the TVE and FE values obtained using as reference frequency either the IpDFT estimate or its rounded 

value are reported for J = 7, 8, and 9 cycles in the case when RR = 50 reading/s and fn= 50 Hz. Both the 

Hann and the Hamming windows are adopted and the worst case out-of-band interference is considered, 

i.e.: f = 47.5 Hz, fih = 25 Hz and f = 52.5 Hz, fih = 75 Hz [2]. 

 
Table V. Out-of-band interference testing: maximum magnitude of the TVE and FE values returned by 
GTWLS-IpDFT algorithm based on the Hann and Hamming windows when J = 7, 8, and 9 cycles. The 
simulation parameters are chosen according to the worst case specified in the Standard for the M-class of 
performances when RR = 50 readings/s and fn = 50 Hz. The out-of-band component is estimated by the 
IpDFT algorithm based on the Hann window and then removed from the analyzed waveform.  

 Hann window Hamming window 

Test type  J 
f  

(Hz) 

fih 
(Hz) 

TVE  
max  
(%) 

FE 
 max 

(mHz) 

TVE  
max  
(%) 

FE 
 max 

(mHz) 

out-of-band 
interference 
(estimated 
frequency) 

7 
47.5 25 5.80 203 5.11 145 

52.5 75 5.78 203 4.86 146 

8 
47.5 25 0.39 7.6 0.21 5.2 

52.5 75 0.38 7.5 0.20 5.3 

9 
47.5 25 0.01 1.2 0.01 0.8 

52.5 75 0.01 1.2 0.01 0.8 

out-of-band 
interference 

(rounded 
frequency) 

7 
47.5 25 5.95 241 5.14 179 

52.5 75 5.93 241 5.11 178 

8 
47.5 25 0.47 14.4 0.25 9.9 

52.5 75 0.46 14.4 0.25 9.9 

9 
47.5 25 0.02 2.5 0.02 2.3 

52.5 75 0.02 2.5 0.01 2.3 

Std. thresh. - - - 1.3 10 1.3 10 

 

 



Tab. V shows that the TVE and FE values achieved for J = 7 cycles are quite higher than the related 

thresholds specified in the Standard. When J = 8 cycles, the Standard compliance is achieved only by the 

Hamming window, while compliance with the M-class requirements is achieved by both considered windows 

when J = 9 cycles. Hence, only observation length equal to J = 9 cycles are considered in the following analysis.  

The results achieved by the proposed algorithm when using as reference frequency either the IpDFT 

estimate or its rounded value, the Hann or the Hamming windows and J = 9 cycles are reported in Tab. VI 

for both the steady-state and the dynamic testing conditions specified in the previous Section, and in Tab. 

VII in the case of transient conditions. 

 
Table VI. Maximum magnitude of the TVE, FE, and RFE values returned by GTWLS-IpDFT algorithm 
based on the Hann or the Hamming windows and J = 9 cycles. The reference frequency employed by the 
GTWLS algorithm is either the IpDFT estimate or its rounded value. The simulation parameters are chosen 
as in Tab. II.  

 Hann window Hamming window 

Test type  
TVE 
max 
(%) 

FE 
 max 

(mHz) 

RFE 
max 

(Hz/s) 

TVE 
max 
(%) 

FE 
max 

(mHz) 

RFE 
max 

 (Hz/s) 

2nd harmonic 
(estimated/rounded freq.) 

0.00 0.1 0.0 0.01 1.2 0.04 

Std. thresh.  1 
5(1)-
25(2) 

 1 
5(1)-
25(2) 

 

AM 
(estimated freq.) 

0.33 12.6 0.1  0.52 14.7 0.2 

AM 
(rounded freq.) 

0.33 0.0 0.0  0.51 0.5 0.1 

PM 
(estimated/rounded freq.) 

0.30 124 3.5 0.46 146 4.4 

Std. thresh. 3 300 14 3 300 14 

 Note: Threshold values are related to RR  20 (1) or RR > 20 (2) 
 
 
 
 
 
 
 
 
 



Table VII. Absolute value of the worst-case overshoot or undershoot, and phasor, frequency, and ROCOF 
response times returned by GTWLS-IpDFT algorithm based on the Hann or the Hamming windows and J = 
9 cycles when the analyzed waveform exhibits an amplitude or a phase step. The GTWLS algorithm 
employs as reference frequency the estimate returned by the IpDFT algorithm (estimated frequency) or its 
rounded value (rounded frequency). 

 Hann window Hamming window 

Test type  
Overshoot 

(undershoot) 
(%) 

Phasor 
 response time 

(nominal 
cycles) 

Frequency 
 response 

time 
(nominal 
cycles) 

ROCOF 
 response 

time 
(nominal 
cycles) 

Overshoot 
(undershoot) 

(%) 

Phasor 
 response 

time 
(nominal 
cycles) 

Frequency 
 response 

time 
(nominal 
cycles) 

ROCOF 
 response 

time 
(nominal 
cycles) 

amplitude step  
(estimated freq.) 

0.5 2.0 5.7 6.8 0.5 2.2 6.0 7.7 

amplitude step  
(rounded freq.) 

0.5 2.0 5.0 6.7 0.5 2.1 5.1 7.2 

phase  step 
(estimated freq.) 

4.5 2.3 6.8 7.5 4.0 2.5 7.8 8.9 

phase step  
(rounded freq.) 

4.5 2.3 6.7 7.5 4.0 2.5 7.7 8.9 

Std. thresh.  10 7(1) 14(1) 14(1) 10 7(1) 14(1) 14(1)

Note: (1) Threshold values are related to RR = 50. 
 

It is worth noticing that the errors achieved in the off-nominal frequency and the ramp frequency 

testing are negligible when either the estimate returned by the IpDFT algorithm or its rounded value are 

employed as reference frequency in the GTWLS algorithm. 

Tabs. VI and VII show that the proposed GTWLS-IpDFT algorithm comply with M-class 

performance in all the considered situations. Also, the maximum delay times related to either amplitude or 

phase step changes are 1.67 and 2.50 ms, respectively. These values are smaller than 5 ms, that is the 

minimum threshold value specified in the Standard and related to RR = 50 readings/s.   

The robustness of the proposed algorithm when multiple severe disturbances concurrently occur have 

also been analyzed. In Tab. VIII the results returned when the analyzed waveform is affected by out-of-

band interference characterized by f = 47.5 Hz and fih = 25 Hz plus 2nd-order harmonic or amplitude or 

phase modulations are reported in the case when the Hann or the Hamming windows are employed in the 

GTWLS algorithm. Testing conditions are chosen according to the worst-case parameters specified in the 



Standard for the M-class of performances. The thresholds specified in the Standard respectively for 

harmonic, and modulation testing conditions are also given in Tab. VIII. 

 
Table VIII. Maximum magnitude of the TVE, FE, and RFE values returned by GTWLS-IpDFT algorithm 
based on the Hann or the Hamming windows when J = 9. Out-of-band interference at f = 47.5 Hz and fih = 
25 Hz is removed by using the estimates returned by IpDFT algorithm. The GTWLS algorithm employs as 
reference frequency the estimate returned by the IpDFT algorithm (estimated frequency) or its rounded 
value (rounded frequency). The simulation parameters are chosen according to the worst-case conditions 
specified in the Standard for the M-class of performances.  

  Hann window Hamming window 

Test type  
TVE 
max 
(%) 

FE 
max 

(mHz) 

RFE 
max 

 (Hz/s) 

TVE 
max 
(%) 

FE 
max 

(mHz) 

RFE 
max 

 (Hz/s) 

2nd  harmonic +  out-of-band   
(estimated frequency) 

0.01 1.2 0.03 0.01 0.8 0.05 

2nd  harmonic + out-of-band   
(rounded frequency) 

0.02 2.5 0.06 0.02 2.3 0.06 

Std. thresh.  1 5 0.4 1 5 0.4 

AM + out-of-band  
(estimated frequency) 

0.47 5.24 0.7  0.59 5.78 0.4 

AM + out-of-band   
(rounded frequency) 

0.47 36.3 1.2  0.62 41.4 1.1 

PM + out-of-band  
(estimated frequency) 

0.43 128 4.12 0.54 150 4.73 

PM + out-of-band   
(rounded frequency) 

0.44 128 4.10 0.56 150 4.71 

Std. thresh. 3 300 14 3 300 14 

 

Tab. VIII shows that the achieved values for TVE, FE, and RFE estimates are well below the thresholds 

specified in the Standard for the related testing conditions without considering the out-of-band interference. 

This confirms the robustness of the proposed algorithm. 

 

C. Some remarks about computational complexity 

The GTWLS-IpDFT algorithm was implemented in a Matlab 7.0 environment running on a portable 

computer provided with a 2 GHz processor, 2046 MB RAM memory, and equipped with a Microsoft 

Windows Vista operating system. When the frequency estimate returned by the IpDFT algorithm is used as 



reference frequency in the GTWLS algorithm and so the matrix KA
~

 in (4) needs to be evaluated at runtime, 

the average processing times needed to estimate the phasor parameters over 10,000 runs were 1.5, 2.1, and 

5.9 ms when the GTWLS-IpDFT algorithm based on the Hamming window was implemented respectively 

over three, four, and nine waveform cycles, respectively and the 2nd harmonic or the out-of-band 

interference removal was used. Conversely, when the reference frequency used in the GTWLS algorithm is 

the rounded value of the estimate returned by the IpDFT algorithm, the related matrix KA
~

 in (4) can be 

computed a-priori and stored in the system memory. In this case, considering the same testing conditions 

above, the average processing time over 10,000 runs was equal to 0.41, 0.48, and 0.72 ms, of which the 

IpDFT algorithm required 0.31, 0.37, and 0.57 ms, respectively. So, as expected, the processing effort is 

mainly due to the IpDFT algorithm. Thus, the GTWLS-IpDFT algorithm based on rounded waveform 

frequency and a pre-computed matrix can be easily implemented even using low-cost low performance 

digital hardware. 

 

D. Accuracy comparison with the IpD2FT algorithm 

For completeness, the accuracy achieved with the GTWLS-IpDFT algorithm in steady-state and 

dynamic conditions is compared with that of the IpD2FT algorithm [12] based on the Hann window, whose 

worst-case errors obtained in the simulation conditions considered above are reported in Tab. IX. 

The IpD2FT algorithm returns phasor estimates compliant with the M-class requirements in all the 

considered situations, except for waveforms affected by a 2nd harmonic and J = 2. The FE and the RFE 

values returned in the presence of harmonics and modulations are slight worse than the GTWLS-IpDFT 

algorithm with harmonic removal. The harmonic presence, instead, turns to be a challenging scenario for 

the IpD2FT, where noncompliant FE values are returned in the case of 2nd harmonic when J = 2 and 3 for 

the M-class and when J = 2 for the P-class. As for RFE, the P-class Standard thresholds are satisfied 

except when the acquired waveform is affected by 2nd harmonic and J = 2 and 3.  The main message here 

is that, on the whole, the GTWLS-IpDFT algorithm performs even better than an effective novel solution as 



the IpD2FT algorithm in all the analyzed situations. However, for a fair comparison, it has to be noted that 

the GTWLS-IpDFT algorithm refines its estimates after harmonic removal, an idea that could be also 

applied to IpD2FT algorithm.

   
Table IX. Maximum magnitude of the TVE, FE, and RFE values returned by IpD2FT algorithm based on 
the Hann windows and J = 2, 3, or 4 cycles. The simulation parameters are chosen according to the worst-
case conditions specified in the Standard for the P-class or M-class of performances, respectively.  
 

 
Hann window 

P-class M-class 

Test type  J 
TVE 
max 
(%) 

FE
max 

(mHz)

RFE
max 

 (Hz/s) 

TVE 
max 
(%) 

FE
 max 

(mHz)

RFE 
max 

(Hz/s) 

2nd 

harmonic 

2 0.55 99.0 33.3 5.52 983 333 

3 0.05 4.38 1.69 0.49 42.4 17.0 

4 0.02 0.95 0.35 0.16 9.17 3.56  

 

3rd 
harmonic 

2 0.01 5.34 0.88 0.11 17.0 8.70 

3 0.00 0.41 0.14 0.03 2.51 1.38  

4 0.00 0.18 0.04 0.02 0.72 0.36 

Std. thresh.  - 1 5 0.4 1 
5(1)-
25(2) 

- 

amplitude 
modulation 

2 0.17 21.5 14.2 0.19 29.5 14.4 

3 0.05 3.60 2.13 0.07 5.27 2.48 

4 0.05 1.19 1.03 0.07 1.99 1.51 

phase 
modulation 

2 0.00 16.3 0.62 0.01 19.2 0.67 

3 0.01 22.3 0.76 0.02 22.9 0.77 

4 0.04 34.5 1.09 0.06 36.1 1.09  

Std. thresh. - 3 60 2.3 3 300 14 

Note: Threshold values are related to RR  20 (1) or RR > 20 (2). 
 
 

V. CONCLUSIONS 

 

In this paper an extension of the Taylor Weighted Least Squares (TWLS) algorithm for the estimation 

of the phasor, frequency, and ROCOF parameters of an electric waveform has been analyzed. This 

extension - called Generalized TWLS (GTWLS) algorithm – is based on a-priori known generic reference 



frequency, not only on the nominal waveform frequency as occurs in the classical TWLS algorithm. The 

GTWLS algorithm accuracy has been analyzed through meaningful Monte Carlo simulations, performed in 

different steady-state and dynamic testing conditions according to the requirements reported in the Standard 

for the P-class and the M-class of performances. As expected, in the off-nominal frequency, modulations, 

and ramp frequency testing conditions the best parameter estimation accuracy is achieved when the adopted 

reference frequency is equal to the waveform frequency. However, for frequency deviations smaller than 

about 1 Hz, its effect on the estimation accuracy is very low and can be further mitigated by windowing.   

Furthermore, a two-step procedure for phasor parameters estimation - called GTWLS-IpDFT 

algorithm - has been proposed. In the first step the waveform frequency is estimated by a classical 

Interpolated Discrete Fourier Transform (IpDFT) algorithm based on the Hann window. The second step 

then returns an estimate of the parameters of interest by applying the GTWLS algorithm based on either the 

Hann or the Hamming windows. The reference frequency employed in the GTWLS algorithm can be either 

the estimate returned by the first step or its value rounded to the closest integer.  This latter choice allows a 

significant reduction of the required processing effort since the matrix involved in the least squares 

estimation can be computed a-priori and stored in the system memory. It has been shown that the phasor 

parameter estimates returned by the proposed procedure comply with the P-class of performances in all the 

considered static or dynamic conditions when 2, 3 or 4 cycle long observations are considered. Either the 

Hann or the Hamming windows are used in the GTWLS algorithm, and both the 2nd and the 3rd harmonics 

(when J = 2) or the 2nd harmonic (when J = 3 or 4) are removed exploiting the estimates returned by the 

IpDFT algorithm based on at least 3 waveform cycles. However, when 4 cycle observations are employed, 

the algorithm cannot comply with the P-class requirements related to RR = 50 readings/s due to latency 

constraints. Moreover, the proposed algorithm based on either the Hann or the Hamming windows 

complies with the M-class requirements when RR = 50 readings/s and eight cycle long observations (or 

nine cycles if rounded values are used for the reference frequency) are considered, while the out-of-band 

interference is removed through the estimates returned by the IpDFT algorithm.  



 The GTWLS-IpDFT algorithm has been further compared with the IpD2FT algorithm, recently 

presented in the literature. It has been shown that it performs better for both harmonic disturbance 

(assuming they are removed from the acquired data) and waveform modulations.  

The achieved results show that the GTWLS-IpDFT algorithm can be advantageously employed in 

both P-class and M-class PMUs. 
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