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1 Introduction8

These Supplementary Materials contain further details on the three case studies, the deriva-9

tion of the main equation of the air2water model, the derivation of some analytical solutions,10

and the description of the Particle Swarm Optimization algorithm. The results obtained with11

the other versions of air2water different from the original 8-parameter formulation are shown12

in Figure 2, and the values of the model parameters are reported in Table 1. Moreover, Fig-13

ure 3 shows the performance of the equilibrium approximation for the 8-parameter model.14

Finally, the performances of the logistic function model, one of the most popular nonlinear15

regression model, are reported in Figure 5 and Table 3.16

2 Case Studies17

The location of the three rivers used as cases studies is shown in Figure 1. Further details18

are listed below.19

1. River Mentue at Yvonand (MAH-2369). A small river on the Swiss plateau unaffected20

by strong anthropic thermal alterations. The altitude of the catchment varies from 92721

m a.s.l. to 445 m a.s.l, and the length of the main channel is about 26 km with a22

mean slope of 1.8%. The river flows through a sparsely inhabited area mainly devoted23

to agriculture. Temperature and discharge data are available for a period of 11 years24

(2002–2012). Further information in Iorgulescu et al. (2007).25
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Figure 1: Map of Switzerland with the location of the stations considered in the analysis.

2. River Rhône at Sion (SIO-2011). A river affected by strong hydro- and thermo-peaking,26

and in general by the presence of cold waters that naturally leads to low summer27

water temperatures. The river lies at the bottom of a populated alpine valley, and its28

catchment is covered by glaciers for about 18%. Starting from the beginning of the29

20th century (with a rapid acceleration between the ’50s and the ’70s) its hydrological30

regime has been altered by the construction of a large high-head hydropower storage31

system (Hingray et al., 2010). A 30-year long record of temperature and discharge data32

is available, which covers the period 1984–2013.33

3. River Dischmabach at Davos (DAV-2327). A river at high altitude with a significant34

influence of snow melting. The altitude of the catchment varies from 3146 m a.s.l. to35

1668 m a.s.l., with a mean altitude of 2372 m a.s.l., and is covered by glaciers for about36

2%. The main channel has a mean slope of 13% and flows for about 10 km through37

a glacial valley that is uninhabited and used for mountain pastures. Temperature and38

discharge measurements cover the 10-year period 2003–2012. Further information in39

Comola et al. (2015).40

3 Net Heat Flux at the Air-Water Interface41

The net heat flux per unit surface H [W m−2] at the air-water interface (defined as positive42

when directed towards the river) can be written as follows43

H = Hs + Ha + Hw + Hl + Hc + Hp, (1)

where Hs is the net short-wave radiative heat flux due to solar radiation actually absorbed44

by the water volume, Ha is the net long-wave radiation emitted from the atmosphere towards45

the river, Hw is the long-wave radiation emitted from the water, Hl is the latent heat flux46

due to evaporation/condensation, Hc is the sensible heat flux due to convection, and Hp is47

the heat flux due to incoming precipitation. In equation (1) we do not explicitly include48
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water-sediments fluxes, as it is inherently accounted for in the formulation of the model by49

assuming that the volume of the river involved in the heat budget is in principle not limited50

to the water volume, but may include a portion of the saturated sediments.51

The solar radiation approximately follows a sinusoidal annual cycle. Considering the52

short-wave reflectivity rS (albedo) of the river surface, which is a function of the solar zenith53

angle, the net solar radiation Hs can be approximated as54

Hs(t) = (1− rS)

{
s0 + s1 cos

[
2π

(
t

ty
− s2

)]}
, (2)

where t is time, ty is the duration of a year in the units of time considered in the analysis,55

and s0, s1, s2 are coefficients that primarily depend on the latitude and the shading effects56

of local topography and vegetation. The effect of cloud cover is not explicitly considered in57

the present analysis.58

Incoming and outgoing long-wave radiation is determined by the Stefan-Boltzmann equa-59

tion, yielding to the following formulations60

Ha(Ta, t) = (1− ra) εa σ (TK + Ta)
4 , (3)

61

Hw(Tw) = −εw σ (TK + Tw)4 , (4)

where ra is the reflectivity of the water for long-wave radiation, generally assumed to have62

a constant value (Henderson-Sellers, 1986), εa and εw are the emissivities of atmosphere63

and water, σ is the Stefan–Boltzmann constant (5.67 · 10−8 W m−2 K−4), TK = 273.15 K, and64

Ta and Tw are the temperatures of air and water expressed in Celsius [◦C]. Water surface65

behaves almost like a black body, so the emissivity εw is essentially constant and close to66

unity. Differently, εa is more variable and depends on a number of factors including air67

temperature, humidity and cloud cover (Imboden and Wüest, 1995).68

The sensible (Hc) and latent (Hl) heat fluxes can be calculated through the following69

bulk semi-empirical equations (Henderson-Sellers, 1986)70

Hc(Ta, Tw, t) = αc (Ta − Tw) , (5)
71

Hl(Ta, Tw, t) = αl (ea − ew) , (6)

where αc [W m−2 K−1] and αl [W m−2 hPa−1] are transfer functions primarily depending on72

wind speed, stability of the lower atmosphere, and other thermophysical parameters, ea is73

the vapor pressure of the atmosphere, and ew is the water vapor saturation pressure at the74

temperature of water (both in [hPa]). The ratio αc/αe is known as Bowen coefficient and is75

generally taken constant (≈ 0.61 hPa K−1) (Imboden and Wüest, 1995). The saturated water76

pressure ew can be calculated through several empirical formulas essentially depending on77

temperature, as for example the following exponential law78

ew = a exp

(
b Tw
c+ Tw

)
, (7)

where a=6.112 hPa, b=17.67 and c=243.5 ◦C (Bolton, 1980).79
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Assuming air and water temperature as the only independent variables of all flux com-80

ponents, equation (1) can be suitably linearised using Taylor series expansion around the81

long-term averaged values of these variables (T a and Tw, respectively), so that H can be82

rewritten as in equation (2) in the manuscript, where:83

H|Ta,Tw
= Hs + Ha|Ta

+ Hw|Tw
+ Hl|Ta,Tw

+ Hc|Ta,Tw
+Hp , (8)

84

∂H

∂Ta

∣∣∣∣∣
Ta,Tw

=
∂Ha

∂Ta

∣∣∣∣∣
Ta

+
∂Hl

∂Ta

∣∣∣∣∣
Ta,Tw

+
∂Hc

∂Ta

∣∣∣∣∣
Ta,Tw

, (9)

85

∂H

∂Tw

∣∣∣∣∣
Ta,Tw

=
∂Hw

∂Tw

∣∣∣∣∣
Ta

+
∂Hl

∂Tw

∣∣∣∣∣
Ta,Tw

+
∂Hc

∂Tw

∣∣∣∣∣
Ta,Tw

. (10)

Then, we can rewrite equation (1) as86

H = ρ cp
(
ĥ0 + ĥaTa − ĥwTw

)
, (11)

a form that is similar to equation (3) of the main text, but where the coefficients87

ĥ0 =
1

ρ cp

H|Ta,Tw
− ∂H

∂Ta

∣∣∣∣∣
Ta,Tw

T a −
∂H

∂Tw

∣∣∣∣∣
Ta,Tw

Tw

 , (12)

88

ĥa =
1

ρ cp

∂H

∂Ta

∣∣∣∣∣
Ta,Tw

, ĥw = − 1

ρ cp

∂H

∂Tw

∣∣∣∣∣
Ta,Tw

, (13)

depend on time.89

As a first approximation, we neglect the dependence of ĥa and ĥw on t, but retain it in90

ĥ0 by assuming a sinusoidal annual variation91

ĥ0 = h00 + h01 cos

[
2 π

(
t

ty
− h02

)]
, (14)

analogously to the solar forcing (2). This kind of dependence was proven to be sufficient to92

reproduce the thermal dynamics in lakes (Piccolroaz et al., 2013).93

However, since both Ta and Tw have an approximately sinusoidal behavior during the94

year, the net heat flux (11) is composed by three sinusoidal terms with the same periodicity,95

which give rise to a single term with amplitude and phase determined by the combination of96

the individual terms. In fact, given A = a0 + a1 cos(t− a2) and B = b0 + b1 cos(t− b2), it is97

straightforward to derive that A+B = c0 + c1 cos(t− c2), with98

c0 = a0 + b0 , c1 =
√
a21 + b21 + 2a1b1 cos (a2 − b2) ,

c2 = arctan

[
a1 sin(a2) + b1 sin(b2)

a1 cos(a2) + b1 cos(b2)

]
. (15)

As discussed in Piccolroaz et al. (2013), this potential over-parameterization can be99

avoided by removing the temporal dependence in (14) and relying on the proper combi-100

nation of the parameters ĥa and ĥw multiplying Ta and Tw, respectively. The introduction101

of these assumptions leads to the formulation used in the model,102

H = ρ cp (h0 + haTa − hwTw) , (16)

where the new parameters h0, ha and hw are independent of time.103
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4 Analytical Solutions in Simple Cases104

4.1 Sinusoidal Forcing105

The model admits analytical solution in some idealized cases, as was also discussed by Toffolon106

et al. (2014). As a first approximation and only for the purposes to derive an explicit solution,107

we assume that the discharge (hence, θ and δ) is constant and that air temperature can be108

approximated by a sinusoidal forcing,109

Ta = Ta1 + Ta2 cos

[
2π

(
t

ty
− ϕa

)]
, (17)

where Ta1 is the annual average, Ta2 the amplitude of its variation, and ϕa the phase of its110

maximum with respect to the first day of the year. Thus, we can rewrite the 8-parameter111

version as follows:112

δ
dTw
dt

= A1 + A2 cos

[
2π

(
t

ty
− ϕA

)]
− A3Tw , (18)

where the right hand side represents the combined sinusoidal forcing term. The coefficients113

can be obtained by means of basic trigonometry:114

A1 = a1 + a2 Ta1 + a5 θ ,

A2 =
√

(a2Ta2)
2 + 2a2Ta2a6θ cos [2π (ϕa − a7)] + (a6θ)

2 ,

ϕA =
1

2π
arctan

[
a2Ta2 sin (2πϕa) + a6θ sin (2πa7)

a2Ta2 cos (2πϕa) + a6θ cos (2πa7)

]
,

A3 = a3 + a8 θ . (19)

We note that the coefficients of equation (18) for the other versions of the model can be115

easily derived by considering suitable values of the parameters, according to Table 1 in the116

manuscript. In particular, the 5-parameter version is obtained by imposing θ = 1, a5 = 0117

and a8 = 0, while the 4-parameter version with a5 = 0, a6 = 0 and a8 = 0. The terms (19)118

for the 3- and 7-parameter versions are identical to the 4- and 8-parameter ones.119

Equation (18) with constant coefficients admits a solution in closed form:120

Tw = c0 exp
(
− t
τ

)
+ T̃w , (20)

where τ = δ/A3 is the time scale of the process. The first term on the right hand side of (20)121

describes the adaptation of the initial condition to the forcing (c0 is a constant that can be122

calculated using the water temperature value at t = 0), while the second term represents the123

regime solution,124

T̃w = Tw1 + Tw2 cos

[
2π

(
t

ty
− ϕw

)]
, (21)

where125

Tw1 =
A1

A3

,
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Tw2 =
A2

A3

√
1 + (2πτ/ty)

2
,

ϕw = ϕA +
1

2π
arctan

(
2πτ

ty

)
. (22)

It is immediate to recognize that A3 is the main factor controlling the time scale of the126

process. If A3 is large enough, τ becomes small (we can safely assume δ ∼ O(1)) so that the127

ratio τ/ty � 1. Under this assumption, the coefficients (22) can be cast in a simpler form as128

Tw2 ' A2/A3 and ϕw ' ϕA. Interestingly, this latter case represents the so-called equilibrium129

solution Twe (e.g., Caissie et al., 2005), which is obtained by neglecting the temporal derivative130

in equation (18), thus leading to131

Twe =
A1

A3

+
A2

A3

cos

[
2π

(
t

ty
− ϕA

)]
. (23)

4.2 Piecewise Forcing132

We explicitly examine the situation where an abrupt change occurs in the forcing term.133

Focusing a short period in the analysis, we can rewrite the differential equation using constant134

coefficients135

(δ + ∆δ)
dTw
dt

= A0 + ∆A− A3Tw , (24)

where A0 is the net heat flux at t = 0, ∆A is the change for t > 0, and ∆δ a possible variation136

of the thermal inertia (e.g., due to variation of discharge and hence flow depth). As initial137

condition for t = 0, we assume the equilibrium temperature Tw0 = A0/A3. The solution of138

this simple differential problem leads to139

Tw = Tw0 +
∆A

A3

[
1− exp

(
− A3t

δ + ∆δ

)]
. (25)

From this solution it is clear that we have to compare the adaptation time τ ′ = (δ+ ∆δ)/A3140

with the time window we are using to describe the temporal variation of water temperature.141

For instance, if we are considering daily averaged Tw and τ ′ is shorter than one day, the delay142

in the adaptation to the external conditions can be neglected.143

4.3 Instantaneous Adaptation144

Keeping the same assumptions as in section 4.1 but considering a generic period of the145

oscillations of the overall forcing term, we can rewrite equation (18) in dimensionless form as146

ε
dT ∗w
dt∗

= b∗1 + b∗2 cos (t∗)− T ∗w , (26)

where ε = ω τ , T ∗w = Tw/∆Tw, with ∆Tw a suitable scale for temperature difference, t∗ =147

ω t − 2π ϕa, with ω the generic angular frequency of the forcing (whereby we can consider148

annual variation, i.e. ω = 2π/ty, or much shorter fluctuations), b1 = A1/(A3 ∆Tw), and149
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b2 = A2/(A3 ∆Tw). If ε � 1 (i.e., short τ), the solution can be obtained by means of a150

perturbation method. By introducing the expansion151

T ∗w = T ∗w0 + ε T ∗w1 , (27)

the governing equation can be split into the base problem at O(ε0),152

T ∗w0 = b∗1 + b∗2 cos (t∗) , (28)

which corresponds to the equilibrium solution (23), and the perturbed equation at O(ε),153

T ∗w1 = −dT
∗
w0

dt∗
= b∗2 sin (t∗) . (29)

We can now calculate the distance of solution (27), T ∗w, from its approximation obtained154

assuming instantaneous equilibrium, T ∗w0. The root mean squared difference between the two155

is given by156

E∗ =

√
(T ∗w − T ∗w0)

2 = ε
√
T ∗w1

2 =
ε b2√

2
, (30)

where the overbar denotes the average over the dimensionless period 2π of the fluctuations.157

Returning to dimensional variables and after some substitutions, it is possible to calculate158

the expected standard deviation of Tw with respect to the equilibrium solution,159

E = E∗∆Tw =
δ√
2

ω A2

A2
3

, (31)

which shows that the equilibrium solution is acceptable if the ratio (ω A2)/A
2
3 is much smaller160

than E. This condition can be easily satisfied if we consider annual variations (ω ' 0.017161

day−1). For variations occurring on a shorter time scale, a condition has to be posed on the162

parameter ratio to maintain E lower than a threshold E0:163

A2

A2
3

<
E0

√
2

ω δ
, (32)

We can test the relationship (32) in the three examined cases, referring for simplicity to the164

3-parameter version (for which A2 = a2 Ta2 and A3 = a3). Considering, for instance, weekly165

fluctuations (ω ' 0.9 day−1), assuming δ ' 1 and Ta2 ' 3 K (corresponding to 6 K of166

variation of daily averaged water temperature during the week), and accepting errors ∼0.3167

K, we obtain A2/A
2
3 < 0.5 K day. The value of the ratio in the three cases is 3.6, 0.40, and168

0.53, respectively, suggesting that the equilibrium solution can be adopted in case 2, and169

with a lower accuracy in case 3, while it will likely introduce relevant errors in case 1 (see170

Table 1 in the main text). Nonetheless, it should be noted that the estimate (31) does not171

account for the difference from the measured water temperature, which can be larger than172

the difference between the complete solution and its equilibrium approximation.173
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5 Particle Swarm Optimization Algorithm174

The Particle Swarm Optimization (PSO) algorithm is an evolutionary and self-adaptive175

search optimization technique inspired by animal social behavior. The space of parame-176

ters is iteratively explored by a number N of particles. The position of the particles in the177

space of parameters identifies a set of parameters. The i-th particle moves within the param-178

eters space by superimposition of 3 velocity components: a spatially constant drift vk
i , two179

random jumps whose amplitude depends on the distance of the particle from its best (pk
best,i,180

with p standing for partial) and from the global (community) best (gk
best, with g standing181

for global). Both bests are updated as the particles explore the domain finding better solu-182

tions. At each iteration k the position of the particles is updated according to the following183

expression:184

vk
i = w vk−1

i + c1 r
k
1 (pk

best,i − xk
i ) + c2 r

k
2 (gk

best − xk
i ) ,

xk
i = xk−1

i + vk
i , (33)

where w is an inertia weight, which reduces the drift with the number of iterations, c1 and185

c2 are constants known as cognitive and social learning factors, respectively, and rt1 and rt2186

are uniformly distributed random numbers bounded between 0 and 1. Note that x, v, p,187

g, r1 and r2 are vectors with dimension equal to the number of parameters. Following the188

indications provided in the work of Robinson and Rahmat-Samii (2004), c1 = c2 = 2, and189

w has been set to vary linearly from wini = 0.9 at t = 1 to wfin = 0.4 at t = M , where190

M is the total number of iterations. Finally, when a particle hits the boundary wall of the191

search space, the velocity component normal to the boundary is set to zero (absorbing wall192

boundary conditions).193

6 Comparison among Models194

Figure 2 illustrates the different performances of the various versions of the model (the195

corresponding values of the parameters are reported in Table 1).196

As discussed in section 4.3 and in the main text, by neglecting the time derivative of the197

differential model the instantaneous equilibrium water temperature Tw,eq can be derived:198

Tw,eq =
1

(a3 + θ a8)

{
a1 + a2Ta + θ

[
a5 + a6 cos

(
2π

(
t

ty
− a7

))]}
. (34)

The parameter a4 is not present in equation (34), thus making the 8- and 4-parameter199

versions identical to the 7- and 3-parameter ones. Moreover, by rescaling the parameters by200

a3 and defining the new parameters ei (i from 1 to 6, see the main text), the total number of201

degrees of freedom of the equilibrium temperature is reduced of one unit with respect to the202

differential versions of the model. Figure 4 shows the performances of the three equilibrium203

relationships defined in the main text, and Table 2 reports the values of the parameters.204

Moreover, Figure 3 shows the difference between the 8-parameter version of the model and205

its equilibrium version.206
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Table 1: Values of the Calibrated Parameters.
a1 a2 a3 a4 a5 a6 a7 a8

[oC d−1] [d−1] [d−1] [-] [oC d−1] [oC d−1] [-] [d−1]
Case 1 (natural)

8-par 0.889 0.649 0.765 0.129 2.318 1.536 0.603 0.241
7-par 0.912 0.623 0.741 - 1.764 1.189 0.607 0.182
5-par 3.149 0.708 1.059 - - 1.632 0.585 -
4-par 0.935 0.504 0.620 0.212 - - - -
3-par 1.002 0.549 0.674 - - - - -

Case 2 (regulated)
8-par 0.346 0.219 0.178 0.718 7.773 2.217 0.529 1.280
7-par 1.165 0.192 0.292 - 3.631 1.224 0.520 0.665
5-par 9.172 0.351 1.834 - - 1.303 0.485 -
4-par 9.303 0.531 2.110 -0.251 - - - -
3-par 8.072 0.455 1.827 - - - - -

Case 3 (snow-fed)
8-par 4.794 0.629 1.410 0.270 0.000 4.912 0.582 0.637
7-par 3.536 0.455 1.073 - 0.000 3.080 0.587 0.384
5-par 7.486 0.651 2.768 - - 7.044 0.607 -
4-par 5.917 0.929 2.285 -0.147 - - - -
3-par 5.803 0.923 2.277 - - - - -

Table 2: Values of the Parameters for Equilibrium Water Temperature Relationships.
e1 e2 e3 e4 e5 e6

[oC] [-] [-] [-] [oC] [oC]
Case 1 (natural)

6-par 1.20 0.84 0.60 0.44 4.30 2.96
4-par 3.50 0.62 0.58 - - 2.02
2-par 1.64 0.80 - - - -
Case 2 (regulated)
6-par 2.70 0.90 0.53 4.64 28.20 7.95
4-par 5.04 0.19 0.49 - - 0.74
2-par 4.43 0.25 - - - -
Case 3 (snow-fed)
6-par 3.61 0.44 0.58 0.44 -0.36 3.68
4-par 3.25 0.25 0.59 - - -1.64
2-par 2.60 0.40 - - - -
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Figure 2: Mean year of the variables for the three case studies (columns): (a-l) measured
air temperature (Ta), observed (Tw,obs) and simulated (Tw,sim) water temperature; (m-o)
measured discharge (Q). The different versions of the model are (from top to bottom): (a-c)
3-parameter, (d-f) 4-parameter, (g-i) 5-parameter, (j-l) 7-parameter.10
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Figure 5: Water temperature (Tw,sim) simulated using the logistic regression, equation (35),
together with observed water temperature (Tw,obs) and air temperature (Ta).

Table 3: Values of the Parameters for Logistic Regression.
Case µ α β γ

[oC] [oC] [oC] [oC−1]
1 (natural) 0.00 21.2 11.3 0.183

2 (regulated) 2.67 9.00 5.36 0.280
3 (snow-fed) 0.00 10.4 6.62 0.189

The air2stream model has also been compared against the most common nonlinear re-207

gression model based on the logistic function (Mohseni et al., 1998)208

Tw = µ+
α− µ

1 + exp
[
γ
(
β − T̂a

)] , (35)

which correlates water temperature to air temperature. When calculating Tw at day i, T̂a in209

equation (35) has been estimated as the mean between the daily averaged air temperatures210

at day i and i − 1. This has been proven to provide better results with respect to using Ta211

either at day i or at day i − 1. The performance of the regression model (35) are shown in212

Figure 5, and the value of the parameters are reported in Table 3.213

It is worth noting that the 4-parameter equilibrium relationship, derived from the 5-214

parameter version of the differential model, has the same degree of freedom as the logistic215

regression. This allows for a direct comparison in terms of performances. Moreover, the216

2-parameter equilibrium relationship, derived from the 4-parameter version of the differen-217

tial model, corresponds to a linear regression, with the only difference that the model is218

characterized by a lower bound at 0oC.219
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