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1. Introduction and statement of the result

The Poincaré inequality is one of the main tools in the proof of regularity of solutions of PDEs in
divergence form. Indeed, as proved by Saloff-Coste in [1] and Grigor’yan in [2] (see also [3]), it is equivalent
to the Harnack inequality and to Hoélder continuity for solutions. Thus, to prove regularity of solutions,
it suffices to establish a suitable Poincaré inequality.

The Poincaré inequality for smooth Hormander vector fields is well known and was proved by Jerison [4].
We recall that a Hormander family of vector fields in R”, is defined by m < mn smooth vector fields,
say V = (V1,..., V), such that the generated Lie algebra has maximum rank at every point.

Denote by B,.(z) C R™ the metric ball of center x and radius r > 0 associated to the CC-distance defined
in terms of the family V. The Poincaré inequality proved in [4] is:
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/ 6(y) — ()] dL™(y) < Cr / V)] AL (y) Ve € (B, (@),

B, (z) B, (z)

where, as usual, ¥..(y) := 1/L"(B;(y)) fBT(y) 1 and C > 0. The previous inequality can be also stated using
balls defined with respect to different (but equivalent) distances. We mention here the ball box distance
(see [5]) and the frozen distance defined by Rothschild and Stein in [6].

The Poincaré inequality for non-smooth vector fields was first considered in [7]. The later works on related
questions include the papers by Biroli and Mosco [8], Capogna, Danielli and Garofalo [9,10], Chernikov
and Vodop’yanov [11], Danielli, Garofalo, Nhieu [12], Franchi, Gallot and Wheeden [13], Franchi, Lu and
Wheeden [14] and Lu [15,16]. More recently, in [17], the authors proved a general Poincaré inequality which
was applied in [18-20] to families of Lipschitz vector fields with different regularity conditions, and different
assumptions on the rank of the generated Lie algebra.

In [21], the authors studied the relationship between the validity of the Poincaré inequality and the
existence of representation formulas for functions as (fractional) integral transforms of first-order vector
fields. They showed that the Poincaré inequality leads to (and in fact it is often equivalent to) a suitable
representation formula. This approach was later developed in [9], in which another proof has been given of
the representation formula relying on the Poincaré inequality proved by Jerison. Finally, in [22], a general
representation formula is proved in terms of the fundamental solution of a Hérmander type sub-Laplacian.

Unfortunately, all these results are expressed in terms of vector fields with Lipschitz continuous coefficients
with respect to the Euclidean distance. On the other hand, in order to study partial differential equations
with nonlinear vector fields, this assumption is no longer natural. A typical differential equation of this type
can be of the form

m

> Viai(9) VI0) = f, (1.1)

ij=1

where (a;;) is a smooth, symmetric, uniformly positive definite matrix, f is a fixed function and the
coefficients of the vector fields V? depend on the solution ¢. Equations of this type naturally arise
while studying curvature equations [23], Monge—Ampére equation [24-26], mathematical finance [27-29]
or intrinsic minimal graphs in the Heisenberg group (see for instance [30-35]).

A particular, but very interesting instance of (1.1), is the so-called minimal surface equation for intrinsic
graphs in the Heisenberg group (see also [36,35,37] for the case of T-graphs). In the n-dimensional Heisenberg
group H", such graphs are described as follows (see [38,39]):

M = {(¢($1,...,xgn),xg,...,CCQn,l‘Qn +2zn¢(x1,...,x2n)), (:El,...,l’gn) € W},

where w C R(Qg’}l 2an) is an open set and ¢ : w — R is a continuous function satisfying suitable regularity
properties. Intrinsic graphs have been extensively studied in connection with the notion of rectifiable sets in
H"™ (see for instance [40-43]), the regularity problem for minimal surfaces (see for instance [31,32,44-46,35])
and the Bernstein problem in H™ [30,33,47-49]. In particular, in [38] it is proved that the so-called horizontal

perimeter of M can be expressed by
Py (M) = / \/ 14 |[V9|2dc®”,

where V¢ = (V{,...,V$ ) is the family of nonlinear vector fields defined by:

v?

(2

= 8% - xi+n8932nv Vﬁ = 89371 + 2¢)832n’v’?+n = a$i+n + xiaﬂczn’ (12)
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where i = 1,...,n—1. Moreover, as pointed out in [38,33], one can show that the condition that the intrinsic
surface M be H-minimal is expressed by the nonlinear equation of type (1.1):

o,V

V14 |Vep|?

Notice that the regularity of the solution ¢ of (1.1) can be obtained only in the Holder spaces defined in terms
of the distance naturally associated to the family V?. As a consequence, the coefficients of the equation,
(which depend on the solution itself), are not expected to be Lipschitz with respect to the Euclidean distance.
Moreover, this lack of regularity of the coefficients implies that the equivalence of the different definitions of
distances cannot be deduced using [5]. To overcome this problem, a distance modeled on the frozen distance
of Rothschild and Stein was defined in [23] while studying the Levi equation. In [38,39], an analogous frozen
distance d, has been proposed for the vector fields in (1.2), as the symmetrized distance associated to the
frozen vector fields

VO =Vl fori=1,...,2n—1,i #£n, V) =0, +2¢(20)0a,,, (1.3)

where zy € w is fixed. The main advantage of working with this family of vector fields relies on the fact that
they have C* coefficients and they can be considered as a zero order approximation of the family V¢. We
point out that the equivalence between the frozen distance dg and the ball box distance defined in [5] was
proved in [39]. Moreover, the equivalence between d and the CC-distance generated by V¢ can be found
in [50].

Motivated by the discussion above, in this paper we prove a Poincaré type inequality for the model vector
fields in (1.2), under the assumption that the coefficients are Lipschitz continuous with respect to dy and
for functions which belong to an intrinsic Sobolev space:

Definition 1.1. Let ¢ : w C R*™ — R be an intrinsic Lipschitz continuous function, in the sense of
Definition 2.1 below. We say that a function ¢ : w C R?" — R belongs to the space Wy (w) if there exist
sequences {9 treny and {¢r tren in C°°(w) such that

(i) Y — ¢ in L], (w) as k — +o0;

(ii) ¢ — ¢ uniformly in w as k — +oo;

(iii) |V®*r(x)| < M Vx € w and k and for some positive constant M;
(iv) Vo, —* V% as k — +o0.

Then, our main result is the following:

Theorem 1.2. Let w be a bounded and open subset of R?™ with n > 2, and let p > 1. Let ¢ : w — R be
an intrinsic Lipschitz function and ¢ € Wy(w). Then there exist positive constants Cv,Co with Cy > 1
(depending continuously on the Lipschitz constant Ly of ¢) such that

/ () — o, (o [P AL () < Cy 1 / V) AL (y), (1.4)

U¢(i,r) Ud)(i,CQ T)
for every Uy(z,C21) C w, where
Up(z,r) ={y cw:de(z,y) < r}. (1.5)

Here Yy, (z,r) denotes the mean of ¢ on the ball Ug(Z,r) with respect to the Lebesgue measure, i.e.
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1
Yusen = gy | YW AW, (1.6

Ud,({f,’l‘)

Corollary 1.3. If ¢ : w — R is an intrinsic Lipschitz function, then there exist positive constants Cy, Co
with Cy > 1 (depending continuously on the Lipschitz constant Ly of ¢) such that

/ 16(y) — bu, o] ALZ() < Cy 7 / V0o(y)] AL (y), (L.7)
U¢(i,r) Ud,(a_:,Cz r)

for every Uy(z,Car) C w.

We briefly describe our approach. Since the coefficients of the vector fields V¢ are only Lipschitz
continuous (with respect to dg), we cannot consider the Lie algebra generated by the vector fields.

Nevertheless, the explicit expression of the vector fields Vf, Cey Vgn_l ensures that
Ve Ve ]=20,, Vi=1l,..,n-1,

so that the vector fields and their commutators span the whole space at every point, which can be interpreted
as a Hormander condition for non-regular vector fields. This approach can be considered a version of the
Rothschild and Stein method for non-smooth vector fields, and has been used in [23] in a different setting.
In particular, every ¢» € C°°(w) can be represented by means of a suitable representation formula (proved
in [22]) in terms of the vector fields Vf(wo), the fundamental solution I';, of the Laplacian operator

2n—1

’Ctb(%) = Z (v;ﬁ(mo))Q

i=1

and the super level sets Qy(,,)(z0, 1) of I'y,, which are equivalent to the balls Uy (zo,7).

In order to prove Theorem 1.2, in section 3 we will first modify the aforementioned representation formula
to obtain another representation formula in terms of the family V?. Subsequently, using an approximation
result for intrinsic Lipschitz functions contained in [45], (see also [50] for a refinement) we prove that the
representation formula proved in Section 3 still holds for intrinsic Lipschitz functions. Finally, in Section 4
we will provide the proof of Theorem 1.2.

2. Preliminaries
2.1. The intrinsic distance

Fix n > 2. Let w C R?" be an open and bounded set and ¢ : w — R be a continuous function. The Lie
algebra generated by the family V¢ := (Vf, e Vgn_l) defined in (1.2) has maximum rank at every point,
hence it is possible to define on w the exponential ball box distance and the CC-distance, see [5]. These
distances are not explicitly computable, therefore, it is convenient to introduce an equivalent, explicitly
computable, quasi-distance on w. To do this, we use the freezing method developed in [6] and successively
refined in [39] (see also [38]). Precisely, let us fix 9 € w and consider the family of smooth vector fields
V#(0) defined in (1.3) and the new family of frozen vector fields

V@) = (o) g . (2.8)

Let us now introduce the Lie algebra G generated by the family of vector fields V#(*0). Notice that, since
= 24V

the only non-vanishing commutator is [Vf(mo), Voti n o foreachi=1,...,n—1, G is isomorphic
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to H"~! xR, as Carnot groups, where H" ~! = R?"~! denotes the (n—1)-dimensional Heisenberg group. Any
element # € G can be identified by its coordinates with respect to the basis V#(#0) that is & = (%1, ..., 2n),
if & =322 #,V?™) We can also induce a norm on G by defining

- - - - _ 1
(Z1,. .., Zon)|| = max{|(Z1,...,Tan—1)|gen—1,|T2n|2 } (2.9)

for each G. The exponential map associated to the family of vector fields V(@) is well defined. Precisely,
for each = € R?™:

2n
Btpytapye 19— B, Bipyiug) o(0) i= exp( Y 5iVi™ ) (@),

i=1
In coordinates we get
Expy(p0),0(0) = (561 + G1s s Top—1 + Yon—1,T2n + Jon + 20nd(x0) — o (7, x)), (2.10)
where
n—1
o(z,y) = Z(yi+n$i — TitnYi). (2.11)
i=1

The inverse mapping of Ezpy(z,),» Will be denoted by Logy ). R2" — G, and the ball-box exponential

distance associated to the vector fields V¢(®0) is defined for every z,y € R2"
dg(z0) (T, Y) = [|L0Gg(10),(Y)]]-
In particular, a simple computation gives:
L0943 ,0(Y) = (y1 —Z1,. .y Yon—1 — Tan—1,Y2n — Tan — 20(x0)(Yn — zn) — o(z, y)) (2.12)
and therefore using (2.9) we get:
Q(e) () = max {[& = Glrzn1, 00,00 (2. 9) |, (2.13)
where for every x = (x1,...,22,) € R?" we have denoted 2 := (z1,...,72,_1) € R?""! and
020 (T, Y) 7= |Yan — Tan — 20(20) (Yn — xn) — o(2,9)|Y? x0 € w, x, y € R®™. (2.14)
Moreover we will simply denote
op(,y) == 0 x(T,y) =z, Y€ w. (2.15)
Finally, we define the following symmetric function:

1
do(w,y) = 5 (Aot (0,9) + do (1:2)) Yoy € w. (2.16)

Definition 2.1. We say that ¢ : w C R?>® — R is an intrinsic Lipschitz continuous function in w and we
write ¢ € Lip(w), if there is a constant L > 0 such that

() = ¢(y)| < Ldy(z,y)  Va,y € w. (2.17)
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The Lipschitz constant of ¢ in w is the infimum of the numbers L such that (2.17) holds and we write
Ly, (or simply Ly) to denote it. We also say that ¢ is a locally intrinsic Lipschitz function, and we write
@ € Lipyy.(w) if ¢ € Lip(w’) for every v’ € w.

Remark 2.2. It immediately follows from the explicit expression of dg (see also [23]) that, if ¢ € Lip(w) then
dy is a quasi-distance on w. Precisely,

dg(z,y) =0 <=z =1y;
dg(z,y) = dy(y, 2);

and for each x,y,z € w:

d¢(l‘,y) <
<dy(,2) + dg(y, 2) + [0(x) — ¢(2)V 2w — 20l ? + 10 (y) — B(2)]2|yn — 20|/ (2.18)

so that
dg(z,y) < (1+ Ly)'*(dg(,2) +dg(y, 2)
Remark 2.3. It is easy to see that, if ¢ € Lip(w), then
op(y. ) < og(@,y) +16(@) = o) Plrn —yal'? Vayew
whence, by (2.16),
dp(@,y) < |2 = Glren +0g(@,y) +16(2) = o) 2|2y —yal'/? Va,y € w. (2.19)

Remark 2.4. Moreover, by a simple calculation, we obtain that there exists C; > 1 depending only on Ly
such that for each z,y € w

l

o dg() (¥, 2) < dg(z,y) < Crdg (y, ), (2.20)
1

Besides, there exists a positive constant Co = Cy(Lgy) such that for each x,y,z € w

d¢(z) (33, y) < (Cy (d¢(x) (.’L’, Z) + d¢(z) (Z, y)) . (2.22)
2.2. Lipschitz continuous functions with respect to nonlinear vector fields

A detailed analysis of Lip(w) can be found in [50,40], here we recall only those properties that we will
use in the proof of Theorem 1.2.

Notice that Lip(w) is not a vector space (see [35, Remark 4.2]). Nevertheless, the intrinsic Lipschitz
functions amount to a thick class of functions. Indeed, it holds that

Lipp(w) G Lipjpe(w) € L7 (w), (2.23)

where, Lipg(w) and C, 12 (w) denote the classes of real-valued Euclidean Lipschitz and locally 1/2-Euclidean—

loc
Holder continuous functions on w respectively, see [40, Propositions 4.8 and 4.11].



G. Citti et al. / J. Math. Pures Appl. 105 (2016) 265-292 271

Theorem 2.5. (See [/0].) If ¢ € Lip(w) then ¢ is V?-differentiable for L2"-a.e. x € w, in the sense defined
in [38]. Besides, for L*™-a.e. x € w there is a unique vector V®¢(x) € R*"~L called V¢-gradient of ¢ such
that

$y) = ¢(x) + (V?(2),7(y)) +o(dp(z.y)) asy— =

where (-,-) denotes the Euclidean scalar product in R*"~1 and 7@ : R?®" — R?"~1 7(z1,..., 220 1,T2n) =
($1, . ,xgn_l), Vo € R2n 1,

In [50] the following estimates for Ly are proved. Precisely, for each z € w and each r > 0 sufficiently
small there is C; > 0 depending only on [[V?@|| () such that

Ly v, < C1IV90l o (),
and there is Cy = Cy(n) > 0 such that
V20|l L () < CaLg(Lg +1)
where Ug(x,r) is defined in (1.5).
Moreover, the following approximation result for intrinsic Lipschitz functions it has been recently proved
in [45]:

Theorem 2.6. Let w C R?™ be a bounded open set and let ¢ € Lip(w). Then there exists a sequence {¢y}
with ¢y, € C*°(w) such that

(i) ¢ — ¢ uniformly in w as k — oo,
(i) [V ¢ (2)| < [V?P| Loo(w) Vo € w.

We also quote the paper [50] where we proved that every ¢ € Lip(w) can be approximated by a sequence
{br }ren of smooth functions satisfying (i), (ii) and also

Vo () = VPh(z) L*M-ae. in w.
2.8. Sub-Laplacian and fundamental solution

In order to study the dependence of the vector fields V#(#0) (defined in (2.8)) on the variable z, we
recognize that the map

LOgd)(zo)’zo : R2n — g
changes the families V(#0) and V#(0) into the family V and \Y, respectively, where

Vii= Vi v = Vi) forie {1,...,2n— 1}, € {1,....2n},i,j #n,

(2

Vi =01, Vip=0,. (2.24)
Precisely, for each ¢ € C°°(R?*"), if we define

B(@) = v(Logyl,) o (@), (2.25)
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then
VI (2) = Vit (Logy(apymo (), Vi€ {1,...,2n}.

We can define a metric d on G associated to the vector fields @, independent of xy. Namely, given z € R?" let

Exp@}w . G — R, Exp@@(g) = exp(igi@i) (:c) if j = iglﬁz
i=1 i=1

We can also identify G with R?", by identifying an element of G with its coordinates with respect to basis V.
In such a way, we can define

a(2.9) = | B!, @) (2.26)

where || - || denotes the norm in (2.9). In particular it holds that

d(0,z) = ||Z], VvIeg=R*",
dg(ao)(T,y) = a(LogMIO)@D (z), L0694 (20) .20 (y)) Vr,y,z0 € w. (2.27)

Moreover it follows that d turns out to be a homogeneous norm on G = H~1 x R.
Let us call sub-Laplacian the second order differential operator defined as

2n—1

Loy = Y (VIE)2. (2.28)

i=1

It is well known that L(,,) admits a fundamental solution which we will denote by I'y(,,) (see for [51] for
the details). This operator is changed by the map Log4(z4),z, nto the sub-Laplacian operator

2n—1

That is, for each ¢ € C>°(R?*")

(L)) (@) = (LD)L0Gg(ny) 00 (¥)) V¥ @ € R,

where 1) is defined in (2.25).

Clearly, the operator £ has a fundamental solution I' of class C*° far from the pole £ = ¢, which is
homogeneous of degree 2 — Q with respect to the dilation family naturally associated to G, where Q is the
homogeneous dimension of H" ! x R (see [51, Section 5.3] and the references therein). This means that
there exist positive constants C7, Cy such that for every Z and 4 in R?", & #

(2.29)
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for every i, = 1,...,2n — 1 (see [52] and [51, Section 5.4]). Besides, the fundamental solution Iy, of
L (o) can be explicitly written in terms of I' as

Fqﬁ(wo)(x: y) = F(Log¢(3:0),3:0 (1‘), LquS(mg),xg (y))’ (230)
and
v?(mO)in)(mo) (Ia y) = viF(LOg¢(mo),zo (CC), Logqb(mg),mo (y))?

fori=1,...,2n—1. It follows that the inequalities in (2.29) are satisfied also for I, (7, y) and dg(zy) (7, y)
with the same constants. In particular, it is clear that these constants are independent of xg. Using the
estimates for I'y(,,) it follows that the spheres in the metric dg(,,) are equivalent to the super levels of the
fundamental solution Ty (,,):

Qo) (2,7) = {y e R?™ \ Loy (2,y) > r2_Q}, r > 0. (2.31)

Moreover, for every fixed o € w, the set Q4(,,)(z0,7) has regular boundary (see [22]). In particular, from
(2.21), (2.27) and (2.29), there exist rg, > 0 with o = (L) such that for any zp € w and r < rg

Qg (20) (@0, /) C Up(20,7) C Qg() (0, ), (2.32)

where Ug(xo,7) is the ball defined in (1.5). By (2.30) we have that

Vtao) (@:7) = {4 € B2 | T(L0g (00,0 (2): LGy e (1)) > 127 (2.33)

in particular the sets Q4 (4, (%0, 7) can be expressed in terms of the super levels of the fundamental solution
I" as follows:

Qotanw0s1) = {y € R | PO Logygay e 0) > 72}

= E1py(14) .20 (Q(O7 r)), (2.34)
where
Q(0,7) := {g € R* | T(0,9) > r*°}. (2.35)
We will also denote
K(5) =T"@2(0,7), j € R*", (2.36)
so that, we can rewrite Q(0,7) as:
QO,r)={geR™ | K(j) <r}. (2.37)

3. A representation formula in terms of the intrinsic gradient

This section is organized in two subsections. In the first one, we fix a smooth function ¢ : w C R?” — R
and we introduce the notion of integral mean m of another regular function 1 : w C R?” — R on the super
levels 4 (z,)(70,7) of the fundamental solution I'y(,,). Then, we prove a representation formula for any
regular function v in terms of its integral mean and its intrinsic gradient.

The second subsection is quite technical, and is devoted to establish some properties of the integral mean

of 1.
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3.1. Representation formula

In this section, we fix w C R?" open and bounded, n > 2 and ¢, € C*°(w). We prove a representation
formula for 1) on the super levels Q4 (,,)(z0,7) of T'g(y,). A similar representation formula has been proved
in [51,22] for the approximated vector fields V@) From this formula, we will deduce a new and intrinsic
representation formula for 1, expressed in terms of its intrinsic gradient V1. In the case under consideration
the result of [51,22] can be stated as follows:

Proposition 3.1. For every o € w and R > 0 such that Qy(,,) (w0, R) C w and for every 1) € C*°(w) we have

Q |V¢(w0)r¢(mo) ({L‘(), y)‘2 2
_ acem"
¥(20) (Q-2)1- 5RO p2(0-D/(Q=2)(; Y(y) (y)
Qo (20) (@0, R\ () (T0, F) (o)
o R
T AT LyRe /TQ_I <V¢($O)F¢(zo)(9€07y),V¢(w°)¢(y)> AL (y)dr. (3.38)
TR 2@
Here (-,-) denotes the standard Euclidean scalar product in R?"1,
Remark 3.2. We explicitly note that, if we choose p = 1, then from (3.38) we get
C(Q) / [V@OD oy (@0, W2
1=—== — - dLe" (y), (3.39)
R° FQ(Q 1)/(Q-2) (xo,y)

Qg () (20, R\ Qg (z) (T0, F) (o)

where O(Q) = W%*Z%)

This remark allows to say that (3.38) represents a function ¢ as the sum of its mean on a suitable set
and the gradient V#(*0)q). Hence, it seems natural to give the following definition

Definition 3.3. Let ¢ € L], (w). For every 29 € w and R > 0 such that Qy(,)(20, R) C w we define the

loc

following mean of 1, on the set Qg () (20, R) \ Qg (a0) (%0, %), in terms of the fundamental solution I'y(,,):

_ C(Q) V@I ) (20,1) 2
(6, B) o) 1= o / e

Zo,
Q) (20, R\ Qs ) (0, ) P170) (70,9)

P(y) AL (y).

In the sequel we will need another mean of ¢» on the same set Qy(.) (20, R) \ Qg (z,) (o0, %) Precisely, we
denote:

=

R
m(i, 6, R) (o) = / (1, 6,7)(x0) dr. (3.40)

)

The following remark, which will be very useful later on, provides an integration formula by parts for the
derivative Osp,.
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Remark 3.4. Let g € C1(R*), r > 0 and c1,c2 > 0 we define:

AT701,02 = {y € R?" cr < g(y) < CQT}.

Then, for every f,0 € CHR?*") and Ry;,R; € R with Ry < Ry, using the fact that

Oan, (V(WCO)Vn+1 Vﬁf{’ V?) and integrating by part we have
R2
[ [ swomt ac @ -
Rl Ar,cl,cg
R>
1 _ V¢(IO) _
=5 [ FT ) Yo ) ar
! {y:9(y)/ca=r}
R>
1 _ vd’(ﬁfo) .
5 [ FO)V ) T I arn L g)ar
! {y:9(y)/c1=r}
17 Ve ( )
_ g Y n—
By {y:9(y)/c2=r}
1 f Vot ()
+§/TQ_1 F)Vivly )m dH*"~H (y)dr
Ry {v:g(y)/er=r}
L7
5 [ [ VRV A s
Ry Ar,cq,eq
L7
by [ [ ViR vt acgar
Ry Ar,cq,eq

where Vg denotes the Euclidean gradient. By the coarea formula we infer that

Ry
/ et / F()Oantp(y) AL (y)dr =
R Arey oo
1 Q-1 . )
T2 / gcg_(ly)f<y>vm<y)vf< ) g(y) AL (y)
ArcaRy,cRo 2
1 Q-1 . )
2 / gclg(ly)f(y)vfimb(y)vf( '9(y) AL (y)
Apr.ciRy,c1Ro
1 Q-1
-3 9% 0 1)V p ) VST o(y) AL ()
2 E:
AT,CQRl,chQ
Q-1
* gCQ—(ly)f( VLB Vit g(y) AL (y)

1
Ar,ciRy,e1 Ry
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Ro
1 _ zo n
5 [0 [ i iae) ac g
R, Arcq,eq

/ ot [ VIR i) AL )

rcl co

If in addition c1 = 0 then the integrals on Ay c Ry e R, GT€ NOL present.

In the following proposition we will slightly modify the representation formula proved in Proposition 3.1
in order to obtain a mean representation formula containing only derivatives with respect to the vector
fields V.

Proposition 3.5. Let ¢, € C°°(w). For every xg € w and R > 0 such that Qg (2o, R) C w we have

Y(wo) — m(y, ¢, R)(wo) = Ir(w0),

where

Q¢(m0) (ZE(] ,T)

R
Ip(zo) :%/fl (%) / (K1 (wo,y), VoY (y)) AL (y)dr
R

/ / <K2(x03y7r),v¢¢(y)>d£2n(y)dr

£ Qo (a0) (£0,7)\ Qg (20) (70, 5)

Here, f1 € C°([%,1]) and the vector valued functions K1 and K are defined in (3.44) and (3.45) respectively.
Moreover,

[K1(20,9) < Ci(Lg0,0) ook T 1700 (00,9) VY € Qi) (w0, R) (3.41)
and

R R
|K2(x0,y, )| < CQ(L¢ + 1) d¢(x )(x()v )7 Vy € Q¢'(w0)('r0’R) \ Q(b(mo)(xo’ 5)7T € (EvR)7 (3'42)

where Ly means Ld)’Qd)(mo)(Io,R)\Qd)(mo)((EO,R/Q) and Cy,Cy > 0 are suitable constants depending only on the
homogeneous dimension Q and on the structure constants C1 and Cs in (2.29).

Proof. We will always denote by C a positive constant depending only on @ which can be different from
line to line. By Proposition 3.1 for all r € (0, R)

’d}(on) - m(wv (]577‘)({1}0) =

C [ o . : "
=5 [ [ (T (w0, V) ) A s

3 Qg () (%0,5)

C [ o . .
— [ [ (T (w00, T ) AL ) s

5 Qg (20) (T0,5)
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+ O [ e / VT, (20, 9) (6(20) — S(y))Danth(y) AL (y)ds.

5 Qg (x0) (%0,8)

Using Remark 3.4 with g(y) := F;(z (20, y) we obtain

T

wlan) ~ (v, o) w0) = 5 [5270 [ (K 0), TP0) AL ()

5 Qg (20) (T0,5)

+ (K (o, y,7) V9 (y)) AL (y), (3.43)

Qg (20) (0,7)\ Qg (20) (%0,5)

where
Ki(xo,y) := CVMIO)FM%)(%,?J)
— OvEITeEIr, o (20, y) ($(w0) — b(y))enia
+ OVITITEEIT o (20, y) (6(0) — B())er, (3.44)
and

C vd’ F(i)(z()) (.’207 y)

Ks(xo,y,7) := 2(0-1)/(0—2) ((z0) — 9y ))anrl Fqﬁ(xo)(xOv y)er
F¢(I0) (xo,y)
C v(b(wO)F x (ZEo,y) x
e ca (é(20) — ¢(1) VT Ty (0, Y)ens1, (3.45)
(e-1)/(Q )(I )
L4(z0) 0,Y

where e; is the i-th element of the canonical basis of R?"~1,
Integrating (3.43) from £ to R we get

V(o) —m(, ¢, R)(wo) =

/Rl/prgl / (K1 (20,1), VP9 (y)) dL2 (y)drdp

Qd,(mo)(aj[),T)

+2 / / (Fa (w0, ,0), V20(0)) AL (3)dp

E Q) (£0:0)\Qp(z0) (T0,5)
Exchanging the order of integration in the first integral and setting:

1-Q _ Q-1 Q-1 _
A = % ifre1/4,1/2, filt) = % it e [1/2,1],

we get the thesis. Finally, the estimates on K7 and K> are direct consequences of (2.29). 0O
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8.2. Some properties of the integral mean

In this section we collect some properties of the integral mean m (v, ¢, r) to be used in the next section.
We will see that in order to conclude the proof of the Poincaré inequality we will need a detailed estimate
of the difference

m(, ¢,r)(x) —m(y, ,7)(y) (3.46)

at two different points x,y € w with x # y. This difference is estimated in Proposition 3.11, and it is based
on some technical lemmas.

Lemma 3.6. Let ¢ € C*(w). For each xg € w and each R > 0 such that Qg4 (20, R) C w the mean,

m(Y, @, R)(xq), of a smooth function ¢ can be expressed as follows:

R2
Q(0,R)\(0, %)

(1, 6, R) (10) = — / K5 (0, 9)0(Eapy gy oy (7)) AL (),

where Q(0, R) is defined in (2.35) and

Q [VI(0,7)?

K3(0,9) = (Q—2)(1— 2%) I'(0,7)2(Q-1/(Q=2)"

Moreover, there exist constants 6’3,04 depending only Q and on the structure constants C7 and Cy in
(2.29) such that

K09 <G VKO0 € T Vi€ 90.R\(0.5), (347
Proof. By (2.34) we have that
Qo) (0, R) = Expyyy) o (0, R)).
So that, by Definition 3.3 and (2.30) we have:

m(’(/)v ¢)7 R) ($0) =

Q) VT, 00 (0, y)|? .
= m / 1_‘2(971)/(Q,2) (20.1) P(y) AL (y)
Qd’(mO)(IO’R)\QMxO)(wO,%) ¢ (o) )
C’(Q) |VF(O,§)|2 ) -
~(@-2)Re / FQ(Q_l)/(Q—Q)((Lg)w(Exp‘i’(Io),xo (7)) dL="(7),

O(0,R)\Q(0,5)
where in the last equality we have applied a change of variables and the fact that the determinant of
the Jacobian matrix of Ezpy (24,2, 18 equal to 1. Finally, we observe that (3.47) follows directly from the

estimates on I' in (2.29). O

»Zo

In the next proposition we will start studying properties of the difference
V(BP0 (9) — V(BETPy(04),0,(7)), Which, thanks to the previous lemma, can be considered the first
step in the proof of (3.46).
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Proposition 3.7. For every * € w there exist a constant Cy > 0, such that for every R > 0 with
Qg (z) (.I_J,COR)A € w, every x,x0 € Qyz) (T, R) and every § € Q(0,R) there is an integral curve of the
vector fields V¥(*0) ~; 1 [0,1] — w joining Expy )0 (9) and Expy ) 4, (§). Moreover, vy can be explicitly
written as

~5(t) = exp (tﬁww) (exp(gw(m)(xo)) teo,1], (3.48)
where
h= L0g(z0), Brpy(ny) g (@) (Eff%(x),x@)) (3.49)

Proof. Let us fix € w, and a sphere Q) (Z, CR) subset of w. The constant C' = C’(L¢,Q¢(i)(f7R)) > 0 will
be chosen at the end. We first note that, there exists

C = C(L¢,Q¢(az)(i,é)) > 0 (350)

such that for every z,79 € Qyz) (7, R), § € Q(O,R), the points Exp¢(x)7x(g]) and Ezp g, ., (9) belong to
Qg4(z) (7, CR). By (2.10) we get

Eap ()0 (9) = (331 +J15 -y T2n—1 + Y2n—1, Ton + Jon + 2000(T) — 0(?7756)),
BP0 .00 (U) = ($0,1 + G155 T0,20—1 + J2n—1, 0,20 + Y2n + 20n(x0) — o (7, ZCO))-
Then, using (3.49) and (2.12), we obtain

hl:(x—xo)l i:1,...,2n—1,

hon = (& = 0)2n — 20(20) (2 — 20 )n + 20n(d(x) — d(x0)) — 20(7, & — x0) + o (2, 20) (3.51)
and calling
T 1= L0Gy(20) .20 (%), (3.52)
we realize that
b=+ (20u(6(x) = 6(w0)) = 20(§7) ) e2n: (3.53)
By (3.48) and the Baker—-Campbell-Hausdorff formula we have
vg5(t) = exp <tﬁ@¢<x°)) (exp (g@d)(”“)) (330))
= exp (thn(¢(x> — ¢(20))02n + 2t0 (7, 2)D2n — to (i, )0on + (t3 + g)ﬁ‘f’(“‘”) (o).

From this and using (2.10) we get

]

(vg@®)i =tz —z0)i + (F+z0); i=1,....,2n—1
(’7~(t))2n = t((E - xO)Qn + (:Ij + xO)Qn + 2tgn(¢(x) - ¢(.’E0))

+26(x0)Gn + o(t(x — x0) + o, 7). (3.54)

Therefore, the following estimate holds
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dg(eo) (0, 75(1) < 131l + 121 + Vgl + V17lllé(x) = plxo)l, (3.55)

where Z is as in (3.52). Indeed, using (2.13) and (3.54) we get

d¢(m0)(x03’yg(t)) S ‘(t‘%l + gl’ e ’ti?nil + anil) R2n—1

1

+ |t + Gan + 2t (6(2) = B(w0)) + 10(.5)|

)

and (3.55) follows using the triangle inequality. Since, z,z¢ € Qy(z)(Z, R) and [|7|| < R then by (3.52) and
(2.22) we get

|Z] < CR, and dg(z,20) <COR (3.56)
for some constant C = C(L¢’Q¢<i>(i’ﬁ)) > 0. Finally, by (3.55), (3.56) and (2.29) we conclude that

V() € Qg0 (w0, C1R) Vit €[0,1]
for some C1 = C1(Lg q, ., (z.r)) > 0 and the thesis follows with Cy = maz(C,C1). O

Proposition 3.8. Let Cy be as in Proposition 3.7. For every & € w such that Qg ) (T, CoR) € w and for every
7,20 € Qy(z) (7, R) and for every g € Q(0, R) we have

’(/}(Ewpqﬁ(w),w(g)) - w(Exp(b(zo),:vg (g» =

= /Z(LO%(IO),ID(I))i@?(%)d}(%(t))dt+K4(33,580,§)/52n¢(%7(t))dtv (3.57)

where
Ky(z, w0, 7) = 2(¢(x) — ¢(20))Fn — 20(§,z — 20). (3.58)
The kernel Ky is of class C* with respect to § and the following estimates hold:

|Ka(2, 20, 9)| < 2(Lg.0y0 @r) + 1)do (2, 20) (|7, (3.59)
|VK4(17,330,§)| S 2(L¢,Q¢(i>(:i7R) + 1)d¢(17,330) (360)

Proof. Since ¢ € C*°(w) and ~; is horizontal with respect to the family of vector fields {Ve0)} we obtain

\H

0/ FEE) (g ()t

so that (3.57) immediately follows using (3.51). In order to prove (3.59) it suffices to observe that o(x —

Il
My °

z0,Y) < dg(z,0)]|Fl]. Moreover, since Jg,, Ka(x,x0,7) = 0 it follows that to prove (3.60) it is enough to
estimate the Euclidean gradient of K4 (with respect to the variable 7). By a direct computation and using
the expression of K, in (3.58) we obtain
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8g,iK4(l‘,xo,:lj) = —2(.1‘ - J}O)n_l’_i if 1= 1, N 1,
agnKll(maang) = 2(¢(.’17) - (b(.’l?o)),
0y, Ka(z,20,7) = 2(x —x); if i=n+1,...,2n—1.

Hence |VK4(z,20,9)| < 2(Lg0, ) (zr) + 1)ds(z, o), which is the thesis. O

There is a natural change of variables, naturally associated to the curve 5 defined in Proposition 3.7.
Indeed the following lemma holds:

Lemma 3.9. Let ¥ € w, Co > 0 and 5 be as Proposition 5.7. For each R > 0, such that Qg (Z, CoR) C w,
r,20 € Qy(z) (7, R) and j € Q(0, R). Then the function

H:[0,1] x Q0,R) — [0,1] x w
(t,7) = (£,75(1))

has inverse function (t, F(z,t)), the map z — (t, F(z,t)) is C°° and its Jacobian matriz has determinant
equal to 1.

Proof. Using (3.54), (2.10) and setting (¢, 2) := (t,73(t)), F can be expressed as
Fi(z,t) =(z —x0); —tlx —x0); i=1,...,2n—1,

(2 = @0)on — t(x — T0)2n — 2t((2 — Zo)n — t(z — 20)n ) (P(2) — G(20))
—2¢(x0)((z — 20)n — t(x — 20)n) + o2, t(x — z0) + x0). (3.61)

&
3
—~
N
~
~—
Il

In particular it is clear from (3.61) that F is of class C°° as a function of the variable z and that the
Jacobian determinant of z — F(z,t) is equal to 1 for each t € [0,1]. O

Lemma 3.10. Let g € C(R™) and F(z,t) as in Lemma 3.9 then

) (Vg.9)(E(2:1)) N i=1,...,n—1,
VI (g(F (1) = 4 (V5. 9)(F(z,1) = 2t(6(x) — d(20)) (g, 9) (F(2,1)) i =n, (3.62)
(Vg.9)(F(z,1)) i=n+1,...,2n—1,

where (V1,...,Va,_1) is the family of vector fields defined in (2.2/).
Proof. Let us start computing Vfi(xo)(g(ﬁ'(z, t))) withi=1,...,n—1, that is
(0-1 = 2, ) (9(P(21))): (3.63)
To this end, we calculate
9, (g(F(z,1) and 8., (9(F(2,1))).
By the explicit expression of F(z,t) we obtain:

azi (g(F(z,t )) = (aﬂig)(F(%t)) + (agzng)(p(zat))aziF2n(Z7t)7 (364)
023, (9(F(2,1))) = (852, 9) (F (2,1)), (3.65)
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hence by (3.63), (3.64) and (3.65) we get

VD (g(F(z,1) = (95,9 = Fion(2,6)05,,9 ) (F(2,0)+
o (Fin(e,t) = 2+ 02, Fon(5,1) ) O3, 9 (F (2, 1).
Since
Fi(z,t) =(z —xo)i —t(x —x0); i=1,...,2n—1

Fon(z,t) = (2 — 20)2n — t(x — m0)2n — 2t((2 — T0)pn — Lz — 20)n)(B(2) — ¢(20)) +
—2¢(x0)((z — o) — t(x — z0)n) + o2, t(x — x0) + T0)
this implies
VEE) (g(F(z,1))) = (Vg.9)(F(2,1).

The computations for V2 0)( (F(z,t))) wheni=n+1,...,2n — 1 are similar.
Finally, let us compute V¢ *)(g(F(2,1))). By deﬁmtlon.

VD (g(F(z,1)) = (02, +20(20)0:,, ) (9(F(2,1)
and since
02, (9(F (2.1)) = (95,9)(F(=,)) = 20t(8(w) = $(x0)) + 6(20)] (952, 9)(F (=)
by (3.67), (3.65) and (3.68) we get
VG (z,1)) = (V5,9)(F(z, 1)) = 2(6(2) = 9(20) Oy, 9) (F(z1)). D
Proposition 3.11. For every t € [0,1],¢1,¢2 > 0 and 7 > 0 let us define

Dy ey oo = {z ER™: (z,t) e F} (Q(O,czr) —Q(0, clr)) }

(3.66)

(3.67)

(3.68)

(3.69)

Let z € w and Co > 0 be as in Proposition 3.7, then for every 0 < R such that Qyz) (2, CoR) C w and

r,20 € Qy(z) (7, R) with x # xq it holds

(6. B)(a) — (1 0. R) o) =
0

R
/ / < Ks(x,x0,t,2,7), VP9(2) > AL (2)drdt
1
+/ < Kg(x,x0,t, 2, R), Vo1 (2) > dL*™(2)dt
0

1
—/ / < Kq(x,x0,t, 2, R), V1 (2) > AL (2)dt
0

for suitable kernels K5, K¢, K7 defined in (3.74), (3.75) and (3.76) respectively. Moreover, there are positive

constants Cs, Cg independent of Ly such that
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2 d(eo) (20, )

|K5(, 20, t, 2,7)| < Cs5(Lg + 1) e on Dy 11,V €[0,1], (3.70)
% 5 2_do(z0) (%0, 7)
| G(x,l'o,t, z, R)| S CG(L¢ + 1) W on Dt,%,17R7vt S [O, 1]7 (371)
K 5 2_do(0) (20, 2)
|K7(z, 20,1, 2, R)| < Cg(Lg + 1) R|F(z 1)1 on Dy 11 g, Vt€[0,1]. (3.72)

Proof. By Lemma 3.6 for every 0 < r < Rg such that Q. (2, 7), Qg (z0)(z0,7) € w, we have

fn(i/% ¢7 T)($) - m(ﬂ), ¢7 T)(xO) =

— o [ KD (9B ()~ 6(Eapye e, (0))) AL D)

€(0,7)\(0,5

by Proposition 3.7

1
=3 / K3(0717)/ < L0G g (a0) 20 (), VOFh(75(t)) > dtd L ()
€(0,7)\(0,5 0
1 1
tro [ Ea00) [ KiGeo, 0050 3),

€(0,m\2(0,%) 0

The change of variables z = 7;(t), changes Q(0,7) \ Q(0, 5) in the set D; 1 ;. and the inverse mapping has
Jacobian determinant equal to 1. Hence

1 R

2 1 B e :

— E//?"_Q / K3(0,F(z,t)) < Log¢(zo)7$0(g;)’v¢( 0)1/}(2) > AL (2)drdt +
0 R

1 R
2 1 . .
+ = — K3(0, F(2, 1)) Kq(2, 20, F(2,1))02,1(2)dL*" (2)drdt. (3.73)
R 0/%/ T‘QD /

t, 1.1,

Now applying Remark 3.4 we get the thesis calling:

1 ~
K5(Jf, Zo, t7 2, T) ::r_QK3(O7 F(Z, t))Loqu(wo),(Eo (Z‘) +
1
2rQ

1 (e " .
+ %—Qviiﬁ(m}(o, F(z,t))K4(:c,xo,F(z,t))>el; (3.74)

+ 5o Vi (K0, F (2, ) K, 20, F(2,1)) )ensr +

é(zo) 5 } )
Ke¢(x, 0,1, 2, R) :_%leQg((i(t)’)t))K3(O’F(Z’t))K4(xvxO’F(Z,t))enH n
1 VOV K (F(z,1)) - _ _
ey O P @79
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¢($o i ~ ~
Ko, 20,1, 2, R) i= ;zngKQ((}?( )t)))Kg(O,F(z,t))K4(x,xo,F(z,t))en+1
1 VR K (F(2.1))

K3(0, F(2,t))Ky(z, z0, F(2,1))e1, (3.76)

7 20K (F(z.1))

where as usual e; denotes the i-th element of the canonical basis of R?"~!. To prove (3.70) we observe that
by Lemma 3.10

Ks(z,x0,t,2,7) = K3(0 F(z, t))Log¢( )ﬁzo(:r)

rQ
+ g (VKO (e, ) K, 70, (1)) + (VaK) 0, F(z, ) K (0, F(z, 1) Jenin

+ ((Vn+1K3)(O, F(Z, t))K4(JT, Zo, F(Z, t)) + (Vn+1K4)(J}, Zo, F(Z, t))Kg,(O, F(Z, t)))el

1
2rQ@
hence using (3.47), (3.59) and (3.60) we get

Cy(Ly +1)d Ya(Ly + 1)d
|K5(x,$0,t,z,r)\ < f—éd¢(xo)(l’0,$)+2 4( o+ ) ¢(£L‘,:,l?0) +203( ot ) ¢>($7x0)

re re

and the conclusion follows using (2.20). Finally, (3.71) and (3.72) are direct consequences of (2.29), (3.47),
(3.59) and Lemma 3.10. O

4. Poincaré inequality

The scope of this section is to prove Theorem 1.2. The Poincaré type inequality proved here is partially
inspired to the Sobolev type inequality for vector fields with non-regular coefficients contained in [23]
and successively extended to a more general class of vector fields in [53]. The key point in our strategy,
is to establish a representation formula for intrinsic Lipschitz continuous functions. To this end we use
Theorem 2.6 and the representation formula proved in Proposition 3.11 for C**° functions.

Throughout this section we denote by w an open and bounded subset of R?” with n > 2 and by ¢ an
intrinsic Lipschitz function defined on w with Lipschitz constant equal to L.

Let ¢ € Wy and let {¢g}ren, {Pk}ren smooth functions on w which satisfy conditions (i) — (iv) in
Definition 1.1. We denote by dg, (5,) the distance introduced in (2.13), by T'y, (z,) the fundamental solution
of the operator Ly, () defined in (2.30) and by Qg, (z,)(@0,7) the super level set of I'y, () defined in (2.31).

We start proving that the average m (v, ¢, R)(x¢) can be approximated by means of the regular sequence
m (Y, o, R) (o). Precisely:

Lemma 4.1. Let 29 € w and R > 0 such that Qg (w0, R) C w. Then

(%) Xy, (rg) (@0, R) " X4 (2 (0, ) uniformly in w as k — +00;
(i) MYy, pr, R)(zo) — m(¢, ¢, R)(xo) uniformly in R >0 as k — +o0.

Here x4 denotes the characteristic function of A.
Proof. We recall that
Q(0,R) = {5 € R* | T(0,9) > R*~°},

then, by (2.34), for each k € N we have:
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(20 (0, R) = Bpys, (25) 20 (20, R)).

stated in (2.10) we easily conclude that
(EZD g, (20),00 ) ken uniformly converges to Ezpy, . ., in w as k — +oc. In order to prove (i) we observe that
it is sufficient to prove that for all ¢ > 0 there exists k = k(e) > 0 such that for all k > k

Using the explicit form of Ezpy, 1)z, and Ezpg,

L0

Q¢(Io)($0> R) - (Q@c(ﬂﬁo)(mo’ R))E (4'77>
where
(g (o) (@0, R))e = {y € w | dgy (20) (00, (20) (Z0, R),y) < €} (4.78)

For simplifying the notation we define
Ek(fz(()? R)) = E$p¢k(:c0),x0 (Q(07 R))7 E(Q(Oa R)) = E:I:qu(xg),xg (Q(Ov R))

Suppose by contradiction that there exists € > 0 such that for every k there are k > k and 3, € E(Q(0, R))
such that yy ¢ Ex(Q(0, R)).. Then, there exist (k;);, k;j — 400 as j — +oo and (7x,); in Q(0, R) such that
E(xk;) ¢ By, (20, R)).. So that, the distance between E(xy,) and Ej, (zx,) is greater than e and this is
absurd being Ej, uniformly convergent to E. Then, (4.77) follows and hence ().

To prove (ii) we observe that by Definition 3.3:

lim m(Yx, or, R)(x0) =

k—+o00

_ . CQ 1 [V @Iy, (o) (20, ) on
- kgrfoo Q-2 RS / F(bk(xo)(an y)Q(Q—l)/(Q—2) Vi (y) XQd)k(wo)(IO’R)\Q%(GH())(IO’%)(ZJ) dL™(y).

w

By (2.29) and (2.30)

. |V¢k(z0)r¢k(wo)($0a y)|2 |V¢(IO)F¢(I0)(xO’ y)|2
| , _ < 4.
kb0 Ty ony (@0, )2 @ D@D — Ty (g, 3)2(0-D/(@-2) = C Vy# (4.79)

therefore, (ii) follows from (i) and the fact that ¢ — ¢ in L] (w). O

loc

In what follows we prove that the representation formulas obtained in Proposition 3.5 and in Proposi-
tion 3.11 for C*° functions still hold if ¢ is intrinsic Lipschitz and ¢ € Wy(w).

Lemma 4.2. Let ¢ be a Lipschitz continuous function and 1 € Wy(w). For each xy € w and each R > 0 such
that Qg () (20, R) C w, the following formula holds:

P(wo) = m(¢, ¢, R)(z0) + Ir(x0),

where m(y, ¢, R)(zo) s as in (3.40) and

r

R
) =g [ £ () [ (K, Vo) e
R

Qg () (To,T)

+%/ / (Ka(xo,y,7), Vo(y)) AL (y)dr, (4.80)

£ Qp(ag) (20,7)\ Qg (20) (0, 5)
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where Ky, Ko are as in Proposition 3.5. Let x € w and Cy > 0 be as in Proposition 3.7, then for every
0 < R such that Qg ) (Z,CoR) C w and x,x0 € Qg z)(Z, R) with x # ¢ it holds:

m(ﬂ% ¢a R)(ZL’) - m(d% ¢7 R)(:L'O) =
1
0

1
+/ / < Kg(z,x0,t, 2, R), V91(2) > dL>(2)dt
0 Dt,

J1LR

R

/ < Ks(z,20,t,2,7), V9(2) > AL (2)drdt

=]

N\?U\

[N

1
—/ / < Kq(z,x0,t, 2, R), V1(2) > AL (2)dt, (4.81)
0 Dt_

,R

=

.

where Dy ¢, c, r @5 as in (3.69) and K5, K¢, K7 are as in (3.74), (3.75) and (3.76) respectively and they satisfy
the same estimates proved in Proposition 3.11 with possibly different constants.

Proof. By definition of 1.1 there are {t¢y, }ren, {@k }ren sequences of smooth functions defined on w satistying
conditions (i)—(iv) of Definition 1.1. By Propositions 3.5 and 3.11, the thesis is true for every ¢, 1y as above.
Passing to the limit as in the previous proposition, it holds true also for the limit functions ¢ and . O

It is well known (see for example [14,21]) that the key step in the proof of the Poincaré inequality
is a representation formula as the one proved in Lemma 4.2, which is indeed equivalent to the Poincaré
inequality itself. For further applications, we note that we can obtain the representation formula on any
family of balls, equivalent to the super levels Q4 z)(Z, R), which can be Q) (Z, R) or Uy(Z, R), defined
respectively in (2.31) and (1.5).

Let us denote by By(z, R) a family of spheres centered at z and radius R, equivalent to the family
Qg4(z)(Z, R). Let us denote by g, (z r) the mean of ¥ on the set By(z, R) with respect to the Lebesgue

measure, i.e.

1

YB,(z,R) = (B, (@, R)) / Y(x) dL*(2) (4.82)

By4(z,R)

we will prove the following result:
We use our representation formula to prove an upper bound for the quantity | (zg) — g +(Z,R) |, precisely:

Proposition 4.3. Let ¢ € Lip(w) and ¢ € Wy(w). Let = € w and Cy > 0 be as in Proposition 3.7.
There are Cy > Cy, C1,Cy > 0, depending only on Ly, Q and the structure constants in (2.29), such
that if By(z,CoR) € w and x¢ € By(Z, R) then

[¥(20) — VB, (2 R)| <

<o [ arCmavrmlae v+
By (2,CoR)
% ) / / dy (@, ) [VIe(y)|dL (y)dL? (2). (4.83)

T B,GR
By(%,CoR) By(7,CoR)
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Proof. Let R > 0 such that By(Z, R) C Q) (Z,CoR) C By(z,CoR) € w. By Lemma 4.2, for each
x,x9 € By(Z, R) we have:

w(xO) = m(w, ¢7 R)(xO) + IR(xO)v

hence
Y(zo) — ¥(x) = m(Y, ¢, R)(z0) — m(, ¢, R)(x) + Ir(z0) — Ir(2). (4.84)

Integrating equation (4.84) with respect to the variable = on the sphere By (Z, R) and recalling the definition

of ¥p,(z,r) We get

¢(£0) - ¢B¢(i,R) = m / m(w, qﬁ, R)(Jjo) — r,n(w7 ¢7 R)(.T) d,CQn(J})
By (z,R)
! 2n
i WB (/R) Ir(@o) = Ir(w) dL™(2).
Hence:
W(xo) - qub(i,R)‘ < m / ‘m(w, ¢7 R)(xo) — m(w, ¢7 R)(.’I}) d£2n($)
By(Z,R)
+ [Ir(z0)| + m / |Tr(x)| AL (x). (4.85)

B4 (Z,R)

Now, by Lemma 4.2, we have:

Im (¥, ¢, R)(z0)—m(4), ¢, R)())|

1 R
2
< R // / | < Ks(w,w0,t,2,7), VPP(2) > [dL*™(2)drdt
0

Dt

Sk

1,r

1

+/ / | < Kg(x,w0,t, 2, R), V9(2) > |dL>"(2)dt
0

D

t,+,1,R

[N

1
+/ / | < Ko(x,0,t,2, R), V?9(2) > |dL?"(2)dt.
0

D

t, R

e
N=

We claim that there exists C' = C(Ly) > 0 such that for all r € (R/2, R), t € [0,1] it holds

Dy 11 € Qoao) (20, CR) C By(7, CoR). (4.86)

’2

To this end let us fix ¢ € [0,1] and r € (R/2, R) then for each § € Q(0,7) \ Q(0,7/2) we have

r

5 <lgll<r<R (4.87)
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and, by (3.55), it also holds

() (20, 75(1) < 191l + 12 + VIgllIZ] + V13llé() — d(zo)]. (4.88)
Since z, 9 € By(z, R) by (2.20) and (2.29) we have
dg(z,z0) < CR and |Z|| <CR (4.89)

for some C' = C(Ly) > 0. Using (4.87), (4.88) and (4.89) we immediately get (4.86) with possibly smaller R.
By Lemma 4.2 we know that the estimates for K5, Kg, K7 proved in Proposition 3.11 also hold for
¢ € Lip(w). Hence, by (3.70) and (4.87) for each z € D, 1 ; , and t € [0, 1] we have

A (o) (%0, T)
| F(z,t)]|<¢

A (o) (%0, T)
rQ

\K5(x,x0,t,z,7“)| S C S é

for some C' = C(Ly) > 0. Using (4.86) and (4.89) we get
Qoton) (0,2) = 7] < CR < 207 < CYIF (=, )|

for a suitable constant C'= C(Lg) > 0. Then

1
|K5(z, x0,t,2,7)] < C—m——.
| F(z,t)[[ <1

Moreover, by (4.86), 2 € Qg (4,)(z0, CR) and
0 < dg(ag)(®0,2) £ CR < 2CT < C||F(z,t)|.
So that
|K5(x, x0,t,2,7)| < Cd¢(m0)(mo,z)1_9. (4.90)
Analogously, we can prove that there exists C'= C(Lg) > 0 such that
|Ko(z, 20, t, 2,7)|, | K7(2, 20, t, 2,7)| < Cdg(s) (20, 2)" <. (4.91)
In conclusion we proved that

<Cy / Ay (20, 2) [V (2) AL (2). (4.92)

Qg (wg) (20, CR)
Furthermore, by Lemma 4.2, (3.41) and (3.42) we have
Tn(@o) < Calo [ a2 ()| V0 (0)AL (1), (4.93)
Qg (o) (%0, R)

@) < Cols [ diS@ )V o)L (). (4.94)

Qg () (z,R)
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Finally, since the integrals can be extended on the sphere By(Z, CoR) and by Remark 2.4 we can replace
d(lb(m%(x,y) with difg(x,y), then the thesis follows by (4.85), (4.92), (4.93) and (4.94). O

The proof of Theorem 1.2 follows from Proposition 4.3. We will prove Theorem 1.2 for any family of
spheres equivalent to 24 (,). This will easily imply Theorem 1.2 using the spheres Us.

Proof of Theorem 1.2. As in the previous proof we denote by C,C positive constants depending only on

Ly, Q and the constants defined in (2.29) which could be different from line to line. Firstly let us assume
that p > 1. From (4.83), if we denote p’ the conjugate exponent of p we get

[¥(T0) — VB, @R <

e Al (@, )dS 9P (o, ) VO (y) AL (y) +
B¢(i,C~oR)
1 Q/p (1-9)/p ¢ 2n 2n
cmmam ] A el ey T (e @),
B¢(E COR) B¢(Z COR)
(4.95)
Hence, applying Holder inequality we have:
[¥(20) — VB, (z,R) " < (4.96)
. »/p
<o [ areaan)” ([ ar vt pdct o)+
B¢(f,éoR) B(b(i,éoR)

*ﬁn(Bi?x,R» / ( / 4 %w)”

By, (%,CoR) By(%,CoR)

( / difg(x,y)\V¢w(y)I”d£2"(y))d£2”(x). (4.97)

B¢(i,é()R)
If dy(z0,Z) < R we have
4o )< [ d %) dC). (4.98)
By (z,CR) Byg(z0,(C+1)R)

By (2.21), it follows that we can consider as admissible family of balls also the one defined by
B¢(£E0, ) = {y € w: dg(ao)(w0,y) < 7} where dy(.) is defined in (2.13) and we can replace dé_g(xo,y)
with d oz )(xo, y) in the previous integral. Let us now recall that G is isomorphic to H"~! x R = R?", meant
as a Carnot group, with homogeneous dimension Q. Denote U(Zo,7) := {§ € G : d(Zo,§) < r} with d
homogeneous distance on G defined in (2.26). By (2.27), for a given g € w and r > 0,

U(F(x0),7) N F(w) = F(By(zo,7))

where F : R?™ — G = R?" is the diffeomorphism F(y) := L0G 434,00 (y) (see (2.12)). Moreover, since it is
easy to see that the Jacobian determinant of F'is 1, it follows that
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o) W) <G [ A8 () A )
By (wo,(C+1)R) By(z0,(C+1)R)
<G / d'=9(F(x),z) dL*(z) < C4R.

U(F(z0),(C+1)R)
Thus, from (4.98) and (4.99), we get that, if dy(xo,Z) < R, then
[ iy acn) < Gk,
By (z,CR)

Inserting this in the previous expression, we immediately get
[(wo) — VB, @) <

<t [ AR Vel ) +
B¢(i7COR)
C~'2Rp71 1-9

_—_— d ¢ Pd 2n d 2n )

v | ] eV g @)
By (2,CoR) By (2,CoR)
Integrating on By(Z, R) we get
[ 166e0) = v ey AL ) <

Bd)(i,R)

< iR / / 412 (39, )| VO3 () PAL2" ()AL ()
By(%,CR) By (%,CR)

N / / ALz, ) [ VP4 () PAL? ()AL (2).

By(%,CR) By(%,CR)
This implies:
[ (o) — ¢B¢(i,R)|pd£2n(xo) <
B(b(i,R)

cow [ owrewr( [ awe)de @) dc ).

B¢(:Z’,CR) Bd,(:f,CR)

(4.99)

(4.100)

(4.101)

(4.102)

(4.103)

Finally, using again (4.100) we get the thesis. If p = 1, we can directly integrate (4.83) on By(Z, R) and
we get (4.103). Eventually, since we can choose as By(Z, R) any family of balls equivalent to Qyz) (7, R),

by (2.32), it follows we can also select By(Z, R) = Uy(z, R) and we get the desired conclusion.

By the approximation result in Theorem 2.6 we can choose 1) = ¢ and get the proof of Corollary 1.3.
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