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Abstract

The Classical Tukey-Huber Contamination Model (CCM) is a commonly adopted framework to

describe the mechanism of outliers generation in robust statistics. Given a data set withn obser-

vations andp variables, under the CCM, an outlier is a unit, even if only one or a few values are

corrupted. Classical robust procedures were designed to cope with this type of outliers. Recently,

a new mechanism of outlier generation was introduced, namely the Independent Contamination

Model (ICM), where the occurrences that each cell of the data matrix is an outlier are independent

events and have the same probability. ICM poses new challenges to robust statistics since the per-

centage of contaminated rows dramatically increase withp, often reaching more than 50% whereas

classical affine equivariant robust procedures have a breakdown point of 50% at most. For ICM

we propose a new type of robust methods namely composite robust procedures which are inspired

by the idea of composite likelihood, where low dimension likelihood, very often the likelihood of

pairs, are aggregated in order to obtain a tractable approximation of the full likelihood. Our com-

posite robust procedures are build on pairs of observations in order to gain robustness in the ICM.

We propose compositeτ-estimators for linear mixed models. Compositeτ-estimators are proved

to have a high breakdown point both in the CCM and ICM. A Monte Carlo study shows that while

classical S-estimators can only cope with outliers generate by the CCM, the estimators proposed

here are resistant to both CCM and ICM outliers.

Key words: Compositeτ-estimators; Independent Contamination Model; Tukey-Huber Contami-

nation Model; Robust estimation.

1 Introduction

The purpose of this paper is to find robust procedures for mixed linear models. This class of

models includes, among others, ANOVA models with repeated measures, models with random
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nested design and models for studying longitudinal data. These models are generally based on the

assumption that the data follow a normal distribution and therefore the parameters are estimated

using the maximum likelihood principle. See for example, Searle et al. (1992). As it is well

known, in general, the estimator obtained by maximum likelihood under the assumption that the

data have a normal distribution is very sensitive to the presence of a small fraction of outliers in

the sample. More than that, just one outlier may have an unbounded effect on this estimator. There

are many robust estimators that have been proposed to avoid a large outlier influence. A large

list of references of these proposals is available in Heritier et al. (2009). Copt and Victoria-Feser

(2006) introduce a very interesting robust S-estimator for mixed linear models based on M-scales

which has breakdown point equals to 0.5 under the classical contamination model. We can also

mention Fellner (1986), Richardson and Welsh (1995), Stahel and Welsh (1997), Gill (2000), Jiang

and Zhang (2001), Sinha (2004), Copt and Heritier (2006), Jacqmin-Gadda et al. (2007), Lachosa

et al. (2009), Chervoneva and Vishnyakov (2011) and Koller (2013) which studied an SMDM-

estimator. The procedure proposed in the last paper is implemented in theR packagerobustlmm

(Koller, 2015).

However all these procedures aim at coping with outliers generated under the Classical (Tukey-

Huber) Contamination Model (CCM), where some percentage of the units that compose the sample

are replaced by outliers. Alqallaf et al. (2009) introduced another type of contamination model

(called Independent Contamination Model, ICM) that may occur in multivariate data. Instead

of contaminating a percentage of the units that compose the sample, the different cells of each

unit may be independently contaminated. In this case, if the dimension of each unit is large,

even a small fraction of cell contamination may lead to a large fraction of units with at least one

contaminated cell. This type of contamination specially occurs when the different variables that

compose each unit are measured from independent laboratories. Alqallaf et al. (2009) showed that

for this type of contamination the breakdown point of affine equivariant procedures for multivariate

location and covariance matrix tends to zero when the number of variables increases and therefore
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their degree of robustness is not satisfactory. A similar phenomenon occurs when dealing with

mixed linear models. In particular the S-estimator procedure introduced in Copt and Victoria-

Feser (2006) loses robustness for high dimensional data with independent contamination.

In this paper we propose a new class of robust estimators for linear mixed models. These es-

timators are based on a principle similar to the one used in the composite likelihood estimators

proposed by Lindsay (1988). If a vectory of dimensionp is observed, the composite likelihood

estimators are based on the likelihood of all the subvectors of a dimensionp∗ < p. The estima-

tors that we propose here are based onτ-scales of the Mahalanobis distances of two dimensional

subvectors ofy. Theτ-scale estimators were introduced by Yohai and Zamar (1988) and provides

scales estimators which are simultaneously highly robust and highly efficient. Here we show that

these estimators have a robust behavior for both contamination models: the classical contamina-

tion model and the independent contamination one. In particular, we will show that the breakdown

point for the classical contamination model can be made close to 0.5, while for the independent

contamination model can be made close to 0.25.

In Section 2 the linear mixed model is presented. We also describe two outlier contamination

models: the classical and the independent contamination models. Section 3 describe the M- and

τ-scales, briefly reviews the S-estimator for linear mixed models introduced in Copt and Victoria-

Feser (2006) and define the compositeτ-estimator for these models. Section 4 discusses the break-

down properties of compositeτ-estimators under both contamination models. Section 5 states the

continuity of the estimating functional associated to a compositeτ-estimator. Section 6 states the

consistency and asymptotic normality of the compositeτ-estimator. Section 7 illustrates with real

data set the advantages of the proposed estimator and in Section 8 we perform a Monte Carlo sim-

ulation that confirms that the proposed procedure has a robust behavior under both contamination

models. Section 9 provides some concluding remarks. A Supplementary Material is available with

the following sections. Section SM–1 provides details on the derivation of the estimating equations

while Section SM–2 discusses computational aspects and algorithms. Section SM–3 contains the
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proofs of the statements reported in Section 4. In Section SM–4 we prove the Fisher-consistency

of the compositeτ-estimators and in Section SM–5 the continuity and consistency of these esti-

mators. Section SM–6 provides complimentary results of the Monte Carlo experiments reported

in Section 8 and Section SM–7 contains theR code for the example presented in Section 7. Fi-

nally, theR packagerobustvarComp implementing the proposed procedures is available in the

Comprehensive R Archive Network.

2 Linear mixed models

Denote byNp(μ,Σ) the multivariate normal distribution of dimensionp with meanμ and covari-

ance matrixΣ. In case of fixed covariables it is assumed thatn independentp-dimensional random

vectorsy1, . . . , yn in Rp are observed andyi ,1 ≤ i ≤ n, has distributionNp(μi(β0),Σ(η0,γ0)), where

μi(β) = (μi1(β), . . . , μip(β))> (1)

= xiβ, 1 ≤ i ≤ n,

x1, . . . , xn are fixedp× k matrices andβ ∈ Rk is an unknownk-vector parameter. Moreover,

Σ(η,γ) = η(V0 +

J∑

j=1

γ jV j), (2)

whereV j, 1 ≤ j ≤ J arep×p known matrices,V0 is thep×p identity,η > 0 andγ = (γ1, . . . , γJ)> ∈

Γ are unknown parameters, where

Γ = {γ ∈ RJ : Σ(1,γ) is positive definite}.

In the case of random covariables, that is, whenx1, . . . , xn are i.i.d. random matrices, it is assumed

thatyi |xi ∼ Np
(
μi(β0),Σ(η0,γ0)

)
. This is equivalent to

yi = μi(β0) + ui , (3)
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whereui is independent ofxi with distributionNp(0,Σ(η0,γ0)). However, in Section 6, where we

study the asymptotic properties of the proposed estimators, we weaken the assumption. In fact,

we only require thatui are independent ofxi and have elliptical distribution with center0 and

covariance matrixΣ(η0,γ0).

This setup covers many linear mixed models, for instance those of the form

yi = xiβ0 +

J∑

j=1

zjζ i j + εi , 1 ≤ i ≤ n, (4)

where thexis are as before,zj, 1 ≤ j ≤ J, arep×qj known design matrices for the random effects,

ζ i j are independentqj-dimensional vectors with distributionNqj (0, σ
2
0 j I qj ), whereI p is the p × p

identity matrix andεi (1 ≤ i ≤ n) are p-dimensional error vectors with distributionN(0, σ2
0I p).

Then, in this case we haveη0 = σ2
0,γ0 = (γ01, . . . , γ0J)> with γ0 j = σ2

0 j/σ
2
0 > 0, V j = zj z>j ,

1 ≤ j ≤ J.

2.1 Outlier contamination models

We are going to introduce some notation. LetT be a data set of sizen corresponding to model (1)-

(2), T = (t1, . . . , tn), wheret i = (yi , xi) = (t i1, . . . , t ip), yi ∈ R
p, xi ∈ Rp×k, t i j = (yi j , xi j1, . . . , xi jk),

1 ≤ j ≤ p andxi jh is the value in thej-th row andh-th column of the matrixxi.

The classical contamination model (CCM) assume that the probability thatt i, 1 ≤ i ≤ n, is

replaced by an outlier is a given numberε and thesen events are independent.

Alqallaf et al. (2009) consider a different contamination model for multivariate data: the inde-

pendent contamination model (ICM). This definition can be adapted to the mixed linear model as

follows. The probability thatt i j , 1 ≤ i ≤ n,1 ≤ j ≤ p is replaced by an outlier is a given number

ε and thesen × p events are independent. Therefore the probability that at least one component

t i j , 1 ≤ j ≤ p of t i is an outlier is 1− (1 − ε)p, and this number is close to one whenp is large

even ifε is small. For this reason estimators that have breakdown point 0.5 under the CCM may

have breakdown tending to zero under the ICM. Alqallaf et al. (2009) show that this happens with
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the most popular high breakdown point equivariant estimators of multivariate location, e.g., S-

estimators (Davies, 1987), Minimum Volume Ellipsoid (Rousseeuw, 1985), Minimum Covariance

Determinant (Rousseeuw, 1985) or the Donoho-Stahel estimators (Donoho, 1982; Stahel, 1981).

3 Estimators for linear mixed models based on robust scales

In this Section we define the compositeτ-estimator. At this aim we first describe the M- andτ-

scales, and briefly review the S-estimator for linear mixed models introduced in Copt and Victoria-

Feser (2006).

3.1 M- and τ-Scales

In general, ascale sof a sampleu = (u1, . . . , un) is a measure of the absolute largeness of these

observations. A general class of robust scales introduced by Huber are the M-scales. The M-scales

are defined as follows: Letρ : R→ R+ be a function satisfying the following properties:

A1 ρ(0) = 0, A2 0 ≤ u ≤ v impliesρ(u) ≤ ρ(v), A3 ρ is continuous,A4 supvρ(v) = 1 andA5 if

ρ(u) < 1 and 0≤ u < v, thenρ(u) < ρ(v).

Then, anM-scale s(u) based onρ is defined by the values satisfying

1
n

n∑

i=1

ρ
(ui

s

)
= b, (5)

where 0< b < 1.

We now define the family ofτ-scales introduced by Yohai and Zamar (1988). Aτ-scale is

based on two functionsρ1 andρ2 satisfying conditions A1-A5 and

A6 ρ2 is continuously differentiable and ifψ2(v) = ρ′2(v), then 2ρ2(v) − ψ2(v)v > 0.

Let s(u) be the M-scale defined by (5) withρ1 in place ofρ, then theτ-scale is defined by

τ2(u) = s2(u)
1
n

n∑

j=1

ρ2

(
uj

s(u)

)

. (6)
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Condition A6 implies that ifB(s) = s2E(ρ/s), thenB′(s) = s(2ρ(u/s) − (u/s)ρ(u/s)) > 0, that is,

B(s) is increasing ons. The advantage of theτ-scales over the M-scales is that they make possible

to define estimators that are simultaneously highly robust and highly efficient. See for example

Yohai and Zamar (1988) for linear regression and Lopuhaä (1991) for multivariate location and

scatter.

3.2 S-estimators

In this subsection we review the class of S-estimators for linear mixed models introduced by Copt

and Victoria-Feser (2006) and define the compositeτ-estimators for the same class of models.

Givenp dimensional column vectorsy andμ and ap×p matrixΣ the square of the Mahalanobis

distance is defined by.

m(y,μ,Σ) = (y− μ)>Σ−1(y− μ).

Given a squared matrixA we denote byA∗ = A/ det(A)1/p where det(A) is the determinant of the

matrix A. Note thatΣ∗(η,γ) depends only onγ and then will be denoted byΣ∗(γ).

Let ρ1 be a function satisfying A1-A5. The S-estimator proposed by Copt and Victoria-Feser

(2006) can be defined by

(̂β, γ̂) = arg min
β,γ

s(m(y1, x1β,Σ
∗(γ))1/2, . . . ,m(yn, xnβ,Σ

∗(γ))1/2), (7)

η̂ = s(m(y1, x1̂β,Σ(1, γ̂))1/2, . . . ,mn(yn, xn̂β,Σ(1, γ̂))1/2)2/s2
0, (8)

wheres is the M-scale corresponding toρ1 defined by (5) ands0 is defined byE
[
ρ1

(√
v/s0

)]
= b,

wherev has chi-square distribution withp degrees of freedom. We will call this estimator Copt

and Victoria-Feser S-estimator (CVFS-estimator).

These estimators can be thought of as an extension of the S-estimators for multidimensional

location and scatter matrix proposed by Davies (1987). Copt and Victoria-Feser (2006) choose

asρ1 the function proposed in Rocke (1996) for S-estimators of scatter matrix and multivariate
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location. This function, which depends on the number of variables, improves the robustness of

S-estimators for high dimensional data under the CCM.

Copt and Victoria-Feser (2006) show that under the CCM the asymptotic breakdown point of

the estimator defined by (7) and (8) isε∗ = min(b,1 − b). Therefore ifb = 0.5, we getε∗ = 0.5.

However, as the S-estimators for multidimensional location and scatter, the breakdown point of

these estimator under the ICM tends to 0 whenp→ ∞.

3.3 Compositeτ-estimators

We introduce now a new type of estimators which are robust under the ICM: the compositeτ-

estimators.

Given a vectora = (a1, . . . , ap)>, a p× p matrix A and a couple (j, l) of indices (1≤ j < l ≤ p)

we denoteajl = (aj ,al)> andA jl the submatrix

A jl =




aj j ajl

al j all



.

In a similar way, given ap × k matrix x we denote byx jl the matrix of dimension 2× k built by

using rowsj andl of x and byA∗jl = Ajl/ det(Ajl )1/2. Note that det(A∗jl ) = 1.

We define pairwise squared Mahalanobis distances by

mjl
i (β,γ) = m(yjl

i ,μ
jl
i (β),Σ∗jl (γ)).

Givenρ1 anρ2 satisfying A1-A6, we define pairwise M- andτ-scalessjl (β,γ) andτ jl (β,γ) by

1
n

n∑

j=1

ρ1



mjl

j (β,γ)1/2

sjl (β,γ)


 = b (9)

and

τ2
jl (β,γ) = s2

jl (β,γ)
1
n

n∑

j=1

ρ2



mjl

j (β,γ)1/2

sjl (β,γ)


 . (10)
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Put

L(β,γ) =
p−1∑

j=1

p∑

l= j+1

τ2
jl (β,γ), (11)

then we define the compositeτ-estimators ofβ0 andγ0 by

(̂β, γ̂) = arg min
β,γ

L(β,γ), (12)

and the estimator̂η of η0 by solving

2
p(p− 1)n

n∑

i=1

p−1∑

j=1

p∑

l= j+1

ρ1



(yjl

i − x jl
i β̂)

>Σ jl (̂η, γ̂)−1(yjl
i − x jl

i β̂)
1/2

s0


 = b, (13)

wheres0 is defined by

E

[

ρ1

( √
v

s0

)]

= b, (14)

andv has chi-square distribution with 2 degrees of freedom. As a particular case whenρ2 = ρ1 we

have the class of composite S-estimators. We will not discuss further this special case.

In the example of Section 7 and in the Monte Carlo study of Section 8 we consideredρi, i = 1,2

in the following family of functionsρ∗c introduced by Muler and Yohai (2002)

ρ∗c(v) =





v2

2ac2 v ≤ 2

1
a

(
a4
8

v8

c8 +
a3
6

v6

c6 +
a2
4

v4

c4 +
a1
2

v2

c2 + a0

)
2 < v ≤ 3

1 v > 3

(15)

wherea0 = 1.792,a1 = −1.944,a2 = 1.728,a3 = −0.312,a4 = 0.016 anda = 3.250. The functions

in this family are characterized by shapes close to those in the optimal family for regression M-

estimators, obtained by Yohai and Zamar (1997). However, they are easier to compute. Notice

that for anyλ > 0, theτ-scale obtained withρ1 = ρ∗λc1
and ρ2 = ρ∗λc2

is equal to theτ-scale

corresponding toρ1 = ρ∗c1
andρ2 = ρ∗c2

divided byλ2. Hence without loss of generality we can

considerc1 = 1. We found that by takingc2 = 1.64 we obtain a good trade-off between robustness

and efficiency, and this is the value ofc2 that we recommend to use.

Note that the compositeτ-estimators is quite similar to the S-estimator proposed by Copt and

Victoria-Feser (2006). The main differences are:

10
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(i) We use aτ-scale instead of an M-scale to gain efficiency under the nominal model,

(ii) We work with partial Mahalanobis distances of all pairs of components of the residual vectors

instead of using the Mahalanobis distances of complete residual vectors. The reason for this

is to increase the breakdown point of the estimators under the ICM. Since the breakdown

point decreases with the dimension, we use subvectors with the smallest possible dimension.

Note that to estimate the covariance matrixΣ(η0,γ0) it is necessary to work with subvectors

of dimension at least two. We might have worked in higher dimension, but this would have

decreased the breakdown point. Besides, in this case we would have a larger number of index

combinations, increasing the computational complexity of the estimator. For these reasons,

it seems preferable to consider pairs of variables.

(iii) Finally we use theρ-function given in (15) instead of the Rockes’ρ. The Rockeρ-function

was designed to increase the robustness under CCM for high dimension. However the co-

variance matrix estimator based on the Rockeρ-function is inefficient in dimension two.

Therefore, since we worked with subvectors of dimension two, theρ-function given in (15)

is preferable.

It is easy to show that the compositeτ-estimators are equivariant for regression transformations

of the formy∗i = yi + xiδ whereδ is ak × 1 vector, or scale transformations of the formy∗i = ζyi,

whereζ is a scalar.

Computational aspects and algorithms are discussed in Section SM–2 of the Supplementary

Material.

4 Breakdown point

Donoho and Huber (1983) introduced the concept of a finite sample breakdown point (FSBDP).

For our case, let̂β andυ̂ = (̂η, η̂γ̂) be estimators ofβ andυ = (η, ηγ). Informally speaking, the
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FSBDP of̂β is the smallest fraction of outliers that makes the estimator unbounded or becoming

arbitrarily close to the border of the parameter space.

Let T = (t1, . . . , tn) be a data set of sizen corresponding to model (1)-(2)t i = (yi , xi) =

(t i1, . . . , t ip), yi ∈ R
p, xi ∈ Rp×k and t i j = (yi j , xi j1, . . . , xi jk). LetT (C)

m be the set of all the samples

Ť = ( ť1, . . . , ťn) with ť i = ( ť i1, . . . , ť ip)> such that #{i : ť i = t i} ≥ n−m. Given estimatorŝβ andυ̂

we let

B(C)
m (T, β̂) = sup{‖̂β(Ť)‖, Ť ∈ T (C)

m },

B+(C)
m (T, υ̂) = sup{‖̂υ(Ť)‖, Ť ∈ T (C)

m },

B−(C)
m (T, υ̂) = inf {‖̂υ(Ť)‖, Ť ∈ T (C)

m },

where‖x‖ denotes norml2 of x.

Definition 1 The finite sample breakdown point ofβ̂ for classical contamination (FSBDPCC) at

the sampleT is defined byε(C)(T, β̂) = m∗/n where m∗ = min{m : B(C)
m (T, β̂) = ∞} and the

breakdown point of̂υ byε(C)(T, υ̂) = m∗/n where

m∗ = min{m :
1

B−(C)
m (T, υ̂)

+ B+(C)
m (T, υ̂) = ∞}.

Let T (I).
m be the set of all the samplešT = ( ť1, . . . , ťn) such that #{i : ť i j = t i j } ≥ n − m for eachj,

1 ≤ j ≤ p. Given estimatorŝβ andυ̂ we let

B(I).
m (T, β̂) = sup{‖̂β(Ť)‖, Ť ∈ T (I)

m },

B+(I)
m (T, υ̂) = sup{‖̂υ(Ť)‖, Ť ∈ T (I)

m },

B−(I)
m (T, υ̂) = inf {‖̂υ(Ť)‖, Ť ∈ T (I)

m }.

Definition 2 The finite sample breakdown point forβ̂ under independent contamination (FSBD-

PIC) at the sampleT is defined byε(I)(T, β̂) = m∗/n where m∗ = min{m : B(I)
m (T, β̂) = ∞} and the
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breakdown point of̂υ byε(I)(T, υ̂) = m∗/n where

m∗ = min{m :
1

B−(I)
m (T, υ̂)

+ B+(I)
m (T, υ̂) = ∞}.

The following theorems, whose proofs can be found in Section SM–3 of the Supplementary

Material, give lower bound for the breakdown points of compositeτ-estimators under both the

classical and the independent contamination models. Before to state these Theorems we need the

following notation. Given a sampleT = (t1, . . . , tn) we define

hjl (T) = max
‖b‖>0

#{i : x jl
i b = 0}, (16)

h(T) = max
jl

hjl (T), (17)

h∗jl (T) = max
‖e‖>0,b

#{i : e>(yjl
i − x jl

i b) = 0}, (18)

h∗(T) = max
jl

h∗jl (T), (19)

d(T) = h(T) + h∗(T). (20)

Theorem 1 Let T = (t1, . . . , tn), t i = (yi , xi), d(T) as defined in (20). Assume that A1-A6 holds

and let(̂β, υ̂) be the compositeτ-estimator for the model given by (1) and (2). Then a lower bound

for ε(C)(T, β̂) and forε(C)(T, υ̂) is given bymin((1− b) − (d(T)/n) ,b).

Note that takingb = 0.5, this lower bound is close to 0.5 for largen independently ofp.

Theorem 2 Let T = (t1, . . . , tn), t i = (yi , xi), d(T) as defined in (20). Assume that A1-A6 holds

and let(̂β, υ̂) be the compositeτ-estimator for the model given by (1) and (2). Then a lower bound

for ε(I)(T, β̂) and forε(I)(T, υ̂) is given by0.5 min((1− b) − (d(T)/n) ,b).

In this case by takingb = 0.5, this lower bound is close to 0.25 for largen independently ofp.
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5 Continuity

In this Section we study another robustness property of the composedτ-estimators. In Section

SM–4 of the Supplemental Material we show that these estimators can be expressed as estimating

functionals defined on the set of distributions of (y, x) applied to the empirical distributionFn of

(y1, x1), . . . , (yn, xn) That is, we can write

β̂ = Tβ(Fn), γ̂ = Tγ(Fn), η̂ = Tη(Fn), υ̂ = Tυ(Fn)

Denote by
D
→ convergence in distribution. The estimating functionalsTβ, Tγ, Tη andTυ have the

following robustness property

Definition 3 An estimating FunctionalT : F → Rh, whereF is a subset of the distribution onRk

is continuous at a distribution H if given a sequence of distributions Hn
D
→ H, thenT(Hn)→ T(H).

Note that the continuity of an estimating functional implies that a small variation in the empirical

distribution will produce a small variation in the estimator. Then, this property is closely related

to the concept of qualitative robustness introduced by Hampel (1971) and is equivalent to the

asymptotic qualitative robustness property defined in Papantoni-Kazakos and Gray (1979).

To prove the continuity of the compositeτ-estimators we need the following additional as-

sumptions.

A7 The matrixx is random and independent of the error termu. Besides, the error vectoru has an

elliptical density of the form

f (u) =
f ∗0 (u>Σ(η0,γ0)

−1u)

det(Σ(η0,γ0))1/2
, (21)

where f ∗0 is non increasing and is strictly decreasing in a neighborhood of 0;A8 Let H0 be the

distribution ofx. Then for anyb ∈ Rk, δ , 0we havePH0(xb , 0) > 0 and for all pair 1≤ j < l ≤ p

and allb ∈ R2 we havePH0(x
jl b = 0) < 1− b andA9 (Identification condition) Ifγ , γ∗ for all α

we haveΣ(1,γ) , Σ(α,γ∗).

14
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An important family of distributions satisfying A7 is the multivariate normal, in this case,

f ∗0 (z) = (2π)−p/2 exp(−z/2). (22)

The following theorem establishes the continuity at the nominal model of the estimating function-

als corresponding to compositeτ-estimators.

Theorem 3 Assume (i)ρ1 satisfies A1-A5, (ii)ρ2 satisfies A1-A6, (iii)(y, x) satisfyy = xβ0 + u

and A7- A9 hold. Then, if F0 is the distribution of(y, x), the compositeτ-estimating functionals

Tβ, Tγ, Tη andTυ are continuous at F0.

6 Asymptotics

Consistency and asymptotic distribution of the compositeτ-estimators are discussed in the next

two subsections.

6.1 Consistency

Notice that, contamination causes asymptotic bias, and therefore consistency cannot be ensured for

any robust procedure in the presence of outliers. For this reason consistency to the true parameters

only occurs under the nominal model. The following Theorem states the consistency of composite

τ-estimators.

Theorem 4 Let (yi , xi), 1 ≤ i ≤ n, be i.i.d. random samples of a distribution F0. Assume (i)ρ1

satisfies A1-A5, (ii)ρ2 satisfies A1-A6, (iii)yi = xi β0 + ui and A7, A8 and A9 hold. Then, the

compositeτ-estimatorŝβ, γ̂ and η̂ satisfylimn→∞ β̂ = β0 a.s. andlimn→∞ γ̂ = γ0 a.s.. Moreover, if

f ∗0 is given by (22) we havelimn→∞ η̂ = η0 a.s. too.

Note that for the consistency of̂β andγ̂ is not necessary thatu be multivariate normal.
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6.2 Asymptotic normality

The following Theorem states the asymptotic normality of compositeτ-estimators. We need the

following additional assumptions

A10 Let H0 be the distribution ofx. ThenH0 has finite second moments andEH0(xx>) is non–

singular.A11 The functionsρi, i = 1,2 are twice differentiable.

Theorem 5 Let λ0 = (β0,γ0) and λ̂ = (̂β, γ̂) be the compositeτ-estimator. Consider the same

assumptions as in Theorem 4, A10 and A11. Then, we have

√
n(̂λ − λ0)

D
→ N

(
0,Σλ0

)
,

where

Σλ = E
[
∇2
λL(λ)

]−1
E

[
∇λL(λ)∇λL(λ)>

] (
E

[
∇2
λL(λ)

]−1
)>
,

and∇λL(λ) and∇2
λL(λ) are the gradient and Hessian matrix of L(λ) respectively.

We do not give the proof of Theorem 5. However, it can be obtained using standard delta method

arguments, see for example Theorem 10.9 in Maronna et al. (2006). This Theorem allows to

define Wald tests for null hypothesis and confidence intervals forβ andγ, but not forη. However

in most practical applications, like testing for the existence of fixed or random effects, the interest is

centered inβ andγ. Table 4 in Section 8 shows that the actual coverage of the confidence intervals

obtained using this asymptotic result is close to the nominal level for the Monte Carlo setting we

explore.

7 Example

Hereafter we present an application of the estimators introduced here to a real data set. The ex-

ample is a prospective longitudinal study of children with disorder of neural development. In this
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data set, outliers are present in the couples rather than in the units and the compositeτ-estimator

provides a different analysis with respect to maximum likelihood and classical robust procedures.

7.1 Autism

The data used in this example were collected by researchers at the University of Michigan (Ander-

son et al., 2009) as part of a prospective longitudinal study of 214 children and they are analyzed,

among others, also in West et al. (2007). The children were divided into three diagnostic groups

at the age of 2 years old: autism, pervasive developmental disorder (PDD), and nonspectrum chil-

dren. The study was designed to collect information on each child at ages 2, 3, 5, 9, and 13 years,

although not all children were measured at each age. Among the objectives of the study there

was assessing the relative influence of the initial diagnostic category (autism or PDD), language

proficiency at age 2, and other covariates on the developmental trajectories of the socialization of

these children. Study participants were children who had consecutive referrals to one of two autism

clinics before the age of 3 years. Social development was assessed at each age using the Vineland

Adaptive Behavior Interview survey form, a parent-reported measure of socialization. The depen-

dent variable, vsae (Vineland Socialization Age Equivalent), was a combined score that included

assessments of interpersonal relationships, play/leisure time activities, and coping skills. Initial

language development was assessed using the Sequenced Inventory of Communication Develop-

ment (SICD) scale; children were placed into one of three groups (sicdegp,s(1), s(2), s(3), where

s(k) is the indicator function of thek group) based on their initial SICD scores on the expressive

language subscale at age 2. We consider the subset ofn = 41 children for which all measurements

are available. We analyze this data using a regression model with random coefficients where vsae

is explained by intercept, age, age2 and sicdegp as a factor variable plus interaction among the age

related variables and sicdegp. Hereafter, the variable age is shifted by 2. Letyi j be the value of the
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i-th vsae for thej-th ages valueaj, then it is assumed that for 1≤ i ≤ 41, 1≤ j ≤ 5 we have

yi j = bi1 + bi2aj + bi3a
2
j

+ β4s(1)i + β5s(2)i

+ β6aj × s(1)i + β7aj × s(2)i + β8a
2
j × s(1)i + β9a

2
j × s(2)i + εi j ,

where (bi1,bi2,bi3) are i.i.d. random coefficients with mean (β1, β2, β3) and covariance matrix

Σb =




σ11 σ1a σ1a2

σ1a σaa σaa2

σ1a2 σaa2 σa2a2




,

β4, . . . , β9 are fixed coefficients and theεi j are i.i.d. random errors independent of the random

coefficients with zero mean and varianceσεε. Then, the model could be rewritten in term of (1)

and (2) withp = 5, n = 41, J = 6 andk = 9, yi = (yi1, . . . , yi5)>, and the matrixxi is

xi = ( j, a, b, s(1)i , s(2)i , a× s(1)i , a× s(2)i , b× s(1)i , b× s(2)i),

where, j is a 5-vector of ones,a = (a1,a2,a3,a4,a5)>, which corresponds to age andb = a2 which

corresponds to age2, s(k)i is a 5-vector with all the elements equal tos(k)i andk = 1,2. The variance

and covariance structureΣ(η,γ) = η(I +
∑J

j=1 γ jV j) has the following componentsV1 = j j>,

V2 = aa>, V3 = bb>, V4 = ja> + a j>, V5 = jb> + b j> andV6 = ab> + ba>. η = σεε is the scale

of the error term,γ1 = σ11/σεε, γ2 = σaa/σεε, γ3 = σa2a2/σεε, γ4 = σ1a/σεε, γ5 = σ1a2/σεε and

γ6 = σaa2/σεε.

We estimate the parameters using different methods: restricted maximum likelihood (ML),

the Copt and Victoria Feser S-estimator (CVFS-estimator) described in Section 3 as defined in

Copt and Victoria-Feser (2006) using a Rockeρ function with asymptotic rejection point equals

to α = 0.1, The SMDM estimator as defined in Koller (2013) using a direct approximation for

computing the consistency factors and smoothed Huberψ functions withc = 1.345, and our com-
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positeτ-estimator withρ in the family given by (15) withc1 = 1 andc2 = 1.64. A review of the

CVFS estimator is available in Section 3.2. The SMDM estimator is an extension of the Huber’s

Proposal II approach where both the error term and the random effects are “huberized”. We use

the implementation of the SMDM available in theR packagerobustlmm (Koller, 2015).

Table 1 reports the estimators and the inference for the fixed term parameters using different

methods, while Table 2 reports the estimators of the random effect terms. ML, CVFS and SMDM

provide similar results, while discrepancies are present with the compositeτ method. The main

differences are on the estimation of the random effects terms, both in size (error variance compo-

nent) and shape (correlation components). Compositeτ assigns part of the total variance to the

random components while the other methods assign it to the error term. In fact, variances esti-

mated by compositeτ are in general larger than that estimated via the other methods; composite

τ suggests negative correlation between intercept and age, while ML, CVFS and SMDM suggest

positive correlation. Compositeτ provides small estimates compared to the other methods for the

error variance. These discrepancies reflects mainly on the inference for the fixed term coefficients

where the variable sicdegp is significant using compositeτ but is not using ML, CVFS and SMDM

procedures. Interactions between age2 and sicdegp is highly non significant using compositeτ and

SMDM while it is somewhat significant using CVFS.

To go more deeply into the reasons of differences between composite robust procedure and

classic robust procedure results, we investigate cell, couple and row outliers. For a given dimen-

sion 1≤ q ≤ p we define asq-dimension outliers thoseq-dimension observations such that the

corresponding squared Mahalanobis distance is greater than a quantile orderα of a chi-square dis-

tribution with q degree of freedom. In particular we call cell, couple and row outliers respectively

the 1-dimension, 2-dimension andp-dimension outliers. Compositeτ procedure identifies 33 cou-

ple outliers out of 410 couples (8%) atα = 0.999. The affected rows, with at least one couple

outliers, are 12 out of 41. This means that the CVFS and SMDM procedures have to deal with a

data set with a level of contamination about 29%. TheR code to replicate the analysis is available
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in section SM–7 of the Supplementary Material.

8 Monte Carlo simulations

In this section we describe the results of a Monte Carlo study whose aim is to illustrate the perfor-

mance of the new procedure in the classical contamination model (CCM) and in the independent

contamination model (ICM).

8.1 Model and setting

We consider a 2-way crossed classification with interaction linear mixed model

yf gh = x>f ghβ0 + af + bg + cf g + ef gh, (23)

where f = 1, . . . , F, g = 1, . . . ,G, andh = 1, . . . ,H. Here, we setF = 2, G = 2 andH = 3 which

leads top = F ×G × H = 12. x f gh is a (k + 1)× 1 vector where the lastk components are from a

standard multivariate normal and the first component is identically equal to 1,β0 = (0,2,2,2,2,2)>

is (k + 1) × 1 vector of the fixed parameters withk = 5. The random variablesaf , bg andcf g are

the random effects which are normally distributed with variancesσ2
a, σ

2
b, andσ2

c. Arranging the

yf gh in lexicon order (ordered byh within g within f ) we obtain the vectory of dimensionp and

in the similar way thep× k matrix x obtained arrangingx f gh. Similarly, we seta = (a1, . . . , aF)>,

b = (b1, . . . , bG)> andc = (c11, . . . , cFG)>, that is,a ∼ NF(0, σ2
aI F) and similar forb andc, while

e = (e111, . . . , eFGH)> ∼ Np(0, σ2
eI p). Hencey is a p multivariate normal with meanμ = xβ and

variance matrixΣ0 = η0(V0+
∑J

j=0 γ jV j), whereV0 = I p, V1 = I F⊗JG⊗JH, V2 = JF⊗ IG⊗JH, and

V3 = JF⊗JG⊗I H; ⊗ is the Kronecker product andJ is a matrix of ones with appropriate dimension.

We tookσ2
a = σ2

b = 1/16 andσ2
c = 1/8. Thenγ0 = (γ10, γ20, γ30)> = (σ2

a/σ
2
e, σ

2
b/σ

2
e, σ

2
c/σ

2
e)
> =

(1/4,1/4,1/2)> andη0 = σ2
e = 1/4. We consider a sample of sizen = 100 and four levels of

contaminationε = 0,5,10 and 15%. In the CCMn× ε observations are contaminated by replacing
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all the elements of the vectory by observations fromy0 ∼ Np(x0β0 +ω0,Σ) and the corresponding

components ofx are replaced by the components ofx0. The first column ofx0 is identically equal

to 1 while the lastk columns are fromNp×k(φ0,0.0052I p×k) and all the components ofφ0 equal to

1 in the case of low leverage outliers (lev1) or to 20 for large leverage outliers (lev20).ω0 is a

p-vector of constants all equal toω0. In the ICM we replacen× p× ε cells, randomly chosen in

then× p = 1200 values ofy by others obtained as in the previous case. In each case we take a grid

of values forω0 so than we can estimate the least favorable case. For each combination of these

factors we compute the CVFS-estimator described in Copt and Victoria-Feser (2006) with Rocke

ρ function with asymptotic rejection probability set to 0.01, the compositeτ-estimator withρ1 and

ρ2 in the family given by (15) with constantsc1 = 1 andc2 = 1.64 respectively and the SMDM

estimator introduced by Koller (2013). For each case we run 500 Monte Carlo replications.

8.2 Measures of performance

Let (y, x) be an observation independent of the sample (y1, x1), . . . , (yn, xn) used to computêβ and

let ŷ = xβ̂ be the predicted value ofy usingx. Then the square Mahalanobis distance betweenŷ

andy using the matrixΣ0 is

m(̂y, y,Σ0) = (̂y− y)>Σ−1
0 (̂y− y)

= (̂β − β0)
>x>Σ−1

0 x(̂β − β0)

+ (y− xβ0)
>Σ−1

0 (y− xβ0).

Sincey− xβ0 is independent ofx and has covariance matrixΣ0, puttingA = E(x>Σ−1
0 x) we have

E
[
m(̂y, y,Σ0)

]
= E

[
(̂β − β0)

>A(̂β − β0)
]

+ trace(Σ−1
0 (y− xβ0)(y− xβ0)

>)

= E
[
(̂β − β0)

>A(̂β − β0)
]
+ p.
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Then, to evaluate an estimatorβ̂ of β by its prediction performance we can use

E
[
m(̂β,β0,A)

]
= E

[
(̂β − β0)

>A(̂β − β0)
]
. (24)

Let N be the number of replications in the simulation study, and letβ̂ j, 1 ≤ j ≤ N be the value

of β̂ at the j-th replication, then we can estimateE
[
m(̂β,β0,A)

]
by the Mean Square Mahalanobis

distance

MSMD =
1
N

N∑

j=1

m(̂β j ,β0, A).

It is easy to prove that as in this casex is a p × k matrix where the cells are independentN(0,1)

random variables, thenA = trace(Σ−1
0 )I k.

Given two covariance matricesΣ1 andΣ0, one way to measure how close areΣ1 andΣ0 is

by the Kullback-Leibler divergence between two normal distributions with the same mean and

covariance matrices equal toΣ1 andΣ0 given by

KLD(Σ1,Σ0) = trace
(
Σ1Σ

−1
0

)
− log

(
det(Σ1Σ

−1
0 )

)
− p. (25)

Since (η0,γ0) determinesΣ0 = Σ(η0,γ0), that is, the covariance matrix ofy given x, one way to

measure the performance of an estimator (η̂, γ̂) of (η0,γ0) is by

E
[
KLD(Σ(̂η, γ̂),Σ0)

]
.

Let (̂η j , γ̂ j),1 ≤ j ≤ N, be the value of (̂η, γ̂) at the j-th replication, then we can estimate

E
[
KLD(Σ(̂η, γ̂),Σ0)

]
by the Mean Kullback-Leibler Divergence

MKLD =
1
N

N∑

j=1

KLD(Σ(̂η j , γ̂ j),Σ0).

8.3 Results

We summarize hereafter some of the results obtained from the simulations. Table 3 reports the rel-

ative efficiency of the CVFS-, SMDM-, and compositeτ-estimators with respect to the maximum
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likelihood in absence of contamination. The efficiency of estimators ofβ0 will be measured by the

MSMD ratio while the efficiency of an estimator of (η0,γ0) by the MKLD ratio. For the setting

under consideration, the efficiency of the compositeτ- estimator is slightly higher of that of the

CVFS-estimator forβ0 and lower of the SMDM-estimator while is considerable higher for (η0,γ0)

parameters with respect both competitors.

Table 4 reports the actual coverage of confidence intervals based on the asymptotic distribution

of the compositeτ-estimator with nominal coverage level of 0.95. The actual coverage seems

reasonable close to the nominal level.

We report the results under 10% of both types outlier contamination: classical and independent.

Figure 1 reports the behavior of the MSMD as a function ofω0 while Figure 2 reports the behavior

of MKLD. For easy of comparison, Table 5 reports the maximum values of MSMD and MKLD in

the range of the Monte Carlo setting. Since similar behavior is observed for negative values ofω0,

these results are not reported.

Analogous behavior was observed for the case 5% and 15% which are not reported. The com-

positeτ-estimator is very competitive with the CVFS- and SMDM-estimators under the classical

contamination model, in fact, in the low leverage case (lev1) the maximum values of MSMD and

MKLD of the compositeτ-estimator are only slightly larger than those of the CVFS-estimator and

smaller than those of the SMDM-estimator. Instead for the high leverage case (lev20) the values

of MSDM are essentially the same for the CVFS- and the compositeτ-estimators, while the max-

imum value of MKLD is smaller for the compositeτ-estimator. The SMDM-estimator seems to

breakdown with high leverage points. In the independent contamination model the compositeτ-

estimator clearly outperforms the CVFS- and the SMDM-estimators. In fact, while the MSMD and

MKLD of the compositeτ-estimator are always bounded by a small value, the MSMD and MKLD

of the CVFS-estimator always show an unbounded behavior, while the SMDM-estimator shows

a bounded, but large value for low leverage case (lev1) and an unbounded behavior for the high

leverage case (lev20). Mean Square Errors, Biases and Standard Errors for the three estimators
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and all parameters are available in Section SM–6 of the Supplementary Material. These results

confirm the conclusions obtained by the MSMD and MKLD measures of performance.R code to

run this Monte Carlo experiment is available as Supplementary Material.

9 Conclusions

The independent contamination model presents new challenging problems for robust statistics.

Robust estimators developed for the Tukey-Huber CCM show non-robust behavior under the ICM,

in particular their breakdown point converges to zero as the dimensionp increases. Furthermore,

affine equivariance, so useful for achieving CCM robustness, becomes an obstacle under ICM. We

introduce a new class of robust estimators, namely compositeτ-estimators which are based onτ-

scales of the Mahalanobis distances of two dimensional subvectors ofy using the same idea from

the composite likelihood. We apply them in linear mixed models estimation. Our methods provide

fairly high resistance against both CCM and ICM outliers with breakdown point close to 0.5 and

0.25 respectively.

10 Supplementary Material

Supplementary Material with the derivation of the estimating equations, discussion on computa-

tional aspects and algorithms, proofs of theorems andR code for the example and the Monte Carlo

experiment is available online.

An R packagerobustvarComp is available in the Comprehensive R Archive Network at cran.r-

project.org/web/packages/robustvarComp/index.html. The package implements composite S-estimators

andτ-estimators and the CVFS estimator for linear mixed models.
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Table 1: Autism data set. Estimated fixed term parameters by Maximum Likelihood, CVFS-,
SMDM-, and compositeτ-estimators. P-values are reported between squared parenthesis.

Method Int. a a2 s(1) s(2) a× s(1) a× s(2) a2 × s(1) a2 × s(2)

ML 12.847 6.851 −0.062 −5.245 −2.154 −6.345 −4.512 0.133 0.236
[0.000] [0.000] [0.579] [0.041] [0.325] [0.000] [0.000] [0.447] [0.122]

CVFS 10.934 7.162 −0.108 −4.457 −0.107 −5.770 −4.995 0.094 0.419
[0.000] [0.001] [0.667] [0.050] [0.957] [0.002] [0.000] [0.688] [0.011]

SMDM 12.347 6.020 0.001 −5.192 −2.173 −5.190 −3.870 0.046 0.151
[0.000] [0.000] [0.992] [0.010] [0.213] [0.000] [0.000] [0.781] [0.300]

compositeτ 12.145 6.308 −0.089 −5.216 −4.213 −5.361 −3.851 0.082 0.061
[0.000] [0.000] [0.329] [0.000] [0.012] [0.000] [0.001] [0.578] [0.677]
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Table 2: Autism data set. Estimated random term parameters by Maximum Likelihood, CVFS-
, SMDM-, and compositeτ-estimators. In round parenthesis the estimated standard errors for
CVFS- and compositeτ-estimators. Standard errors for ML and SMDM are not available in the
used software.

Method σ11 σaa σa2a2 σ1a σ1a2 σaa2 σεε

ML 2.647 2.329 0.102 0.774 0.430−0.038 51.355
CVFS 9.456 3.386 0.222 2.158 1.062−0.350 22.207

(44.938) (11.761) (0.531) (13.621) (1.095) (1.695) –
SMDM 5.745 0.092 0.115 0.727 0.813 0.103 25.385
compositeτ 9.357 9.680 0.051 −4.024 −0.003 −0.327 5.152

(5.208) (3.240) (0.019) (2.642) (0.230) (0.195) –
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Table 3: Relative efficiency with respect to Maximum Likelihood measured by MSMD ratio for the
fixed terms and by MKLD for the random terms for CVFS-, SMDM-, and compositeτ- estimators.

Method MSMD EFF. MKLD EFF.
CVFS 0.705 0.453
SMDM 0.955 0.147
compositeτ 0.799 0.820
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Table 4: Empirical coverage of confidence intervals based on the asymptotic distribution for the
fixed and random term parameters. Nominal level is 0.95. Results are based on 500 Monte Carlo
replications.

β0 β1 β2 β3 β4 β5 σ2
a σ2

b σ2
c

0.962 0.948 0.946 0.946 0.944 0.928 0.924 0.9300.924
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Table 5: Maximum values of MSDM and MKLD in Figures 1 and 2 respectively for CVFS-,
SMDM-, and compositeτ-estimators.

CCM ICM
Method lev1 lev20 lev1 lev20

MSDM CVFS 0.34 4.43 2406.85 116.08
SMDM 0.89 23190.69 9.62 23190.24

compositeτ 0.79 4.29 3.17 4.29
MKLD CVFS 0.20 1.06 5819.80 85.28

SMDM 0.62 79.43 14.04 79.31
compositeτ 0.43 0.74 2.09 1.19
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Figure 1: MSMD performance of the CVFS-, SMDM-, and compositeτ-estimators ofβ0 under
10% of outlier contamination.
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Figure 2: MKLD performance of the CVFS-, SMDM-, and compositeτ-estimators of (η0,γ0)
under 10% of outlier contamination.
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