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Abstract. In this article we suggest a new approach to the systematic, computer-
aided construction and to the classification of product-quotient surfaces, intro-
ducing a new invariant, the integer γ, which depends only on the singularities of
the quotient model X = (C1×C2)/G. It turns out that γ is related to the codi-
mension of the subspace of H1,1 generated by algebraic curves coming from the
construction (i.e., the classes of the two fibers and the Hirzebruch-Jung strings
arising from the minimal resolution of singularities of X).

Profiting from this new insight we developed and implemented an algorithm
in the computer algebra program MAGMA which constructs all regular product-
quotient surfaces with given values of γ and geometric genus. Being far better
than the previous algorithms, we are able to construct a substantial number
of new regular product-quotient surfaces of geometric genus zero. We prove
that only two of these are of general type, raising the number of known families
of product-quotient surfaces of general type with genus zero to 75. This gives
evidence to the conjecture that there is an effective bound Γ(pg, q) ≥ γ (cf.
Conjecture 4.5).

Finally we introduce a duality among product-quotient surfaces and prove
that the dual surface of a surface of geometric genus zero has maximal Picard
number, thus providing several new examples of surfaces with maximal Picard
number.

1. Introduction

Let G be a finite group acting on two compact Riemann surfaces C1, C2 of
respective genera g1, g2 ≥ 2. We shall consider the diagonal action of G on C1×C2

and in this situation we say for short: the action of G on C1 × C2 is unmixed. By
[Cat00] we may assume w.l.o.g. that G acts faithfully on both factors.

Definition 1.1. The minimal resolution S of the singularities of X = (C1×C2)/G,
where G is a finite group with an unmixed action on the product of two compact
Riemann surfaces C1, C2 of respective genera at least two, is called a product-
quotient surface.
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X is called the quotient model of the product-quotient surface.

In the last years several people have been studying product-quotient surfaces
and quite some literature is nowadays available (cf. e.g [Cat00, Zuc01, BC04,
BCG08, MP10, Pol09, Pol10, Fra11, BCGP12, BP12, FP13, Pen12, GP13]...).

The authors (partially in collaboration with F. Catanese, D. Frapporti and F.
Grunewald) have been focusing mainly on the systematic construction and classi-
fication of product-quotient surfaces of general type with geometric genus pg = 0.
Our previous results may be summarized as follows.

Theorem 1.2 ([BC04], [BCG08] [BCGP12],[BP12]).
1) Product-quotient surfaces isogenous to a product (i.e., G acts freely) with

pg(S) = q(S) = 0 form 13 irreducible connected components of the Gieseker moduli
space of surfaces of general type.

2) Minimal product-quotient surfaces with pg = 0 of general type form 72 irre-
ducible families, including the 13 families in point 1.

3) There is exactly one product-quotient surface with pg = 0, K2
S > 0 which is

not minimal.

Even if quite some effort has been put and new techniques have been developed,
the following problem remains open:

Problem 1.3. Classify all product-quotient surfaces of general type with pg = 0.

By theorem 1.2 it remains to classify all non-minimal product-quotient surfaces
of general type with geometric genus zero. In [BP12] he authors wrote a MAGMA
script producing all regular product-quotient surfaces with pg = 0 and fixed K2

S.
As already noticed in loc. cit, one approach to solve the above problem is

1) prove that K2
S ≤ −C implies that S is not of general type for some explicit

integer C;
2) use a suitable algorithm to construct all regular product-quotient surfaces

with pg = 0 and −C < K2 < 0.

At the moment, not only an explicit bound is out of reach, but also the algorithm
used in [BP12] is very slow for K2

S < 0, hence far from being good enough to make
step 2 work even for small C.

In the present article we suggest a different approach to solve problem 1.3.
The key observation is the following: inspecting the list of surfaces in Theorem

1.2 (cf. [BP12], tables 1, 2), one notices that all minimal product-quotient surfaces
with pg = 0 have the property that H1,1(S) is generated by the fibres of the two
fibrations and the irreducible components of the exceptional divisor of the minimal
resolution of singularities σ, whereas for the single non-minimal product-quotient
surface with K2

S > 0, this is not the case. Here the fibres and the exceptional
curves generate a subspace of codimension 2.

This remark led us to study the subspace of H1,1(S) generated by the fibres of
the two fibrations and the irreducible components of the exceptional divisor of the
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minimal resolution of singularities σ for a general product-quotient surface S. We
shall prove in this article, that its codimension is even, and equal to 2(pg(S) + γ)
(cf. Proposition 4.2), where γ is an invariant depending only on some numerical
data of the singularities of X.

Note that then in particular: pg = 0⇒ γ ≥ 0.

Remark 1.4. Looking at the program used in [BP12] for the case pg = 0, one
notices that almost half of the computations had to deal with the case γ < 0. This
information could be used now to speed up the computations quite a bit.

Instead, we chose to write a different MAGMA script, substituting (as input)
γ to K2. The result is a much quicker program, producing dozens of new regular
product-quotient surfaces with pg = 0 (and several with pg > 0, on which we do
not report here).

Our computations suggest the following

Conjecture 1.5. Let S be a product-quotient surface. Then S is minimal if and
only if pg(S) + γ = 0.

We shall prove the conjecture for surfaces with vanishing geometric genus (cf.
Theorem 6.2).

Running our program for γ = 1, 2, 3, produces three examples of surfaces of
general type, two with γ = 1 (including the surface in Theorem 1.2, 4), and
one with γ = 2: the two new examples, both Numerical Godeaux surfaces, are
described in Section 7. Together with the results [BP12] we have 75 families of
product-quotient surfaces of general type with pg = q = 0 and we conjecture that
this is a complete list.

What we can prove, is the following:

Proposition 1.6. Let S be a product-quotient surface of general type with pg = 0
not among the 75 families just mentioned. Then

• either γ ≥ 4,
• or γ = 3 and X has a singular point of multiplicity at least 14,
• or γ = 2 and X has a singular point of multiplicity at least 45.

On the way to prove the above we construct a substantial number of product-
quotient surfaces not of general type, collected in the tables 1, 2, 3, 4 and 5.

Coming back to Problem 1.3, Our new approach allows to substitute part 1) of
the proposed solution of Problem 1.3 by the following:

Conjecture (4.5). There is an explicit function Γ = Γ(pg, q) such that, for the
quotient model X of every product-quotient surface S of general type

γ(X) ≤ Γ(pg(S), q(S)).

We give some motivation for this Conjecture in Section 8, proving the above
conjecture under some additional hypotheses.
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Finally in section 9 we construct a duality among regular product-quotient sur-
faces allowing, among other things, to give a new interpretation of the ”half-
codimension” pg + γ, which in fact turns out to be equal to the geometric genus
of the dual product-quotient surface.

An interesting result in this last section is Corollary 9.4, showing that the dual of
every product-quotient surface of geometric genus zero has automatically maximal
Picard number. Thus the dual surfaces of the surfaces in tables 2, 3, 4 and 5 provide
more than 100 families of surfaces with 1 ≤ pg ≤ 3 and maximal Picard number.

2. Notation

In this chapter we fix the notation, which will be valid throughout the paper.
Let C be an algebraic curve, G a finite group acting faithfully on it, C ′ = C/G.

We associate to the pair (C,G), after certain choices on C/G ([BCP12, Section 4]
for details), an

• appropriate orbifold homomorphism ϕ : T(g(C/G);m1, . . . ,mr)→ G,

which allows (up to the above made choices) to reconstruct (C,G).
Equivalently, one can give

• a generating vector ([Pol10, Definition 1.1]) of G of signature (or type)
(g(C/G);m1, . . . ,mr),

where g(C/G) is the genus of the quotient curve.
We will say that the action of G on C has signature (g(C/G);m1, . . . ,mr).
We will also need the number

• Θ := Θ(g(C/G);m1, . . . ,mr) := 2g(C/G)− 2 +
∑(

1− 1
mi

)
> 0,

which relates the genus of C and the order of G by the Hurwitz formula

(1) 2g(C)− 2 = |G|Θ.
In the following C1, C2 will be two algebraic curves of respective genera g1, g2 ≥

2, G a finite group acting faithfully on both curves.
We consider the quotient surface X := (C1×C2)/G by the diagonal action, and

the minimal resolution of its singularities σ : S → X. We will refer to S as

• a product-quotient surface and
• to X as its quotient model.

We will denote by S the minimal model of S.
As usual, pg(S) (or simply pg) will be the geometric genus h2(OS), and q(S)

(or simply q) will be the irregularity h1(OS). We will also denote by χ or χ(S) =
1− q + pg the Euler characteristic of the structure sheaf OS of S.

We will say that the quotient model X has type

((g(C1/G);m1, . . . ,mr), (g(C2/G);n1, . . . , ns)) ,
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if the action of G on C1 has signature (g(C1/G);m1, . . . ,mr) and the action of
G on C2 has signature (g(C2/G);n1, . . . , ns); we will write Θ1 for Θ(g(C1/G);
m1, . . . ,mr) and Θ2 for Θ(g(C2/G);n1, . . . , ns).

All singularities of X are cyclic quotient singularities, locally isomorphic to the

quotient of C2 by the cyclic group generated by (x, y) 7→ (e
2πi
n x, e

2qπi
n y) for two

relatively prime positive integers q, n with q < n. We will say that the singularity
is of type q

n
, instead of using the classical notation 1

n
(1, q).

We denote by q′ the integer between 1 and n − 1 which is the multiplicative
inverse of q modulo n, whence a singularity of type q

n
is also of type q1

n1
if and only

if n = n1 and q1 is either q or q′.
We associate four numbers to each cyclic quotient singularity, depending only

on its type.

Definition 2.1. For each rational number 0 < q
n
< 1 we consider its continued

fraction
n

q
= b1 −

1

b2 − 1
b3−...

=: [b1, . . . , bl];

writing q
n

= [b1, . . . , bl], bi ∈ N, bi ≥ 2.
We define:

• l
(
q
n

)
is the length of the continued fraction;

• γ
(
q
n

)
:= 1

6

[
q+q′

n
+
∑l( q

n
)

i=1 (bi − 3)
]
;

• µ
(
q
n

)
= 1− 1

n
.

• I
(
q
n

)
= n

gcd(n,q+1)
.

It is well known that if q
n

= [b1, . . . , bl], then q′

n
= [bl, . . . , b1]. It follows immedi-

ately that l, γ, µ and I do not change when substituting q with q′, and therefore
the following definition is well posed.

Definition 2.2. Let x be a singular point of X, of type q
n

. Then we define lx :=

l
(
q
n

)
; γx := γ

(
q
n

)
; µx := µ

(
q
n

)
; Ix := I

(
q
n

)
.

A representation of the basket of singularities of the quotient model X is a
multiset

B(X) :=
{
λ× a

n
: X has exactly λ singularities of type

a

n

}
.

E.g., B = {2 × 1
3
, 3

4
} means that the singular locus of X consists of two 1

3
-points

and one 3
4
-point.

Consider the equivalence relation generated by ” a
n

is equivalent to a′

n
”, where

a′ = a−1 in (Z/nZ)∗, on the multisets of the above form. A basket of singularities
B is then an equivalence class.

We globalize l, γ, µ and I as follows.
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Definition 2.3 (Invariants of the basket B). Let B be the basket of singular-
ities of the quotient model X of a product-quotient surface S. Then

l(X) :=
∑
x∈B

lx; γ(X) :=
∑
x∈B

γx; µ(X) :=
∑
x∈B

µx; I(X) := lcmx∈B Ix.

Remark 2.4. I is the index of X, the minimal positive integer such that IKX is a
Cartier divisor. It is the only number, among the numbers defined in Definition 2.1,
which was already considered in [BP12]. The numbers l ,γ and µ are convenient
substitutes of the numbers e, k, and B considered in [BP12]. For the convenience
of the reader, we recall the definition of e, k and B in terms of the new invariants:

(2) e = l + µ; k = 6γ + l − 2µ; B = 3 (2γ + l) .

3. Hodge theory of Product-Quotient Surfaces

We start with the following:

Proposition 3.1.

(1) For all k 6= 2, Hk(S,C) ∼= Hk(X,C).
(2) H2(S,C) ∼= H2(X,C)⊕ Cl(X).

Proof. 1) Let X◦ be the smooth locus of X. For each singular point x of X, choose
a small neighbourhood Ux of x which may be retracted to the point x and set

• U :=
⋃
Ux,

• U◦x := Ux \ {x} = Ux ∩X◦,
• U◦ = U ∩X◦.

We also consider

• S◦ := σ−1(X◦),
• Vx := σ−1(Ux), V

◦
x := σ−1(U◦x),

• V := σ−1(U), V ◦ := σ−1(U◦).

The Mayer-Vietoris exact sequences corresponding to the decompositions

X = X◦ ∪ U, S = S◦ ∪ V
give a commutative diagram
(3)

Hk−1(X◦)⊕Hk−1(U) //

bk−1⊕ck−1

��

Hk−1(U◦) //

dk−1

��

Hk(X) //

ak
��

Hk(X◦)⊕Hk(U) //

bk⊕ck
��

Hk(U◦)

dk
��

Hk−1(S◦)⊕Hk−1(V ) // Hk−1(V ◦) // Hk(S) // Hk(S◦)⊕Hk(V ) // Hk(V ◦) .

The vertical maps are induced by suitable restrictions of σ.
Since σ|S◦ and σ|V ◦ are homeomorphisms, all the maps bq and dq are isomor-

phisms. Moreover, since Ux retracts to a point and Vx to a tree of lx rational
curves, ck is an isomorphism for all k 6= 2, and c2 is the (injective) map 0→ Cl.



PRODUCT-QUOTIENT SURFACES: NEW INVARIANTS AND ALGORITHMS 7

By the Five Lemma, it follows that all maps ak with k 6= 2, 3 are isomorphisms,
while the Four Lemma implies that a2 is injective and a3 is surjective.

Let A1, . . . , Al be the exceptional divisors of σ. Since V retracts to the union of
the Ai, the inclusions yield an isomorphism H2(V ) ∼= ⊕l1H2(Ai), so H2(V ) ∼= Cl.
Moreover, identifying by Poincaré duality H2(S) with H2(S)∗, the map H2(S)→
H2(Ai) ∼= C induced by inclusion sends each linear form φ to φ(Ai). Since the
intersection form on the Ai is negative definite, it follows that the map H2(S)→
H2(V ) ∼= ⊕H2(Ai) is surjective.

Then standard diagram chasing shows that a3 is injective, hence an isomorphism.
2) We have just shown that all maps ak,bk, ck and dk are isomorphisms with

the exception of a2 and c2. Moreover, a2 and c2 are injective, and dim(coker c2) =
l. Since the alternating sum of the dimensions of the vector spaces in a finite
exact sequence is zero, comparing the two long exact sequences in (3) we obtain
dimH2(S) = dimH2(X) + l. �

For H2(X,C) we can prove the following:

Proposition 3.2.

• dimH2(X,C) ≡ 0 mod 2,
• dimH2(X,C) ≥ 2.

Proof. By the Hodge decomposition we know that

H2(C1 × C2,C) ∼=H0(Ω2
C1×C2

)⊕H1(Ω1
C1×C2

)⊕H2(OC1×C2)

∼=H0(Ω2
C1×C2

)⊕H1(Ω1
C1×C2

)⊕H0(Ω2
C1×C2

)∗.

Therefore the G-invariant part of H2(C1 × C2,C) decomposes as

H2(X,C) ∼=H2(C1 × C2,C)G

∼=H0(Ω2
C1×C2

)G ⊕H1(Ω1
C1×C2

)G ⊕ (H0(Ω2
C1×C2

)∗)G

∼=H0(Ω2
C1×C2

)G ⊕H1(Ω1
C1×C2

)G ⊕ (H0(Ω2
C1×C2

)G)∗.

Therefore, writing as usual hq for the dimension ofHq, h2(X,C) = 2·h0(Ω2
C1×C2

)G+
h1(Ω1

C1×C2
)G, whence the claim is proven once we show that h1(Ω1

C1×C2
)G ≡ 0

mod 2.
By Künneth’s formula (cf. e.g. [Ka67]) and Hodge theory we have:

H1(Ω1
C1×C2

) ∼=
(
H1(Ω1

C1
)⊗H0(OC2)

)
⊕
(
H1(Ω1

C2
)⊗H0(OC1)

)
⊕
(
H0(Ω1

C1
)⊗H1(OC2)

)
⊕
(
H0(Ω1

C2
)⊗H1(OC1)

)
∼=
(
H1(Ω1

C1
)⊗H0(OC2)

)
⊕
(
H1(Ω1

C2
)⊗H0(OC1)

)
⊕
(
H0(Ω1

C1
)⊗H0(Ω1

C2
)
)
⊕
(
H0(Ω1

C1
)⊗H0(Ω1

C2
)
)
.
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It is well known that if χ is the character of the G-module H0(Ω1
C1

), then χ̄ is

the character of the G-module H0(Ω1
C1

). From this fact it follows that(
H0(Ω1

C1
)⊗H0(Ω1

C2
)
)G
⊕
(
H0(Ω1

C1
)⊗H0(Ω1

C2
)
)G ∼= V ⊕ V̄ ,

where

V :=
(
H0(Ω1

C1
)⊗H0(Ω1

C2
)
)G

.

Since the fundamental class of Ci is G-invariant, we have(
H1(Ω1

C1
)⊗H0(OC2)

)
⊕
(
H1(Ω1

C2
)⊗H0(OC1)

)
=

(
H1(Ω1

C1
)⊗H0(OC2)

)G ⊕ (H1(Ω1
C2

)⊗H0(OC1)
)G ∼= C2.

This proves the claim. �

Consider the inclusion

j : X◦ := X \ Sing(X)→ X

and define Ω̃p
X := j∗Ω

p
X◦ .

Theorem 3.3 ([Ste77], (1.10),(1.11), (1.12)).

(1) Ω̃p
X is coherent for all p;

(2) Ω̃p
X = σ∗Ω

p
S, for all p;

(3) Ω̃p
X = (π∗Ω

p
C1×C2

)G;
(4) there is a morphism of spectral sequences

Epq
1 = Hq(X, Ω̃p

X)

σ∗

��

=⇒ Hp+q(X,C)

σ∗

��
E ′pq1 = Hq(S,Ωp

S) =⇒ Hp+q(S,C),

which is injective at the E1-level.

Proposition 3.4. If pg(S) = 0, then H0(C1 × C2,Ω
2
C1×C2

)G = 0. In particular,
H2(X,C) ∼= H1(C1 × C2,Ω

1
C1×C2

)G.

Proof. By Theorem 3.3, H0(X, Ω̃2
X)→ H0(S,Ω2

S) = 0 is injective, andH0(X, Ω̃2
X) =

H0(C1 × C2,Ω
2
C1×C2

)G. �

We recall the following version of Schur’s lemma (cf. e.g. [Se77, Proposition 4]):

Lemma 3.5. Let G be a finite group and let W be an irreducible G-representation.
Then

(1) dim(W ⊗W ∗)G = 1;



PRODUCT-QUOTIENT SURFACES: NEW INVARIANTS AND ALGORITHMS 9

(2) if W ′ is an irreducible G-representation not isomorphic to W ∗, then dim(W⊗
W ′)G = 0.

Remark 3.6.

(1) Proposition 3.4 shows that the singularities of the quotient-model X give
no conditions of adjunction for canonical forms, even if the singularities are
not canonical. This is not true for bicanonical forms.

(2) The above results (especially the proof of prop. 3.2) make clear that the
condition that S has vanishing geometric genus gives strong restrictions on
the G-modules H0(Ci,Ω

1
Ci

). For example, using Schur’s lemma, we can list
the following properties:
(a) if χ is an irreducible character of G, then H0(Ω1

C1
)χ = 0 or H0(Ω1

C2
)χ̄ =

0;
(b) dimH2(X,C) > 2 if and only if there is an irreducible non selfdual

character χ of G such that H0(Ω1
C1

)χ 6= 0 and H0(Ω1
C2

)χ 6= 0.
Each time that such a situation occurs, the dimension of dimH2(X,C) is
raised by two.

An immediate consequence of the above considerations is the following:

Proposition 3.7. Let X = (C1×C2)/G be the quotient model of a regular product-
quotient surface with pg = 0. Assume moreover that all irreducible representations
of G are selfdual (e.g. G = Sn). Then h2(X,C) = 2.

4. The invariant γ

The formulas for K2
S, χ and q in [BP12] translate, in the notation of the present

paper, as follows.

Proposition 4.1 ([BP12], Prop. 1.6 and Cor. 1.7 and [Ser96]).

K2
S = 8χ− 2γ − l, χ =

(g1 − 1)(g2 − 1)

|G| +
µ− 2γ

4
, q = g1 + g2.

Observe that the new invariant γ is (as defined in 2.1 and 2.3) a priori a rational
number.

But, in fact, we are going to show in the next proposition that γ is an integer,
bounded from below by −pg(S).

Proposition 4.2.
γ(X) + pg(S) ∈ N.

Moreover, if γ(X) + pg(S) = 0, then S has maximal Picard number.

Proof. The intersection form on H2(S,C) shows that the fibres of the two fibrations
S → Ci/G, and the l irreducible exceptional curves of σ form a set of l+ 2 linearly
independent classes in H1(S,Ω1

S). Therefore we have

h1,1(S)− l − 2 ∈ N.
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By Proposition 3.1,we know that dimH2(S,C) = l+dimH2(X,C) and, by Propo-
sition 3.2, we see that h1,1 has the same parity as l. Therefore h1,1 − l − 2 ∈ 2N.

The claim follows, using Noether’s formula, Hodge theory and Proposition 4.2,
since

2(γ + pg) =−K2
S + 8χ− l + 2pg

=c2(S)− 4χ− l + 2pg

=2− 2b1 + b2 − 4 + 4q − 4pg − l + 2pg

=h1,1 − l − 2.

In particular, if γ(X) + pg(S) = 0, then H1,1(S) is generated by algebraic curves
(the fibres of the two fibrations and the exceptional curves of σ) and therefore S
has maximal Picard number. �

Remark 4.3. From Proposition 3.1 and the proof of Proposition 4.2, we get that
h2(X,C) = 2(γ + 2pg + 1). In particular, by Proposition 3.7, if X = (C1 × C2)/G
is the quotient model of a regular product-quotient surface with pg = 0, and if all
irreducible representations of G are selfdual, then γ = 0.

The next proposition implies that the possible values of γ distribute symmetri-
cally around zero.

Proposition 4.4. γ( q
n
) = −γ(n−q

n
).

Proof. Write n
q

= [b1, . . . , bl],
n
n−q = [a1, . . . , ak]. Then by [Rie74, Lemma 4]

k∑
1

(ai − 1) =
l∑
1

(bi − 1) = k + l − 1.

Therefore

6

(
γ
( q
n

)
+ γ

(
n− q
n

))
=
q + q′

n
+
n− q + n− q′

n
+

l∑
i=1

(bi−3) +
k∑
i=1

(ai−3) =

= 2 +
l∑

i=1

(bi − 1)− 2l +
k∑
i=1

(ai − 1)− 2k = 0.

�

What concerns an upper bound for γ in terms of the invariants of S, we have
the following

Conjecture 4.5. There is an explicit function Γ = Γ(pg, q) such that, for the
quotient model X of every product-quotient surface S of general type

γ(X) ≤ Γ(pg(S), q(S)).
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5. A classification algorithm for surfaces of general type with
given pg, q and γ

In [BP12] we developed an algorithm producing all product-quotient surfaces
with given values of K2

S, and χ(OS) (as input).
In the following we shall show that we can substitute γ to K2

S; in other words,
fixing χ and γ ∈ N, we also get a finite problem. In particular, answering in the
affirmative Conjecture 4.5 we would have an algorithm constructing all product-
quotient surfaces with fixed values of q and pg.

To ease the forthcoming formulas, we also introduce the following:

Definition 5.1. ξ := ξ(X) := 4χ+ 2γ − µ ∈ Q.

Remark 5.2. Observe that ξ only depends on χ and on the basket B. Moreover,

ξ(X) =
4(g1 − 1)(g2 − 1)

|G| =
K2
X

2
.

We recall the following theorem due to Xiao Gang:

Theorem 5.3 ([Xia96]). Let T be a minimal surface of general type and G a
finite group of automorphisms of T , such that T/G is of general type. Let Y be
the minimal model of a resolution of singularities of T/G. Then

1 ≤ K2
Y ≤

K2
T

|G| .

Using remark 5.2 we immediately get the following lower bound for ξ.

Corollary 5.4.

ξ(X) ≥ 1

2
K2
S̄ ≥

1

2
.

Proof. This follows immediately, since
K2
C1×C2

|G| = K2
X = 2ξ. �

We consider the two natural fibrations

f1 : S → C1/G, f2 : S → C2/G,

and denote the generic fibre of fi by Fi. Observe that F1 is isomorphic to C2 and
F2 is isomorphic to C1.

These fibrations have been studied in detail in [Pol10]. If the type of X is
((g1;m1, . . . ,mr), (g2;n1, . . . , ns)), then f1 has exactly r reducible fibers, all non
reduced, of the form:

F1 ≡ miF
(i)
1 +

∑
ajAj, 1 ≤ i ≤ r,

where the Aj’s are contracted by σ. Similarly the second fibration f2 : S → C2/G

with general fibre F2 isomorphic to C1, has s reducible fibers of the form niF
(i)
2 +∑

bjAj.
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Remark 5.5. [cf. [Ser96], Theorem 2.1] Each singular point x of X lies on σ(F
(i)
1 )

for one i. Moreover, if x is of type q
n
, then n divides mi.

We will need the following result by F. Polizzi, computing the self intersection

(F
(i)
1 )2 from the types of the singularities of X along σ(F

(i)
1 ).

Proposition 5.6 ([Pol10], Proposition 2.8).∑
x∈SingX∩σ(F

(i)
1 )

q

n
(x) = −(F

(i)
1 )2 ∈ N,

where x is a singular point of type q
n
(x).

Moreover, if x ∈ σ(F
(i)
1 )∩σ(F

(j)
2 ) and the contribution of x to (F

(i)
1 )2 is q

n
, then

its contribution to (F
(j)
2 )2 is q′

n
.

We shall show now (Proposition 5.11) that for fixed γ, pg and q there is a
finite list containing all possible signatures involved in the construction of product-
quotient surfaces with those values of γ, pg and q.

Before doing this, we need to recall further invariants, the integers αi, which
were already considered in our previous papers.

Definition 5.7.

α1 :=
4χ+ 2γ − µ

2Θ1

=
ξ

2Θ1

, α2 :=
4χ+ 2γ − µ

2Θ2

=
ξ

2Θ2

.

In fact, we have (cf. e.g. [BCGP12])

Proposition 5.8. αi = gi+1 − 1 ∈ N.

Proof. W.l.o.g. we can assume i = 1. Then

α1 =
ξ

2Θ1

=
2(g1 − 1)(g2 − 1)

|G|Θ1

= g2 − 1 ∈ N.

�

The following inequality allows to bound the multiplicities in the signatures in
terms of the genera of the involved curves.

Theorem 5.9 ([Wim95]). Let H be a cyclic group of automorphisms of a compact
Riemann surface C of genus g ≥ 2. Then |H| ≤ 4g + 2.

In fact, an immediate consequence of Wiman’s inequality is the following:

Corollary 5.10. For all 1 ≤ i ≤ r, 1 ≤ j ≤ s we have:

mi, nj ≤ 2 min

((
ξ

Θ1

+ 3

)
,

(
ξ

Θ2

+ 3

))
.

The next proposition gives upper bounds for r, s, mi and nj in terms of ξ and
g(Ci/G).
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Proposition 5.11. The following inequalities hold:

a) r ≤ ξ + 4− 2g(C1/G);
b) if g(C1/G) > 0 or r > 3, then for all 1 ≤ i ≤ r it holds

mi ≤3 +
2ξ + 1 +

√
(3(4g(C1/G) + r − 3) + 2ξ + 1)2 − 12(4g(C1/G) + r − 3)

4g(C1/G) + r − 3

<6 +
4ξ + 2

4g(C1/G) + r − 3

c) if g(C1/G) = 0 and r ≤ 3, then r = 3 and

mi ≤ 6[ξ + 1 +
√
ξ(ξ + 2)] < 12(ξ + 1)

for 1 ≤ i ≤ 3.

Analogous bounds hold for s, nj.

Proof. a) By 1 ≤ α1 = ξ
2Θ1

, 2Θ1 ≤ ξ. Since by definition Θ1 ≥ 2g(C1/G)− 2 + r
2
,

r ≤ 2Θ1 + 4− 2g(C1/G) ≤ ξ + 4− 2g(C1/G)

b) If r = 0 there is nothing to prove, so we may assume r ≥ 1. Let m1 be the
maximum of the mi. Note that by definition

Θ1 ≥ 2g(C1/G) +
r − 3

2
− 1

m1

=
m1(4g(C1/G) + r − 3)− 2

2m1

.

By assumption m1(4g(C1/G) + r − 3) − 2 ≥ 0. Moreover m1(4g(Ci) + r − 3) −
2 = 0 implies that the signature is (0; 2, 2, 2), which implies Θ1 = −1

2
< 0, a

contradiction. So m1(4g(C1/G) + r − 3)− 2 > 0, whence, from corollary 5.10,

m1 ≤ 2

(
ξ

Θ1

+ 3

)
≤ 2

(
2m1ξ

m1(4g(C1/G) + r − 3)− 2
+ 3

)
,

so

m2
1(4g(C1/G) + r − 3)− 2m1(3(4g(C1/G) + r − 3) + 2ξ + 1) + 12 ≤ 0.

This immediately implies the desired inequality.
c) By corollary 5.4 we have ξ ≥ 1

2
> 0, and therefore the claimed upper bound

for mi is > 6. Therefore we can assume w.l.o.g that m1 > 6.
Since Θ1 > 0 it follows r ≥ 3 (so r = 3) and Θ1 + 1

m1
≥ 1

6
with equality if and

only if the signature is (0; 2, 3,m1). So Θ1 ≥ m1−6
6m1

and

m1 ≤ 2

(
ξ

Θ1

+ 3

)
≤ 2

(
6m1ξ

m1 − 6
+ 3

)
which is equivalent to

m2
1 − 12 (ξ + 1)m1 + 36 ≤ 0

and we can conclude as before. �
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We are now prepared to give the necessary bounds in order to show that given
γ, pg and q, there is a finite number of families of product-quotient surfaces with
these invariants.

Recall that g(Ci/G), i = 1, 2, is bounded by q (Proposition 4.1), whence it is
enough to produce upper bounds for the remaining natural numbers involved, i.e.,
we need to bound r, s, mi and nj in terms of pg and q.

Remark 5.12. If S is of general type then

# SingX = #B(X) ≤ 8χ+ 4γ − 1.

Proof. The inequality follows by Corollary 5.4 since, by the definition of µ, #B(X) ≤
2µ. �

We now give an upper bound for the multiplicity of each singularity of X in
terms of pg, q and γ. This, together with remark 5.12, produces a finite list
of possibilities for the basket of singularities of the quotient model of a product
quotient surface with given values of pg, q and γ.

Proposition 5.13. Let S be of general type. Then:

a) if q
n
∈ B, then n ≤ 12(4χ+ 2γ − 1);

b) if moreover γ 6= 0, then n ≤ 12(4χ+ 2γ − 3
2
).

Proof. a) If the basket is empty, then the claim is empty. Otherwise assume that
there is a singular point x of type q

n
, and let mi be the multiplicity of the central

component of the fibre of f1 containing it. Then by lemma 5.6 there is at least
one further singular point on the same fibre, and, if there is only one, it is of type
n−q
n

. It follows µ ≥ 2− 2
n
.

By proposition 5.11 and remark 5.5 we know that n ≤ mi < 12(4χ+2γ−µ+1) ≤
12(4χ+ 2γ − 1 + 2

n
). Therefore

n− 24

n
< 12(4χ+ 2γ − 1).

If 4χ+ 2γ − 1 ≥ 2, then the righthand side is bigger than 24, hence

(4) n ≤ 12(4χ+ 2γ − 1).

By Proposition 4.2 and Corollary 5.4, 4χ + 2γ − 1 is a positive integer, so it
remains to consider only the case 4χ+2γ−1 = 1. In this case Corollary 5.4 yields
µ ≤ 3

2
, and therefore either there are three points of multiplicity 2 or there are

exactly two singular points, both of multiplicity n ≤ 4. In all cases (4) hold.
b) If the basket contains exactly 2 elements, they are by Proposition 5.6 of re-

spective type q
n

and n−q
n

and then by Proposition 4.4 γ = 0. Therefore γ 6= 0
implies that there are at least three singular points, and a straightforward compu-
tation gives µ ≥ 5

2
− 3

n
, whence

n− 36

n
< 12

(
4χ+ 2γ − 3

2

)
.



PRODUCT-QUOTIENT SURFACES: NEW INVARIANTS AND ALGORITHMS 15

The claim follows by the same argument as in the previous case. �

Remark 5.14. We have shown that the classification problem is finite. In fact,
we know that there are finitely many possibilities for the basket of singularities. If
we fix a basket B, then we have to show that there are finitely many possibilities
for

• the order of the group G, and for
• the two types t1 = (g(C1/G);m1, . . . ,mr) and t2 = (g(C2/G);n1, . . . , ns).

Note that by proposition 5.15, a), |G| is determined by t1 and t2. The length r
(resp. s) of t1 (resp. t2) is bounded by proposition 5.11, a), whereas a bound for
the mi (resp. nj) is given by loc.cit. b), c).

We are now ready to write an algorithm producing, for each fixed value of the
triple (pg, q, γ), all product quotient surfaces with those values of pg, q and γ. Still,
for implementing a reasonable (quick) algorithm it is convenient to use also the
following additional informations which we have proved in [BP12].

Proposition 5.15.

a) |G| = 4α1α2

ξ
= ξ

Θ1Θ2
;

b) for each i, Iξ
Θ1mi

∈ N;

c) there are at most |B|
2

indices such that Iξ
2Θ1mi

6∈ N;

d) mi ≤ 1+Iξ
f

, where f := max(1
6
, r−3

2
);

e) except for at most |B|
2

indices, it holds: mi ≤ 2+Iξ
2f

Similar statements as b), c), d) obviously hold for (n1, . . . , ns).

Proof. a) follows by Remark 5.2 and Proposition 5.8;
b-c) see [BP12], proposition 1.13;
d) let m1 be the biggest of the mi’s; then Θ1 + 1

m1
≥ f whence:

mi ≤ m1 ≤
1 + Θ1m1

f
≤ 1 + Iξ

f
;

where f := max(1
6
, r−3

2
);

e) similar. �

We describe now explicitly an algorithm producing all product quotient surfaces
of general type with fixed pg, q and γ.

Indeed, Corollary 5.12 and Proposition 5.13 produce, once fixed pg, q and γ, a
finite list of possible baskets. The basket determines also µ, l and ξ.

Moreover, 0 ≤ g(C1/G) ≤ q varies also in a finite set (and determines g(C2/G) =
q − g(C1/G)).

For each basket in the list, and for each choice of g(C1/G), Proposition 5.11
gives a finite list of possible signatures for the action of G on C1 (and similarly on
C2). Most of the signature obtained can be excluded by using the other conditions
we know:
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• Remark 5.5 ensures that for each singularity of type q
n

there is an i such
that n|mi;
• α ∈ N;
• Proposition 5.15, b), c), d), e).

Finally, for each pair of signatures, we can run a search over all groups of the
order predicted by Proposition 5.11, a), whether there is a pair of generating
vectors of the prescribed signatures.

We have implemented this algorithm in MAGMA ([BCP97]) in the case q = 0.
The interested reader may download the commented script from
http://www.science.unitn.it/~pignatel/papers/RegP-QByPgGamma.magma

The command ExistingSurfaces(pg,γ,M) has two outputs: a list of regular
product-quotient surfaces with the given values of pg and γ, and quotient model
whose singularity of maximal multiplicity has multiplicity M , and a list of skipped
cases, pairs (group,signature) which the computer could not handle (for technical
reasons): if there is a regular product-quotient surface with those values of pg and
γ which is not in the first output, group and signature are in the second output.

To get all product-quotient surfaces with given values of pg and γ one should run
it with M up to the maximum predicted in Proposition 5.13, and then check the
second output for missing surfaces. In all cases we run we could show, by argument
similar to those used in [BP12], that the first list is complete; in other words, that
the computation skipped by the computer do not give rise to a product-quotient
surface.

6. Does γ detect minimality?

In [BP12] the authors ran a computer program whose output lists all product-
quotient surfaces with pg = 0 and K2

S ≥ 1. Inspecting the output it turned out
that all surfaces are minimal (hence of general type) with the exception of one
case. All minimal product-quotient surfaces satisfy γ(S) = 0, while the only non-
minimal surface in the list has γ = 1. It seems therefore natural to conjecture that
γ is related to the minimality of a product-quotient surface. Or, more ambitiously,
that one can bound the number of exceptional (-1)-cycles on a product-quotient
surface in terms of γ.

We make the following

Conjecture 6.1. Let S be a regular product-quotient surface of general type. Then

γ(S) + pg(S) = 0 ⇐⇒ S is minimal.

In the sequel we shall give a proof of this conjecture in the special case pg = 0.
In fact, we have

Theorem 6.2. Let S be a product-quotient surface of general type with pg = 0.
Then

γ(S) = 0 ⇐⇒ S is minimal.

http://www.science.unitn.it/~pignatel/papers/RegP-QByPgGamma.magma
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Table 1. Product-quotient surfaces with γ = pg = 0 not of general type

K2
S Sing X t1 t2 G

1) 0 1
6
, 5

6
, 2× 1

2
2, 4, 6 2, 4, 6 SmallGroup(192,955)

2) 0 1
6
, 5

6
, 2× 1

2
2, 4, 6 2, 5, 6 SmallGroup(120,34)

3) 0 1
6
, 5

6
, 2× 1

2
2, 4, 6 2, 2, 2, 6 SmallGroup(48,48)

4) -2 2× 1
5
, 2× 4

5
2, 5, 5 2, 5, 5 SmallGroup(80,49)

5) 0 4× 2
5

2, 5, 5 2, 5, 5 SmallGroup(80,49)

6) 0 2× 1
4
, 2× 3

4
2, 4, 5 3, 4, 4 SmallGroup(120,34)

7) 0 2×, 1
4
, 2× 3

4
2, 2, 2, 4 2, 2, 2, 4 SmallGroup(16,11)

8) 0 2× 1
4
, 2× 3

4
2, 2, 2, 4 3, 4, 4 SmallGroup(24,12)

9) 0 2× 1
4
, 2× 3

4
3, 4, 4 3, 4, 4 SmallGroup(36,9)

10) -1 1
5
, 2× 2

5
, 4

5
2, 5, 5 3, 3, 5 SmallGroup(60,5)

Remark 6.3. Unfortunately, we do not have a conceptional proof of the above
theorem, which could shed some light on a possible connection between the number
of exceptional cycles on a product-quotient surface and the invariant γ, or γ + pg.
The proof is just a case by case inspection of the output of the MAGMA script
listing all product-quotient surfaces with pg = γ = 0.

Proof. Running the MAGMA script ”ExistingSurfaces(0,0,M)” for M ≤ 36, we
only have to take care of the surfaces S with K2

S ≤ 0. In fact, if K2
S > 0, it has

already been proven in [BP12] (cf. also Theorem 1.2 and the corresponding tables)
that in these cases γ = 0.

Therefore the proof is finished once we show that the cases with KS ≤ 0 in the
output of ”ExistingSurfaces(0,0,M)” for M ≤ 36 are not of general type.

This will be taken care of in the remaining part of the section. �

First of all we list the output of the surfaces with K2
S ≤ 0 in table 1.

We need the following:

Proposition 6.4. Let S be a product-quotient surface and let A1, . . . Al be the
exceptional curves of σ of respective selfintersection bi. Assume that

E ∼ µ1

|G|F1 +
µ2

|G|F2 −
l∑

i=1

aiAi ∈ H2(S,Q).
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Then µi ∈ N. Moreover, let M be the intersection matrix of the basket (i.e., of the
Ai’s), and set

b :=


KSA1

KSA2

·
·
·

KSAl

 =


b1 − 2
b2 − 2
·
·
·

bl − 2

 , e :=


EA1

EA2

·
·
·

EAl

 .

Then

(5) KSE = µ1Θ2 + µ2Θ1 + eTM−1b;

(6) E2 =
2µ1µ2

|G| + eTM−1e.

Proof. Note that µ1 = EF2; in particular µ1 ∈ N. Similarly µ2 ∈ N.
Since

σ∗KX ≡
1

|G| ((2g1 − 2)F1 + (2g2 − 2)F2) ≡ Θ1F1 + Θ2F2,

then KS ≡ Θ1F1 + Θ2F2 − A, where A is of the form
∑l

i=1 αiAi for some αi ∈ Q.
Set

a :=


a1

a2

·
·
·
al

 , α :=


α1

α2

·
·
·
αl

 .

Since ∀i AiF1 = AiF2 = 0, then AAi = −KSAi = −(bi− 2); in other words Mα =
−b. Similarly Ma = −e. Since M is invertible, we can also write b = −M−1α,
e = −M−1a.

Then KSE = µ1Θ2 + µ2Θ1 +
∑
aiAiA = µ1Θ2 + µ2Θ1 + aTMα = µ1Θ2 +

µ2Θ1 + eTM−1b. Similarly E2 = 2µ1µ2
|G| −

(∑l
i=1 aiAi

)2

= 2µ1µ2
|G| + aTMa = 2µ1µ2

|G| +

eTM−1e. �

Remark 6.5. By the proof of Proposition 4.2, if pg + γ = 0, the set {Ai, Fj} is a
basis of H2(X,Q), so the assumption of Proposition 6.4 is automatically verified
by every curve E.

To show that the surfaces in table 1 are not of general type we argue by co-
tradiction, assuming that they are of general type, and showing that the minimal
model has K2

S
< 0. To do that, we look for rational curves E with selfintersection

−1, and study their image σ(E) in the quotient model X.
We recall that
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Proposition 6.6. Let α : P1 → X be a generically injective map (i.e., α(P1) ⊂ X
is a rational curve). Then α−1(Sing(X)) has cardinality at least three.

Proof. This has been shown in the proof of [BP12, Proposition 4.7] �

Proposition 6.7. Let S be a smooth surface of general type and let C ⊂ S be an
irreducible curve with KSC ≤ 0. Then C is smooth and rational.

Proof. See [BP12, Remark 4.3] �

Corollary 6.8. If S is a surface of general type, E a (−1)−curve on S and C a
curve with C2 = −b. Then CE ≤ max(1, b− 3).

Proof. Else, contracting E, we obtain a surface of general type with a curve, the
image of C, contradicting Proposition 6.7. �

We will also need the following

Lemma 6.9. Let S be a product-quotient surface of general type. Suppose that the
exceptional locus of σ consists of

i) curves of self intersection (-3) and (-2), or
ii) at most two smooth rational curves of self-intersection (-3) or (-4), and

(-2)-curves.

Then S is minimal.

Proof. i) This is [FP13, Corollary 4.8].
ii) Assume that S contains a (-1)-curve E. Note that E cannot intersect two

different (-2)-curves or, contracting it, we would get two (-1)-curves intersecting
transversally, impossible on a surface of general type. Then by Proposition 6.6 and
Corollary 6.8 the exceptional locus contains two curves of self-intersection (-3) or
(-4), say E1 and E2, EE1 = EE2 = 1 and moreover E intersects exactly one (-2)-
curve, transversally. After contracting E, then the image of the (-2)-curve we get
two rational curves of self intersections (-1) or (-2), intersecting each other with
multiplicity bigger than one, which is impossible on a surface of general type. �

Remark 6.10. Observe that if we arrive, after contracting one or more exceptional
curves, to a configuration as in the previous lemma with maybe singular (-4) resp-
(-3)-curves, the same argument applies, showing that on a surface of general type
there cannot be more (-1)-curves.

We can now prove that all surfaces in table 1 are not of general type.

Lemma 6.11. The product-quotient surfaces 1), 2), 3) in table 1 are not of general
type.

Proof. In this case the basket is {1
6
, 5

6
, 2× 1

2
}. We have 8 curves A, . . . , A8, which

we order in a natural way, such that A2
1 = −6, and A7, A8 are the inverse images

of the nodes.
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Assume that there exist a (-1)-curve E. In the notation of Proposition 6.4

b =


4
0
·
·
·
0

 .

We notice again that E cannot intersect two different (-2)-curves, so by Proposition
6.6 and corollary 6.8, BA1 ≥ 2. But then E cannot intersect A2, . . . , A6 since else,
after contracting it we could contract enough other curves intersecting the image
of A1 to contradict proposition 6.7. The possibilities left for e are thus

a)


3
0
·
·
·
0

 , b)


2
0
·
·
0
1

 , c)


2
0
·
·
1
0

 .

Note that the second and third case are symmetric, one obtained from the other
exchanging the two nodes. Therefore it suffices to treat only the cases a) and b).

Applying proposition 6.4 and substituting EKS = E2 = −1 in equations 6, 5
we get in each of the three cases:

(1) here Θ1 = Θ2 = 1
12

and
a) µ1 + µ2 = 12, µ1µ2 = 48,
b) µ1 + µ2 = 4, µ1µ2 = 16;

(2) here Θ1 = 1
12

, Θ2 = 2
15

and
a) 8µ1 + 5µ2 = 60, µ1µ2 = 30,
b) 8µ1 + 5µ2 = 20, µ1µ2 = 10;

(3) here Θ1 = 1
12

, Θ2 = 1
3

and
a) 4µ1 + µ2 = 12, µ1µ2 = 12,
b) 4µ1 + µ2 = 4, µ1µ2 = 4.

In all cases there are no integral solutions, a contradiction. �

Lemma 6.12. The product-quotient surface 4) in table 1 is not of general type.

Proof. Here the basket is {2× 1
5
, 2× 4

5
}. Assume that S is of general type. Since

K2
S = −1 there must be a (-1)-curve E on S. E has to intersect at least one (-5)-

curve, and cannot intersect any rational (-2)-curve (or, as in the previous proof,
after contracting it, we could contract enough curves to contradict Proposition
6.7).

So E passes twice through one of the (-5)-curves and at least once through the
other. After contracting E we get a surface S ′ with a configuration of rational
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curves as in Remark 6.10. Therefore S ′ is minimal, a contradiction, since K2
S′ =

−1. �

Lemma 6.13. The product-quotient surfaces 5), 6), 7), 8), 9) in table 1 are not
of general type.

Proof. Here the basket is {2 × 1
4
, 2 × 3

4
} or {4 × 2

5
}. In all cases, if S was of

general type, it would be minimal by Lemma 6.9. A contradiction, since in all
casesK2

S = 0. �

Lemma 6.14. The product-quotient surface 10) in table 1 is not of general type.

Proof. Here the basket is {1
5
, 2 × 2

5
, 4

5
}. Assume that S is of general type. Then

S contains a (-1)-curve E. After contracting E, which has to pass at least once
through the (-5)-curve and at least once through a (-3)-curve, we get a surface S ′

with a configuration of rational curves as in Remark 6.10 and we get a contradiction
since K2

S′ = 0. �

This concludes the proof of Theorem 6.2.

7. Surfaces of general type with pg = 0 and γ > 0

We shall give now a detailed description of the minimal models of the three
product-quotient surfaces of general type with pg = 0 and γ > 0 which we found
running our computer program. In fact, we believe that there are no more non-
minimal product-quotient surfaces of general type with pg = 0 left.

7.1. A numerical Godeaux surface with torsion of order 4. The group G is
the subgroup of order 96 of the permutation group S8 generated by (123), (12)(34),
(57) and (5678)(12).

Its action on {1, . . . , 8} has two orbits, {1, . . . , 4} and {5, . . . , 8}. Indeed G is an
index 2 subgroup of S4×D4 where S4 is the permutation group of {1, 2, 3, 4}, and
D4 is the isometry group of the square, embedded in S8 by considering its action
on the vertices of the square and labeling them counterclockwise as 5, 6, 7, 8.

The curves C1 and C2 are very similar, they are both G-covers of P1 branched
on {p1 = 1, p2 = 0, p3 =∞} with respective generating vectors

• {g1 := (123)(57), g2 := (4321)(56)(78), g3 := (g1g2)−1)};
• {g′1 := (123)(57), g′2 := (4321)(5678), g′3 := (g′1g

′
2)−1)}.

Their respective signatures are (0; 6, 4, 4) and (0; 6, 4, 2).
Our computer program shows that

Proposition 7.1. The product-quotient surface S with quotient model X = (C1×
C2)/G above has pg = q = K2

S = 0, π1(X) ∼= Z4 and γ = 1. The basket of
singularities of X is {2 × 1

6
, 2

3
, 2 × 1

2
}. All singular points of X are mapped onto

(1, 1) by the natural map X = (C1 × C2)/G→ P1 × P1 = C1/G× C2/G.
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We consider the map P1 z 7→z4−→ P1, and the normalization of the fibre product as
in the following commutative diagram (for i = 1, 2):

C ′i
ζi //

λi
��

Ci

��
P1 // P1

Then λi is a G−cover of P1 branched in the 4−th roots of unity. Lifting loops as
in the following picture

R

iR

R

iR

0 ε 0 ε41 1

i

-1

-i

z 7→ z4
g1

g2

g1

g2g1g
−1
2

g32g1g
−3
2

g22g1g
−2
2

we see that λ1 is theG−cover with generating vector {g1, g2g1g
−1
2 , g2

2g1g
−2
2 , g3g1g

−3
2 }

and λ2 is the G−cover with the analogous generating vector obtained substituting
gi with g′i.

Remark 7.2. It is worth mentioning that here the word ”generating” is a slight
abuse of notation, since the above elements do not generate the whole group G.
This implies that C ′ is not connected, the number of connected components being
the index of the subgroup generated by {g1, g2g1g

−1
2 , g2

2g1g
−2
2 , g3g1g

−3
2 } in G; this

does not affect in any way our argument.

The reader can easily check that the two generating vectors coincide, so λ1 and

λ2 are isomorphic G−covers. In particular, we have a map ζ ′ : Γ ∼= C ′1
∼= C ′2

(ζ1,ζ2)−→
C1 × C2 which is G−equivariant, hence induces a morphism on the quotient

ζ : Γ/G ∼= P1 → X = (C1 × C2)/G

and E ′ := ζ(P1) is a rational curve on X.
Denote by A1, A2 the inverse images of the singularities 1

6
in S, and by E the

strict transform of E ′.

Proposition 7.3. E is a smooth rational curve with KSE = E2 = −1. Moreover,
E(A1 + A2) = 4, and EAi = 0 for every further exceptional curve Ai of σ.
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Proof. First of all, let us show that ζ is generically injective. In fact, composing

with the map X → P1 × P1 we get the map P1 z 7→z4−→ P1 × P1; this shows that ζ is
d-to-1 for a positive integer d which is a divisor of 4.

On the other hand, since all singular points of X lie over (1, 1), this also shows
that only the 4th roots of unity may be mapped to singular points of X. So E ′

will pass at most 4
d

times through singular points of X, and we get by Proposition
6.6 that d = 1.

The smoothness of E follows easily by a local computation. The only points of
E ′ contained in SingX, the 4th roots of unity, have stabilizer of order 6, so they
are mapped to singular points of multiplicity 6. This implies E(A1 +A2) = 4 and
EAi = 0 for every further exceptional curve of σ.

Then E = σ∗E ′− a1
6
A1− a2

6
A2 with a1 +a2 = 4. Moreover KXE

′ =
KC1×C2

ζ′(Γ)

|G| =
4|G|Θ1+4|G|Θ2

|G| = 4(Θ1 + Θ2) = 5
3
. Therefore

KSE = KXE
′ − a1

6
KSA1 −

a2

6
KSA2 =

5

3
− 4

6
(a1 + a2) = −1.

�

Finally we can prove

Theorem 7.4. Contracting E we get a minimal surface. In particular the minimal
model of S is a numerical Godeaux surface with torsion of order 4.

Proof. Since K2
S
> 0, q = 0, π1(S) 6= 0, by the Enriques-Kodaira classification S

is of general type.
By corollary 6.8, EA1, EA2 ≤ 3, so (EA1, EA2) equals either (2, 2), or (3, 1), or

(1, 3).
In the first case, the following picture describes how the configuration of curves

changes after the contraction.
-6 -6 -2 -2 -2 -2

-1

-4 -4 -2 -2 -2 -2

The minimality follows then directly by remark 6.10. A similar argument gives
the minimality in the other two cases. �

7.2. A numerical Godeaux surface with torsion of order 5. The group G
is Z2

5. The curves C1 and C2 are two G-covers of P1 branched on {p1 = 1, p2 =
0, p3 =∞} with respective generating vectors

• {g1 := (1, 0), g2 := (0, 1), g3 := (g1g2)−1)};
• {g′1 := (1.0), g′2 := (1, 1), g′3 := (g′1g

′
2)−1)}.

Both signatures are (0; 5, 5, 5). Our computer program shows that
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Proposition 7.5. The product-quotient surface S with quotient model X = (C1×
C2)/G above has pg = q = K2

S = −1, π1(X) ∼= Z5 and γ = 2. The basket of
singularities of X is {5 × 1

5
}. All singular points of X are mapped onto (1, 1) by

the natural map X = (C1 × C2)/G→ P1 × P1 = C1/G× C2/G.

Since all singularities lie over (1, 1), they all lie in the same fibre of each of the two
isotrivial fibrations, whose central components we denote by E1 and E2 rspectively.
They are Z5-quotients of C2 resp. C1 with 5 branching points; Hurwitz’ formula
shows that both E1 and E2 are rational. By Proposition 5.6 E2

1 = E2
2 = −51

5
= −1.

So both curves are exceptional divisors of the first kind.

Theorem 7.6. Contracting E1 and E2 we get a minimal surface. In particular,
the minimal model of S is a numerical Godeaux surface with torsion of order 5.

Proof. Since K2
S
> 0, q = 0, π1(S) 6= 0, by the Enriques-Kodaira classification S

is of general type.
The following picture describes how the configuration of curves changes after

the contraction.

-1

-1

-5 -5 -5 -5 -5

-3 -3 -3 -3 -3

The minimality follows then directly by remark 6.10. �

7.3. Are there more product-quotient surfaces of general type with pg =
0? By the results in[BP12] and Theorem 6.2 there are exactly 72 families of sur-
faces of general type with pg = γ = 0. By Proposition 4.2 all missing product-
quotient surfaces of general type have γ > 0. We know three examples of them,
the fake Godeaux described in [BP12] (with K2

S = γ = 1, K2
S̄

= 3), and the two
numerical Godeaux surfaces described in this section.

We can prove the following

Proposition 7.7. Let S be a product-quotient surface of general type with pg = 0
not among the 75 families just mentioned. Then

• either γ ≥ 4,
• or γ = 3 and X has a singular point of multiplicity at least 14,
• or γ = 2 and X has a singular point of multiplicity at least 45.

The proof is obtained by running our program for γ = 1 and multiplicity up to
54 (the maximal possible value by Proposition 5.13), γ = 2 and multiplicity up to
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Table 2. Product-quotient surfaces not of general type with pg =
q = 0, γ = 1

γ K2
S Sing X t1 t2 G

1 -2 4× 1
2
, 4× 1

4
4, 4, 4 4, 4, 4 (16,2)

1 -3 2× 1
2
, 1

3
, 2× 2

3
, 2× 1

6
2, 6, 6 2, 6, 6 (48,49)

1 -3 4× 1
2
, 1

7
, 2× 2

7
2, 3, 7 4, 4, 7 (168,42)

1 -3 4× 1
2
, 1

4
, 1

8
, 5

8
2, 4, 8 4, 4, 8 (32,11)

1 -4 6× 1
2
, 2

3
, 2× 1

6
2, 4, 6 2, 2, 2, 6 (24,8)

1 -4 2× 1
3
, 3× 2

3
, 2× 1

6
3, 3, 6 3, 3, 6 (36,11)

1 -4 2× 1
2
, 1

3
, 2

3
, 1

7
, 2× 2

7
2, 3, 7 3, 4, 7 (168,42)

1 -4 7× 1
2
, 1

8
, 3

8
2, 3, 8 2, 2, 2, 8 (48,29)

1 -4 2× 1
2
, 1

3
, 2

3
, 1

4
, 1

8
, 5

8
2, 3, 8 3, 4, 8 (96,64)

1 -5 2× 1
3
, 2× 2

3
, 1

7
, 2× 2

7
2, 3, 7 3, 3, 7 (168,42)

1 -5 2× 1
3
, 2× 2

3
, 1

7
, 2× 2

7
3, 3, 7 3, 3, 7 (21,1)

1 -5 2× 1
2
, 2× 1

4
, 3

4
, 1

8
, 5

8
2, 4, 8 2, 4, 8 (64,32)

1 -8 2× 3
4
, 2× 1

8
, 2× 5

8
2, 8, 8 2, 8, 8 (16,5)

1 -8 4× 1
2
, 2× 3

4
, 1

12
, 5

12
2, 4, 12 2, 4, 12 (24,5)

44 (here the maximal value by 5.13 is 78, γ = 3 and multiplicity up to 13, and
then by showing case by case that the resulting surface is not of general type.

The full list of the cases to consider is the tables 2, 3, 4 and 5. Note that in
the last column we list only the SmallGroup identifier of the MAGMA database
of groups up to order 2000, i.e. (n,m) means the m-th group of order n.

We skip the details of the proof, which is rather long (since the cases are many)
and most of the times straightforward, repeating arguments already used in this
paper. Still in a few cases quite some effort is needed to show that the surface
is not of general type. Unfortunately, we do not know a systematic way to prove
that certain product-quotient surfaces cannot be of general type.

Remark 7.8. Note that the surfaces of general type we have found have singular
points of multiplicity much smaller than the bounds in Proposition 7.7, giving
some evidence to the conjecture that there are no other examples. Still, we can’t
prove it without proving first Conjecture 4.5 at least in the case pg = q = 0, finding
Γ(0, 0) explicitly.
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Table 3. Product-quotient surfaces not of general type with pg =
q = 0, K2 ≥ −8, γ = 2 and singularities of multiplicity at most 44

γ K2
S Sing X t1 t2 G

2 -3 1
2
, 1

3
, 2

3
, 1

4
, 2× 1

8
2, 3, 8 4, 6, 8 (192,181)

2 -4 5× 1
2
, 1

4
, 2× 1

8
2, 4, 8 4, 4, 8 (64,8)

2 -5 3× 1
2
, 3× 1

3
, 3× 1

6
3, 6, 6 3, 6, 6 (18,5)

2 -6 8× 1
3
, 2× 1

6
3, 3, 6 3, 3, 6 (36,11)

2 -6 7× 1
2
, 1

4
, 2× 1

8
2, 4, 8 2, 4, 8 (128,75)

2 -6 1
4
, 3

4
, 2× 1

8
, 2× 3

8
2, 4, 8 2, 2, 8, 8 (32,9)

2 -6 1
2
, 2× 1

3
, 2× 2

3
, 1

4
, 2× 1

8
2, 3, 8 3, 4, 8 (192,181)

2 -6 3× 1
2
, 2× 1

4
, 3

4
, 2× 1

8
2, 4, 8 2, 2, 4, 8 (32,9)

2 -6 7× 1
2
, 2× 1

5
, 1

10
2, 5, 10 2, 5, 10 (50,3)

2 -6 4× 1
2
, 2× 1

4
, 1

12
, 5

12
2, 4, 12 2, 2, 4, 12 (24,5)

2 -6 2× 1
2
, 4× 1

3
, 1

12
, 7

12
2, 3, 12 3, 6, 12 (72,42)

2 -7 2× 1
3
, 2× 2

3
, 5× 1

5
3, 3, 5 3, 3, 5 (75,2)

2 -7 5× 1
2
, 3× 1

3
, 3× 1

6
2, 6, 6 2, 6, 6 (36,12)

2 -7 5× 1
2
, 1

3
, 2

3
, 1

4
, 2× 1

8
2, 3, 8 2, 6, 8 192,181)

2 -7 2× 1
2
, 1

3
, 2

3
, 2× 1

4
, 1

12
, 5

12
2, 3, 12 4, 12, 12 (48,33)

2 -8 4× 1
2
, 2× 2

3
, 4× 1

6
2, 4, 6 2, 2, 6, 6 (24,8)

2 -8 4× 1
2
, 2× 2

3
, 4× 1

6
2, 6, 6 2, 2, 6, 6 (12,5)

2 -8 6× 1
2
, 2× 1

8
, 2× 3

8
2, 4, 8 2, 2, 8, 8 (16,8)

2 -8 6× 1
2
, 2× 1

8
, 2× 3

8
2, 3, 8 2, 2, 8, 8 (48,29)

2 -8 9× 1
2
, 1

4
, 2× 1

8
2, 4, 8 2, 4, 8 (64,8)

2 -8 2× 1
2
, 2× 1

4
, 2× 1

8
, 2× 5

8
2, 8, 8 2, 8, 8 (32,5)

2 -8 2× 1
2
, 1

4
, 3

4
, 2× 1

8
, 2× 3

8
2, 8, 8 4, 8, 8 (16,5)

2 -8 6× 1
2
, 4

5
, 2× 1

10
2, 4, 10 2, 2, 2, 10 (40,8)

2 -8 4× 1
2
, 4× 1

3
, 1

12
, 7

12
2, 6, 12 2, 6, 12 (24,10)

2 -8 2× 1
2
, 4× 1

3
, 2× 2

3
, 1

4
, 1

12
2, 3, 12 2, 3, 12 (192,194)

2 -8 4× 1
3
, 1

4
, 3

4
, 1

12
, 7

12
2, 3, 12 3, 4, 12 (72,42)

2 -8 2× 3
20
, 2× 1

4
, 6× 1

2
2, 4, 20 2, 4, 20 (40,5)
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Table 4. Product-quotient surfaces not of general type with pg =
q = 0, K2 ≤ −9, γ = 2 and singularities of multiplicity at most 44

γ K2
S Sing X t1 t2 G

2 -9 5× 1
5
, 4× 2

5
5, 5, 5 5, 5, 5 (5,1)

2 -9 1
3
, 2

3
, 2× 1

7
, 4× 2

7
2, 3, 7 3, 7, 7 (168,42)

2 -9 4× 1
2
, 5× 1

4
, 1

8
, 5

8
2, 4, 8 2, 4, 8 (32,11)

2 -9 1
3
, 2

3
, 2× 1

4
, 2× 1

8
, 2× 5

8
2, 3, 8 3, 8, 8 (96,64)

2 -9 7× 1
2
, 1

3
, 2

3
, 2× 1

5
, 1

10
2, 3, 10 2, 3, 10 (150,5)

2 -9 4× 1
2
, 1

3
, 2

3
, 2× 1

4
, 1

12
, 5

12
2, 12, 12 3, 4, 12 (12,2)

2 -9 2× 1
3
, 2× 2

3
, 1

13
, 2× 3

13
3, 3, 13 3, 3, 13 (39,1)

2 -9 1
13
, 2× 3

13
, 2× 1

3
, 2× 2

3
3, 3, 13 3, 3, 13 (39,1)

2 -10 2× 1
3
, 4× 2

3
, 4× 1

6
3, 6, 6 3, 6, 6 (6,2)

2 -10 4× 1
2
, 2× 1

7
, 4× 2

7
2, 3, 7 2, 7, 7 (168,42)

2 -10 2× 1
2
, 2× 1

3
, 2× 2

3
, 2× 1

8
, 2× 3

8
2, 3, 8 3, 8, 8 (48,29)

2 -10 7× 1
2
, 2× 1

4
, 3

4
, 2× 1

8
2, 4, 8 2, 4, 8 (32,9)

2 -10 8× 1
2
, 2× 1

8
, 2× 3

8
2, 8, 8 2, 8, 8 (8,1)

2 -10 4× 1
2
, 2× 1

4
, 2× 1

8
, 2× 5

8
2, 8, 8 2, 8, 8 (16,6)

2 -10 4× 1
2
, 1

4
, 3

4
, 2× 1

8
, 2× 3

8
2, 8, 8 4, 8, 8 (8,1)

2 -10 5× 1
2
, 2× 1

3
, 2× 2

3
, 1

4
, 2× 1

8
2, 3, 8 2, 3, 8 (192,181)

2 -10 2× 1
2
, 2× 1

5
, 3× 2

5
, 1

10
, 3

10
2, 5, 10 5, 10, 10 (10,2)

2 -10 6× 1
2
, 4× 1

3
, 1

12
, 7

12
2, 3, 12 2, 3, 12 (72,42)

2 -10 5× 1
2
, 3× 2

3
, 1

4
, 1

6
, 1

12
2, 3, 12 2, 6, 12 (48,33)

2 -10 8× 1
2
, 2× 1

4
, 1

12
, 5

12
2, 4, 12 2, 4, 12 (24,5)

2 -11 4× 1
2
, 1

5
, 2× 4

5
, 2× 1

10
2, 10, 10 2, 10, 10 (20,5)

2 -12 6× 1
2
, 1

4
, 3

4
, 4

5
, 2× 1

10
2, 4, 10 2, 4, 10 (40,8)

2 -12 2× 1
2
, 4× 2

5
, 4

5
, 2× 1

10
2, 5, 10 5, 10, 10 (10,2)

2 -12 7× 1
2
, 1

16
, 1

4
, 7

16
, 3

4
2, 4, 16 2, 4, 16 (32,19)

2 -14 2× 5
6
, 2× 1

12
, 2× 7

12
2, 12, 12 2, 12, 12 (24,9)

2 -14 5× 1
2
, 2× 3

4
, 5

6
, 2× 1

12
2, 4, 12 2, 4, 12 (48,14)

2 -14 6× 1
2
, 2× 3

4
, 9

20
, 1

20
2, 4, 20 2, 4, 20 (40,5)
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Table 5. Product-quotient surfaces not of general type with pg =
q = 0, γ = 3 and singularities of multiplicity at most 13

γ K2
S Sing X t1 t2 G

3 -9 7× 1
3 , 4× 1

6 3, 6, 6 3, 6, 6 (18,3)

3 -10 12× 1
4 4, 4, 4 4, 4, 4 (16,2)

3 -10 3× 2
3 , 6× 1

6 3, 3, 6 3, 3, 6 (108,22)

3 -12 2× 1
2 , 3× 2

3 , 6× 1
6 2, 6, 6, 6 3, 6, 6 (6,2)

3 -12 7× 1
2 , 2× 1

3 , 5× 1
6 2, 6, 6 2, 6, 6 (36,12)

3 -15 5× 1
7 , 4× 3

7 7, 7, 7 7, 7, 7 (7,1)

3 -13 3× 1
7 , 6× 2

7 2, 3, 7 7, 7, 7 (168,42)

3 -13 3× 1
7 , 6× 2

7 7, 7, 7 7, 7, 7 (7,1)

3 -12 3× 1
8 , 3× 3

8 , 5× 1
2 2, 3, 8 2, 8, 8, 8 (48,29)

3 -10 2× 1
8 , 5× 1

4 , 5× 1
2 2, 4, 8 2, 4, 8 (128,75)

3 -16 4× 1
8 , 2× 3

4 , 8× 1
2 2, 8, 8 2, 8, 8 (16,5)

3 -12 2× 1
8 , 5× 1

4 , 7× 1
2 2, 4, 8 2, 4, 8 (64,8)

3 -6 2× 1
8 , 5× 1

4 ,
1
2 2, 8, 8 2, 8, 8 (64,6)

3 -10 4× 1
8 , 2× 3

4 , 2× 1
2 2, 4, 8, 8 2, 8, 8 (16,5)

3 -12 4× 1
8 , 2× 3

4 , 4× 1
2 2, 4, 8 2, 2, 8, 8 (32,9)

3 -12 4× 1
8 , 2× 3

4 , 4× 1
2 2, 8, 8 2, 2, 8, 8 (16,5)

3 -8 4× 1
8 , 2× 3

4 2, 4, 8 2, 2, 2, 8, 8 (32,9)

3 -16 4× 1
8 , 2× 1

4 , 4× 3
4 4, 8, 8 4, 8, 8 (8,1)

3 -12 2× 1
8 , 6× 1

4 , 2× 5
8 4, 8, 8 4, 8, 8 (8,1)

3 -13 2× 1
9 , 2× 2

9 , 5× 1
3 , 2× 2

3 3, 9, 9 3, 9, 9 (9,1)

3 -9 3× 1
9 , 2× 1

3 , 3× 2
3 3, 3, 9 3, 3, 9 (81,9)

3 -13 2× 1
9 , 3× 2

9 , 3× 1
3 ,

4
9 3, 9, 9 9, 9, 9 (9,1)

3 -6 3× 1
9 , 2× 2

3 ,
1
3 3, 9, 9 3, 9, 9 (27,2)

3 -12 1
12 , 5× 1

4 , 4× 1
3 , 2× 2

3 3, 4, 12 3, 4, 12 (12,2)

3 -11 1
12 , 2× 1

6 ,
1
4 ,

3
4 , 3× 1

3 ,
7
12 3, 12, 12 4, 6, 12 (12,2)

3 -14 2× 1
12 , 2× 1

3 , 2× 7
12 , 8× 2

3 2, 3, 12 3, 12, 12 (72,42)

3 -12 2× 1
12 , 2× 5

12 , 6× 1
2 2, 4, 12 2, 2, 12, 12 (24,5)

3 -12 1
12 ,

1
6 ,

1
4 , 6× 1

3 , 5× 1
2 2, 3, 12 2, 3, 12 (144,27)

3 -16 2× 1
12 , 2× 1

4 , 9× 1
2 ,

5
6 2, 4, 12 2, 4, 12 (48,14)

3 -16 2× 1
12 , 2× 5

12 , 10× 1
2 2, 12, 12 2, 12, 12 (12,2)

3 -13 1
12 , 2× 1

6 , 3× 1
3 , 6× 1

2 ,
7
12 2, 6, 12 2, 6, 12 (24,10)

3 -13 1
12 , 2× 1

6 , 3× 1
3 , 6× 1

2 ,
7
12 2, 3, 12 2, 3, 12 (216,92)

3 -15 1
12 , 2× 1

4 ,
1
3 , 6× 2

3 2, 3, 12 3, 12, 12 (48,33)

3 -14 2× 1
12 , 2× 1

4 , 2× 1
3 ,

1
2 , 2× 2

3 ,
5
6 3, 4, 12 6, 12, 12 (12,2)

3 -16 2× 1
12 ,

1
6 , 2× 5

12 , 4× 1
2 ,

5
6 2, 12, 12 6, 12, 12 (12,2)

3 -8 2× 1
12 , 2× 1

4 ,
1
2 ,

5
6 2, 4, 12 2, 2, 4, 12 (48,14)

3 -11 2× 1
12 , 2× 1

4 ,
1
2 ,

1
3 ,

2
3 ,

5
6 2, 12, 12 4, 6, 12 (24,9)
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8. Upper bounds for γ under some additional hypotheses

In this section we will give some evidence to Conjecture 4.5, establishing an
upper bound Γ(pg, q) for γ for product-quotient surfaces of general type under
some additional hypotheses.

Write
KS = P +N = σ∗KX −A,

where P +N is the Zariski decomposition of the canonical divisor of the product-
quotient surface S.

Remark 8.1. By construction P , σ∗KX are nef, N , A are effective; and

PN = σ∗KXA = 0.

In particular, K2
S = P 2 +N2 = K2

X +A2.

Recall that

• K2
S = 8χ− 2γ − l;

• 1 ≤ P 2 ∈ N;
• ν := −N2 is the number of (-1)-cycles on S;
• −A2 = KSA = 6γ + l − 2µ ≥ 0.

Lemma 8.2. ∀δ ≥ 0 such that δν ≤ Nσ∗KX holds

(7) 8χ+

(
6

1 + δ
− 2

)
γ − δ

1 + δ
l − 2µ

1 + δ
≥ 1

Proof. From the assumption Nσ∗KX ≥ νδ follows KSA ≥ NA = N(σ∗KX −
KS) ≥ ν(1 + δ) and therefore

ν ≤ 6γ + l − 2µ

1 + δ
so

1 ≤ P 2 = K2
S −N2 ≤ 8χ+

(
6

1 + δ
− 2

)
γ − δ

1 + δ
l − 2µ

1 + δ

�

Remark 8.3. Since KX is nef, we can set δ = 0 in (7) obtaining a further proof
of Corollary 5.4.

If S is minimal, all δ > 0 verify the assumptions, and the statement gives just,
when δ → ∞, the well known K2

S ≥ 1. In the more complicated case N > 0, the
maximal possible δ is the average of the values of Eσ∗KX where E varies over the
exceptional divisors of the first kind.

Writing E ′ for the unique irreducible component with self intersection (-1) of an
exceptional divisor of the first kind E, we note that, since σ(E ′) is a curve, KX

is ample and IKX is Cartier, Eσ∗KX ≥ E ′σ∗KX ≥ 1
I
. So equation (7) holds for

δ = 1
I
.
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Remark 8.4. When Nσ∗KX ≥ (2 + ε)ν, ε > 0, Lemma 8.2 implies Conjecture
4.5, since then (7) implies

2ε

3 + ε
γ ≤ 8χ− 1− 2 + ε

3 + ε
l − 2µ

3 + ε
≤ 8χ− 1

so

(8) γ ≤ 3 + ε

2ε
(8χ− 1)

Unfortunately, in the fake Godeaux case described in [BP12] we have ν = 2,
E1σ

∗KX = 1, E2σ
∗KX = 11/7, hence

Nσ∗KX = 9/7ν.

Lemma 8.2 gives further evidence to Conjecture 4.5 under the assumption that
the Θi are not too small. In fact, we have the following result.

Proposition 8.5. If both Θ1 and Θ2 are not smaller than 1 + ε
2
, ε > 0 then (8)

holds.

Proof. Let again E be an exceptional divisor of the first kind, E ′ a component of
E with self intersection −1. If E ′ is not contained in one of the fibres, then

σ∗KXE ≥ σ∗KXE
′ =

KC1×C2π
∗σ(E ′)

|G| ≥ 2(α1 + α2)
Θ1Θ2

ξ
≥ Θ1 + Θ2.

Else σ(E ′) is the central component of a singular fibre F
(i)
1 with multiplicity mi,

then

σ∗KXE ≥ σ∗KXE
′ =

KC1×C2miC2

|G| ≥ Θ1Θ2

ξ
2miα1 ≥ miΘ1 ≥ 2Θ1.

We conclude Eσ∗KX ≥ 2 + ε and therefore Nσ∗KX ≥ (2 + ε)ν and then (8)
follows from Lemma 8.2. �

A third type of hypothesis under which Lemma 8.2 implies Conjecture 4.5 is
the assumption that E(F1 + F2) is big enough. For example, we can show the
following.

Proposition 8.6. Assume that for every exceptional divisor of the first kind E,
E(F1 + F2) ≥ 42(2 + ε). Then (8) holds.

Proof. Arguing as in the previous proposition

σ∗KXE =
KC1×C2π

∗σ(E ′)

|G| ≥ Θ1Θ2

ξ
84(2 + ε)αmin ≥ 42(2 + ε)Θmin ≥ 2 + ε

and we conclude as in the previous case. �
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9. The dual surface of a product-quotient surface

In this section we assume furthermore that S is regular, i.e., q(S) = 0.
Suppose that S is given by a pair of generating vectors: (a1, . . . , as), (b1, . . . , bt)

of G.

Definition 9.1. The dual surface S ′ of S is the product-quotient surface given by
the pair of generating vectors: (a1, . . . , as), (b−1

t , . . . , b−1
1 ).

Similarly we will denote by X ′ the quotient model of S ′.

Remark 9.2. It is easy to see that 1
n
(1, q) ∈ B(X) ⇐⇒ 1

n
(1, n− q) ∈ B(X ′).

The numbers of S ′ are then immediately computed by those of S as follows.

Proposition 9.3. Let S be a regular product-quotient surface, and denote by S ′

its dual surface. Set γ := γ(X), µ := µ(X), l := l(X), γ′ := γ(X ′), µ′ := µ(X ′),
l′ := l(X ′). Then:

(1) γ = −γ′;
(2) µ = µ′,
(3) ξ = ξ′;
(4) pg(S

′) = pg(S) + γ.

Proof. Remark 9.2 describes the basket of the singularities of X ′ in terms of the
basket of X.

Directly by the definition, and proposition 4.4

γ = −γ′, µ = µ′, ξ = ξ′

Then

χ(S ′) =
(g1 − 1)(g2 − 1)

|G| +
1

4
(µ− 2γ′) =

(g1 − 1)(g2 − 1)

|G| +
1

4
(µ+ 2γ) =

= χ(S) + γ.

In particular, since we assumed q(S) = 0, then

pg(S
′) = pg(S) + γ.

�

Note that this gives an independent proof of Proposition 4.2. Moreover, using
Proposition 4.2, we obtain the following:

Corollary 9.4. The dual surface of a product-quotient surface with pg = 0 has
maximal Picard number.

Thus the dual surfaces of the surfaces in table 2 are surfaces with pg = 1 and
maximal Picard number. Similarly the dual surfaces of the surfaces in table 3,
4 and 5 are surfaces with maximal Picard number and geometric genus 2 and
3. Summing up, we get more than 100 families of surfaces with maximal Picard
number and low genus.
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For the index of S resp. S ′ we have:

Proposition 9.5.

τ(S) :=
1

3
(K2

S − 2e(S)) = −1

3
B(B(X)) = −2γ − l,

τ(S ′) :=
1

3
(K2

S′ − 2e(S ′)) = 2γ − l′.

Proof. Note that

e(S) = 2 + 2pg(S) + h1,1(S) = 2 + 2pg(S) + 2 + 2(γ + pg(S)) + l =

= 4(1 + pg(S)) + 2γ + l = 4χ(S) + 2γ + l.

Therefore

τ(S) :=
1

3
(K2

S − 2e(S)) =
1

3
(8χ(S)− 2γ − l − 2e(S)) =

=
1

3
(8χ(S)− 2γ − l − 8χ(S)− 4γ − 2l) =

=
1

3
(−6γ − 3l) = −2γ − l.

From the previous calculation it follows that τ(S ′) = −2γ′ − l′. Using γ′ = −γ
we get the second equation. �

Remark 9.6. Let S̄ be the minimal model of S, then τ(S) + (−N2) = τ(S̄).
Moreover, by [Ser96, Proposition 5.1 or 5.3], we know that for the minimal model
of a product-quotient surface, the inequality τ(S̄) < 0 holds.

In particular, we get that l′ > 2γ.

It follows immediately from the above:

1

3
(B(B) +B(B′)) = l + l′ = −(τ(S) + τ(S ′)).

And it is also easy to see that

1

3
B(B) = l + l′ + τ(S ′),

1

3
B(B′) = l + l′ + τ(S).

Remark 9.7. Observe that when we go from S to the dual surface S ′, we consider
on C1 the same action of G as for S, whereas for C2 we replace the action y 7→ g(y)

by y 7→ g(y).
Similarly we can replace y 7→ g(y) by y 7→ gα(y) for any (holomorphic) auto-

morphism α of C2, getting many new surfaces from this construction (depending
on the representation theory of G).
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[MP10] Mistretta, E., Polizzi, F., Standard isotrivial fibrations with pg = q = 1 II, J. Pure

Appl. Algebra 214 (2010), 344-369.
[Pen12] Penegini, M., The classification of isotrivially fibred surfaces with pg = q = 2. With

an appendix by S. Rollenske. Collect. Math. 62 (2011), no. 3, 239–274.
[Pol09] Polizzi, F., Standard isotrivial fibrations with pg = q = 1. Journal of Algebra 321

(2009), 1600–1631.
[Pol10] Polizzi, F., Numerical properties of isotrivial fibrations. Geom. Dedicata 147 (2010),

323–355.
[Rie74] Riemenschneider, O., Deformationen von Quotientensingularitäten (nach zyklischen
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