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Abstract. We classify globally generated vector bundles on P1×P1×P1 with

small first Chern class, i.e. c1 = (a1, a2, a3), ai ≤ 2. Our main method is to

investigate the associated smooth curves to globally generated vector bundles
via the Hartshorne-Serre correspondence.

1. Introduction

Globally generated vector bundles on projective varieties play an important role
in classical algebraic geometry. If they are non-trivial they must have strictly
positive first Chern class. The classification of globally generated vector bundles
with low first Chern class has been done over several rational varieties such as
projective spaces [1, 19, 20] and quadric hypersurfaces [4]. There is also a recent
work over complete intersection Calabi-Yau threefolds and a Segre threefold P1×P2

by the authors [5, 7].
There are three types of Segre varieties of dimension 3: P3, P1 × P2 and P1 ×

P1 × P1. In this paper we examine the similar problem of classification of globally
generated vector bundles for the Segre variety P1 × P1 × P1, the product of three
projective lines. Note that the classification is already dealt in the case of P3 and
P1 × P2 in [1, 7, 19].

The Hartshorne-Serre correspondence in [2] states that the construction of vector
bundles of rank r at least 2 on a smooth variety X with dimension 3 is closely related
with the structure of curves in X and it inspires the classification of vector bundles
on smooth projective threefolds. There have been several works on the classification
of arithmetically Cohen-Macaulay (ACM) bundles on the Segre threefold [11, 12]
and so it is sufficiently timely to classify the globally generated vector bundles on
the Segre threefolds.

Our first main result is on rank 2 bundles on P1 × P1 × P1:

Theorem 1.1. Let E be an indecomposable and globally generated vector bundle of
rank r at least 2 on X = P1 × P1 × P1 with the Chern classes c1 = (a1, a2, a3) and
c2 = (e1, e2, e3). Let s be the number of connected components of associated curve
to E via the Hartshorne-Serre correspondence. If c1 ∈ {(1, 1, 1), (2, 1, 1), (2, 2, 1)},
the quadruple (s; e1, e2, e3) and the possible rank r are as follows:
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(r = 2) (i) c1(E) = (2, 1, 1) : up to permutations on (e2, e3)

{(3; 0, 3, 3), (2; 0, 2, 2), (1; 2, 1, 1), (1; 1, 1, 1), (1; 1, 2, 0)};

(ii) c1(E) = (2, 2, 1) : up to permutations on (e1, e2)

{(1; 2, 1, 2), (1; 3, 1, 2), (1; 4, 1, 2), (2; 2, 0, 4), (3; 3, 0, 6)}.

(r ≥ 3) (iii) c1(E) = (1, 1, 1) : {(1; 1, 1, 1 ; 3 ≤ r ≤ 7)};
(iv) c1(E) = (2, 1, 1) : up to permutations on (e2, e3)

{(3; 0, 3, 3 ; 3 ≤ r ≤ 4), (1; 2, 2, 2 ; 3 ≤ r ≤ 5),

(1; 2, 3, 3 ; 3 ≤ r ≤ 8), (1; 2, 4, 4 ; 3 ≤ r ≤ 11)

(1; 1, a, b ; 3 ≤ r ≤ a+ b) | 3 ≤ a+ b}.

Moreover there exist globally generated vector bundles in each case.

Since bundles with c1 = (a1, a2, 0) are pull-backs of bundles on Q = P1×P1 with
the first Chern class (a1, a2) by Proposition 2.2, so Theorem 1.1 gives us a complete
answer for the first Chern class c1 < (2, 2, 2) with a1 ≥ a2 ≥ a3 ≥ 0. Indeed we give
a complete classification of vector bundles and associated curves with respect to 5-
tuple (s; e1, e2, e3; r) in most cases (see Proposition 3.1, Proposition 3.5, Theorem
4.14 and Theorem 5.6). We also give a partial classification of globally generated
vector bundles of rank 2 on X with c1 = (2, 2, 2) in Section 6.

Let us here summarize the structure of this paper. In Section 2, we introduce the
definitions and main properties that will be used throughout the paper, mainly the
Hartshorne-Serre correspondence that relates the globally generated vector bundles
with smooth curves contained in the Segre threefolds. In Section 3, we collect several
basic notations and techniques that are used throughout the article, and then we
give a complete classification of globally generated vector bundles of arbitrary rank
with c1 = (1, 1, 1) as a warm-up. Together with the results in Section 4 ∼ 6, we
complete the classification of globally generated vector bundles of rank 2 with c1 ≤
(2, 2, 2) and also give the classification for arbitrary rank in the case of c1 ≤ (2, 1, 1).

2. Preliminaries

Let V1, V2, V3 be three 2-dimensional vector spaces with the coordinates [x1i], [x2j ], [x3k]
respectively with i, j, k ∈ {1, 2}. Let X ∼= P(V1)× P(V2)× P(V3) and then it is em-
bedded into P7 ∼= P(V0) by the Segre map where V0 = V1 ⊗ V2 ⊗ V3.

The intersection ring A(X) is isomorphic to A(P1) ⊗ A(P1) ⊗ A(P1) and so we
have

A(X) ∼= Z[t1, t2, t3]/(t21, t
2
2, t

2
3).

We may identify A1(X) ∼= Z⊕3 by a1t1 + a2t2 + a3t3 7→ (a1, a2, a3). Similarly
we have A2(X) ∼= Z⊕3 by e1t2t3 + e2t3t1 + e3t1t2 7→ (e1, e2, e3) and A3(X) ∼=
Z by ct1t2t3 7→ c. Then X is embedded into P7 by the complete linear system
|OX(1, 1, 1)| as a subvariety of degree 6 since (1, 1, 1)3 = 6.

Here we introduce some basic maps for our later use.

• πi : X −→ P1 is the natural projection to ith factor;
• πij : X −→ P1 × P1 is the natural projection to (i, j)-factor;
• ϕ = ϕW : X −→ P3 is a linear projection to P3 from a 3-dimensional

subspace W ⊂ P7 with W ∩X = ∅.



GLOBALLY GENERATED VECTOR BUNDLES 3

For a curve C ⊂ X, write C = C1 t · · · t Cs with s ≥ 1 and C1, . . . , Cs the
connected components of C. Set

e1 = deg(OC(1, 0, 0)) , e2 = deg(OC(0, 1, 0)) , e3 = deg(OC(0, 0, 1))

and call (e1, e2, e3) the multidegree of C. For each i = 1, . . . , s, we also set

e[i]1 := deg(OCi
(1, 0, 0)) , e[i]2 := deg(OCi

(0, 1, 0)) , e[i]3 := deg(OCi
(0, 0, 1)).

We also set deg(C) := C · OX(1) and call it the degree of C. Then deg(C) is the
degree of C as a curve in P7 and it is the sum of the factors of multidegree of C.

For a coherent sheaf E with the second Chern class c2(E) = e1t2t3+e2t3t1+e3t1t2,
we say that c2(E) = (e1, e2, e3) or that E has multidegree (e1, e2, e3). Let E be a
globally generated vector bundle of rank r on X with the first Chern class c1(E) =
(a1, a2, a3). Then it fits into the exact sequence

(1) 0 −→ O⊕(r−1)
X −→ E −→ IC(a1, a2, a3) −→ 0,

where C is a smooth subscheme of dimension 1 on X by [17, Section 2. G]. If C is

empty, then E is isomorphic to O⊕(r−1)
X ⊕OX(a1, a2, a3).

Proposition 2.1. [18] If E is a globally generated vector bundle of rank r on
X with the first Chern class c1 such that H0(E(−c1)) 6= 0, then we have E '
O⊕(r−1)
X ⊕OX(c1).

In particular, in the classification of globally generated vector bundles on X, we
may assume that C is not empty and H0(E(−c1)) = 0.

We recall from [7] the following elementary observations.

Proposition 2.2. [7, Proposition 2.3] For c1 = (a, b, 0) ∈ Z⊕3
≥0, there is a bijection

E 7→ π∗12(E) between the set of spanned vector bundles E of rank r on P1 × P1 with
c1(E) = (a, b) and the spanned vector bundles of rank r on X with the first Chern
class c1. Moreover we have

(1) hi(P1 × P1, E) = hi(X,π∗12(E)) for all i ≥ 0;
(2) for any spanned bundle G on X with c1(G) = (a, b, 0), we have G ∼=

π∗12(π3∗(G)) with π12∗(G) a spanned bundle on P1 × P1.

Notice that we have c3(π3
∗(E)) = 0 even when r ≥ 3. By Proposition 2.2 it is

now sufficient to check the case of c1 = (a1, a2, a3) with ai > 0 for all i.

Remark 2.3. Assume that C is a curve with ωC ∼= OC(c1 − c1(X)). If C has s
connected components, then we have h0(ωC(c1(X)−c1)) = s and so the Hartshorne-
Serre correspondence shows that C gives a vector bundle E with c1(E) = c1 of rank
r with no trivial factor if and only if 2 ≤ r ≤ s+ 1.

Remark 2.4. On a smooth threefold X, let us fix a very ample line bundle L and
a smooth curve C ⊂ X. Assume that IC ⊗ L is globally generated and take two
general divisors M1,M2 ∈ |IC ⊗ L|. Set Y := M1 ∩M2. Since L is very ample,
each connected component of C appears with multiplicity 1 in the locally complete
intersection curve Y By the Bertini theorem we have Y = C ∪D with either D = ∅
or D a reduced curve containing no component of C and smooth outside C ∩D.

Example 2.5. On a smooth and connected projective threefold X, let us fix a
globally generated line bundle L with h0(L) ≥ 2 and set r0 := h0(L)−1. Since L is
globally generated, so the evaluation map ψ : H0(L) ⊗OX −→ L is surjective and
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ker(ψ) is a vector bundle of rank r0 on X. The vector bundle F := ker(ψ)∨ fits in
an exact sequence

(2) 0 −→ L∨ −→ O⊕(r0+1)
X −→ F −→ 0

and it determines the Chern classes of F . If h1(L∨) = 0, e.g. L is ample, then
the sequence (2) gives h0(F) = r0 + 1. If Y ⊂ X is the complete intersection of
two elements of |L|, then we get Y as the dependency locus of a certain (r0 − 1)-
dimensional linear subspace of H0(F).

Example 2.6. Let us apply the construction in Example 2.5 to X = P1×P1×P1.
If L := OX(a1, a2, a3) with ai ≥ 0 for all i and a1 + a2 + a3 > 0, then we have
r0 +1 := h0(L) = (a1 +1)(a2 +1)(a3 +1). Let Y be the complete intersection of two
elements of |OX(a1, a2, a3)|. Since (a1t1 + a2t2 + a3t3)2 = 2a1a2t1t2 + 2a1a3t1t3 +
2a2a3t2t3, Y has multidegree (2a2a3, 2a1a3, 2a1a2). By the adjunction formula, we
also have ωY ∼= OY (2a1 − 2, 2a2 − 2, 2a3 − 2) and so ωY (2 − a1, 2 − a2, 2 − a3) =
OY (a1, a2, a3). In particular ωY (2 − a1, 2 − a2, 2 − a3) is spanned and we have
h0(ωY (2− a1, 2− a2, 2− a3)) = r0 − 1.

Now we assume that Y is smooth, e.g. take as Y the complete intersection of two
general elements of |OX(a1, a2, a3)|. Since dim(Y ) = 1, and ωY (2−a1, 2−a2, 2−a3)
is a spanned line bundle, so ωY (2 − a1, 2 − a2, 2 − a3) is spanned by a general m-
dimensional linear subspace of H0(ωY (2 − a1, 2 − a2, 2 − a3)) for every integer m
with 2 ≤ m ≤ r0 − 1. The Hartshorne-Serre correspondence gives the existence of
a globally generated vector bundle E with Y as a dependency locus and no trivial
factor (see [3, Lemma 4.1]) for all ranks r with 3 ≤ r ≤ r0.

If ai > 0 for all i, i.e. OX(a1, a2, a3) is ample, then a standard exact sequence and
a vanishing theorem give that h0(OY ) = 1 and in particular each Y is connected.
The same proof works if and only if at least two among a1, a2, a3 are positive or if
(a1, a2, a3) = (1, 0, 0). In the case r = r0, Example 2.5 shows that there is a unique
bundle E with rank r0 and associated to some complete intersection curve. Since E is
unique, we have g∗(E) ∼= E for each g ∈ Aut0(X) = Aut(P1)×Aut(P1)×Aut(P1),
i.e. E is homogeneous for the action of Aut0(X). If a1 = a2 = a3, then E is
homogeneous for the action of Aut(X).

Remark 2.7. Let Y ⊂ X be the complete intersection of two divisors of type
|OX(a1, a2, a3)| containing C. We have deg(Y ) = 2(a1a2 + a2a3 + a3a1), where
deg(Y ) is the degree of Y as a curve in P7. By the Bertini theorem Y is a curve
containing C and smooth outside C. Note that C occurs with multiplicity one in
Y , because IC(a1, a2, a3) is spanned and so, affixing pi ∈ Ci, 1 ≤ i ≤ s, we may
find a divisor T ∈ |IC(a1, a2, a3)| not containing the tangent line of Ci at pi. Y is
also connected since we have h0(OY ) = 1 by a vanishing theorem. The adjunction
formula gives ωY ∼= OY (2a1 − 2, 2a2 − 2, 2a3 − 2) and so we have

2pa(Y )− 2 = (a1t1 + a2t2 + a3t3)2((2a1 − 2)t1 + (2a2 − 2)t2 + (2a3 − 2)t3)

= 12a1a2a3 − 4(a1a2 + a2a3 + a3a1).

Hence we have pa(Y ) = 6a1a2a3 − 2(a1a2 + a2a3 + a3a1) + 1.

Remark 2.8. Let D be an integral projective curve. By the universal property
of P1 there is a bijection between the morphisms u : D −→ X and the triples
(u1, u2, u3) with ui : D −→ P1 any morphism. The set u(D) is contained in a
2-dimensional factor of X if and only if one of the u1, u2, u3 is constant. We say
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that a constant map has degree zero. With this convention to any u we may
associate a triple (deg(u1),deg(u2),deg(u3)) ∈ Z⊕3

≥0 and u(D) is a curve if and only

if (deg(u1),deg(u2),deg(u3)) 6= (0, 0, 0). Now assume that u is birational onto its
image. With this assumption for all (a1, a2, a3) ∈ Z3 we have u(D)·OX(a1, a2, a3) =
a1 deg(u1) + a2 deg(u2) + a3 deg(u3). In particular the degree of the curve u(D) is
deg(u1) + deg(u2) + deg(u3).

Now let us collect several observation concerning the case c1 = (a, b, 1) with
a, b > 0.

Lemma 2.9. If IC(a, b, 1) is globally generated, then the map π12|C : C −→ P1×P1

is an embedding.

Proof. For a point p ∈ P1 × P1, set J := π−1
12 (p). Assume for the moment that J

is a connected component of C. Since OJ(2 − a, 2 − b,−1) has degree −1 and ωJ
has degree −2, so ωJ(2 − a, 2 − b,−1) is not spanned and in particular J is not a
component of C. Since IC(a, b, 1) is globally generated and deg(OJ(a, b, 1)) = 1,
so we have deg(J ∩ C) ≤ 1 and the assertion. �

Remark 2.10.

(1) If Y is the complete intersection of two general elements of IC(a, b, 1), the
curve C is contained in Y , and in particular we have e1 ≤ 2b, e2 ≤ 2a and
e3 ≤ 2ab.

(2) Assume s ≥ 2. Since the map π12|C is an embedding, there is an integer
j ∈ {1, 2} such that e[i]j = 0 and e[i]3−j = 1 for all i. Let us assume j = 1
without loss of generality. Each Ci is smooth and rational and so we have
ωCi
∼= OCi

(a − 2, b − 2,−1) (resp. ωCi
(2 − a, 2 − b, 1) is spanned but not

trivial) if and only if b− 2− e[i]3 = −2, i.e. e[i]3 = b (resp. e[i]3 > b).

3. Warm-up and Case of c1 = (1, 1, 1)

Let us deal with the globally generated vector bundles with c1 = (1, 1, 1). In this
case Y has multidegree (2, 2, 2) and pa(Y ) = 1. Since Y = C ∪D is connected, we
have pa(Ci) = 0 for all i, unless C = Y . Since ωC(1, 1, 1) is globally generated, no
component of C is a line.

Proposition 3.1. Let E be a globally generated vector bundle of rank 2 on X with
c1 = (1, 1, 1) and no trivial factor. Then its associated curve C is a smooth conic
and E is isomorphic to OX(1, 0, 0)⊕OX(0, 1, 1), up to permutation of factors.

Proof. Since E is assumed to have no trivial factor, then C 6= ∅. From the sequence
(1) we have ωC ∼= OC(−1) and so each connected component of C is a smooth
conic, i.e. it is a fiber of one of πi. Let s be the number of connected components
of C and write C = C1 t · · · t Cs with each Ci a smooth conic. Since the sheaf
IC(1) is spanned, we have deg(C) ≤ 6. The equality holds if and only if C is the
complete intersection of X with two hyperplane sections, which is not possible since
we would have ωC ∼= OC from the minimal free resolution of IC . Thus we have
1 ≤ s ≤ 2.

If s = 1, C is a connected and smooth conic and so it is a hyperplane section of
a fiber of a projection. For instance, if C = {o1} × C ′ with C ′ a smooth conic in
P1 × P1, we can take [x11, x12] so that o1 = [1, 0]. Then, using that {o1} × P1 × P1
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is defined by the 4 linear equations

{x12x21 = x12x22 = x12x31 = x12x32 = 0},
we get that IC(1) is spanned. Since OX(1, 0, 0) ⊕ OX(0, 1, 1) has (1 + t1)(1 +
t2 + t3) = 1 + (t1 + t2 + t3) + (t1t2 + t1t3), it is associated to a connected curve
C ′ of multidegree (0, 1, 1). Take f ∈ Aut(X) with f(C) = C ′ and get that E ∼=
f∗(OX(1, 0, 0)⊕OX(0, 1, 1)) ∼= OX(1, 0, 0)⊕OX(0, 1, 1).

Now assume s = 2 and then we have e[1]1+e[1]2+e[1]3 = e[2]1+e[2]2+e[2]3 = 2.
Since π12|C is an embedding, π12(C) is the disjoint union of two lines of P1×P1 and
so we have either e[1]1 = e[2]1 = 0 or e[1]2 = e[2]2 = 0. With no loss of generality
we may assume e[1]2 = e[2]2 = 0. Since each π13(Ci) is a curve of type (1, 1), we
get π13(C1) ∩ π13(C2) 6= ∅ and so π13|C is not an embedding, a contradiction. �

Now we consider the higher rank case.

Lemma 3.2. Let C ⊂ X be a smooth curve such that ωC(1, 1, 1) and IC(1, 1, 1)
are globally generated. If ωC(1, 1, 1) is not trivial, then C is connected and it is one
of the following:

(i) a linearly normal elliptic curve of degree 6 with multidegree (2, 2, 2),
(ii) a normal rational curve of degree 3 with multidegree (1, 1, 1),
(iii) a normal rational curve of degree 4 with multidegree (2, 1, 1), up to permu-

tations.

In each case we have h0(ωC(1, 1, 1)) = 6, 2 and 3, respectively.

Proof. We have deg(C) ≤ 6 and the equality holds if and only if C = Y , the
complete intersection of two elements in |OX(1, 1, 1)|. Here C has s = 1 and
multidegree (2, 2, 2). Example 2.6 gives h0(ωC(1, 1, 1)) + 1 = 7.

From now on we assume deg(C) ≤ 5. Let Y be the intersection of two general
elements of |IC(1, 1, 1)|. By Remark 2.4 we have Y = C ∪ D with D a reduced
curve, C∩D finite and D smooth outside C∩D. If T is a smooth elliptic curve and
D is a reduced curve with D∩T 6= ∅, then we have ωT∪D |T 6∼= OT . Since D 6= ∅ and
ωY ∼= OY , each Ci is smooth and rational. Since ωC(1, 1, 1) is globally generated,
no connected component of C is a line. If deg(C) = 5, then D is a line. Since
pa(Y ) = 1, we have deg(D ∩ C) ≥ 2 and so D is in the base locus of IC(1, 1, 1), a
contradiction. Thus we have deg(C) ≤ 4 and s ≤ 2 since no component of C is a
line. If s = 2, then we have deg(Ci) = 2 for all i and so deg(ωC(1, 1, 1)) = 0. In
particular we have ωC(1, 1, 1) ∼= OC , contradicting our assumption.

From now on we assume s = 1. We have deg(C) 6= 2, because we assumed that
ωC(1, 1, 1) 6= OC . Since C is rational, we have h0(ωC(1, 1, 1)) = deg(C)−1. Since C
is rational and π12|C is an embedding, so we have either e1 = 1 or e2 = 1. Similarly
since π13|C and π23|C are embeddings, we have e1 = 1 or e3 = 1, and e2 = 1 or
e3 = 1. In particular two of the integers e1, e2, e3 are ones. Hence if deg(C) = 3,
then C has multidegree (1, 1, 1), while if deg(C) = 4, then C has multidegree either
(2, 1, 1), (1, 2, 1) or (1, 1, 2). By symmetry one of them occurs if and only if all the
three possibilities occur, but they give different families of bundles. �

Remark 3.3. Since all vector bundles of rank at least 2 on P1 are decompos-
able, Proposition 2.2 shows that the decomposable vector bundles E without trivial
factors, are obtained in the following way:

Take i ∈ {1, 2, 3} and an integer r such that there is a globally generated bundle
F of rank r − 1 on P1 × P1 ∼= Q with c1(F) = (1, 1) and no trivial factor. Take



GLOBALLY GENERATED VECTOR BUNDLES 7

{j, k} = {1, 2, 3} \ {i} with j < k and set E := π∗i (OP1(1)) ⊕ π∗jk(F). From [6,

Propositions 3.5 and 5.4] the possible F is as follows:

(1) OQ(1, 0)⊕OQ(0, 1),
(2) ϕ∗pTP2(−1), where ϕp : Q −→ P2 is the linear projection with the center

p ∈ P3 \Q, or
(3) TP3(−1)|Q .

In case (2) we have h0(ϕ∗pTP2(−1)) = 3 by [6, proof of Proposition 3.5] and so F
has rank 3 and h0(F) = 5. It is the case (iii) of Proposition 3.5. On the other hand,
we have h0(TP3(−1)|Q) = 4 by [6, proof of Proposition 5.4] and so h0(F) = 6. It
is as in case (iii) of Proposition 3.5 for r = 4.

Remark 3.4. Take L = OX(1, 1, 1) in Remark 2.5. Any bundle E of rank r
corresponds to an (r + 1)-dimensional linear subspace of H0(OX(1, 1, 1)) spanning
OX(1, 1, 1). Indeed if r = 7, it gives TP7(−1)|X , while if 3 ≤ r ≤ 6 it gives the
bundles ϕ∗WTPr(−1) with ϕW : X −→ Pr the restriction to X of a linear projection
from a linear subspace W ⊂ P7 with dim(W ) = 6− r and W ∩X = ∅.

Proposition 3.5. Let E be a globally generated vector bundle of rank r ≥ 3 on X
with c1 = (1, 1, 1) and no trivial factor. If C is a general dependency locus of E,
then (pa(C); e1, e2, e3; r) are as follows:

(i) (1; 2, 2, 2; 3 ≤ r ≤ 7); C = Y and E is as in Remark 3.4.
(ii) (0; 1, 1, 1; 3); E ∼= OX(1, 0, 0)⊕OX(0, 1, 0)⊕OX(0, 0, 1).

(iii) (0; 2, 1, 1; 3 ≤ r ≤ 4), up to permutations on (e1, e2, e3);
C is linearly normal in its linear span and E is as in Remark 3.3 (2) and
(3) with h0(E) = r + 2.

In case (i) for each 3 ≤ r ≤ 7 the bundles are parametrized by an irreducible family.
In case (iii) for each 3 ≤ r ≤ 4 the bundles are parametrized by three irreducible
families, each of them corresponding to one of the possible multidegrees of C and
h0(E) = r + 2.

Proof. In the case r = 2 we saw that there is no example with s ≥ 2 and ωC ∼= OC .
Thus we only need to check which dependency loci with ωC(1, 1, 1) spanned and
ωC(1, 1, 1) 6∼= OC arises for some bundle E . Lemma 3.2 gives a list of the potential
curves C. If a certain C exists, then it is dependency locus of a globally generated
E of rank r if and only if we have 3 ≤ r ≤ h0(ωC(1, 1, 1))− 1. For the case C = Y ,
see Remark 3.4.

(a) Since E0 := OX(1, 0, 0)⊕OX(0, 1, 0)⊕OX(0, 0, 1) has (1 + t1)(1 + t2)(1 +
t3) = 1 + (t1 + t2 + t3) + (t1t2 + t1t3 + t2t3) + t1t2t3, it is associated to a curve
C ′ of multidegree (1, 1, 1). Lemma 3.2 gives that C ′ is connected. Take any E
associated to a curve C with multidegree (1, 1, 1). There is f ∈ Aut(X) such that
f(C ′) = C. Since f∗E0 ∼= E0, E has rank 3 and h0(ωC(1, 1, 1)) = 2, the Hartshorne-
Serre correspondence gives E ∼= E0.

(b) Let us check that h1(π∗23(ϕ∗pTP2(−1))∨(1, 0, 0)) = 0 and also that h1(π∗23(ΩP3(1)|Q)(1, 0, 0)) =

0, i.e. that there are no non-trivial extension of either π∗23(ϕ∗pTP2(−1)) or π∗23(TP3(−1)|Q)
by OX(1, 0, 0). Taking the pull-back first by by ϕp and then by π∗23 of the dual of
the Euler’s sequence of TP2, we get the exact sequence

0 −→ OX(0,−1,−1) −→ OX(1, 0, 0)⊕3 −→ π∗23(ϕ∗pTP2(−1)∨)(1, 0, 0) −→ 0.
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Since h2(OX(0, 0,−1)) = h1(OX(1, 0, 0)) = 0, we get

h1(π∗23(ϕ∗pTP2(−1))∨(1, 0, 0)) = 0.

Taking the pull-back by π23 of the dual of the Euler sequence of TP3, we get the
exact sequence

0 −→ OX(0,−1,−1) −→ OX(1, 0, 0)⊕4 −→ π∗12(ΩP3(1)|Q)(1, 0, 0) −→ 0

and so we have h1(π∗23(ΩP3(1)|Q)(1, 0, 0)) = 0.
(c) Take C with multidegree (2, 1, 1). Since deg(OC(0, 1, 1)) = 2, we have

h0(OC(0, 1, 1)) = 3 and it implies h0(IC(0, 1, 1)) > 0 and so we get a non-zero map
u : OX(1, 0, 0) −→ E . Since h0(IC(−1, 1, 1)) = h0(IC(0, 0, 1)) = h0(IC(0, 0, 1)) = 0,
so the sheaf Im(u) is saturated in E and G := coker(u) is torsion-free. Since E is
spanned, h1(OX(1, 0, 0)) = 0 and h0(E) = r + 2, so the sheaf G has rank r − 1 and
h0(G) = r. Since E has no trivial factor, G has no trivial factor. Therefore G is the
cokernel of a map v : OX(0,−1,−1) −→ O⊕rX with v induced by an r-dimensional
linear subspace V of H0(OX(0, 1, 1)). The map v and the linear space V correspond
to a map v′ : OP1×P1(−1,−1) −→ O⊕rP1×P1 and an r-dimensional linear subspace V ′

of H0(OP1×P1(1, 1)). G is locally free, i.e. it is as in the last two cases of Remark
3.3, if and only if G′ is locally free. Every V ′ with no common zero defines a locally
free G′ and hence a locally free G. Assume for the moment that G is locally free.
Since G is spanned and E is not a direct sum of three line bundles, so we get that G
is either as in case (2) with r = 3 or as in case (3) with r = 4 of Remark 3.3. Any
V ′ gives an injective map v′ of sheaves, while every G′ is locally free if and only if
V ′ has no common zero. If r = 4, then this is true, because V = H0(OP1×P1(1, 1))
in this case. Hence by case (3) of Remark 3.3 is the only bundle with r = 4 in case
(iii), while if r = 3 case (2) of Remark 3.3 gives the only bundles E with G′ locally
free. Every E with G′ not locally free is the flat limit of a family of bundles with G′
locally free, i.e. of bundles as in case (2) of Remark 3.3. To conclude the proof of
Proposition 3.5 it is sufficient to exclude the existence of E with C of multidegree
(2, 1, 1) and which cannot be associated to a locally free G.

Claim 1: For E with r = 3 associated to C, we have h0(E(−1, 0, 0)) = 1.
Proof of Claim 1: It is sufficient to check that h0(IC(0, 1, 1)) = 1. This

is true, because there are o ∈ P1 and a unique C ′ ∈ |OP1×P1(1, 1)| such that
C = {o} × C ′. �

By Claim 1, G is uniquely determined by E and hence to complete the proof of
Proposition 3.5 it is sufficient to prove that G is locally free for every E .

Claim 2: For any E with r = 3 we have h1(E∨) = 1.
Proof of Claim 2: This is implicit in the Hartshorne-Serre correspondence.

We have Ext1(IC(1, 1, 1),OX) ∼= H0(ωC(1, 1, 1))∨ and E is just given by a 2-
dimensional linear subspace V of the 3-dimensional space H0(ωC(1, 1, 1))∨, while
H0(ωC(1, 1, 1))∨/V represents H1(E∨). �

Let F be the only non-trivial extension of E by OX . By step (b) we have
F ∼= OX(1, 0, 0) ⊕ π∗23TP3(−1)|Q . Hence any E is the cokernel of a non-zero

map m : OX −→ OX(1, 0, 0) ⊕ π∗23TP3(−1)|Q . Write m = (m1,m2) with m1 ∈
H0(OX(1, 0, 0)) and m2 ∈ H0(π∗23TP3(−1)|Q). We see that G is locally free if
and only if m2 has no common zero. Assume that m2 has a common zero at
p = (p1, p2, p3) ∈ P1×P1×P1 for some E . We get that m2 vanishes on P1×{(p2, p3)}.
Since m1 has at least one zero on P1 × {(p2, p3)}, we get a contradiction. �
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4. Case of c1 = (2, 1, 1)

In this section we handle the globally generated vector bundles of rank r on
X with c1 = (a1, a2, a3) with ai > 0 for all i and a1 + a2 + a3 = 4. Up to a
change of the ruling it is sufficient to do the case c1 = (2, 1, 1) with the sequence
(1). Since we only look at bundles with no trivial factors, we have C 6= ∅. Note
that ωC(0, 1, 1) is globally generated and that ωC ∼= OC(0,−1,−1) if r = 2. Since
ωCi

(0, 1, 1) is spanned, so Ci is not a line. By the case b = 1 of Lemma 2.9 both
π12|C and π13|C are embeddings. We have (1 + 2t1 + t2 + t3)(1 + 2t1 + t2 + t3) =
1+4t1 +2t2 +2t3 +4t1t2 +4t1t3 +2t2t3. Therefore any scheme-theoretic intersection
Y of two elements in |OX(2, 1, 1)| with dim(Y ) = 1 has multidegree (2, 4, 4). We
also have h0(OY ) = 1. Since ωY ∼= OY (2, 0, 0) by the adjunction formula, so we
have deg(ωY ) = (4t1t2 + 4t1t3 + 2t2t3)(2t1) = 4, i.e. Y has genus 3, i.e. OX(2, 1, 1)
has section genus 3. Hence C has multidegree (e1, e2, e3) with e1 ≤ 2, e2 ≤ 4,
e3 ≤ 4 and (e1, e2, e3) = (2, 4, 4) if and only if C = Y , i.e. E is as in Example 2.5.

Lemma 4.1. Assume s > 1. Then we have

(i) 2 ≤ s ≤ 3
(ii) e1 = 0, e[i]2 = e[i]2 = 1 for all i, and
(iii) ωC(0, 1, 1) ∼= OC .

Proof. Note that π12|C is an embedding and any smooth curve of P1×P1 with s ≥ 2
connected components has either bidegree (s, 0) or bidegree (0, s). Thus we have
either e1 = 0 or e2 = 0. If e1 = 0 (resp. e2 = 0), then e[i]2 = 1 (resp. e[i]1 = 0)
for all i. Since π13|C is an embedding, we get in the same way that either e1 = 0 or
e3 = 0 and if e1 = 0 (resp. e3 = 0), then e[i]3 = 1 (resp. e[i]1 = 0) for all i.

Assume for the moment e1 > 0 and then we get e2 = e3 = 0, i.e. C is the disjoint
union of s lines of multidegree (1, 0, 0). Thus ωCi(1, 0, 0) has no non-zero section,
a contradiction. Hence e1 = 0, e[i]2 = e[i]3 = 1 for all i, and ωC(0, 1, 1) ∼= OC .
Since Y has multidegree (2, 4, 4), we have s ≤ 4. Assume s = 4. We get that D
has multidegree (2, 0, 0), i.e. that D = D1 tD2 with each Di a line of multidegree
(1, 0, 0). Since IC(2, 1, 1) has not Dj in the base locus, then deg(C ∩ Dj) ≤ 2.
Since C ∪D has 6 irreducible components, each of them smooth and rational, we
get pa(Y ) ≤ −1, a contradiction. �

Remark 4.2. Assume that E has no trivial factor. Then E is decomposable if and
only if E is isomorphic to one of the following, up to reordering of the second and
the third factors.

(1) OX(2, 0, 0)⊕OX(0, 1, 1); c2(E) = 2t1t2 + 2t1t3.
(2) OX(2, 1, 0)⊕OX(0, 0, 1); c2(E) = t2t3 + 2t1t3.
(3) OX(1, 1, 1)⊕OX(1, 0, 0); c2(E) = t2t3 + t1t3 + t1t2.
(4) OX(1, 1, 0)⊕OX(1, 0, 1); c2(E) = t1t2 + t1t3 + t.
(5) OX(2, 0, 0) ⊕ OX(0, 1, 0) ⊕ OX(0, 0, 1); c2(E) = t2t3 + 2t1t3 + 2t1t2 and

c3(E) = 2.
(6) OX(1, 1, 0)⊕OX(1, 0, 0)⊕OX(0, 0, 1); c2(E) = t2t3+2t1t3+t1t2 and c3(E) =

1.
(7) OX(1, 0, 0)⊕2 ⊕OX(0, 1, 1); c2(E) = t2t3 + 2t1t3 and c3(E) = 0.
(8) OX(1, 0, 0)⊕2 ⊕ OX(0, 1, 0) ⊕ OX(0, 0, 1); c2(E) = t2t3 + 2t1t3 + 2t1t2 and

c3(E) = 2.
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In each case of r = 2 except (1), the associated curve C is a connected, normal and
rational curve of multidegree (e1, e2, e3) with c2(E) = e1t2t3 + e2t1t3 + e3t1t2. Note
that

dim Ext1(OX(2, 0, 0),OX(0, 1, 1)) = h1(OX(−2, 1, 1)) = 4.

So there are non-trivial extensions, which cannot be decomposable. In the other
cases of r = 2, such extensions are always trivial.

Example 4.3. We have dim Ext1(OX(2, 0, 0),OX(0, 1, 1)) = 4 and so we have a
family {Eλ} of extensions ofOX(2, 0, 0) byOX(0, 1, 1) with λ ∈ Ext1(OX(2, 0, 0),OX(0, 1, 1)).
Each extension shares the same Chern number and the same number of linearly
independent sections. Any Eλ is isomorphic to U(0, 0,−1), where U is an Ulrich
bundle arising from an extension of OX(2, 0, 1) by OX(0, 1, 2) (see [11] Section 7).
So if E = Eλ with λ 6= 0, then E is indecomposable.

Claim 1 : For E = Eλ with λ 6= 0, we have h1(E(t, t, t)) = 0 for all t ∈ Z.
Proof of Claim 1 : For every t ∈ Z we have h1(OX(2 + t, t, t)) = h1(OX(t, t+

1, t+ 1)) = 0 and so h1(E(t, t, t)) = 0. �
Claim 2 : For E = Eλ with λ 6= 0, we have h2(E(−2,−2,−2)) = 1 and

h2(E(t, t, t)) = 0 for all t 6= −2.
Proof of Claim 2 : For every t 6= −2, we have h2(OX(2+t, t, t)) = h2(OX(t, t+

1, t+1)) = 0 and so h2(E(t, t, t)) = 0. For t = −2, we have h2(OX(−2,−1,−1)) = 0,
h3(OX(−2,−1,−1)) = 0 and h2(OX(0,−2,−2)) = 1. Hence we have h2(E(−2,−2,−2)) =
1. �

Fix any non-trivial extension Eλ of OX(2, 0, 0) by OX(0, 1, 1) and then Eλ is
semistable, but not stable, with respect to the polarization H = OX(1, 1, 1). More-
over the line bundles OX(2, 0, 0) and OX(0, 1, 1) appear in any Hölder-Schreier (or
Harder-Narasimhan) decomposition of Eλ with respect to H-stable sheaves.

We also see that each automorphism of Eλ respect the extension defining Eλ
and it implies that Eλ is simple. This is true also for the following reason: Since
h0(Eλ(−2, 0, 0)) = h0(Eλ(0,−2, 0)) = h0(Eλ(0, 0,−2)) = 0 and

OC(2, 0, 0) · OX(2, 1, 1) · OX(2,1, 1) = 4

< 8 = OX(0, 1, 1) · OX(2, 1, 1) · OX(2, 1, 1),

Eλ is stable with respect to the polarization OX(2, 1, 1).

Lemma 4.4. Let E be a globally generated vector bundle of rank r ≥ 2 on X with
c1 = (2, 1, 1) and no trivial factor. Then c2(E) = (0, 2, 2) if and only if we have
either

(i) E ∼= Eλ as in Example 4.3 or
(ii) E ∼= OX(1, 0, 0)⊕2 ⊕OX(0, 1, 1).

Proof. Since the “ if ” part is obvious, so we only need to check the “ only if ”
part. Take C associated to E . Since C has multidegree (0, 2, 2), for each connected
component Ci of C, there are oi ∈ P1 and C ′i ∈ |OP1×P1(e[i]3, e[i]2)| such that
Ci = {oi}×C ′i. Since IC(2, 1, 1) is spanned, we get e[i]2 ≤ 1 and e[i]3 ≤ 1 for all i.
Since ωC(0, 1, 1) is spanned, no connected component of C is a line. Hence s = 2
and each Ci is smooth and rational with (e[i]1, e[i]2, e[i]3) = (0, 1, 1) for i = 1, 2. In
particular we have ωC(0, 1, 1) ∼= OC and so we have r ≤ 3.

Assume r = 2. Since h0(OX(2, 0, 0)) = 3 > 2 = h0(OC(2, 0, 0)), we get
the existence of a non-zero map f : OX(0, 1, 1) −→ E . Since h0(IC(1, 0, 0)) =
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h0(IC(2,−1, 0)) = h0(IC(2, 0,−1)) = 0, so f induces an exact sequence

0 −→ OX(0, 1, 1) −→ E −→ IT (2, 0, 0) −→ 0

with T a locally complete intersection 0-dimensional subscheme of codimension 2.
Since c2(E) = 2t1t3 + 2t1t2, we get T = ∅ and so E ∼= Eλ as in Example 4.3.

Assume r = 3. We have h0(E) = 2 + h0(IC(2, 1, 1)) = 8. As in the case
r = 2, we get an injective map f : OX(0, 1, 1) −→ E with globally generated
cokernel F := coker(f). From h1(OX(0, 1, 1)) = 0, we get h0(F) = 4. Note that
h0(E(−1,−1,−1)) = h0(E(0,−2,−1)) = h0(E(0,−1,−2)) = 0 and so F is torsion-
free. Since h0(IC(1, 1, 1)) = 2 and h1(OX(−1, 0, 0)) = 0, we first get an injective
map OX(1, 0, 0)⊕2 −→ E and then a non-zero map w : OX(1, 0, 0)⊕2 −→ F . First
assume that w is injective. Since c1(F) = (2, 0, 0), w is an isomorphism (even
if a priori F is only torsion-free). Since h1(OX(−1, 1, 1)) = 0, so the extension
induced by f is trivial and E ∼= OX(1, 0, 0)⊕2 ⊕ OX(0, 1, 1). Now assume that w
is not injective. We claim that Im(w) = OX(2, 0, 0). Indeed, Im(w) is a spanned
torsion-free sheaf of rank 1 with c1 = (x, b, c), b ≥ 0, c ≥ 0. Since Im(w) ⊂ F and
F/Im(w) is spanned, we have x ≤ 2, b ≤ 0 and c ≤ 0. Since Im(w) 6= OX(1, 0, 0),
we get x = 2 and b = c = 0. Since F is spanned, h0(F) = 4, F/Im(w) is spanned
by the cokernel of the injection H0(Im(w)) −→ H0(F) and F has no trivial factor,
we get a contradiction. �

Remark 4.5. For any non-trivial extension Eλ in Example 4.3, we can compute
h1(E∨λ ) = 1 and so we have a unique non-trivial extension Gλ of Eλ by OX . By
Lemma 4.4 we get G ∼= OX(1, 0, 0)⊕2 ⊕OX(0, 1, 1) for any λ 6= 0.

Proposition 4.6. Let E be a globally generated vector bundle of rank r ≥ 2 on X
with c1(E) = (2, 1, 1), multidegree (1, 2, 0) and no trivial factor. Then we have

E ∼= OX(2, 1, 0)⊕OX(0, 0, 1).

Proof. Since no connected component of the associated curve C is a line and
deg(C) = 3, then s = 1. Since IC(2, 2, 2) is spanned, C is not a plane cubic. Hence
C is a connected and rational curve of degree 3. Since ωC(0, 1, 1) ∼= OC and s = 1,
we have r = 2 (see Remark 2.3). Since h0(OX(0, 0, 1)) = 2 = h0(OC(0, 0, 1))+1, so
we have h0(E(−2,−1)) = 1. Since h0(IC(−1, 0, 1)) = h0(IC(0,−1, 1)) = h0(IC)) =
0, so we get an exact sequence

0 −→ OX(2, 1, 0) −→ E −→ IT (0, 0, 1) −→ 0

with T a locally complete intersection 0-dimensional subscheme of codimension 2.
Since c2(OX(2, 1, 0)⊕OX(0, 0, 1)) = (1, 2, 0), so we have T = ∅. Since h1(OX(2, 1,−1)) =
0, so the extension is trivial. �

Lemma 4.7. Let E be a globally generated vector bundle of rank r ≥ 2 on X with
no trivial factor, c1(E) = (2, 1, 1) and multidegree (0, e2, e3) with e2 + e3 ≤ 2. Then
we have E ∼= OX(1, 1, 1)⊕OX(1, 0, 0).

Proof. Since deg(C) = e1 + e2 + e3 ≤ 2 and no connected component of C is a line,
then s = 1 and C is a smooth conic. Since ωC(0, 1, 1) ∼= OC and s = 1, then r = 2
(Remark 2.3).

Fix any smooth conic C with (e1, e2, e3) = (0, 1, 1). There are p ∈ P1 and
C ′ ∈ |OP1×P1(1, 1)| such that C = {p} × C ′. Since IC′,P×P1(1, 1) is globally gen-
erated, so is IC(2, 1, 1). Since OC(1, 0, 0) ∼= OC and h0(OX(1, 0, 0)) = 2, we have
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h0(E(−1,−1,−1)) = h0(IC(1, 0, 0)) > 0 and so we can pick a non-zero map f :
OX(1, 1, 1) −→ E . Since h0(IC(0, 0, 0)) = h0(IC(1,−1, 0)) = h0(IC(1, 0,−1)) = 0,
we see that f induces an exact sequence

0 −→ OX(1, 1, 1) −→ E −→ IT (1, 0, 0) −→ 0

with T a locally complete intersection curve. Since (t1 + t2 + t3)t1 = t1t2 + t1t3
and c2(E) = (0, 1, 1), we get T = ∅. Since h1(OX(0, 1, 1)) = 0, we get E ∼=
OX(1, 1, 1)⊕OX(1, 0, 0). �

Lemma 4.8. Let E be a globally generated vector bundle of rank r ≥ 2 on X
with c1(E) = (2, 1, 1) and no trivial factor. If the associated curve C is a curve of
multidegree (e1, e2, e3) = (1, 1, 1), then we have E ∼= OX(1, 1, 0)⊕OX(1, 0, 1).

Proof. Lemma 4.1 gives s = 1. Since ωC(0, 1, 1) is trivial and s = 1, so we have r =
2. Since deg(OC(1, 1, 0)) + 1 = 4 = h0(OX(1, 1, 0), so we have h0(E(−1, 0,−1)) =
h0(IC(1, 1, 0)) = 1. Thus E fits in an exact sequence

0 −→ OX(1, 0, 1) −→ E −→ IT (1, 1, 0) −→ 0

with either T = ∅ or T a locally complete intersection curve. Since (t1+t2)(t1+t3) =
t1t2 + t2t3 + t3t1 = c2(E), so we have T = ∅. The vanishing of H1(OX(0,−1, 1))
implies that the extension is trivial. �

Example 4.9. Let G = π∗23(ϕ∗pTP2(−1)), where ϕp : Q −→ P2 is the linear pro-

jection with the center p ∈ P3 \Q. We have dim Ext1(OX(2, 0, 0),G) = h0(G) = 3
and so we have a family {Eλ} of non-trivial extensions of OX(2, 0, 0) by G with
c1 = (2, 1, 1) and c2 = (0, 3, 3). The bundles Eλ do not split because h0(Eλ) = 6
and there are no bundles of rank 3 in the list of Remark 4.2 with 6 sections. Lemma
4.1 gives s = 3 and hence h0(E∨λ ) = 1 and so we have a unique non-trivial extension
F between OX and Eλ. Taking the counter-image A by the subbundle OX(2, 0, 0)
of G, we get that F is an extension of G by A. Since A is an extension of OX(2, 0, 0)
by OX , we have either A ∼= OX(1, 0, 0)⊕2 or A ∼= OX ⊕ OX(2, 0, 0). In the first
case we get F ∼= OX(1, 0, 0)⊕2 ⊕ G, because h1(G∨(−1, 0, 0)) = 0 by Künneth. In
the second case we get that OX is a factor of F , because h1(G∨) = 0 by Künneth.

Example 4.10. Since h1(OX(−2, 1, 0)) = h1(OX(−2, 0, 1)) = 2, there are non-
trivial extensions

(3) 0 −→ OX(0, 0, 1)⊕OX(0, 1, 0) −→ E −→ OX(2, 0, 0) −→ 0

and Ext1 is a 4-dimensional vector space. In this vector space the origin corresponds
to OX(2, 0, 0) ⊕ OX(0, 1, 0) ⊕ OX(0, 0, 1), while two 2-dimensional linear spaces
correspond to extensions OX(0, 0, 1) ⊕ F and OX(0, 1, 0) ⊕ G with F = π∗12(F ′),
G = π∗13(G′) where F ′, G′ are spanned on Q = P1 × P1 and of type (2, 1). By [6,
Proposition 3.7] such bundles F ′ and G′ are in the following list:

(1) 0 −→ OQ −→ OQ(0, 1)⊕OQ(1, 0)⊕2 −→ H −→ 0 ; c2(H) = 2

(2) 0 −→ OQ(−1,−1) −→ OQ(1, 0)⊕O⊕2
Q −→ H −→ 0 ; c2(H) = 3.

(3) 0 −→ OQ(−2,−1) −→ O⊕3
Q −→ H −→ 0 ; c2(H) = 4.

Every bundle E in (3) is globally generated with h0(E) = 7, h1(E) = 0 and
c2(E) = (e1, e2, e3) = (1, 2, 2). Lemma 4.1 gives s = 1. Hence C is a smooth
rational curve. Let (ε1, ε2) ∈ H1(OX(−2, 1, 0)) × H1(OX(−2, 0, 1)) denote the
extension class representing E .
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Claim : If ε1 6= 0 and ε2 6= 0, then E is indecomposable.
Proof of Claim : OX(2, 0, 0) cannot be a factor of E , because a non-zero map

OX(2, 0, 0) −→ E gives a splitting of (12). Similarly no OX(a, b, c) with a+ b+ c ≥
2 may be a direct factor of E . Since E is globally generated, no OX(a1, a2, a3)
with a1 < 0 is a direct factor of E . To prove the Claim it is sufficient to prove
that neither OX(1, 0, 0) nor OX(0, 1, 0) is a factor of E . Assume for instance that
OX(1, 0, 0) is a factor and call f : E −→ OX(0, 0, 1) the associated surjection.
Since h0(OX(1,−1, 0)) = 0, we have f|OX(0,1,0) ≡ 0 and so the associated map
f|OX(0,0,1)⊕OX(0,1,0) is either zero or a surjection. In the former case we get a
surjection OX(2, 0, 0) −→ OX(0, 0, 1), absurd. In the latter case we get ε2 = 0. �

Proposition 4.11. There are globally generated vector bundles E of rank r with
the Chern classes c1 = (2, 1, 1), c2 = (1, 2, 2) and no trivial factor if and only if
3 ≤ r ≤ 4.

(1) For each r ∈ {3, 4}, the family of such bundles is parametrized by an irre-
ducible family.

(2) For any such a bundle, the associated curve C is connected and we have
h0(E(−1, 0, 0)) > 0, h1(E) = 0.

(3) (i) If r = 3, then E is as in Example 4.10.
(ii) If r = 4, then E ∼= OX(1, 0, 0)⊕2 ⊕OX(0, 1, 0)⊕OX(0, 0, 1).

Proof. (a) Lemma 4.1 gives that s = 1. Since e1 = 1, C is rational. We also
get deg(ωC(0, 1, 1)) = 2 and so h0(ωC(0, 1, 1)) = 3. Therefore for a fixed C we get
bundles with no trivial factor if and only if 3 ≤ r ≤ 4 (see Remark 2.3).

(b) Let Θ be the set of all smooth rational curve E ⊂ X with multidegree
(1, 2, 2). The set Θ is an irreducible variety. Any C coming from a bundle E
as in Example 4.10 is an element of Θ. Since h2(OX) = 0 and h1(E) = 0 for
such bundle, we get h1(IC(2, 1, 1)) = 0. By semicontinuity the same is true for
all E ∈ Θ′ with Θ′ a non-empty open subset of Θ. Since IC(2, 1, 1) is globally
generated and this condition gives an open subset for families of ideal sheaves of
smooth curves with constant h0, there is a non-empty open subset Θ′′ of Θ′ such
that each E ∈ Θ′′ gives a globally generated vector bundle E with E as one of its
zero-loci and with h1(E) = 0. Assume h1(E) > 0, i.e. assume h1(IC(2, 1, 1)) > 0.
Since the multiplication map H0(OC(1, 0, 0))⊗H0(OC(1, 1, 1)) −→ H0(OC(2, 1, 1))
is surjective, we get h1(IC(1, 1, 1)) > 0, i.e. the smooth rational curve C ⊂ X ⊂ P7

of degree 5 is not linearly normal. Thus its linear span 〈C〉 has dimension at most
4. The formula for the number of trisecant lines of smooth curves in P4 due to
Castelnuovo and Berzolari [16, Section 1.1] gives the existence of a line D ⊂ 〈C〉
such that deg(D ∩ C) ≥ 3. Since X is cut out by quadrics in P7, we get D ⊂ X.
Hence D is in the base locus of IC(2, 1, 1), a contradiction.

(c) Take any r ∈ {3, 4}. Fix C ∈ Θ′′ and then we have h0(OC(2, 1, 0)) = 5 =
h0(OX(2, 1, 0))− 1. Since h1(OX(0, 0,−1)) = 0, we get h0(E(0, 0,−1)) = 1 and so,
up to a scalar, there is a unique injective map f : OX(0, 0, 1) −→ E with cokernel
F := coker(f). Since h0(E(−1, 0,−1)) = h0(E(0,−1,−1)) = h0(E(0, 0,−2)) = 0, so
Im(f) is saturated in E , i.e. F is torsion-free.

Claim : F is locally free.
Proof of Claim : F is reflexive if and only if h1(F(−t)) = 0 for t� 0 by [15,

Remark 2.5.1]. This is true, because h1(E(−t)) = 0 if t� 0 and h2(OX(−t,−t,−t−
1)) = 0 if t ≥ 0. Assume first r = 3. Since F is a reflexive sheaf of rank 2, so
F is locally free if and only if c3(F) = 0 by [15, Proposition 2.6]. The integer
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c3(F) depends only on the Chern classes of E and of OX(0, 0, 1) and so it may
computed taking as E any of the bundles in Example 4.10. For these E we get
c3(F) = c3(OX(0, 1, 0) ⊕ OX(0, 0, 2)) = 0. Now assume r = 4. We take as E ′
the quotient of E by the image of a general section of E . We call F ′ the sheaf
E ′/OX(0, 0, 1). We just proved that F ′ is locally free. Since F is an extension of
F ′ by OX , it is locally free, concluding the proof of the Claim. �

Similarly as above we have an injective map f : OX(0, 1, 0) −→ F whose cokernel
G := coker(f) is locally free. It gives us an exact sequence

0 −→ OX(0, 1, 0)⊕OX(0, 0, 1) −→ E −→ G −→ 0.

If r = 3, we have G ∼= OX(2, 0, 0) and so we are in sequence (3). If r = 4, then
we have G ∼= OX(1, 0, 0)⊕2. Since h1(OX(−1, 1, 0)) = h1(OX(−1, 0, 1)) = 0, so the
extension is trivial. �

Remark 4.12. Take C as in the proof of Proposition 4.11, i.e. C ⊂ X is a smooth
and connected rational curve with multidegree (1, 2, 2) such that h1(IC(2, 1, 1)) = 0,
i.e. h0(IC(2, 1, 1)) = 9, and IC(2, 1, 1) globally generated. Since h1(C, TX|C ) = 0,

so the normal bundle NC|X of C in X satisfies h1(C,NC|X) = 0. The vector bundle
NC|X has rank two and degree

deg(TX|C )− 2 = 2× 1 + 2× 2 + 2× 2− 2 = 8.

Thus we have h0(C,NC|X) = 10 and so the Hilbert scheme of X is smooth at C
and its unique irreducible component, say H, containing C has dimension 10. Let
H′ be the non-empty open subset of H parametrizing all smooth and connected
rational curves C with the numerical invariants above, i.e. deg(OC(1, 0, 0)) = 1,
deg(OC(0, 1, 1)) = deg(OC(0, 0, 1)) = 2, h1(IC(2, 2, 1)) = 0 and IC(2, 1, 1) globally
generated. For any C ∈ H′ we have h0(ωC(0, 1, 1)) = 3. If r = 4, then the
Hartshorne-Serre correspondence shows that for each C ∈ H′ we associate a unique
globally generated E with C as the zero-locus of a section and h1(E) = 0. Since
r = 4, we get h0(E) = 12 and so PH0(E) ∼= P11.

Example 4.13. Let G := ϕ∗TP3(−1), where ϕ : X −→ P3 is the linear projection.
We have dim Ext1(G,O(1, 0, 0)) = h1(G∨(1, 0, 0)) ≥ 4 and so we have a family {Fλ}
of non-trivial extensions of G by O(1, 0, 0) with c1 = (2, 1, 1) and c2 = (2, 3, 3) with
the exact sequence

(4) 0 −→ O⊕3
X −→ Fλ −→ IC(2, 1, 1) −→ 0,

where C is a smooth curve of multidegree (2, 3, 3). From the proof (c2) of Theorem
4.14, we get pa(C) = 2 and in particular C is hyperelliptic. Thus OC(1, 0, 0) is
the unique g1

2 and so canonical. Since ωC(−1, 0, 0) ∼= OC , so the Hartshorne-Serre
correspondence implies the existence of a globally generated vector bundle H fitting
into the sequence

0 −→ OX −→ H −→ IC(3, 2, 2) −→ 0.

Note that h0(H(−2,−1,−1)) = h0(IC(1, 1, 1)) = h0(Fλ(−1, 0, 0)) = 1. From the
sequence (4), we also have h0(H(−3,−1,−1)) = h0(H(−2,−2,−1)) = h0(H(−2,−1,−2)) =
0 and so a non-zero section in H0(H(−2,−1,−1)) induces an exact sequence

0 −→ OX(2, 1, 1) −→ H −→ IT (1, 1, 1) −→ 0

with T a locally complete intersection 0-dimensional subscheme of codimension 2.
Since c2(H) = (2, 3, 3), so we get T = ∅. Since h1(OX(1, 0, 0)) = 0, so the extension



GLOBALLY GENERATED VECTOR BUNDLES 15

is trivial. Thus we have H ∼= OX(2, 1, 1)⊕OX(1, 1, 1) and IC admits the following
locally free resolution:

0 −→ OX(−1,−1,−1) −→ OX ⊕OX(1, 0, 0) −→ IC(2, 1, 1) −→ 0.

Moreover h1(F∨λ ) = 4 so we have higher rank bundles up to r = 8 with the same
Chern classes and no trivial factors.

Theorem 4.14. Let E be a globally generated vector bundle of rank r ≥ 2 on X
with the Chern classes c1 = (2, 1, 1), c2 = (e1, e2, e3) and no trivial factor. If the
associated curve C is not connected with s ≥ 2 components, then each component
of C has the same multidegree and

(1) (s; e1, e2, e3) = (3; 0, 3, 3) ; 2 ≤ r ≤ 4,
(2) (s; e1, e2, e3) = (2; 0, 2, 2) ; 2 ≤ r ≤ 3 ;

(a) E ∼= Eλ as in Example 4.3 or
(b) E ∼= OX(1, 0, 0)⊕2 ⊕OX(0, 1, 1).

If C is connected, then (pa(C); e1, e2, e3) and the rank r are as follows:

(1) (0; 0, 1, 1) ; E ∼= OX(1, 1, 1)⊕OX(1, 0, 0),
(2) (0; 2, 1, 1) ; E ∼= U(0, 0,−1) where U is an Ulrich bundle with c1 = (2, 1, 3)

and c2 = (3, 3, 1) in [11, Section 7],
(3) (0; 1, a, b) with a+ b ≥ 2 ; 2 ≤ r ≤ a+ b,

(i) (a, b) = (1, 1)⇔ E ∼= OX(1, 1, 0)⊕OX(1, 0, 1).
(ii) (a, b) = (2, 0)⇔ E ∼= OX(2, 1, 0)⊕OX(0, 0, 1).
(iii) (a, b) = (2, 2)⇔

(a) E as in Example 4.10 or
(b) E ∼= OX(1, 0, 0)⊕2 ⊕OX(0, 1, 0)⊕OX(0, 0, 1),

(4) (1; 2, 2, 2) ; 3 ≤ r ≤ 5,
(5) (2; 2, 3, 3) ; 3 ≤ r ≤ 8,
(6) (3; 2, 4, 4) ; 3 ≤ r ≤ 11.

Proof. (a) Assume first that s ≥ 2. By Lemma 4.1, we have 2 ≤ s ≤ 3 and
(e1, e2, e3) = (0, s, s). If s = 2, then we are as in Example 4.3 due to Lemma 4.4.
Now assume s = 3.

Claim : IC(2, 1, 1) is always globally generated.
Proof of Claim : We have e[i]1 = 0 and e[i]2 = e[i]3 = 1 for i = 1, 2, 3 (see Lemma
4.1). Thus there are three distinct points p1, p2, p3 ∈ P1 and C ′i ∈ |OP1×P1(1, 1)| for
i = 1, 2, 3 such that Ci = {pi} × C ′i. Write W := {p1, p2, p3} × P1 × P1 and then it
is the union of three disjoint elements of |OX(1, 0, 0)| and so the restriction map ρ :
H0(OX(2, 1, 1)) −→ H0(W,OW (2, 1, 1)) is bijective. Since IC′i,P1×P1(1, 1) ∼= OP1×P1

via the automorphism induced by an equation of C ′i, so the line bundle IC,W (2, 1, 1)
is globally generated. Hence the scheme-theoretic base locus of IC(2, 1, 1) is dis-
joint from W and in particular it is disjoint from C. Since IY (2, 1, 1) is globally
generated, the scheme-theoretic base locus of IC(2, 1, 1) is contained in Y = C ∪D.
Hence it is contained in D \ (C ∩D). Assume the existence of p ∈ D \ (C ∩D) with
p in the base locus. Since Y ∼= π12(Y ) ∈ |OP1×P1(4, 2)| and π12(D) ∈ |OP1×P1(1, 2)|,
so we have deg(D∩C) = 6. Since deg(D∩W ) = 3 ·deg(OD(0, 1, 1)) = 6, we get 2 =
h0(IC∪D(2, 1, 1)) = h0(IC∪{p}(2, 1, 1)) = h0(IC(2, 1, 1)). Since h0(OC(2, 1, 1)) = 9,

we get h0(IC(2, 1, 1)) > 2, a contradiction. �
Now let us assume that C is connected, i.e. s = 1. Since Y has multidegree

(2, 4, 4), so we have e1 ≤ 2 and e2, e3 ≤ 4.
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(b) Assume that C is rational. In particular we have deg(ωC) = −2 and
deg(ωC(0, 1, 1)) = −2 + e2 + e3. Thus we have ωC(0, 1, 1) ∼= OC if and only if
e2 + e3 = 2 and ωC(0, 1, 1) is spanned if and only if e2 + e3 ≥ 2. Since π12|C is an
embedding, we have either e1 = 1 or e2 = 1. Again since π13|C is an embedding,
we have either e1 = 1 or e3 = 1. Thus if e1 6= 1, then we have e2 = e3 = 1. Note
that any case, if it exists, must have e2 + e3 = 2 and so ωC ∼= OC(0,−1,−1); so
these cases cannot occur for r > 2 with no trivial factor. Since the intersection Y
of two general elements of |IC(2, 1, 1)| has multidegree (2, 4, 4), we have e1 ≤ 2. If
e1 = 0, we have E ∼= OX(1, 1, 1) ⊕ OX(1, 0, 0) by Lemma 4.7. If e1 = 1, we have
E ∼= OX(1, 1, 0)⊕OX(1, 0, 1) by Lemma 4.8. If e1 = 2, the bundle E exists, because
IC(2, 1, 1) is spanned by step (c) of the proof of Proposition 3.5, which is the case
(iii) of Proposition 3.5 with (0; 2, 1, 1). If E is a globally generated vector bundle of
rank 2 with c1 = (2, 1, 1) and c2 = (2, 1, 1), we have the exact sequence

(5) 0→ OX → E → IY (2, 1, 1)→ 0,

where Y is a smooth curve of multidegree (2, 1, 1). Then E(0, 0, 1) is a globally
generated vector bundle of rank 2 with c1 = (2, 1, 3) and c2 = (3, 3, 1) and the zero
locus of a general section is a smooth curve C of multidegree (3, 3, 1) with the exact
sequence

0→ OX → E(0, 0, 1)→ IC(2, 1, 3)→ 0.

From its twist by (−1, 0,−2), we get h0(E(−1, 0,−1)) = h0(IC(1, 1, 1)). But from
(5) twisted by (−1, 0,−1), we get h0(E(−1, 0,−1)) = h0(IY (1, 1, 0)) = 0. It implies
that C is non-degenerate and so E(0, 0, 1) is an Ulrich bundle by [11, Lemma 7.2].

(c) Assume that C has positive genus g > 0 and hence e1 6= 1. If Y is
the complete intersection of two general elements of |IC(2, 1, 1)|, then we have
pa(Y ) = 3 and so g ≤ 3. Since π12|C and π13|C are embeddings and e1 ≤ 2, so we
have

(e1, e2, e3) =

 (2, 2, 2), if g = 1;
(2, 3, 3), if g = 2;
(2, 4, 4), if g = 3.

Thus the case g = 3 occurs only when C = Y , i.e. E is as in Remark 2.5.
(c1) If g = 1, then we have (e1, e2, e3) = (2, 2, 2). Since h0(OC(1, 1, 1)) =

6, so C is contained a linear subspace V ⊂ P7 of codimension 2. First assume
that dim(V ∩ X) = 1. Since deg(X) = 6 = deg(C), we get C = X ∩ V as
schemes. Since IC(1, 1, 1) is spanned, IC(2, 1, 1) is spanned. In this case we also
get h0(E(−1, 0, 0)) = 2. Now assume dim(X ∩V ) = 2. Take any surface S ⊆ X ∩V
with S ∈ |OX(b1, b2, b3)|. Since S ⊂ V and V ( P7, there is i ∈ {1, 2, 3} with
bi = 0. Since ei > 0, we have C * S. Since deg(S) + deg(C) > 6 = deg(X),
[14, Theorem 2.2.5] gives a contradiction. Since deg(OC(0, 1, 1)) = 4, so we have
h0(ωC(0, 1, 1)) = 4.

(c2) Now assume g = 2 and then we have (e1, e2, e3) = (2, 3, 3). Since
deg(C) = 8, we have h0(OC(1)) = 7. Thus there is a hyperplane H ⊂ P7 such
that C ⊂ X ∩H. Let Y ⊂ X be the general intersection of two general elements
of |IC(2, 1, 1)|. By the Bertini theorem Y is smooth outside C and so Y = C ∪D
with deg(D) = 2 and D reduced. This case cannot occur when r = 2, because
ωC 6= OC(0,−1,−1) since g > 1. Since h0(ωC(0, 1, 1)) = 7, the existence of spanned
IC(2, 1, 1) would imply the existence of a bundle with no trivial factor if and only
if 3 ≤ r ≤ 8. Since Y has multidegree (2, 4, 4), D has multidegree (0, 1, 1).
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To prove that this case gives an example we reverse the construction. We start
with a smooth rational curve D ⊂ X with multidegree (0, 1, 1). There are a point
o ∈ P1 and a smooth conic E ∈ |OP1×P1(1, 1)| such that D = {o} × E. Let Y be
the intersection of two general elements of |ID(2, 1, 1)|. By the Bertini theorem
Y is smooth outside D. It is easy to check that D appears with multiplicity one
in Y and thus we have Y = D ∪ C with C a reduced curve with (e1, e2, e3) =
(2, 3, 3). Assume for the moment that C is smooth, connected and of genus 2. Since
Y is in the intersection of two elements of |OX(2, 1, 1)|, so IC(2, 1, 1) is globally
generated, except at most at the points of Y . Let Y ′ ⊂ X be the intersection
of two general elements of |IC(2, 1, 1)|. We saw that Y ′ = C ∪ D′ as schemes
with deg(OD′(1, 0, 0)) = 0 and deg(OD′(0, 1, 0)) = deg(OD′(0, 0, 1)) = 1, i.e. there
are o′ ∈ P1 and E′ ∈ |OP1×P1(1, 1)| such that D′ = {o′} × E′. If o′ 6= o, then
D∩D′ = ∅ and so IC(2, 1, 1) is globally generated. Now assume o′ = o for a general
Y ′. Since h0(OC(2, 1, 1)) = 10 + 1− 2 = 9 by the Riemann-Roch theorem, we have
h0(IC(2, 1, 1)) ≥ 3. We have deg(C · {o}×P1×P1) = e1 = 2 and so deg(D∩C) ≤ 2
and deg(D′∩C) ≤ 2. Since pa(Y ) = pa(Y ′) = 3 and D,D′ are smooth and rational,
we get deg(D′∩C) = deg(D∩C) = 2. Set Z := C∩{o}×P1×P1. Since D′∩C ⊆ Z
and D ∩C ⊆ Z and deg(Z) = 2, we get D ∩C = D′ ∩C = Z. Write Z = {o} ×Z ′
with Z ′ ⊂ P1 × P1 and deg(Z ′) = 2. Since h0(P1 × P1, IZ′(1, 1)) = 2, we get
h0(IC(2, 1, 1)) ≤ 2, a contradiction. Since h0(ωC(0, 1, 1)) = 7, this case gives rank
r bundles if and only if 3 ≤ r ≤ 8. �

5. Case of c1 = (2, 2, 1)

Let E be a globally generated vector bundle of rank 2 on X with c1 = (a1, a2, a3)
with 0 < ai ≤ 2 for all i and a1 + a2 + a3 = 5. Without loss of generality we may
assume c1 = (2, 2, 1). Any complete intersection Y of two elements of |OX(2, 2, 1)|
has multidegree (4, 4, 8), ωY ∼= OY (2, 2, 0) and hence pa(Y ) = 9. We always take
as Y the complete intersection of two general elements of |IC(2, 2, 1)| and write
Y = C∪D with D of multidegree (4−e1, 4−e2, 8−e3). Since π12|C is an embedding

by Lemma 2.9, so we get that e1e2 6= 0 implies s = 1 (this is true even for globally
generated bundles with rank r > 2). In other words, if C is not connected, then we
have either e1 = 0 or e2 = 0.

Now assume that the rank of E is 2 and then we have ωC ∼= OC(0, 0,−1). Thus
each component Ci of C has genus at most 1 and Ci is an elliptic curve if and only
if e[i]3 = 0. If the rank 2 bundle E is decomposable with no trivial factor, then it
is one of the following, up to reordering of the first and second factors.

(1) OX(2, 2, 0)⊕OX(0, 0, 1); c2(E) = (2, 2, 0)
(2) OX(1, 2, 0)⊕OX(1, 0, 1); c2(E) = (2, 1, 2)
(3) OX(2, 1, 1)⊕OX(0, 1, 0); c2(E) = (1, 0, 2)
(4) OX(2, 0, 1)⊕OX(0, 2, 0); c2(E) = (2, 0, 4)
(5) OX(1, 1, 1)⊕OX(1, 1, 0); c2(E) = (1, 1, 2)

Note that we have

dim Ext1(OX(1, 2, 0),OX(1, 0, 1)) = h1(OX(−2, 0, 1)) = 2

dim Ext1(OX(0, 2, 0),OX(2, 0, 1)) = h1(OX(2,−2, 1)) = 6

and in the other cases such extensions are always trivial.
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Lemma 5.1. Let E be a globally generated vector bundle of rank r ≥ 2 on X
with c1(E) = (2, 2, 1), c2(E) = (2, 1, 2) and no trivial factor. Then it fits into the
sequence

0 −→ OX(1, 0, 1) −→ E −→ OX(1, 2, 0) −→ 0.

Proof. Since π12|C is an embedding and π12(C) ∈ |OP1×P1(2, 1)|, so C is connected
and rational. Since deg(ωC(0, 0, 1)) = deg(ωC) + 2 = 0, we get ωC(0, 0, 1) ∼= OC .
Since s = 1, so we get r = 2.

Since h0(OC(1, 2, 0)) = 5 < 6 = h0(OX(1, 2, 0) and h1(OX(−1, 0,−1)) = 0, we
get h0(IC(1, 2, 0)) = 1. Since h1(OX(−1, 0,−1)) = 0, we also get h0(E(0, 0,−1)) =
1. Thus there is a non-zero map f : OX(1, 0, 1) −→ E and it induces the exact
sequence,

0 −→ OX(1, 0, 1) −→ E −→ IT (1, 2, 0) −→ 0

with T a locally complete intersection subscheme of X with pure codimension 2,
because h0(IC(0, 2, 0)) = h0(IC(1, 2,−1)) = 0. Since (t1 + t3)(t1 + 2t2) = 2t1t2 +
t1t3 + 2t2t3 and c2(E) = (2, 1, 2), so we get T = ∅. �

Remark 5.2. In [12], the moduli space of indecomposable, initialized ACM semistable
bundles of rank 2 with c1 = (2, 2, 1) and c2 = (2, 1, 2) is isomorphic to P1. Indeed it
is isomorphic to PExt1(OX(1, 2, 0),OX(1, 0, 1)). Each bundle in the moduli space
is a pull-back of the bundle on a smooth quadric surface Q fitting into the sequence

0 −→ OQ(0, 1) −→ E −→ OQ(2, 0) −→ 0

via π∗23 twisted by OX(1, 0, 0).

Proposition 5.3. Let E be a globally generated vector bundle of rank r ≥ 2 on
X with c1(E) = (2, 2, 1), c2(E) = (2, 0, 4) and no trivial factor. Then we have
r ∈ {2, 3}. To be precise, we have

(i) 0 −→ OX(2, 0, 1) −→ E −→ OX(0, 2, 0) −→ 0, if r = 2 and
(ii) E ∼= OX(2, 0, 1)⊕OX(0, 1, 0)⊕2, if r = 3.

Proof. Since π12|C is an embedding and π12(C) ∈ |OP1×P1(0, 2)|, so C has two
connected components C1 and C2, both smooth and rational. Since ωC(0, 0, 1)
is globally generated, deg(ωCi

(0, 0, 1)) = deg(ωCi
) + e[i]3 ≥ 0 for i = 1, 2, and

e[1]3 + e[2]3 = 4, so we get e[1]3 = e[2]3 = 2 and ωC(0, 0, 1) ∼= OC . Since E has no
trivial factor, we get 2 ≤ r ≤ 3 (see Remark 2.3).

(a) Assume r = 2. Since h0(OC(0, 2, 0)) = 2 < 3 = h0(OX(0, 2, 0) and
h1(OX(−2, 0,−1)) = 0, we get h0(E(−2, 0,−1)) = h0(IC(0, 2, 0)) ≥ 1. Thus there
is a non-zero map f : OX(2, 0, 1) −→ E and it induces the following exact sequence,
because h0(IC(0, 2, 0)) = h0(IC(1, 2,−1)) = 0,

0 −→ OX(2, 0, 1) −→ E −→ IT (0, 2, 0) −→ 0

with T a locally complete intersection subscheme of X with pure codimension 2.
Since (2t1 + t3)(2t2) = 4t1t2 + 2t2t3 and c2(E) = (2, 0, 4), we get T = ∅.

(b) Assume r = 3. Since h0(OC(0, 2, 0)) = 2 < 3 = h0(OX(0, 2, 0)) and
h1(OX(−2, 0,−1)) = 0, we get h0(E(−2, 0,−1)) ≥ 1. Thus there is a non-zero map
f : OX(2, 0, 1) −→ E . Set F := coker(f). Since h0(IC(0, 2, 0)) = h0(IC(1, 2,−1)) =
0, so F has no torsion. If t � 0, then h1(OX(2 − t,−t, 1 − t)) = h2(OX(2 −
t,−t, 1− t)) = 0. The exact sequence defining F gives h1(F(−t)) = 0 for all t� 0.
Hence F is reflexive by [15, Remark 2.5.1]. We have c3(E) = deg(ωC(0, 0, 1)) =
c3(OX(2, 0, 1) ⊕ OX(0, 1, 0)⊕2). The exact sequence defining F gives c3(F) = 0.
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Hence F is locally free by [15, Proposition 2.6]. Since c1(F) = (0, 2, 0), we get F ∼=
OX(0, 1, 0)⊕2. Since h1(OX(2,−1, 1)) = 0, we get E ∼= OX(2, 0, 1)⊕OX(0, 1, 0)⊕2.

�

Remark 5.4. For each globally generated vector bundle F of rank 2 with c1 =
(0, 2, 1), the bundle E = F(1, 0, 0) is globally generated with c1 = (2, 2, 1). Note
that F ∼= π∗23(G) where G is a globally generated vector bundle on Q ∼= P1 × P1

with c1(G) = (2, 1). Such bundles are given in Example 4.10 or [6, Proposition 3.7].
In particular we have

c2(E) = c2(F(1, 0, 0)) = c2(F) + (t1t3 + 2t1t2)

= π∗23(c2(G)) + (t1t3 + 2t1t2),

since OX(1, 0, 0) · OX(0, 2, 1) = t1t3 + 2t1t2.

Remark 5.5. Using the method in Remark 5.4 and the results in [6], we may
construct several decomposable bundles of rank r ≥ 3 on X.

(1) For the bundles G on P1 × P1 as in Remark 5.4 we have E ∼= OX(2, 0, 0)⊕
π∗23(G).

(2) If H is a spanned bundle on P1 × P1 with c1(H) = (2, 2) and no trivial
factor, then we also have E ∼= OX(0, 0, 1) ⊕ π∗12(H). For the list of such
bundles, see [6, Section 4 and 5]. The possible second Chern classes c2 are
in {3, 4, 5, 6, 8}.

Our main result in this section is the classification of globally generated vector
bundles of rank 2 on X with c1 = (2, 2, 1).

Theorem 5.6. Let E be a globally generated vector bundle of rank 2 on X with
c1 = (2, 2, 1), c2 = (e1, e2, e3) and no trivial factor. If the associated curve C is not
connected with s ≥ 2 components, then up to permutations on (e1, e2) we have

(1) (s; e1, e2, e3) = (2; 2, 0, 4) ; E fits into the sequence

0 −→ OX(2, 0, 1) −→ E −→ OX(0, 2, 0) −→ 0,

(2) (s; e1, e2, e3) = (3; 3, 0, 6).

If C is connected, then up to permutations on (e1, e2) we have

(1) C is an elliptic curve with (e1, e2, e3) = (2, 2, 0), or
(2) C is a rational curve with e3 = 2 and

(i) (e1, e2, e3) = (0, 1, 2) ; E ∼= OX(1, 2, 1)⊕OX(1, 0, 0),
(ii) (e1, e2, e3) = (1, 1, 2) ; E ∼= OX(1, 1, 1)⊕OX(1, 1, 0),
(iii) (e1, e2, e3) = (2, 1, 2) ; E fits into the sequence

(6) 0 −→ OX(1, 0, 1) −→ E −→ OX(1, 2, 0) −→ 0,

(iv) (e1, e2, e3) = (3, 1, 2),
(v) (e1, e2, e3) = (4, 1, 2).

All these cases are realized by some globally generated bundles E.

Proof. Until step (f) we assume that C is connected, i.e. s = 1. Recall that we
have pa(C) ∈ {0, 1}.

If C is an elliptic curve, i.e. e3 = 0, then there are p ∈ P1 and C ′ ∈ |OP1×P1(2, 2)|
such that C = C ′ × {p}, because C is connected. An equation of the divisor of C ′

in P1×P1 gives IC′,P1×P1(2, 2) ∼= OC and thus IC′,P1×P1(2, 2) is globally generated.
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Since OX(1, 2, 1) is globally generated and h1(OX(1, 0, 0)) = 0, so IC(2, 2, 1) is also
globally generated. In this case we have h0(E) = h0(IC(2, 2, 1)) + 1 = 11.

If C is rational, then we have e3 = 2 since ωC ∼= OC(0, 0,−1). Since π12|C is an
embedding and C is smooth, connected and rational, so we have either e1 = 1 or
e2 = 1. Without losing generality we may assume e2 = 1. Since Y has multidegree
(4, 4, 8), then we have 0 ≤ e1 ≤ 4.

(a) Assume e1 = 0 and then we have (e1, e2, e3) = (0, 1, 2). There are p ∈ P1

and C ′ ∈ |OP1×P1(2, 1)| such that C = {p} × C ′. Here we have deg(OC(1, 0, 0)) +
1 = 2 = h0(OX(1, 0, 0)), h1(OX(−1,−2,−1)) = 0 and so h0(E(−1,−2,−1)) =
h0(IC(1, 0, 0)) = 1. Hence E fits into an exact sequence

(7) 0 −→ OX(1, 2, 1) −→ E −→ IT (1, 0, 0) −→ 0

with either T = ∅ or T a locally complete intersection curve. We have T = ∅,
because c2(OX(1, 2, 1) ⊕ OX(1, 0, 0)) = t1t3 + 2t1t2. Since h1(OX(0, 2, 1)) = 0, so
the extension (7) is trivial.

(b) Assume e1 = 1. Since deg(OC(1, 1, 0)) + 1 = 3 = h0(OX(1, 1, 0)) −
1, so we have h0(IC(1, 1, 0)) ≥ 1. Since h1(OX(−1, 0,−1)) = 0, we also get
H0(E(−1,−1,−1)) 6= 0. Now since h0(IC(1, 0, 0)) = h0(IC(0, 1, 0)) = h0(IC(1, 1,−1)) =
0 , we get an exact sequence

(8) 0 −→ OX(1, 1, 1) −→ E −→ IT (1, 1, 0) −→ 0

with either T = ∅ or T a locally complete intersection curve. We have T = ∅,
because c2(OX(1, 1, 1)⊕OX(1, 1, 0)) = t3t1+t3t2+2t1t2. Since h1(OX(0, 0, 1)) = 0,
we get E ∼= OX(1, 1, 1)⊕OX(1, 1, 0). In particular we have c2(E) = (1, 1, 2).

(c) Assume e1 = 2 and then we have (e1, e2, e3) = (2, 1, 2). This is the case in
Lemma 5.1.

(d) Assume e1 = 3. We have h0(OC(1, 1, 1)) = 7 and so h0(IC(1, 1, 1)) > 0.
Since h1(OX(−1,−1, 0)) = 0, we get h0(E(−1,−1, 0)) = 0. Since h0(IC(0, 1, 1)) =
h0(IC(1, 0, 1)) = h0(IC(1, 1, 0)) = 0, we get that E fits in the following exact
sequence

(9) 0 −→ OX(1, 1, 0) −→ E −→ IT (1, 1, 1) −→ 0

with either T = ∅ or T a locally complete 1-dimensional subscheme with ωT ∼=
OT (−2,−2, 1) and multidegree (2, 0, 0), because of c2(OX(1, 1, 1)⊕OX(1, 1, 0)) =
(1, 1, 2). Conversely, take two distinct points p1, p2 ∈ P1 × P1 and set T :=
P1 × {p1, p2}. Then we get a vector bundle E fitting into the sequence (9). Now
assume that p1, p2 are not contained in the same ruling either of |OP1×P1(0, 1)| or
of |OP1×P1(1, 0)|. Since I{p1,p2},P1×P1(1, 1) is globally generated, there are divisors

E1, E2 ∈ |OP1×P1(1, 1)| with E1 ∩ E2 = {p1, p2} as schemes. Set Hi := P1 × Ei for
i = 1, 2. Since T = H1 ∩H2 as schemes and Hi ∈ |OX(0, 1, 1)|, the sheaf IT (0, 1, 1)
is globally generated and so is IT (1, 1, 1). It implies that any bundle E in (9) is
globally generated.

(e) Assume e1 = 4. If such a curve C exists, then h0(OC(1, 2, 1)) = 9 <
12 = h0(OX(1, 2, 1)). We also see that h0(IC(0, 2, 1)) = h0(IC(1, 2, 0)) = 0 and
that h0(IC(1, 1, 1)) < 3 ≤ h0(IC(1, 2, 1)). Indeed, for a general C, we even have
h0(IC(1, 1, 1)) = h1(IC(1, 1, 1)) = 0. Since h1(OX(−1, 0, 0)) = 0, we get that E fits
in the following exact sequence

(10) 0 −→ OX(1, 0, 0) −→ E −→ IT (1, 2, 1) −→ 0
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with either T = ∅ or T a locally complete intersection 1-dimensional scheme with
ωT ∼= OT (−2, 0,−1). Since t1(t1 + 2t2 + t3) = t1t3 + 2t1t2 and c2(E) is represented
by a curve with multidegree (4, 1, 2), we have

deg(OT (1, 0, 0)) = 4 , deg(OT (0, 1, 0)) = deg(OT (0, 0, 1)) = 0.

To prove the existence of E we reverse the construction, because any T as above
with IT (1, 2, 1) globally generated gives a globally generated bundle E . Take any
complete intersection Z ⊂ P1 × P1 of two elements D1, D2 ∈ |OP1×P1(2, 1)| and
set T = P1 × Z. IZ(2, 1) is globally generated and so is IT (0, 2, 1). In particular
IT (1, 2, 1) is globally generated.

(f) Assume s > 1 and so we have e1e2 = 0. Without losing generality we may
assume e2 = 0. We do this case even when s = 1. We have e1 = s and e4 ≤ 8. Since
ωC ∼= ωC(0, 0, 1) and Ci is smooth and rational, we have e[i]3 = 2 and e[i]1 = 1 for
all i. Take the intersection Y ⊂ X of two general elements of |IC(2, 2, 1)| and then
each connected component of C appears with multiplicity one in Y . By the Bertini
theorem we have Y = C ∪D with D a reduced curve smooth outside C ∩D and

deg(OD(1, 0, 0)) = 4− s , deg(OD(0, 1, 1)) = 4 , deg(OD(0, 0, 1)) = 8− e3.

Claim : s ≤ 3.
Proof of Claim : If s = 4, then we have e3 = 8 and so D is the union of

4 distinct fibers of π23, i.e. there are four distinct points p1, p2, p3, p4 ∈ P1 × P1

with D = P1 × {p1, p2, p3, p4}. If Di’s are connected components of D, then we
have deg(C ∩ Di) ≤ 2, because IC(2, 2, 1) is globally generated. Since C ∪ D
has 8 irreducible components and each of them is smooth and rational, we have
pa(Y ) ≤ 1, a contradiction. Thus we have s ∈ {2, 3}. �

(f1) If s = 2, then we have (e1, e2, e3) = (2, 0, 4) and we are in the case of
Lemma 5.3.

(f2) If s = 3, then we have (e1, e2, e3) = (3, 0, 6) and we may use the case
s = 1 and (e1, e2, e3) = (1, 4, 2) proved in step (e); it gives bundle for all ranks at
most h0(ωC(0, 0, 1))+1. Let G be a spanned bundle of rank 3 with c1(G) = (2, 2, 1)
and with associated curve with multidegree (1, 4, 2). Then we have h0(G) ≥ 6. Let
V ⊆ H0(G) be a general 6-dimensional linear subspace. Since dim(X) = 3, the
evaluation map τ : V ⊗ OX −→ G is surjective. Set H := ker(τ)∨ and then H is a
spanned bundle of rank 3. The value of c2(G) gives that H is associated to a curve
C with multidegree (3, 0, 6). Since IC(2, 2, 1) is spanned and C has multidegree
(3, 0, 6), it has s = 3 and so this case is realized. �

By Remark 2.3 the case s ≥ 2 in Theorem 5.6 gives the list of all spanned E with
r ≥ 2, c3(E) = 0 and no trivial factor; they have r ≤ 3 if s = 2, and r ≤ 4 if s = 3.
The proof of Theorem 5.6 gives that some families of bundles are parametrized by
an irreducible family of curves C; the case with s = 2, the case with C an elliptic
curve and case (i) and (ii) for a rational curve. In the other cases the proof gives
that the family is irreducible; see step (e) for (e1, e2, e3) = (4, 1, 2) and step (f2) for
the case s = 3.

Remark 5.7. Take E as in Theorem 5.6 with s = 1 and (e1, e2, e3) = (2, 1, 2).
From (6) we get h1(E(t, t, t)) = h2(E(t, t, t)) = 0 for all t ∈ Z. Hence E is ACM.
The indecomposable ones, i.e. the ones for which (6) does not split, are the ones in
case (5) of [11, Theorem B].
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Remark 5.8. Take E as in Theorem 5.6 with s = 1 and (e1, e2, e3) = (3, 1, 2).
From (9) we get h1(E(−1,−1,−1)) > 0. Look at step (d) of the proof of Theorem
5.6 and assume that T is induced by two distinct points p1, p2. Since we have
〈T 〉 ∼= P3, we get h1(E(t, t, t)) = 0 for all t 6= −1 and h1(E(−1,−1,−1)) = 1.

From now on we take a smooth dependency locus C ⊂ X of a globally generated
bundle E of rank r ≥ 3. The Hartshorne-Serre condition says that ωC is globally
generated and so we have pa(Ci) > 0.

Theorem 5.9. For globally generated vector bundles of higher rank on X with
c1 = (2, 2, 1) we have the following:

(1) There exists a globally generated vector bundle E of rank r with no trivial
factor if and only if 2 ≤ r ≤ 17.

(2) For each r with 3 ≤ r ≤ 17 there is a bundle as in Example 2.5 or Remark
2.7. In particular a general dependency locus C is connected and with
multidegree (4, 4, 8), i.e. c2(E) = 8t1t2 + 4t1t3 + 4t2t3.

(3) If r ∈ {14, 15, 16, 17}, then each E comes from Remark 2.7.

Proof. The case r = 2 is covered by OX(2, 2, 0) ⊕ OX(0, 0, 1). If 3 ≤ r ≤ 17, the
existence is given either by Example 2.5 or Example 2.6.

Fix r ∈ {14, 15, 16, 17} and assume the existence of E not coming from Remark
2.7 with a dependency locus C ⊂ X of r − 1 general sections of E . Let Y = C ∪D
be the intersection of 2 general elements of |IC(2, 2, 1)|. By the Hartshorne-Serre
correspondence it is sufficient to prove that h0(ωC(0, 0, 1)) ≤ 12 if E does not
come from Remark 2.7, i.e. if D 6= ∅. Note that D is reduced with multidegree
(4− e1, 4− e2, 8− e3).

(a) Assume s = 1 and set g := pa(C). Since π12(C) ∼= C, we have g =
e1e2 − e1 − e2 + 1. Since ωC(0, 0, 1) is spanned, we have e3 6= 1. If e3 = 0, then
we get h0(ωC(0, 0, 1)) = h0(ωC) = g ≤ 9. If e3 ≥ 2, then Riemann-Roch gives
h0(ωC(0, 0, 1)) = g + e3 − 1 = e1e2 − e1 − e2 + e3.

(a1) Assume (e1, e2) = (4, 4). In this case D has multidegree (0, 0, 8− e3). So
D has 8− e3 connected components D1, . . . , D8−e3 and there are oj ∈ P1 × P1 for
each 1 ≤ j ≤ 8 − e3 such that Dj = {oj} × P1. We have oi 6= oj for all i 6= j.
Since C ∪D is a complete intersection of two ample divisors, it is connected. Since
pa(C) = pa(C ∪D), each Dj meets quasi-transversally C at a unique point, say Qj .

Claim : A general S ∈ |IC(2, 2, 1)| is singular.
Proof of Claim : Assume that S is smooth. We have C ∪ D ∈ |OS(2, 2, 1)|

and {Q1} is the scheme-theoretic intersection of D1 and Y − D1, i.e. D1 · (Y −
D1) = 1 the intersection number in the smooth surface S. Hence the very ample
line bundle OS(2, 2, 1) is not 2-connected in the sense of [8, 10, 21, 9]. We have
OS(2, 2, 1) · OS(2, 2, 1) = (2t1 + 2t2 + t3)3 = 12 > 4. Since S contains only finitely
many curves {o} × P1 with o ∈ P1 × P1, so the pair (S,OS(2, 2, 1)) is not a scroll
in the sense of [10, 21]. Since (S,OS(2, 2, 1)) is not 2-connected, [10, Theorem A]
gives a contradiction. �

Since C is a smooth curve, dim(X) = 2 + dim(C) and C is the scheme-theoretic
base locus of IC(2, 2, 1), Claim contradicts a strong form of Bertini’s theorem for
linear systems with a smooth base locus in [13, Theorem 2.1]. In summary, this
contradiction rules out all the cases with s = 1 and multidegrees (4, 4, e3) with
0 ≤ e3 ≤ 7.
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(a2) If (e1, e2) 6= (4, 4), then we have g ≤ 6 and so h0(ωC(0, 0, 1)) ≤ 6+e3−1 ≤
13, with equality only if (e1, e2) ∈ {(3, 4), (4, 3)} and e3 = 8. In this case D has
either multidegree (1, 0, 0) or (0, 1, 0). In particular D is smooth and rational. Since
pa(C∪D) = 9, we have deg(D∩C) > 2 and so IC(2, 2, 1) is not globally generated,
a contradiction. Thus this case may give solutions only with r ≤ 13.

(b) Assume s > 1. We saw that each Ci is smooth and rational with e[i]3 ≥ 2
for all i. We have h0(ωC(0, 0, 1)) =

∑s
i=1(e[i]3 − 1) ≤ 8 − s ≤ 6. If C is not

connected, we get r ≤ 7. �

We give several examples of globally generated vector bundles of rank at least 3
on X with c1 = (2, 2, 1).

Example 5.10. Since h1(OX(−2, 1, 0)) = 2 and h1(OX(−2, 1, 1)) = 4, there are
non-trivial extensions

(11) 0 −→ OX(0, 1, 1)⊕OX(0, 1, 0) −→ E −→ OX(2, 0, 0) −→ 0

and Ext1 is a 6-dimensional vector space. So we get indecomposable bundles with
c1 = (2, 2, 1) and c2 = (2, 1, 4). We may construct these bundles also as extensions
of E in Example 4.3 by OX(0, 1, 0).

Example 5.11. Since h1(OX(−2, 0, 1)) = 2 and h1(OX(−2, 2, 0)) = 3, there are
non-trivial extensions

(12) 0 −→ OX(0, 0, 1)⊕OX(0, 2, 0) −→ E −→ OX(2, 0, 0) −→ 0

and Ext1 is a 5-dimensional vector space. So we get indecomposable bundles with
c1 = (2, 2, 1) and c2 = (2, 2, 4).

Example 5.12. For the bundles Fλ in Example 4.13, we may compute h1(F∨λ (0, 1, 0)) ≥
4 so we have a family {Hν} of indecomposable bundles with c1 = (2, 2, 1) and
c2 = (3, 3, 5).

Example 5.13. Let G = ϕ∗(TP3(−1)), where ϕ : X −→ P3 is a linear projection
from a linear subspace W ⊂ P7 with dim(W ) = 3 and W ∩X = ∅. From the Euler
sequence of TP3 we get an exact sequence

(13) 0 −→ G∨ −→ O⊕4
X −→ OX(1, 1, 1) −→ 0

From (13) we get dim Ext1(G,O(1, 1, 0)) = h1(G∨(1, 1, 0)) ≥ 18− 16 = 2 and so we
have a family {Fλ} of non-trivial extensions of G by O(1, 1, 0) with c1 = (2, 2, 1)
and c2 = (3, 3, 4) with the exact sequence

(14) 0 −→ O⊕3
X −→ Fλ −→ IC(2, 2, 1) −→ 0,

where C is a smooth curve of multidegree (3, 3, 4), and the exact sequence

(15) 0 −→ OX(1, 1, 0) −→ Fλ −→ G −→ 0.

Since h2(OX(−2,−2,−1)) = 0, from the dual of (13) we get h0(G(−1,−1, 0)) =
h1(G(−1,−1, 0)) = 0. From (15) we also get h0(Fλ(−1,−1, 0)) = 1 and h1(Fλ(−1,−1, 0)) =
0. From the sequence (14) we get h0(IC(1, 1, 1)) = 1, h1(IC(1, 1, 1)) = 1 and so
h0(OC(1, 1, 1)) = 7. It implies pa(C) = 4. Let L := ωC(−1,−1, 0)) be a line bundle
on X of degree 0. From the exact sequence

0 −→ IC(1, 1, 0) −→ OX(1, 1, 0) −→ OC(1, 1, 0) −→ 0

together with h0(IC(1, 1, 0)) = 0 from (14), we have h0(OC(1, 1, 0)) ≥ 4. By
Riemann-Roch, we have h0(L) − h1(L) = 3 and so h0(L) ≥ 1 since h1(L) =
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h0(OC(1, 1, 0)). Thus we have h0(L) = 1 and ωC(−1,−1, 0) ∼= OC . Now the
Hartshorne-Serre correspondence implies the existence of a globally generated vec-
tor bundle H fitting into the sequence

0 −→ OX −→ H −→ IC(3, 3, 2) −→ 0.

Note that h0(H(−2,−2,−1)) = h0(IC(1, 1, 1)) = h0(Fλ(−1,−1, 0)) = 1. From the
sequence (14), we also have h0(H(−3,−2,−1)) = h0(H(−2,−3,−1)) = h0(H(−2,−2,−2)) =
0 and so a non-zero section in H0(H(−2,−2,−1)) induces an exact sequence

0 −→ OX(2, 2, 1) −→ H −→ IT (1, 1, 1) −→ 0

with T a locally complete intersection 0-dimensional subscheme of codimension 2.
Since c2(H) = (3, 3, 4), so we get T = ∅. Since h1(OX(1, 1, 0)) = 0, so the extension
is trivial. Thus we have H ∼= OX(2, 2, 1)⊕OX(1, 1, 1) and IC admits the following
locally free resolution:

0 −→ OX(−1,−1,−1) −→ OX ⊕OX(1, 1, 0) −→ IC(2, 2, 1) −→ 0.

Moreover h1(F∨λ ) = 4 and so we have higher rank bundles up to r = 8 with the
same Chern classes and no trivial factor.

6. Case of c1 = (2, 2, 2)

Let E be a globally generated vector bundle of rank r ≥ 2 on X with c1(E) =
(2, 2, 2) and the associated curve C = C1 t · · · t Cs where each Ci is a smooth
and connected component. If Y is the complete intersection of two elements in
|OX(2, 2, 2)|, then it has Chern polynomial (1+2t1+2t2+2t3)2 and hence it has has
multidegree (8, 8, 8). We also have ωY ∼= OY (2, 2, 2) and so h1(OY ) = pa(Y ) = 25.
The Hartshorne-Serre condition says that ωC is spanned, i.e. pa(Ci) > 0 for all i.
If r = 2, then ωC ∼= OC and hence each Ci is an elliptic curve.

From now on we take a smooth dependency locus C ⊂ X of a globally generated
bundle E of rank r ≥ 3. The Hartshorne-Serre condition says that ωC is globally
generated and so we have pa(Ci) > 0.

Theorem 6.1. For globally generated vector bundles of higher rank on X with
c1 = (2, 2, 2) we have the following:

(1) There exists a globally generated vector bundle E of rank r with no trivial
factor if and only if 2 ≤ r ≤ 26.

(2) For each 3 ≤ r ≤ 26, there is a bundle as in Example 2.5 or Remark 2.7.
In particular a general dependency locus C is connected with multidegree
(8, 8, 8), i.e. c2(E) = 8t1t2 + 8t1t3 + 8t2t3.

(3) If r ∈ {24, 25, 26}, then each E comes from Remark 2.7.

Proof. Note that the case r = 2 is covered by OX(2, 2, 0)⊕OX(0, 0, 2). If 3 ≤ r ≤
26, the existence is given either by Example 2.5 or by Remark 2.7.

Fix r ∈ {24, 25, 26} and assume the existence of E not coming from Remark 2.7
with a dependency locus C ⊂ X of r − 1 general sections of E . Let S be a general
element of |IC(2, 2, 2)|. Since C is a smooth curve, we get that S is a smooth
surface by Diaz-Harbater form of the Bertini theorem in [13, Theorem 2.1]. The
adjunction formula gives ωS ∼= OS . Let T ⊂ S be a line of S ⊂ P7, if any. The
adjunction formula gives ωT ∼= OS(T )|T . Since deg(ωT ) = −2, we get T 2 = −2 < 0
and so S contains only finitely many lines.
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Let Y = C ∪D be the intersection of S with a general element of |IC(2, 2, 2)|.
By the Hartshorne-Serre correspondence it is sufficient to prove that h0(ωC) ≤ 22
if E does not come from Remark 2.7, i.e. D 6= ∅. Now by duality it is sufficient to
prove that h1(OC) ≤ 22 if D 6= ∅. We have h1(OC) =

∑s
i=1 h

1(OCi
). Note that D

is reduced with multidegree (8 − e1, 8 − e2, 8 − e3). Recall that h1(OY ) = 25 and
so it is sufficient to prove that h1(OC) ≤ h1(OY )− 3.

Claim : The line bundle OS(2, 2, 2) is 4-connected.
Proof of Claim : Set L := OS(1, 1, 1). Since S ∈ |OX(2, 2, 2)|, so we have

OS(2, 2, 2) · OS(2, 2, 2) = (2t1 + 2t2 + 2t3)3 = 24 > 17. Since L is very ample and
OS(2, 2, 2) = L⊗2, for every irreducible curve T ⊂ S we have

2 ≤ T · OS(2, 2, 2) ≡ 0 (mod 2),

and T · OS(2, 2, 2) = 2 if and only if T is a line contained in S. Since T · OS(2, 2, 2)
is an even integer, the pair (S,OS(2, 2, 2)) is neither a P1-bundle over a curve nor
a cubic scroll over a curve. By [10, Theorem A], the line bundle OS(2, 2, 2) is
2-connected. Since T 2 = −2 for each line T of S and deg(T · OS(2, 2, 2)) ≥ 4
for each curve T ⊂ S, which is not a line, so [10, Theorem B] and [9] give first
that OS(2, 2, 2) is 3-connected and then [10, Theorem C] gives that OS(2, 2, 2) is
4-connected. �

Write D[0] := D and D[s − 1] := D ∪ C1 ∪ · · · ∪ Cs−1 if s ≥ 2. Let E1, . . . , Et
be the connected components of D[s − 1]. Since OS(2, 2, 2) is 4-connected by the
Claim and Ei ∩ Ej = ∅ for all i ≥ j, we have deg(D[s − 1] ∩ Cs) ≥ 4t. Since
h0(OD[s−1]) = t and h2(OY ) = 0, the Mayer-Vietoris exact sequence

0 −→ OY −→ OD[s−1] ⊕OCs
−→ OD[s−1]∩Cs

−→ 0

gives h1(OY ) ≥ 4t−t+h1(OCs)+h1(OD[s−1]) ≥ 3+h1(OCs)+h1(OD[s−1]). If s = 1,

then we use that h1(OD) ≥ 0. Now assume s ≥ 2. Let A,B be projective curves
withA ⊂ B. Since IA,B is supported by a subscheme ofB, we have h2(B, IA,B) = 0.
Hence the exact sequence

0 −→ IA,B −→ OB −→ OA −→ 0

gives that the natural map H1(OB) −→ H1(OA) is surjective. With A = C1 ∪
· · · ∪ Cs−1 and B = D[s − 1], we have h1(OD[s−1]) ≥ h1(OC1∪···∪Cs−1

) and so

h1(OY ) ≥ 3 + h1(OC). �

Remark 6.2. Take a smooth C with IC(2, 2, 2) and ωC globally generate. Each
Ci has positive genus. Since Ci is not rational, we have e[i]j 6= 1 for all j = 1, 2, 3.
For fixed i ∈ {1, . . . , s}, assume for the moment e[i]j = 0 for some j ∈ {1, 2, 3}.
Just to fix the notation we assume j = 1. Then there are p ∈ P1 and C ′i ∈
|OP1×P1(e[i]3, e[i]2)| such that Ci = {p}×C ′i. Since C ′i ⊂ P1×P1 has positive genus
and {p} × P1 × P1 is not in the base locus of IC(2, 2, 2), we get e[i]2 = e[i]3 = 2.
Now assume e[i]j 6= 0 for all j. Then we get e[i]j ≥ 2 for all j.

Assume s ≥ 2 and e[1]3 = 0.
Claim 1 : e3 = 0, i.e. e[i]3 = 0 for all i > 1.
Proof of Claim 1 : Assume for instance e[2]3 > 0. Since e[1]3 = 0, there are

p ∈ P1 and C ′1 ∈ |OP1×P1(2, 2)| such that C1 = C ′1×{p}. Since e[2]3 > 0, the scheme
Z := C2 ∩P1×P1×{p} is non-empty (if 0-dimensional, it has degree e[2]3). Write
Z = Z ′×{p}. Since C1∩C2 = ∅ and Z ′ 6= ∅, we have h0(P1×P1, IZ′∪C′1,P×P1(2, 2)) =

0. Hence P1 × P1 × {p} is in the base locus of IC(2, 2, 2), a contradiction. �
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By Claim 1, if there are i, j such that 1 ≤ i ≤ s and 1 ≤ j ≤ 3 with e[i]j = 0,
then we have ej = 0 and e[i]k = 2 for all i and k 6= j. If e[i]j 6= 0 for all i, j, then
we have e[i]j ≥ 2 for all i, j.

Claim 2 : Assume e[i]j 6= 0 for all i, j. Then s ≤ 3.
Proof of Claim 2 : Since e[i]j ≥ 2 for all i, j by Claim 1 and Y has multidegree

(8, 8, 8), so we have s ≤ 4 and if s = 4, then C = Y . This is not possible, because
h0(OY ) = 1 (see Remark 2.7). �

Claim 3 : We have s ≤ 3.
Proof of Claim 3 : By Claim 2 we may assume e[i]j = 0 for some i, j, say

e[1]3 = 0. By Claim 1 we have e[i]3 = 0 and e[i]1 = e[i]2 = 2 for all i and there are
oi ∈ P1 and C ′i ∈ |OP1×P1(2, 2)| such that Ci = C ′i × {oi}. Since Y has multidegree
(8, 8, 8), we get s ≤ 4. Assume s = 4 and write Y = C ∪D. We get that D is the
disjoint union of 8 lines with multidegree (0, 0, 1), say D = D1 ∪ · · · ∪ D8. Since
IC(2, 2, 2) is globally generated, we get deg(Di ∩ C) ≤ 2 for all i. Hence we have
pa(Y ) ≤ −3 + 8, a contradiction. �

Example 6.3. Let Z ⊂ P1 × P1 be any 0-dimensional subscheme of degree 2 and
set T := Z×P1. Since ωT ∼= OT (−2,−2,−2), the Hartshorne-Serre correspondence
gives a unique bundle E fitting into an exact sequence

(16) 0 −→ OX(1, 1, 1) −→ E −→ IT (1, 1, 1) −→ 0.

Any such a bundle E is globally generated if and only if Z is the complete intersec-
tion of two elements of |OP1×P1(1, 1)|, i.e. Z is not contained in one of the rulings
of P1 × P1.

Proposition 6.4. We have c2(E) = (4, 4, 0) if and only if we have either

(i) r = 2 and 0 −→ OX(2, 2, 0) −→ E −→ OX(0, 0, 2) −→ 0 , or
(ii) r = 3 and E ∼= OX(2, 2, 0)⊕OX(0, 0, 1)⊕2.

Proof. The “ if ” part is obvious, because (1+ t3)2 = 1+2t3 and (1+2t1 +2t2)(1+
2t3) = 1 + 2t1 + 2t2 + 2t3 + 4t1t3 + 4t2t3. Now assume (e1, e2, e3) = (4, 4, 0). Since
e[i]3 = 0 for all i, Remark 6.2 gives s = 2 and e[i]j = 2 for all i, j ∈ {1, 2}. Hence
each connected component of C is an elliptic curve and so ωC ∼= OC and c3(E) = 0.
Since s = 2, Remark 2.3 gives r ∈ {2, 3}.

First assume r = 2. Note that 2 = h0(OX(0, 0, 2))−1 = h0(OC) = h0(OC(0, 0, 2))
and so we have h0(IC(0, 0, 2)) > 0. Since s ≥ 2 and Ci 6= P1, we have h0(IC(0, 0, 1)) =
0. Since h0(IC(−1, 0, 2)) = h0(IC(0,−1, 2)) = 0 and c2(E) = 4t2t3 + 4t1t3, we get
that E fits in an exact sequence

0 −→ OX(2, 2, 0) −→ E −→ IT (0, 0, 2) −→ 0

with either T = ∅ or T a locally complete intersection curve with multidegree
(0, 0, 0). We get T = ∅ and hence E fits in the sequence in (i).

Now assume r = 3. As in the case r = 2 we get a non-zero map h : OX(2, 2, 0) −→
E with torsion-free cokernel. Let G be the quotient of E by a general map OX −→ E
with u : E −→ G the quotient map. By the case of r = 2, the map u ◦ h :
OX(2, 2, 0) −→ G has locally free cokernel and so F := coker(h) is locally free. F
is a spanned bundle of rank 2 with no trivial factor and c1(F) = (0, 0, 2). Thus
we have F ∼= OX(0, 0, 1) ⊕ OX(0, 0, 1). Since h1(OX(2, 2,−1)) = 0, we get E ∼=
OX(2, 2, 0)⊕OX(0, 0, 1)⊕2. �
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Proposition 6.5. Let E be a globally generated vector bundle of rank 2 on X with
c1 = (2, 2, 2) and c2 = (2, 2, 4).

(i) Its associated curve C is connected if and only if E is a spanned flat limit
of the family of Ulrich bundles in [11, Theorem 6.7].

(ii) Non-Ulrich bundles E exist and they are all as in Example 6.3.

Proof. Since the “ if ” part is obvious by the description in [11, Theorem 6.7], we
only need to prove the “ only if ” part. Since C is connected, so C ⊂ P7 is a smooth
elliptic curve of degree 8.

First assume that C is linearly normal. The homogeneous ideal of C in P7 is
generated by quadrics and so IC,P7(2) is globally generated. Thus IC(2, 2, 2) is also
globally generated and any such a curve gives a globally generated bundle. Since
h1(IC,P7(t)) = 0 for all t, we also get h1(IC(t, t, t)) = 0 for all t ∈ Z. Since c1(E) =
(2, 2, 2), we have E∨ ∼= E(−2,−2,−2) and so the Serre duality gives h2(E(t, t, t)) = 0
for all t ∈ Z. Thus E is ACM in this case and we have the description of such a
bundle in [11, Theorem 6.7].

Now assume that C ⊂ P7 is not linearly normal. Since C has multidegree (2, 2, 4)
and any such an embedding C ⊂ P1 × P1 × P1 is induced by three base point free
line bundles on C, two of degree 2 and the other one of degree 4, so we get that C
is a flat limit of a family of linearly normal elliptic curves {Cλ}λ∈Λ with Cλ ⊂ X.
The Hartshorne-Serre correspondence gives that E is the limit of a family of Eλ
with each Eλ Ulrich and in the family [11, Theorem 6.7]. Since C is not linearly
normal, we have h0(IC(1, 1, 1)) > 0. Since s = 1 and ei > 0 for all i, we also have
h0(IC(0, 1, 1)) = h0(IC(1, 0, 1)) = h0(IC(1, 1, 0)) = 0. Thus E fits into an exact
sequence (16) with either T = ∅ or a locally complete intersection curve. Since
(t1 + t2 + t3)2 = 2t1t2 + 2t1t3 + 2t2t3, so T has multidegree (0, 0, 2), i.e. there is a
0-dimensional subscheme Z ⊂ P1 × P1 of degree 2 such that T = Z × P1. We get
that E is as in Example 6.3. �

Remark 6.6. An example of rank two globally generated vector bundle with c1 =
(2, 2, 2) and c2 = (2, 3, 3) is given as the first type of Ulrich bundles in [11, Theorem
6.7].

Proposition 6.7. Let E be a globally generated vector bundle of rank r ≥ 2 on X
with c1 = (2, 2, 2). Then we have c2 = (0, 2, 2) if and only if E ∼= OX(0, 0, 1) ⊕
OX(2, 2, 1).

Proof. Since t3(2t1 + 2t2 + t3) = 2t1t3 + 2t2t3, the “ if ” part is obvious. Take
a globally generated bundle E with multidegree (0, 2, 2) and let C be any smooth
curve which is a zero-locus of a general section of E . By Remark 6.2 we have
s = 1, C is an elliptic curve and there are p ∈ P1 and C ′ ∈ |OP1×P1(2, 2)| such that
C = {p}×C ′. Since ωC ∼= OC and s = 1, so we have r = 2 (see Remark 2.3). Since
h0(OC(0, 0, 1)) = h0(OC) = 1 < 2 = h0(OX(2)), we get H0(E(−2,−2,−1)) 6= 0.
Since h0(IC(0, 0, 0)) = h0(IC(−1, 0, 1)) = h0(IC(0,−1, 1)) = 0, we get that E is an
extension of OX(0, 0, 1) by OX(2, 2, 1). Since h1(OX(2, 2, 0)) = 0, so the extension
is trivial. �

Remark 6.8. Since h1(OX(0, 0,−2)) = 1, so up to isomorphism there is a unique
non-trivial extension F of OX(1, 1, 2) by OX(1, 1, 0) and we have F ∼= OX(1, 1, 1)⊕
OX(1, 1, 1).
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Remark 6.9. Let W ⊂ P7 be a 3-dimensional linear subspace such that W∩X = ∅.
Let `W : P7 \W −→ P3 be the linear projection from W and set ` := `W |X . For a

null-correlation bundle NP3(1) of P3 twisted by 1, set F := `∗(NP3(1)). A general
zero-locus T of a section of NP3(1) is a disjoint union of two lines. Thus F is
a globally generated bundle on X with c1 = (2, 2, 2), multidegree (4, 4, 4) and
s = 2. Let C be a general zero-locus of a section of F . We have h0(OC(2, 2, 2)) =
24 = h0(OX(2, 2, 2)) − 3. Since h0(P3, IT (2)) = 4, we get h0(IC(2)) ≥ 4 and so
h1(F) > 0.

Lemma 6.10. Let T ⊂ X be an elliptic curve of deg(T ) = 6. Then the linear span
〈T 〉 ⊂ P7 has dimension 5 and T = X ∩ 〈T 〉 as schemes.

Proof. We have dim(〈T 〉) ≤ 5 and equality holds if and only if C is linearly normal in
〈T 〉. Since P1×P1 contains no elliptic curve of degree 6, T has multidegree (2, 2, 2).
Assume for the moment the existence of an irreducible surface U ⊆ X ∩ 〈T 〉 with
C ⊂ U and say U ∈ |OX(a1, a2, a3)|. Since no component of the multidegree of T
has degree 0, we have ai > 0 for all i. Thus we have dim(〈T 〉) ≥ dim(〈U〉) ≥ 6, a
contradiction.

Therefore each irreducible component of 〈T 〉 ∩X has dimension at most 1. As-
sume for the moment dim(〈T 〉) ≤ 4. Fix a general p ∈ X \ T and let V ⊂ P7 be
a general 5-dimensional linear space containing T ∪ {p}. Since deg(T ) = deg(X),
[14, Theorem 2.2.5] gives a contradiction. Now assume dim(〈T 〉) = 5. Since each
irreducible component of 〈T 〉 ∩X has dimension at most 1 and deg(T ) = deg(X),
we get T = X ∩ 〈T 〉 as schemes. �

Proposition 6.11. Let E be a globally generated vector bundle of rank r ≥ 2 on
X with c1 = (2, 2, 2), c2 = (2, 2, 2) and no trivial factor. Then we have r = 2 and
E ∼= OX(1, 1, 1)⊕2.

Proof. Since deg(C) < 8, Remark 6.2 gives s = 1 and that C is a smooth ellip-
tic curve. Since ωC ∼= OC , s = 1 and E has no trivial factor, we get r = 2. Since
deg(C) = 6, we have h0(IC(1, 1, 1)) ≥ 2. Since h1(OX(−1,−1,−1)) = 0, a non-zero
section of E induces a non-zero map f : OX(1, 1, 1) −→ E . Since no entry of the mul-
tidegree of C is zero, we have h0(IC(0, 1, 1)) = h0(IC(1, 0, 1)) = h0(IC(1, 1, 0)) = 0.
Hence f has torsion-free cokernel, i.e. coker(f) ∼= IT (1, 1, 1) with either T = ∅ or
T a locally complete intersection curve. Since c2(E) = 2t1t2 + 2t2t3 + 2t1t3, we get
T = ∅ and so E ∼= OX(1, 1, 1)⊕2. �

Proposition 6.12. Let E be a bundle of rank 2 on X with c1 = (2, 2, 2) and the
associated curve C has two connected components with deg(Ci) = 6 for each i. Then
E is globally generated if and only if it arises as in Remark 6.9, i.e. E ∼= `∗(NP3(1))
for some 3-dimensional linear subspace with W ∩ X = ∅ and a null-correlation
bundle NP3(1) on P3. In particular we have h0(E) = 5 and h1(E) = 1.

Proof. Since the “ if ” part is obvious, it is sufficient to prove the other implication.
Call C = C1∪C2 ⊂ X be the zero-locus of a general section of E . Setting Mi := 〈Ci〉
for i = 1, 2, we have Mi ∩X = Ci as schemes by Lemma 6.10. Set W := M1 ∩M2.
Since dim(Mi) = 5 for each i, so the Grassmann formula gives dim(W ) ≥ 3. Note
that we have M1 ∩ M2 ∩ X = ∅ since C1 ∩ C2 = ∅. Let `W : P7 \ W −→ P3

be the linear projection from W . Set ` := `W |X , Ti := `(Ci) and T := `(C). T
is the disjoint union of two lines. Call NP3(1) the twisted null-correlation bundle
associated to T . We have IC(2, 2, 2) = `∗(IT,P3(2)). Since E is the unique bundle
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induced by C using the Hartshorne-Serre correspondence, we have E ∼= `∗(NP3(1)).
The last assertion follows from our proof, since we proved that any zero-locus C is
the pull-back of a (obviously unique) disjoint union T ⊂ P3 of two lines and hence
h0(IC(2, 2, 2)) = h0(P3, IT (2)) = 4. �

References

[1] C. Anghel and N. Manolache, Globally generated vector bundles on Pn with c1 = 3, Math.
Nachr. 286 (2013), no. 14-15, 1407–1423.

[2] E. Arrondo, A home-made Hartshorne-Serre correspondence, Rev. Mat. Complut. 20 (2007),

no. 2, 423–443.
[3] E. Ballico, S. Huh, and F. Malaspina, On higher rank globally generated vector bundles over a

smooth quadric threefold, preprint, arXiv:1211.2593v2 [math.AG] (2012), to appear in Proc.

Edin. Math. Soc.
[4] , Globally generated vector bundles of rank 2 on a smooth quadric threefold, J. Pure

Appl. Algebra 218 (2014), no. 2, 197–207.
[5] , Globally generated vector bundles on complete intersection Calabi-Yau threefolds,

preprint, arXiv:1411.6183v1 [math.AG] (2014).

[6] , Globally generated vector bundles on a smooth quadric surface, Sci. China Math. 58
(2015), no. 3, 633–653.

[7] , Globally generated vector bundles on the Segre threefold with picard number two,

preprint, arXiv:1501.05600v1 [math.AG] (2015), to appear in Math. Nachr.
[8] M. C. Beltrametti, S. Di Rocco, and A. Lanteri, On higher order embeddings and n-

connectedness, Math. Nachr. 201 (1999), 37–51.

[9] M. C. Beltrametti and A. Lanteri, Erratum to: “On the 2- and the 3-connectedness of ample
divisors on a surface”, Manuscripta Math. 59 (1987), no. 1, 130.

[10] , On the 2- and the 3-connectedness of ample divisors on a surface, Manuscripta
Math. 58 (1987), no. 1-2, 109–128.

[11] G. Casnati, D. Faenzi, and F. Malaspina, Rank two acm bundles on the del pezzo threefold

with picard number 3, preprint, arXiv:1306.6008v1 [math.AG] (2013), to appear on J. of
Algebra.

[12] , Moduli spaces of rank two acm bundles on the segre product of three projective lines,

preprint, arXiv:1404.1188v2 [math.AG] (2014).
[13] S. Diaz and D. Harbater, Strong Bertini theorems, Trans. Amer. Math. Soc. 324 (1991),

no. 1, 73–86.

[14] H. Flenner, L. O’Carroll, and W. Vogel, Joins and intersections, Springer Monographs in
Mathematics, Springer-Verlag, Berlin, 1999.

[15] R. Hartshorne, Stable reflexive sheaves, Math. Ann. 254 (1980), no. 2, 121–176.

[16] P. Le Barz, Sur les espaces multisécants aux courbes algébriques, Manuscripta Math. 119
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