SEQUENTIALLY COHEN-MACAULAY
MIXED PRODUCT IDEALS

GIANCARLO RINALDO

ABSTRACT. We classify the ideals of mixed products that are sequen-
tially Cohen-Macaulay.

1. INTRODUCTION

The class of ideals of mixed products is a special class of square-free mono-
mial ideals. They were first introduced by G. Restuccia and R. Villarreal
(see [8] and [12]), who studied the normality of such ideals.

In [6], C. Ionescu and G. Rinaldo studied the Castelnuovo-Mumford reg-
ularity, the depth and dimension of mixed product ideals and characterize
when they are Cohen-Macaulay. In [9] the author calculated the Betti num-
bers of their finite free resolutions. In [5], L. T. Hoa and N. D. Tam studied
these ideals in a broader situation.

Let S = K[x,y] be a polynomial ring over a field K in two disjoint sets of
variables x = {z1,...,2n}, ¥y = {y1,...,Ym}. The ideals of mized products
are the proper ideals

S
(1.1) > Iydr, airi € Lo
i=1
where I, (resp. J,) is the ideal of S generated by all the square-free mono-
mials of degree ¢; (resp. ;) in the variables x (resp. y). We set Iy = Jp = S
and I, = (0) (resp. Jr, = (0)) if ¢ > n (resp. r; > m). In the arti-
cles mentioned only two summands of 1.1 are allowed. In this article we
classify the ideals of mixed product that are sequentially Cohen-Macaluay
and Cohen-Macaulay for any s € N. Recently, a number of authors have
been interested in classifying sequentially Cohen-Macaulay rings related to
combinatorial structures (for example see [3], [4], [11]). This paper is in-
serted in this area and the tools used are essentially Stanley-Reisner rings
and Alexander dual.
In section 2 we recall some preliminaries about simplicial complexes and
questions related to commutative algebra. In section 3 we study the primary
decomposition of mixed product ideals, we introduce the vectors ¢, 7 that
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are uniquely determined by the values ¢;, r; for i = 1,...,s, m and n,
and we classify the Cohen-Macaulay mixed product ideals in terms of the
vectors ¢ and 7. The vectors ¢ and 7 are used also to classify the sequentially
Cohen-Macaulay mixed product ideals in the last section.

2. PRELIMINARIES

In this section we recall some concepts on simplicial complexes that we
will use in the article (see [1], [7], [10]).

Set V.= {x1,...,xn}. A simplicial compler A on the vertex set V is a
collection of subsets of V' such that (i) {x;} € A for all z; € V and (ii)
FeAand GC F imply G € A. An element F' € A is called a face of A.
For F' C V we define the dimension of F' by dim F' = |F| — 1, where |F| is
the cardinality of the set F'. A maximal face of A with respect to inclusion
is called a facet of A. If all facets of A have the same dimension, then A is
called pure.

A simplicial complex A is called shellable if the facets of A can be given
a linear order Fi,...,F; such that for all 1 < i < j < ¢, there exist some
v € Fj \ Fj and some k € {1,...,j — 1} with F} \ F}, = {v}.

Moreover, a pure simplicial complex A is strongly connected if for every
two facets F' and G of A there is a sequence of facets F' = Fy, F1, ..., F; =G
such that dim(F; N Fj41) = dimA — 1 for each i =0,...,t — 1.

The Stanley—Reisner ideal of A, denoted by Ia, is the squarefree mono-
mial ideal of S = K|[zy1,...,z,] generated by

{Ziy @iy -y, 2 1 <0y <o <iip <ny {@gy, 0524, 1 & AL,

and K[A] = Klz1,...,x,)/Ia is called the Stanley—Reisner ring of A. It is
known that

(2.1) Iz = ﬂ Pr
FeF(A)

with Pp = ({z1 ...,z } \ F).

Let [ = (x*,...,x%) C K[x| = K[z1,...,%,] be a square-free monomial
ideal, with o; = (v, ..., 4,) € {0,1}". The Alexander dual of I is the ideal

q
(2.2) I = [ ma,,
=1

where my, = (x; : o;; = 1). It is known that (I*)* = I. We also have that
if I, J are squarefree monomial ideals of S = K|[z1,...,z,] then

(2.3) (I+J)* =1I"nJ*.
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3. COHEN-MACAULAY MIXED PRODUCT IDEALS

Let S = K[x1,...,Zn,Y1,---,Ym] be a polynomial ring over a field K and
let

S
(3-1) ZL]«LJW’ qi,T; EZZO, SEN,
i=1
be an ideal of mixed product as in 1.1. In this section we study the pri-
mary decomposition of the ideal 3.1 and give a criterion for its Cohen-
Macaulayness. Under the assumption that no summands in 3.1 is a subset
of another summand, we set

(3.2) 0<qg1<@<...<gs<n.

Under this assumption and because of the ordering 3.2 we have
(3.3) 0<rs<rs_1<...<r <m.
Throughout this paper we always assume 3.2 and 3.3.

Proposition 3.1. Let S = K[z1,...,Zn,Y1,...,Ym], then
s—1

(34) ZI%,JTZ - n— q1+1+ZIn Qz+1+1Jm T1+1+Jm rs+1-
=1 =1

Proof. We prove the assertion by induction on s. If s = 1 we have that
either ¢ = 0 (resp. r1 = 0) and 7 # 0 (resp. ¢1 # 0) or ¢ # 0 and
r1 # 0. The assertion for the first and the second case follows respectively
by Proposition 2.2 and Corollary 2.4 of [9]. Now suppose that

§ qujm =lp—gq+1+ E n—qi+1 Im— rﬁl)“‘Jm rs—1+1-

By equatlon 2.3 we have
s—1
(Iqs Jrs + Z Iqi JTZ) IQS Jrs Z qu J"'z
i=1
that is equal to, by Corollary 2.4 of [9] and induction hypothesis,
s—2
(3.5) (In- gs+1 1+ Jm— re+1) N (In—QH-l + Z In—qz‘+1+1‘]m—7“i+1 + Jm—ry_141)-
i=1
We observe, since s > 1 and ¢s > ¢; for all i, that ¢ # 0. Let H =
In—gi41+ Zf;lz Iy—g;r+1Jm—r;+1. If we apply the modular law to 3.5 we
have

(InquJrl + Jmfrerl) NH+ (Inqu+1 + Jmfrs+1) N Jmfrs—1+1~

Since by hypothesis ¢; < g5 < n we have I,,_4,+1 O H and observing that
Im—ret1 D Im—r,_,+1, the assertion follows easily. O
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Remark 3.2. By Proposition 3.1 we have that the class of mized pruduct
ideals with a finite set of summand is closed under Alexander duality (see
also 9], Remark 2.5).

Corollary 3.3. Let S = K[x1,...,Zn,Y1,---,Ym] and let
Xi={X C{ar,...,xn} | X| =1}, Y, ={Y C{y1,...,um} : [Y| =3},
with X; =0 if i >n and Y; =0 if j > m. Then

> IyJr, =PeNPey NPy
i=1
where

73:1: = m (X)’ Py = m (Y)’

XEanqlJﬁl YEVm_rgt1

1

Poy=[) | [N(X)+) ]|, X €Xng1i1, Y € Vmorip1.
i=1 \X,Y

Proof. By Alexander duality and Proposition 3.1 we have that

s s—1
Z I(h"]'f'i = (In—(IH—l + Z In—qi+1+1Jm—n+1 + Jm—?"s-i-l)*'
i=1 i=1
By equation 2.2 the assertion follows. O

Corollary 3.4. Let S = K[x1,...,Zn, Y1, .-, Ym) and let > 7, Iy, Jy, be the
mized product ideal on the ring S. Let h = height >"> | Iy, J,,, then the ideal
is unmized if and only if the following conditions are satisfied:

() m+n—(¢t1+mr)+2=h,Vi=1,...,s—1;

(2) if g1 >0 thenn—q +1=h;

(3) ifrs >0 thenm —rs+1=h.

Definition 3.5. Let S = K[z1,...,Zn, Y1, .., Ym] and let > 7 1o, Jy, be the
mized product ideal on the ring S. We define s' € N such that

s+1 ifqgg>0andrs >0
s = s ifgr>0andrs=00rq =0 andrs >0
s—=1 ifqg=rs=0

and the two vectors ¢ = (q(1),...,q(s')), 7 = (r(1),...,7(s')) € Z<, such
that -
N Ja-1 ifq1 >0
a() { ¢i+1—1 g =0
N ri—1— 1 if(}1>0
T(Z)_{Tz‘—l if 1 =0
withi=1,...,8 andrg=m+1 and gs41 = n + 1.
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Proposition 3.6. Let S = K[z1,...,Zn,y1,...,Ym] and let In = >0 1o, Jy,
be a mixed product ideal. Using the notation of Definition 3.5 there exists a
partition of F(A), F(A) = F1(A)U...UFyg(A) such that

Fie(A) ={{ziy, ... 2 Ligarys Ygvs -+ yjr(k)} :

(3.6) . . : .
1§21<...<zq(k)§n,1§]1<...<jr(k)§m},

withk=1,...,s

Proof. By Corollary 3.3 and equation 2.1 the assertion follows.
O

From now on we associate to a mixed product ideal ), I, J;, the value
s € N and the vectors ¢ = (¢(1),...,q(s"), 7 = (r(1),...,7(s")) € Z%,
defined in 3.5. We also give, for the sake of completeness, a way to compute
the sequences 0 < ¢ < ... < qs <n, 0<ry <...<r; <m by the vectors
d=1(q(1),...,q(s")) and 7 = (r(1),...,7(s")).

Definition 3.7. Let s € N, ¢ = (¢(1 ) cq(8), T = (r(1),...,r(¢)) €
7%, with 0 < ¢(1) < q(¢) <n, 0 <r(s) <...<r(l) <m. We
define s € N such that
=1 dfr(l)=mandq(s’)=n
s=1¢ & if r(1) =m and q(s') <n orr(l) <m and q(s') =n
s+1 ifr(l) <m andq(s') <n
and the two sequences 0 < g1 < ... < qgs <n, 0<rys < ... <r;y <m such
that
Jai) +1 if r(1) =m
%= qi—1)+1 ifr(1)<m
@+ D)+ ifr(l)=m
"= r(i) +1 if r(1) <m

withi=1,...,s and q(0) =r(s'+1) = —1.

Lemma 3.8. Let S = K[z1,...,Zn, Y1, Yml, In = D.iq1gJr, be a
mixzed product ideal and keep the notation of Proposition 3.6. Then for
each F' € Fi(A) and for each G € F;(A) with 1 <i < j < s" we have

dim FNG < q(i) +r(j) — 1.

Proof. By Proposition 3.6 we have |F| = ¢(i) + r(i) and |G| = q(j) + r(j).
By the ordering in 3.2 and 3.3 and the Definition 3.5 we have ¢(i) < q(j),
r(i) > r(j) for all 1 <i < j < s and the assertion follows. O

Lemma 3.9. Let S = K[x1,...,Zn,Y1,---,Ym| and let In = ;| Iy, Jy, be
a mized product ideal and keep the notation of Proposition 3.6. Let Ia be
unmized and let F € Fi(A) and G € Fj(A) with dim FNG = dim A — 1. If
i<j (resp. i>j ) then

(1) j=i+1 (resp. j=1—1);
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(2) q(i+1) =q(i) +1 (resp. q(i =1) = q(i) = 1);
(3) r(i+1)=r@)—1 (resp. r(i — 1) =r(i) +1).

Proof. (1) We assume ¢ < j. By Lemma 3.8 and since A is pure we have
the following inequality

(3.7) dimFNG=dimA —-1=q(i)+7r() —2<q(i)+r(y) —1.

Since r(j) > r(i) and by the inequality 3.7 we obtain r(j) < r(i) < r(j)+1
that is (i) = r(j) + 1. Therefore j = i+ 1 and r(i + 1) = r(i) — 1. By
similar arguments we easily complete the proof of the assertion. ([

Lemma 3.10. Let S = K[z1,...,Zn, Y1, ..,Ym]) and let In = >0 | Ip, Ty,
be a mized product ideal. If q(i +1) = q(i) +1 fori=1,...,8 — 1 then A
shellable.

Proof. We consider the partition F(A) = Fi(A)U...U Fy(A) defined in
Proposition 3.6. We set a linear order < on the facets 7(A) such that F < G
with F € Fi(A), G € Fir(A) if either k < k' or k = k' with

F=A{zi, . Tig Yjrs - Yy ) G = {xi'l""’mi'q(k)’yji""’yj'(k)}’

1§i1<...<iq(k)gn,1§j1<...<jr(k)§m,1§z"l <z()

n,1l<ji<...< j;(k) < m and there exists p, 1 < p < q(k), such that
ir =iy for k=1,...,p—1but i, <, or i =) forall k=1,... q(k) and
exists p/, 1 <p’ <r(k), such that ji = j; for k=1,...,p' —1 but jy < jzl)"

Suppose F' < G with F € F;(A) and G € F;(A) with i < j. Since
q(i) < q(j) there exists zx € G\ F. Now let G, = G\ {z;}. We observe
that there exists Fj, € F;_1(A) such that F D Gy, in fact by hypothesis

q(j—1)=4¢q(j) —1and r(j — 1) > r(j). Hence G \ Fy, = {z}.

Suppose F' < G with F,G € F;(A). We may assume z; € G\ F, in
fact if such z; does not exist we can consider the case yp € G\ F' in an
analogous way. Since F' < G there exists xpr € F \ G such that k¥’ < k.
We set F, = (G \ {xr}) U {xp}. We observe that Fj, € F;(A), Fi, < G and
G\ Fy, = {x}. The assertion follows. O

By the same argument we have the following

Lemma 3.11. Let S = K(z1,...,Zn,Y1,-..,Ym]| and let In = Y7 | 1o, Jr,
be a mized product ideal. If r(i+ 1) =r(i)—1 fori=1,...,8 —1 then A
15 shellable.

Theorem 3.12. Let S = K(z1,...,Zn, Y15+, Yml)s In = Diq Ly Jr, be a
mized product ideal, K[A] = S/Ia. The following conditions are equivalent:
(1) qi+1)=gq(i)+1andr(i+1)=r@)—1fori=1,...,8 —1;

(2) A is pure shellable;

(3) K[A] is Cohen-Macaulay;

(4) A is strongly connected.
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Proof. (1)=(2). By Lemma 3.10 (or equivalently 3.11) we have that K[A] is
shellable. We observe that q(i+1)+7(i+1) = q(i)+r(i) fori=1,...,s —1.
Hence A is pure.

(2)=-(3). Always true.

(3)=(4). Always true.

(4)=(1). Leti=1,...,8 —1andlet F € F;(A) and G € Fiy1(A). Since
A is strongly connected there exists a sequence of facets F' = Fy, Fy, ..., F; =
G such that dim Fy, N Fyy; = dimA — 1 for £ = 0,...,t — 1. We observe
that there exists k € {0,...,¢t — 1} such that

Fp e |JFi(0), e | F).
j<i jitl

Let Fj, € fi_d(A) and Fk+1 S ]:i+1+d’(A) with0 <d<i—1,0< d <
s —i—1. Since q(i —d) < q(i) —dand r(i + 1+ d') <r(i)—1—4d, by
Lemma 3.8 we obtain

dim F, N Frpq < q(i) +r(i) — (d+d') — 2.

On the other hand dim Fy, N Fi41 = dim A — 1 = ¢(i) + r(¢) — 2. Hence
d = d' = 0. The assertion follows by Lemma 3.9. O

4. SEQUENTIALLY COHEN-MACAULAY MIXED PRODUCT IDEALS

In this section we classify the sequentially Cohen-Macaulay mixed product
ideals. We recall some definitions and results useful for our purpose and we
continue to use the notation defined in section 3.

Definition 4.1. Let K be a field, S = K[x1,...,zy] be a polynomial ring.
A graded S-module is called sequentially Cohen-Macaulay (over K ), if there
exists a finite filtration of graded S-modules

O=MyCcM,C---CMy=M

such that each M;/M;_1 is Cohen-Macaulay, and the Krull dimensions of
the quotients are increasing:

dim(M; /My) < dim(Ma /M) < --- < dim(My/M;_y).

Definition 4.2. Let A be a simplicial complex then we define the pure
simplicial complezes A=Y whose facets are

FAFY = {F e A:dim(F) =1-1}, 0 <1<dim(A)+1.

A fundamental result about sequentially Cohen-Macaulay Stanley-Reisner
rings K[A] is the following

Theorem 4.3 ([2]). K[A] is sequentially Cohen-Macaulay if and only if
K[A1] is Cohen-Macaulay for 0 <1 < dim(A) + 1.
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Remark 4.4. Let S = Klz1,...,Zn, Y1, Um), In = iy gy be a
mixed product ideal, K[A] = S/Ia and let F(A) be partitioned as shown in
Proposition 3.6, that is F(A) = F1(A)U...UFyg(A) such that

]:/f(A) :{{m’h?' . 'amiq<k)7yj17""ij(k)} :
1< < "'<iq(k) <n, 1< < <]r(l€) §m},

with k = 1,...,5". If we set an | with 0 < [ < dim(A) + 1 then for each
ke{l,...,s'} we have that ]:k(A[l_l]) = Fr1U...U Fy, where

ij = {{xil,...,:z:,-qk(j),yjl,...,yjrk(j)} :
I<u<...<igy <n 1< <...<Gjng) <m} with j=1,... t,

satisfies the following properties:
(1) qr(tr) = min{q(k), 1},
(2) ri(1) = min{r(k), 1},
3) (i) =aqr(i+1) =1, r(i+1) =rg(@) =1 fori=1,...,t — 1.

Definition 4.5. Let ¢ = (¢(1),...,q9(s")), 7 = (r(1),...,r(s)) € ZSZ/O, we
define the following function o : {1,...,8'} = Z>o
o(i) = q(i) + r(i).

Lemma 4.6. Let S = K[x1,...,Zn, Y1, Yml)s, In = iy 1y Jdr, be a
mized product ideal and let K[A] = S/Ia. If K[A] is sequentially Cohen-
Macaulay then

(1) forallie{1,...,s'—1} either q(i) = q(i+1)—1 orr(i) = r(i+1)+1;

(2) there exists k € {1,...,5'} such that o(1) < o(2) < ... < o(k) >

o(k+1)>0(s).

Proof. If K[A] is sequentially Cohen-Macaulay then K[Al~1] is Cohen-
Macaulay for 0 < I < dim A 4+ 1. Hence A= is strongly connected for
0 <1< dimA+ 1. We observe that if we negate property (1) (resp. (2))
we find an [ such that All=1) is not strongly connected.

(1) We suppose that there exists k with 1 < k < s’ — 1 such that

q(k) <qk+1)—1and r(k) >r(k+1)+1.
Let | = min{o(k),o(k+ 1)} and we assume that [ = o(k). We observe that

SI

(a.) Fal) = | F(at)
i=1
where the union is not disjoint. Since | = o(k) < o(k + 1) we have

Fir(Al-1) = Fi(A) and Fjyq (A1) £ 0
We show that for all F € F;(A) with F;(Al=1) # § and for all G € F;(A)
with Fj (A=) 2 ¢ with 1 < i <k < j < s’ we have that

(4.2) dim F NG < dim A=Y — 1,
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If the inequality 4.2 is satisfied also the facets F/ C F with F' € F;(Al-1))
and G’ C G with G’ € F;(Al=1) inherit this property.

Hence A=Y is not strongly connected.

By Lemma 3.8 we have that dim FNG < q(i)+7(j) —1 < q(k)+7r(j) — 1.
Since r(k) > r(k + 1) + 1 we have q(k) + (k) > q(k) + r(k+ 1) + 1 that is

l—2=q(k)+rk)—2>qk)+r()—1>dimFNG.

The case | = o(k + 1) follows by similar arguments.

(2) We suppose that there exist k, k=, kT, with 1 <k~ <k < kT < §

such that
o(k™) > a(k) < a(k™).
Let | = min{o(k™),o(k™)} and we assume that [ = o (k™).

Hence Fj— (A1) = F,_(A) and, since | < o(kT), Fp+ (A=) £ (. By
Lemma 3.8 and using similar arguments of (1) it is easy to show that, for all
F € Fi(A) with F;(A71) #£ ¢ and for all G € F;(A) with Fj(Al-1) £ ¢
with 1 <i<k<j<§g,

dim FNG < q(i) +r() —1<qk) +r(k) —1<1—-1.
The assertion follows since Fi,(Al=1) = 0. O
We come to the main result of this section.

Theorem 4.7. Let S = K[z1,...,Zn, Y1, Ym), In = iy Iy Jr, be a
mized product ideal and let K[A] = S/Ian. The following conditions are
equivalent:
(1) K[A] is sequentially Cohen-Macaulay.
(2) The following conditions hold:
(@) q(i)=q(i+1)=1orr(i)=r(i+1)+1withi=1,...,s = 1;
(b) there exists k € {1,...,s'} such that o(1) < o(2) < ... <
o(k) > ok +1) > o(s)).

Proof. (1)=(2). See Lemma 4.6.
(2)=-(1). We need to show that for all [ with 0 <[ < dim A + 1 we have
K[Al=1] is Cohen-Macaulay. Let A’ = A=l by Remark 4.4 we have that

(4.3) FA)=JFuywithk=1,...,¢,j=1,... 1,

where
.  Fi=Frey (i) = a5

Fri N1 Tyt = { if gr(5) # aw (5')
for all k, k" € {1,...,8'}, 7 =1,...,tk, 7 = 1,... tpr. If we remove the
redundant elements in 4.3 and sort the remaining ones in an increasing
order by qx(j) with k = 1,...,s and j = 1,...,t;, we obtain a partition,
with ¢ = (¢'(1),...,¢ ), 7 = (*'(1),...,7'(¢')) and ¢'(i) < ¢'(i + 1) for
1=1,...,t — 1. Since A’ is pure by definition, it is sufficient to show that
di+1)=¢@)+1fori=1,...,t' =1 by Theorem 3.12.
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Let ¢'(7) be an entry of the vector § with i =1,...,¢ — 1, then ¢'(i) <
and there exists qx(j) related to 4.3 with ¢/(i) = qx(j) with k =1,...,s" and
i=1.. tk.

If j < tg by property (3) of Remark 4.4 we are done. If j = ¢, this implies
that in the partition induced by 4.3 there exists k' > k such that Fys (A") # 0.
Hence by the condition (1.b), o(k + 1) > min{o(k),o(k")} > I, therefore
Fr+1(A") # 0. By condition (1.a), if ¢(k+ 1) = ¢(k) + 1 and by property
(1) of Remark 4.4 we have gxy1(tg+1) = q(k) + 1. If g(k+1) # q(k) + 1
then r(k+1) = r(k) — 1 and this implies by property (2) of Remark 4.4 that
ri1(1) = r(k) — 1, hence gpy1(1) =1 — (r(k) — 1) = q(k) + 1.

O
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