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Abstract

The Classical Tukey-Huber Contamination Model (CCM) is a commonly adopted framework to
describe the mechanism of outliers generation in robust statistics. Given a data sebhsbr-

vations andp variables, under the CCM, an outlier is a unit, even if only one or a few values are
corrupted. Classical robust procedures were designed to cope with this type of outliers. Recently,
a new mechanism of outlier generation was introduced, namely the Independent Contamination
Model (ICM), where the occurrences that each cell of the data matrix is an outlier are independent
events and have the same probability. ICM poses new challenges to robust statistics since the per-
centage of contaminated rows dramatically increase pyitiften reaching more than 50% whereas
classical &ine equivariant robust procedures have a breakdown point of 50% at most. For ICM
we propose a new type of robust methods namely composite robust procedures which are inspired
by the idea of composite likelihood, where low dimension likelihood, very often the likelihood of
pairs, are aggregated in order to obtain a tractable approximation of the full likelihood. Our com-
posite robust procedures are build on pairs of observations in order to gain robustness in the ICM.
We propose compositeestimators for linear mixed models. Compositestimators are proved

to have a high breakdown point both in the CCM and ICM. A Monte Carlo study shows that while
classical S-estimators can only cope with outliers generate by the CCM, the estimators proposed
here are resistant to both CCM and ICM ouitliers.

Key words: Compositer-estimators; Independent Contamination Model; Tukey-Huber Contami-

nation Model; Robust estimation.

1 Introduction

The purpose of this paper is to find robust procedures for mixed linear models. This class of

models includes, among others, ANOVA models with repeated measures, models with random
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nested design and models for studying longitudinal data. These models are generally based on the
assumption that the data follow a normal distribution and therefore the parameters are estimated
using the maximum likelihood principle. See for example, Searle et al. (1992). As it is well
known, in general, the estimator obtained by maximum likelihood under the assumption that the
data have a normal distribution is very sensitive to the presence of a small fraction of outliers in
the sample. More than that, just one outlier may have an unboutiged @n this estimator. There

are many robust estimators that have been proposed to avoid a large outlier influence. A large
list of references of these proposals is available in Heritier et al. (2009). Copt and Victoria-Feser
(2006) introduce a very interesting robust S-estimator for mixed linear models based on M-scales
which has breakdown point equals t®d @nder the classical contamination model. We can also
mention Fellner (1986), Richardson and Welsh (1995), Stahel and Welsh (1997), Gill (2000), Jiang
and Zhang (2001), Sinha (2004), Copt and Heritier (2006), Jacgmin-Gadda et al. (2007), Lachosa
et al. (2009), Chervoneva and Vishnyakov (2011) and Koller (2013) which studied an SMDM-
estimator. The procedure proposed in the last paper is implementedRrpdekagerobustlmm

(Koller, 2015).

However all these procedures aim at coping with outliers generated under the Classical (Tukey-
Huber) Contamination Model (CCM), where some percentage of the units that compose the sample
are replaced by outliers. Algallaf et al. (2009) introduced another type of contamination model
(called Independent Contamination Model, ICM) that may occur in multivariate data. Instead
of contaminating a percentage of the units that compose the sample ffégrerdi cells of each
unit may be independently contaminated. In this case, if the dimension of each unit is large,
even a small fraction of cell contamination may lead to a large fraction of units with at least one
contaminated cell. This type of contamination specially occurs when ffereht variables that
compose each unit are measured from independent laboratories. Algallaf et al. (2009) showed that
for this type of contamination the breakdown point fifree equivariant procedures for multivariate

location and covariance matrix tends to zero when the number of variables increases and therefore
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their degree of robustness is not satisfactory. A similar phenomenon occurs when dealing with
mixed linear models. In particular the S-estimator procedure introduced in Copt and Victoria-
Feser (2006) loses robustness for high dimensional data with independent contamination.

In this paper we propose a new class of robust estimators for linear mixed models. These es-
timators are based on a principle similar to the one used in the composite likelihood estimators
proposed by Lindsay (1988). If a vectgrof dimensionp is observed, the composite likelihood
estimators are based on the likelihood of all the subvectors of a dimepsienp. The estima-
tors that we propose here are based-atales of the Mahalanobis distances of two dimensional
subvectors ofy. Ther-scale estimators were introduced by Yohai and Zamar (1988) and provides
scales estimators which are simultaneously highly robust and higiityeat. Here we show that
these estimators have a robust behavior for both contamination models: the classical contamina-
tion model and the independent contamination one. In particular, we will show that the breakdown
point for the classical contamination model can be made closestonbile for the independent
contamination model can be made close.250

In Section 2 the linear mixed model is presented. We also describe two outlier contamination
models: the classical and the independent contamination models. Section 3 describe the M- and
T-scales, briefly reviews the S-estimator for linear mixed models introduced in Copt and Victoria-
Feser (2006) and define the composHestimator for these models. Section 4 discusses the break-
down properties of compositeestimators under both contamination models. Section 5 states the
continuity of the estimating functional associated to a compaséstimator. Section 6 states the
consistency and asymptotic normality of the composigstimator. Section 7 illustrates with real
data set the advantages of the proposed estimator and in Section 8 we perform a Monte Carlo sim-
ulation that confirms that the proposed procedure has a robust behavior under both contamination
models. Section 9 provides some concluding remarks. A Supplementary Material is available with
the following sections. Section SM-1 provides details on the derivation of the estimating equations

while Section SM-2 discusses computational aspects and algorithms. Section SM-3 contains the
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proofs of the statements reported in Section 4. In Section SM—4 we prove the Fisher-consistency
of the compositer-estimators and in Section SM-5 the continuity and consistency of these esti-
mators. Section SM—6 provides complimentary results of the Monte Carlo experiments reported
in Section 8 and Section SM—7 contains theode for the example presented in Section 7. Fi-
nally, theR packagerobustvarComp implementing the proposed procedures is available in the

Comprehensive R Archive Network.

2 Linear mixed models

Denote byN,(u, X) the multivariate normal distribution of dimensigrwith meanu and covari-
ance matrixz. In case of fixed covariables it is assumed thatdependenp-dimensional random

vectorsy,, ..., Y, inRP are observed ang, 1 <i < n, has distributioNy(x;(B,), (170, 7)), Where

1 B) = win(B), - ... pip(B) " (1)
= XiB, 1<i<n,
X1, ..., X, are fixedp x k matrices angs € R¥ is an unknowrk-vector parameter. Moreover,
Z(n,7) =n(Vo + ZJ;VJVJ'), )
=
whereV, 1 < j < Jarepxpknown matricesY is thepx pidentity,n > O andy = (y1,...,ys)" €

I" are unknown parameters, where
I'={yeR’: X(1,y) is positive definitg

In the case of random covariables, that is, wken. ., x,, are i.i.d. random matrices, it is assumed

thaty;|xi ~ Np (1£;(Bo), (170, 7)) This is equivalent to

Yi = 1i(Bo) + Ui, 3
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wherev; is independent ok; with distributionNy(0, (170, 70)). However, in Section 6, where we
study the asymptotic properties of the proposed estimators, we weaken the assumption. In fact,
we only require thati; are independent af; and have elliptical distribution with cent@ and
covariance matrix(rno, ¥o)-

This setup covers many linear mixed models, for instance those of the form
J
Yi :Xiﬁo+zzj§ij+8i, 1<i<n, (4)
j=1

where thex;s are as before;, 1 < j < J, arepx g; known design matrices for the randofffieets,
&;; are independerd;-dimensional vectors with distributioNg, (O, o-gjlqj), wherel , is thep x p
identity matrix ande; (1 < i < n) are p-dimensional error vectors with distributid¥(0, o=31 p).
Then, in this case we havg = 03,7y = (Yo1.-..Y0s)" With yg; = agj/o-g >0,V = 77,

1<j<Jd

2.1 Outlier contamination models

We are going to introduce some notation. Idbe a data set of sizecorresponding to model (1)-
(2), T = (ta,..., tn), Wheret; = (¥, X)) = (tit, ..., tip), ¥i € RP, Xi € RPK ti = (Vij, Xij1s - - - » Xijk)s
1 < j < p andxij, is the value in thg-th row andh-th column of the matrix;.

The classical contamination model (CCM) assume that the probabilitytithat< i < n, is
replaced by an outlier is a given numbeand these events are independent.

Algallaf et al. (2009) consider aflierent contamination model for multivariate data: the inde-
pendent contamination model (ICM). This definition can be adapted to the mixed linear model as
follows. The probability that;;, 1 <i < n,1 < j < pis replaced by an outlier is a given number
e and thesen x p events are independent. Therefore the probability that at least one component
tj, 1 < j < poftjis an outlier is 1- (1 - &)®, and this number is close to one whpris large
even ife is small. For this reason estimators that have breakdown pdiniriler the CCM may

have breakdown tending to zero under the ICM. Algallaf et al. (2009) show that this happens with
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the most popular high breakdown point equivariant estimators of multivariate location, e.g., S-
estimators (Davies, 1987), Minimum Volume Ellipsoid (Rousseeuw, 1985), Minimum Covariance

Determinant (Rousseeuw, 1985) or the Donoho-Stahel estimators (Donoho, 1982; Stahel, 1981).

3 Estimators for linear mixed models based on robust scales

In this Section we define the composttestimator. At this aim we first describe the M- and
scales, and briefly review the S-estimator for linear mixed models introduced in Copt and Victoria-

Feser (2006).

3.1 M- andr-Scales

In general, escale sof a sampleu = (uy,...,Uuy) is a measure of the absolute largeness of these
observations. A general class of robust scales introduced by Huber are the M-scales. The M-scales
are defined as follows: Let: R — R* be a function satisfying the following properties:

Al p(0) = 0,A2 0 < u < vimpliesp(u) < p(v), A3 p is continuousA4 sup,e(v) = 1 andA5 if

p(u) < 1 and 0< u < v, thenp(u) < p(v).

Then, anM-scale $u) based o is defined by the value satisfying

%Zp (5)=> (5)

where O< b < 1.

We now define the family of-scales introduced by Yohai and Zamar (1988).r-Acaleis
based on two functions, andp, satisfying conditions A1-A5 and
AG p, is continuously dierentiable and ifi(v) = p5(V), then 2,(v) — y2(V)v > 0.

Let s(u) be the M-scale defined by (5) wigh in place ofp, then ther-scale is defined by

_2wE Y po
() = $(u) ;pz( o) ©
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Condition A6 implies that ifB(s) = S’E(p/9), thenB'(s) = s(2o0(u/s) — (u/s)p(u/s)) > 0, that is,
B(9) is increasing ors. The advantage of thescales over the M-scales is that they make possible
to define estimators that are simultaneously highly robust and hidhityemt. See for example
Yohai and Zamar (1988) for linear regression and Logui®91) for multivariate location and

scatter.

3.2 S-estimators

In this subsection we review the class of S-estimators for linear mixed models introduced by Copt
and Victoria-Feser (2006) and define the compos#stimators for the same class of models.
Givenp dimensional column vectossandu and apx p matrix X the square of the Mahalanobis

distance is defined by.
m(y, 4, Z) = (y — ) ' Z7(y — p)-

Given a squared matriA we denote byA* = A/ det(A)YP where detf) is the determinant of the
matrix A. Note thatx*(n, ) depends only otr and then will be denoted ¥ (y).

Let p; be a function satisfying A1-A5. The S-estimator proposed by Copt and Victoria-Feser
(2006) can be defined by

(8.7) = arg mins(m(y, xi8, Z' )2 .. MY, X, '), (7)
7= sS(M(yy, %18, Z(L 7)Y, ..., MY XeBs E(1,7))Y2)?/ £, (8)

wheresis the M-scale corresponding pg defined by (5) andy is defined byE [pl(\/\_//so)] =b,
wherev has chi-square distribution with degrees of freedom. We will call this estimator Copt
and Victoria-Feser S-estimator (CVFS-estimator).

These estimators can be thought of as an extension of the S-estimators for multidimensional
location and scatter matrix proposed by Davies (1987). Copt and Victoria-Feser (2006) choose

asp; the function proposed in Rocke (1996) for S-estimators of scatter matrix and multivariate

ACCEPTED MANUSCRIPT
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location. This function, which depends on the number of variables, improves the robustness of
S-estimators for high dimensional data under the CCM.

Copt and Victoria-Feser (2006) show that under the CCM the asymptotic breakdown point of
the estimator defined by (7) and (8)a5 = min(b,1 — b). Therefore ifb = 0.5, we gets* = 0.5.
However, as the S-estimators for multidimensional location and scatter, the breakdown point of

these estimator under the ICM tends to 0 wipep co.

3.3 Compositer-estimators

We introduce now a new type of estimators which are robust under the ICM: the composite
estimators.

Given a vectola = (ay,...,ap)", apx p matrix A and a couplej(l) of indices (1< j < | < p)
we denotea = (a;, )T andA; the submatrix

1] ]
Aj| =

a q
In a similar way, given g x k matrix x we denote by!' the matrix of dimension X k built by
using rowsj andl of x and byA; = A;/ det(A;)"?. Note that detf;) = 1

We define pairwise squared Mahalanobis distances by

m' (8,7) = m(y,'. ! (B), Z5())-

Givenp; anp, satisfying A1-A6, we define pairwise M- andscaless; (8, y) andt; (B, y) by

n mJ'(B 7)1/2
= b
%p( ) ©
and
1S (MG
Tﬁ B.7) = 5]2|(ﬁ’ 7’)5 JZ:;PZ (W] (10)

ACCEPTED MANUSCRIPT
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Put

p-1 p
LB.y) =D > T5(B.Y), (11)

j=11=j+1
then we define the compositeestimators of3, andy, by

(8.7) = arg minL(8,7), (12)

and the estimatc?i of no by solving

4 - X'B)TEi(7.7) ! - X))V
| | | — b

wheres, is defined by
=)
E b, 14
[pl( Y (14)

andv has chi-square distribution with 2 degrees of freedom. As a particular casepwbemn we

have the class of composite S-estimators. We will not discuss further this special case.
In the example of Section 7 and in the Monte Carlo study of Section 8 we consjggeredl, 2

in the following family of functiongp}; introduced by Muler and Yohai (2002)

V2

5ad v< 2
peV) =1 L(BL 4+ 2L+ 2L LB 4 5) 2<v<3 (15)
1 v>3

whereay = 1.792,a; = —1.944,a, = 1.728,a3 = —0.312,a, = 0.016 andh = 3.250. The functions
in this family are characterized by shapes close to those in the optimal family for regression M-
estimators, obtained by Yohai and Zamar (1997). However, they are easier to compute. Notice
that for anyd > 0, ther-scale obtained witlp; = p) andp, = p is equal to ther-scale
corresponding t@; = p;, andp, = pg, divided by 2. Hence without loss of generality we can
considerc; = 1. We found that by taking, = 1.64 we obtain a good tradeffdetween robustness
and dficiency, and this is the value of that we recommend to use.

Note that the composite-estimators is quite similar to the S-estimator proposed by Copt and

Victoria-Feser (2006). The mainftirences are:

ACCEPTED MANUSCRIPT
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(i) We use ar-scale instead of an M-scale to gaifiéency under the nominal model,

(i) We work with partial Mahalanobis distances of all pairs of components of the residual vectors
instead of using the Mahalanobis distances of complete residual vectors. The reason for this
is to increase the breakdown point of the estimators under the ICM. Since the breakdown
point decreases with the dimension, we use subvectors with the smallest possible dimension.
Note that to estimate the covariance makXixy, y,) it is necessary to work with subvectors
of dimension at least two. We might have worked in higher dimension, but this would have
decreased the breakdown point. Besides, in this case we would have a larger number of index
combinations, increasing the computational complexity of the estimator. For these reasons,

it seems preferable to consider pairs of variables.

(ii) Finally we use the-function given in (15) instead of the Rockgs’ The Rockep-function
was designed to increase the robustness under CCM for high dimension. However the co-
variance matrix estimator based on the RopkRinction is indficient in dimension two.
Therefore, since we worked with subvectors of dimension twopthenction given in (15)

is preferable.

It is easy to show that the compositestimators are equivariant for regression transformations
of the formy; =y, + xij0 whereé is ak x 1 vector, or scale transformations of the foym= ¢y,
where( is a scalar.
Computational aspects and algorithms are discussed in Section SM-2 of the Supplementary

Material.

4 Breakdown point

Donoho and Huber (1983) introduced the concept of a finite sample breakdown point (FSBDP).

For our case, leB andv = (77,77) be estimators o andv = (,77y). Informally speaking, the

ACCEPTED MANUSCRIPT
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FSBDP ofﬁ is the smallest fraction of outliers that makes the estimator unbounded or becoming

arbitrarily close to the border of the parameter space.

LetT = (ti,...,ty) be a data set of size corresponding to model (1)-(2) = (v, X) =
(tin, ..., tip), ¥i € RP, xi € RP¥andti; = (Yij, Xj1. .- .» Xijk)- Let T be the set of all the samples
T=(n....0)with § = (f.....Tip)" such that # : §; = t;} > n— m. Given estimatorg andv

we let

BO(T,B) = sudlB(MIL T € 7,©),
BT, v) = sudlp(MII, T € 7.9,

B.O(T,v) = inf{ju(T)|I, T € 7.},
where||x|| denotes nornfy, of X.

Definition 1 The finite sample breakdown point®for classical contamination (FSBDPCC) at
the sampleT is defined bye©(T, ) = m'/n where m = min{m : BY(T,B) = oo} and the

breakdown point of by ©(T,v) = m*/n where

1
m' = min{m: ——— + B*O(T,7) = ).
B:O(Tw)

Let 7% be the set of all the sampld@s= (is,...,1,) such that# : T; = t;;} > n— mfor eachj,

1<j<p. Given estimator§ andv we let

BY (T, 8) = sudlB)II, T e 7.1,
B:(T,v) = sudlp(MII, T € 79},

B.O(T.) = inf(T)|I. T € 70},

Definition 2 The finite sample breakdown point fBrunder independent contamination (FSBD-

PIC) at the sampld is defined by:®(T, 8) = m*/n where m = min{m : BY(T, 8) = oo} and the

ACCEPTED MANUSCRIPT
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breakdown point o& bys"(T, ) = m*/n where

m" = min{m: + B (T, 7) = o0},

The following theorems, whose proofs can be found in Section SM-3 of the Supplementary
Material, give lower bound for the breakdown points of compositstimators under both the
classical and the independent contamination models. Before to state these Theorems we need the

following notation. Given a samplg = (ts, ..., t,) we define

hy (T) = maudi - x'b = 0}, (16)
h(T) = maxhy(T). (17)
hj(T) = max#(i : €"(y" - x'b) = 0). (18)
h*(T) = n}ﬁxh}] (). (19)
d(T) = h(T) + h*(T). (20)

Theorem 1 LetT = (ty,...,tn), ti = (¥, X;), d(T) as defined in (20). Assume that A1-A6 holds
and Iet(ﬁ,ﬁ) be the composite-estimator for the model given by (1) and (2). Then a lower bound

for s(C)(T,E) and for&©(T,v) is given bymin((1-b) — (d(T)/n), b).
Note that takingy = 0.5, this lower bound is close ta®for largen independently op.

Theorem 2 LetT = (ty,...,tn), ti = (¥, X;), d(T) as defined in (20). Assume that A1-A6 holds
and let(B, ) be the composite-estimator for the model given by (1) and (2). Then a lower bound

for (T, B) and fore")(T, ) is given byd.5 min((1- b) — (d(T)/n), b).

In this case by taking = 0.5, this lower bound is close taZb for largen independently op.
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5 Continuity

In this Section we study another robustness property of the compesstimators. In Section
SM-4 of the Supplemental Material we show that these estimators can be expressed as estimating
functionals defined on the set of distributions gfX) applied to the empirical distributioR,, of

(Y1, X1), - - -» (Vs Xn) That is, we can write

—_

B=Tu(Fn), 7=T,(Fn), T=T,F), v=T,(F

Denote by3> convergence in distribution. The estimating functiorngsT,, T, andT, have the

following robustness property

Definition 3 An estimating Functional : ¥ — R", whereF is a subset of the distribution d&f

is continuous at a distribution H if given a sequence of distributioms?HH, thenT(H,) — T(H).

Note that the continuity of an estimating functional implies that a small variation in the empirical
distribution will produce a small variation in the estimator. Then, this property is closely related
to the concept of qualitative robustness introduced by Hampel (1971) and is equivalent to the
asymptotic qualitative robustness property defined in Papantoni-Kazakos and Gray (1979).

To prove the continuity of the compositeestimators we need the following additional as-
sumptions.
A7 The matrixx is random and independent of the error tarnBesides, the error vectarhas an
elliptical density of the form

U070 )
M) = = et o, yo) 2

where f; is non increasing and is strictly decreasing in a neighborhood #i80;.et Hy be the

(21)

distribution ofx. Then for anyb € R¥, § # Owe havePy,(xb # 0) > O and forallpairl< j < < p
and allb € R? we havePy,(x/'b = 0) < 1 - b andA9 (Identification condition) Ify # y* for all «

we haveX(l,y) # X(a, y").
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An important family of distributions satisfying A7 is the multivariate normal, in this case,
fs(2) = (21) P2 exp(-2/2). (22)

The following theorem establishes the continuity at the nominal model of the estimating function-

als corresponding to compositeestimators.

Theorem 3 Assume (ip; satisfies A1-A5, (iip, satisfies A1-A6, (iiiYy, x) satisfyy = xB, + u
and A7- A9 hold. Then, if f£is the distribution of(y, x), the composite-estimating functionals

T, T,, T, and T, are continuous at

6 Asymptotics

Consistency and asymptotic distribution of the compositstimators are discussed in the next

two subsections.

6.1 Consistency

Notice that, contamination causes asymptotic bias, and therefore consistency cannot be ensured for
any robust procedure in the presence of outliers. For this reason consistency to the true parameters
only occurs under the nominal model. The following Theorem states the consistency of composite

T-estimators.

Theorem 4 Let(y;, %), 1 <i < n, be i.i.d. random samples of a distributiog. FAssume (ip;
satisfies A1-A5, (iip, satisfies A1-A6, (iily, = X;i B, + u; and A7, A8 and A9 hold. Then, the
composit&-estimators/& Y and’n‘satisfylimnﬁwﬁ = By a.s. andimp_. ¥ = y, a.s.. Moreover, if

f; is given by (22) we havem,_,..77 = o @.s. too.

Note that for the consistency Efand? is not necessary thatbe multivariate normal.
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6.2 Asymptotic normality

The following Theorem states the asymptotic normality of compas#stimators. We need the
following additional assumptions
A10 Let Hy be the distribution ok. ThenHy has finite second moments akg,(xx™) is non—

singular.A11 The functiong;, i = 1, 2 are twice diferentiable.

Theorem 5 Let 2o = (By, 7o) andA = (ﬁ,?) be the composite-estimator. Consider the same

assumptions as in Theorem 4, A10 and A11. Then, we have
VA - 20) = N(0.%,).

where

%, = E[VALW| E[V.L(@)V,LW] (E [ViL(ﬂ)]_l)T ’

andV,L(1) and V3L (2) are the gradient and Hessian matrix ofd) respectively.

We do not give the proof of Theorem 5. However, it can be obtained using standard delta method
arguments, see for example Theorem 10.9 in Maronna et al. (2006). This Theorem allows to
define Wald tests for null hypothesis and confidence intervalg tordy, but not forn. However

in most practical applications, like testing for the existence of fixed or randikatts, the interest is
centered inB andy. Table 4 in Section 8 shows that the actual coverage of the confidence intervals
obtained using this asymptotic result is close to the nominal level for the Monte Carlo setting we

explore.

7 Example

Hereafter we present an application of the estimators introduced here to a real data set. The ex-

ample is a prospective longitudinal study of children with disorder of neural development. In this
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data set, outliers are present in the couples rather than in the units and the comyessiteator

provides a dierent analysis with respect to maximum likelihood and classical robust procedures.

7.1 Autism

The data used in this example were collected by researchers at the University of Michigan (Ander-
son et al., 2009) as part of a prospective longitudinal study of 214 children and they are analyzed,
among others, also in West et al. (2007). The children were divided into three diagnostic groups
at the age of 2 years old: autism, pervasive developmental disorder (PDD), and nonspectrum chil-
dren. The study was designed to collect information on each child at ages 2, 3, 5, 9, and 13 years,
although not all children were measured at each age. Among the objectives of the study there
was assessing the relative influence of the initial diagnostic category (autism or PDD), language
proficiency at age 2, and other covariates on the developmental trajectories of the socialization of
these children. Study participants were children who had consecutive referrals to one of two autism
clinics before the age of 3 years. Social development was assessed at each age using the Vineland
Adaptive Behavior Interview survey form, a parent-reported measure of socialization. The depen-
dent variable, vsae (Vineland Socialization Age Equivalent), was a combined score that included
assessments of interpersonal relationships,/lgisyre time activities, and coping skills. Initial
language development was assessed using the Sequenced Inventory of Communication Develop-
ment (SICD) scale; children were placed into one of three groups (sicdggis), Sz), where

Sk Is the indicator function of th& group) based on their initial SICD scores on the expressive
language subscale at age 2. We consider the subset dfl children for which all measurements

are available. We analyze this data using a regression model with randdiicieoés where vsae

is explained by intercept, age, &gnd sicdegp as a factor variable plus interaction among the age

related variables and sicdegp. Hereafter, the variable age is shifted by, hethe value of the
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i-th vsae for thg-th ages valuey, then itis assumed that fordi < 41, 1< j <5 we have

Yij = bia + bioa; + bisaf
+ BaS) + PsK2)

+Be8) X )i + Bra) X )i "',BSaJ2 X i "‘,3961,2 X S2)i + Eijs
where i1, bip, bi3) are i.i.d. random cd&cients with mean4;, 8»,83) and covariance matrix

011 0O1a 0O1x
Xp=| 013 OCaa Oazz |»

0152 Ogx 0O0x232

Ba, ..., Bq are fixed cofficients and thes;; are i.i.d. random errors independent of the random
codficients with zero mean and varianeg.. Then, the model could be rewritten in term of (1)

and (2) withp=5,n=41,J=6andk =9,y = (Yi1,...,V¥is)', and the matrix; is

Xi = (], a,b, sy, Sy, @ X Sy, X Sy, b X Sy, b x S2),

where, | is a 5-vector of onesa = (a;, a,, a3, a4, as) ", which corresponds to age abd= a? which
corresponds to agesy; is a 5-vector with all the elements equalgg; andk = 1, 2. The variance
and covariance structu®(n,y) = n(l + Zleijj) has the following componentg¢; = jj',
V,=aa",Vs=Dbb",Vs=ja" +aj",Vs=jb" +bj" andVg = ab" + ba". n = o, is the scale
of the error termyy = 011/0 s, Y2 = CaalOeer ¥3 = Ta2a2/0oer ¥4 = T1a/T e, Y5 = O122/07 aNd
Y6 = Oaz2/Oce-

We estimate the parameters usinffetient methods: restricted maximum likelihood (ML),
the Copt and Victoria Feser S-estimator (CVFS-estimator) described in Section 3 as defined in
Copt and Victoria-Feser (2006) using a Rogk&inction with asymptotic rejection point equals
to a = 0.1, The SMDM estimator as defined in Koller (2013) using a direct approximation for

computing the consistency factors and smoothed Hyddanctions withc = 1.345, and our com-

ACCEPTED MANUSCRIPT
18



Downloaded by [Universitadi Trento] at 04:22 13 January 2016

ACCEPTED MANUSCRIPT

positer-estimator withp in the family given by (15) withc; = 1 andc, = 1.64. A review of the
CVFS estimator is available in Section 3.2. The SMDM estimator is an extension of the Huber’s
Proposal Il approach where both the error term and the randi@ute are “huberized”. We use

the implementation of the SMDM available in tRgackagerobustlmm (Koller, 2015).

Table 1 reports the estimators and the inference for the fixed term parameters t&irenti
methods, while Table 2 reports the estimators of the rand@esteerms. ML, CVFS and SMDM
provide similar results, while discrepancies are present with the composigthod. The main
differences are on the estimation of the randdimots terms, both in size (error variance compo-
nent) and shape (correlation components). Compesitssigns part of the total variance to the
random components while the other methods assign it to the error term. In fact, variances esti-
mated by composite are in general larger than that estimated via the other methods; composite
T suggests negative correlation between intercept and age, while ML, CVFS and SMDM suggest
positive correlation. Compositeprovides small estimates compared to the other methods for the
error variance. These discrepancies reflects mainly on the inference for the fixed téiniesue
where the variable sicdegp is significant using compasditet is not using ML, CVFS and SMDM
procedures. Interactions between%aged sicdegp is highly non significant using composigad
SMDM while it is somewhat significant using CVFS.

To go more deeply into the reasons offdiences between composite robust procedure and
classic robust procedure results, we investigate cell, couple and row outliers. For a given dimen-
sion 1< g < p we define agj-dimension outliers thosg-dimension observations such that the
corresponding squared Mahalanobis distance is greater than a quantile ofdechi-square dis-
tribution with g degree of freedom. In particular we call cell, couple and row outliers respectively
the 1-dimension, 2-dimension apedimension outliers. Compositeprocedure identifies 33 cou-
ple outliers out of 410 couples (8%) at= 0.999. The #ected rows, with at least one couple
outliers, are 12 out of 41. This means that the CVFS and SMDM procedures have to deal with a

data set with a level of contamination about 29%. Riede to replicate the analysis is available
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in section SM-7 of the Supplementary Material.

8 Monte Carlo simulations

In this section we describe the results of a Monte Carlo study whose aim is to illustrate the perfor-
mance of the new procedure in the classical contamination model (CCM) and in the independent

contamination model (ICM).

8.1 Model and setting

We consider a 2-way crossed classification with interaction linear mixed model

yfgh = X-lf—gkﬂo +as + bg + Cfg + efgh, (23)

wheref =1,...,F,g=1,...,G,andh=1,...,H. Here, we seF = 2,G = 2 andH = 3 which
leads top = F x G x H = 12. X¢gnis a k + 1) x 1 vector where the lagtcomponents are from a
standard multivariate normal and the first component is identically equaBip1(0, 2,2, 2, 2, 2)"

is (k + 1) x 1 vector of the fixed parameters wikh= 5. The random variables;, by andc;4 are
the random ffects which are normally distributed with varianees aﬁ, ando?. Arranging the
Yign in lexicon order (ordered bly within g within f) we obtain the vectoy of dimensionp and
in the similar way thep x k matrix x obtained arrangingqn. Similarly, we seta = (a;,...,ar)",
b=(by...,bg)" andc = (C11,...,Cre)7, that is,a ~ N (0, 021 ¢) and similar forb andc, while

e = (en1-.-,ecn)’ ~ Np(0,021,). Hencey is a p multivariate normal with meap = x8 and
variance matrixy = no(Vo+Zfzoijj), whereVo = 15, V1 = 1p®Jc®Jy, V2 = Je®lc®Jy, and
V3 = Jr®Js®ly; ®is the Kronecker product antlis a matrix of ones with appropriate dimension.
We tooka? = o2 = 1/16 ando? = 1/8. Theny, = (y10, 720, ¥30)" = (02/02, 02/02, 02[o2)T =
(1/4,1/4,1/2)" andno = o2 = 1/4. We consider a sample of sire= 100 and four levels of

contaminatiors = 0,5, 10 and 15%. In the CCM X ¢ observations are contaminated by replacing
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all the elements of the vectgrby observations frony, ~ Ny(XofB, + wo, X) and the corresponding
components ok are replaced by the componentsxgf The first column ofxg is identically equal

to 1 while the lask columns are fromNp,(¢o, 0.0051 ) and all the components @, equal to

1 in the case of low leverage outliers (levl) or to 20 for large leverage outliers (leu0}s a
p-vector of constants all equal tay. In the ICM we replacen x p x ¢ cells, randomly chosen in
thenx p = 1200 values of/ by others obtained as in the previous case. In each case we take a grid
of values forwg so than we can estimate the least favorable case. For each combination of these
factors we compute the CVFS-estimator described in Copt and Victoria-Feser (2006) with Rocke
p function with asymptotic rejection probability set t@®Q, the composite-estimator withp; and

2 in the family given by (15) with constants = 1 andc, = 1.64 respectively and the SMDM

estimator introduced by Koller (2013). For each case we run 500 Monte Carlo replications.

8.2 Measures of performance

Let (y, x) be an observation independent of the samplex), .. ., (Y,, X,) used to computE and
lety = xﬁ be the predicted value gfusingx. Then the square Mahalanobis distance between

andy using the matrixX is

m(Y. Y. o) = (Y - ) " E5 (V- V)
= @ - ﬁo)TXT261X@ - Bo)
+(y- Xﬁo)TEEI(y — XBo).

Sincey — xB, is independent ok and has covariance matiB, puttingA = E(x™Z,'x) we have

E [m(y: Y, Zo)] =E [@ - ﬂO)TA@ - ﬂO)]
+ traceEg"(y — XBo)(y — XBo)")
= E|(B-Bo) AB-Bo)| + p.
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Then, to evaluate an estimaﬁblof B by its prediction performance we can use
E|m(B. B0 A)| = E[(B - Bo)"AB - Bo))]- (24)

Let N be the number of replications in the simulation study, anq/ﬁjeﬂ < ] < N be the value
ofﬁ at thej-th replication, then we can estimdie[m(ﬁ,ﬂo, A)] by the Mean Square Mahalanobis

distance
19,
MSMD = & g M(Bj., Bos A)-

It is easy to prove that as in this casés a p x k matrix where the cells are independ&hD, 1)
random variables, theA = trace&;) .

Given two covariance matricégs; and Xy, one way to measure how close &eandX, is
by the Kullback-Leibler divergence between two normal distributions with the same mean and

covariance matrices equalXy andX, given by
KLD(Z1. Zo) = trace(Z;E5") — log (det@;Z5") - p. (25)

Since (o, 7,) determinexy = X(n, ¥,), that is, the covariance matrix gfgiven x, one way to

measure the performance of an estimakoyy of (o, y,) is by

E [KLD(Z(1,7), 0] -

Let (7;.7;).1 < j < N, be the value of7{, %) at the j-th replication, then we can estimate

E [KLD(Z(n, ), Xo)] by the Mean Kullback-Leibler Divergence

1 _
MKLD = ,Z;‘ KLD(Z(7;,7,)» Eo)-

8.3 Results

We summarize hereafter some of the results obtained from the simulations. Table 3 reports the rel-

ative dficiency of the CVFS-, SMDM-, and compositeestimators with respect to the maximum
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likelihood in absence of contamination. Th&@&ency of estimators g8, will be measured by the
MSMD ratio while the diciency of an estimator of, y,) by the MKLD ratio. For the setting
under consideration, thdfeiency of the composite- estimator is slightly higher of that of the
CVFS-estimator fof, and lower of the SMDM-estimator while is considerable higher fgrx,)
parameters with respect both competitors.

Table 4 reports the actual coverage of confidence intervals based on the asymptotic distribution
of the compositer-estimator with nominal coverage level 0f98. The actual coverage seems
reasonable close to the nominal level.

We report the results under 10% of both types outlier contamination: classical and independent.
Figure 1 reports the behavior of the MSMD as a functiowgtvhile Figure 2 reports the behavior
of MKLD. For easy of comparison, Table 5 reports the maximum values of MSMD and MKLD in
the range of the Monte Carlo setting. Since similar behavior is observed for negative valyes of
these results are not reported.

Analogous behavior was observed for the case 5% and 15% which are not reported. The com-
positer-estimator is very competitive with the CVFS- and SMDM-estimators under the classical
contamination model, in fact, in the low leverage case (levl) the maximum values of MSMD and
MKLD of the compositer-estimator are only slightly larger than those of the CVFS-estimator and
smaller than those of the SMDM-estimator. Instead for the high leverage case (lev20) the values
of MSDM are essentially the same for the CVFS- and the compessimators, while the max-
imum value of MKLD is smaller for the compositeestimator. The SMDM-estimator seems to
breakdown with high leverage points. In the independent contamination model the composite
estimator clearly outperforms the CVFS- and the SMDM-estimators. In fact, while the MSMD and
MKLD of the compositer-estimator are always bounded by a small value, the MSMD and MKLD
of the CVFS-estimator always show an unbounded behavior, while the SMDM-estimator shows
a bounded, but large value for low leverage case (levl) and an unbounded behavior for the high

leverage case (lev20). Mean Square Errors, Biases and Standard Errors for the three estimators
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and all parameters are available in Section SM—6 of the Supplementary Material. These results
confirm the conclusions obtained by the MSMD and MKLD measures of performarusle to

run this Monte Carlo experiment is available as Supplementary Material.

9 Conclusions

The independent contamination model presents new challenging problems for robust statistics.
Robust estimators developed for the Tukey-Huber CCM show non-robust behavior under the ICM,
in particular their breakdown point converges to zero as the dimemsiocreases. Furthermore,
affine equivariance, so useful for achieving CCM robustness, becomes an obstacle under ICM. We
introduce a new class of robust estimators, namely compostimators which are based on

scales of the Mahalanobis distances of two dimensional subvectgrssifig the same idea from

the composite likelihood. We apply them in linear mixed models estimation. Our methods provide
fairly high resistance against both CCM and ICM outliers with breakdown point clos® tand

0.25 respectively.

10 Supplementary Material

Supplementary Material with the derivation of the estimating equations, discussion on computa-
tional aspects and algorithms, proofs of theoremskacalde for the example and the Monte Carlo
experiment is available online.

An R packagerobustvarComp is available in the Comprehensive R Archive Network at cran.r-
project.orgwelypackagesobustvarComfindex.html. The package implements composite S-estimators

andr-estimators and the CVFS estimator for linear mixed models.
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Table 1: Autism data set. Estimated fixed term parameters by Maximum Likelihood, CVFS-,
SMDM-, and composite-estimators. P-values are reported between squared parenthesis.

Method Int. a & S Sz axsy axSy a¥xgy X
ML 12.847 6.851 -0.062 -5.245 -2.154 -6.345 -4.512 0.133 0.236
[0.000] [0.000] [0.579] [0.041] [0.325] [0.000] [0.000] [0.447] [0.122]
CVFS 10934 7.162 -0.108 -4.457 -0.107 -5.770 -4.995 0.094 0.419
[0.000] [0.001] [0.667] [0.050] [0.957] [0.002] [0.000] [0.688] [0.011]
SMDM 12.347 6.020 0.001-5.192 -2.173 -5.190 -3.870 0.046 0.151

[0.000] [0.000] [0.992] [0.010] [0.213] [0.000] [0.000] [0.781] [0.300]
compositer 12.145  6.308 -0.089 -5.216 -4.213 -5.361 -3.851 0.082  0.061
[0.000] [0.000] [0.329] [0.000] [0.012] [0.000] [0.001] [0.578][0.677]
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Table 2: Autism data set. Estimated random term parameters by Maximum Likelihood, CVFS-
, SMDM-, and composite-estimators. In round parenthesis the estimated standard errors for
CVFS- and composite-estimators. Standard errors for ML and SMDM are not available in the
used software.

Method 11 O aa O 252 O1a 012 fo T es

ML 2.647 2.329 0.102 0.774  0.430-0.038 51.355

CVFS 9.456 3.386 0.222 2.158 1.0620.350 22.207
(44.938) (11.761) (0.531) (13.621) (1.095) (1.695) —

SMDM 5.745 0.092 0.115 0.727 0.813 0.103 25.385

compositer ~ 9.357  9.680 0.051 -4.024 -0.003 -0.327 5.152
(5.208) (3.240) (0.019) (2.642) (0.230) (0.195) -
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Table 3: Relative fiiciency with respect to Maximum Likelihood measured by MSMD ratio for the
fixed terms and by MKLD for the random terms for CVFS-, SMDM-, and compasiéstimators.

Method MSMD EFF. MKLD EFF
CVFS 0.705 0.453
SMDM 0.955 0.147
compositer 0.799 0.820
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Table 4: Empirical coverage of confidence intervals based on the asymptotic distribution for the
fixed and random term parameters. Nominal level 850 Results are based on 500 Monte Carlo
replications.

Bo b1 B B3 Ba Bs oa oL os
0.962 0.948 0.946 0.946 0.944 0.928 0.924 0.98024
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Table 5: Maximum values of MSDM and MKLD in Figures 1 and 2 respectively for CVFS-,
SMDM-, and composite-estimators.

CCM ICM
Method levl lev20 levl 20
MSDM CVFS 0.34 443 2406.85 116.08
SMDM  0.89 23190.69 9.62 23190.24
compositer 0.79 4.29 3.17 4.29
MKLD CVFS 0.20 1.06 5819.80 85.28
SMDM  0.62 79.43 14.04 79.31
compositer 0.43 0.74 2.09 1.19
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Figure 1: MSMD performance of the CVFS-, SMDM-, and compos#estimators o5y under
10% of outlier contamination.
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Figure 2: MKLD performance of the CVFS-, SMDM-, and compositestimators of fg, vo)

under 10% of outlier contamination.
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