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Abstract

In this paper we formulate tracking and state-estimati@blems of a translating mass in a polyhedral billiard
as a stabilization problem for a suitable set. Due to theoditicuous trajectories arising from the impacts, we use
hybrid systems stability analysis tools to establish thmulte. Using a novel concept of mirrored images of the
target mass we prove that 1) a tracking control algorithrd, Z2nan observer algorithm guarantee global exponential
stability results for specific classes of polyhedral billig including rectangles. Moreover, we combine these two
algorithms within dynamic controllers that guarantee globutput feedback tracking. The results are illustrated
via simulations.

. INTRODUCTION

Control and state estimation of dynamical systems subjetchpacts are relevant problems in several
application areas, often related to the robotics field [2]d anpacts play a key role in several studies
including hopping robots (see, e.g., [27]), walking rob(g#se, e.g., [20]) and juggling robots (see, e.g.,
[23]). Several Lyapunov-based solutions to the stabitiraénd tracking problem of systems with impacts
have been proposed in the past decade [3], [14], [30], anerakstudies have been developed for the
dual state-estimation problem [18], [17], [10]. Some ofnthaddress the problem via the larger class of
complementarity Lagrangian systems. These systems arecdisglass of hybrid systems where the state
IS subject to a jump or re-initialization rule whenever alateral constraint is reached (see [13] for a
survey and [19] which also improves the results in [1], [$¢veral additional recent techniques addressing
tracking control with impacts both from a theoretical andexperimental viewpoint are provided in the
works [21], [22], [15], [16], [28] and references thereiree5[19] for a more detailed overview. Tracking
control in billiards is a representative example of the oargroblem discussed above whenever the control
action is allowed to act during the motion (like, e.g, in watk robots) and the impacts correspond to
jumps in the state occurring whenever the trajectory reaeheonstraint. In this context, a number of
results have been produced, which rely on the model firstqaeg in [30]. These are nicely summarized
in [9], where the technique is used for tracking a referenessyimoving in an elliptical billiard (circular
ones were considered in [16]). The parallel problem of tiraghrajectories while restricting the control
action at the impact times is addressed in [23], [24] andregiges therein.

The problem statement in this paper is motivated by [9], M/BEre Lyapunov-based tracking control
is designed for a mass moving on a billiard. We cast this gmoblithin the framework of [12], [11] for
hybrid dynamical systems and we propose a novel contrdieglyanducing global decrease of a suitable
Lyapunov function. Preliminary results of this paper appdan [7], [8]. This type of approach is new in
the area as most of the existing Lyapunov-based resultsttreampacts as events which locally increase
the Lyapunov function and resort to weak stability concefitotable exceptions can be found in [21]
and [18].) In this paper, instead, we provide a Lyapunov fiancthat does not increase at impacts and
that can be used to establish stable asymptotic tracking wvitftorm global exponential convergence for
several types of polyhedral billiards. Such global resatts rare in the literature. The hybrid framework
of [12], [11] greatly facilitates the analysis.
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Symbol Meaning

z = (2p, 2v) Reference (or observed) mass

= (Tp, Ty) Controlled (or observer) mass
FCR* Dynamic billiard (wherer, z flow)
J CR* Dynamic boundary (where, z jump)
KcF Compact set where dynamics is confined
F, e R? i—th billiard wall

R(F;) € R**?  Rotates to|| and L directions to wall;
M(F;) € R**2  Mirrors the | component to walk
c(F;) € R? Offset ensuring:;} = z, on wall i
M(F;),e(Fy) 4-dim extensions o/ (F;) and c(F;)
m(F;, z),m;(z) Mirroring of z through walls
o,p, N €R Dwell time state and parameters
qeQ Logical state denoting the current mirror
[A B] € R**®  Matrices of the controlled (observer) systgm
K, LT € R?, State feedback gain and observer gain
K,I" ¢ R*?  Their 4-dimensional extensions
A Attractor set (exponentially stabilized)
¢ C Flow set of the hybrid dynamics
D, D, D., D.  Jump set of the hybrid dynamics

Vv, W, Lyapunov functions
P e R4 Matrix of the quadratic Lyapunov function
Uy Ue, Uo Controller and observer inputs

Table |
TABLE OF NOTATION.

We propose to compute the tracking/observer error basedoitable selection of the mirrored image of
the reference through the billiard boundaries. It is naahht a so-called “mirror algorithm” is proposed
in [5] to solve the juggling problem. This has little simikgrwith our approach as the “mirror” is used
there at all times to make the actuator track a mirror imagthefball trajectory (which is regulated by
acting at impacts), whereas here it is used to prevent thaitidgs (which act during continuous motion)
from getting confused by the impacts (see, for example, ¥pdagation in Remark 4). The tracking and
observer algorithms proposed here share several sin@tafduality), since both require a selection of the
stabilizing control/observer gains based on classicaalinsystem theory (the selection must guarantee
that a specific matrix is Hurwitz, thus allowing for arbifigrsmall gains), they both satisfy the set of
constraints enforced by the boundaries of the billiard, saisfy also a separation principle which leads
to the construction of a global output feedback trackingpatgm. To the best of the knowledge of the
authors, global results for tracking, state estimation angbut feedback tracking with impacts are new
in literature, with the exception of [18] which presents algll observer for linear mechanical systems
impacting on a single boundary.

The paper uses the hybrid system framework summarized in [AJarticular, we use: € F'(z) to
characterize the continuous dynamics of the system, whiai atcur when the state belongs to the
flow setC C R". The impulsive dynamics at impacts is characterized by fidate inclusiont™ € G(z),
which may occur when: belongs to the jump séP € R". The concept of solution, several results on
stability, invariance principles and robustness for hytsystems, can be found in [11], [12], [25], [26].
The paper is structured as follows. In Section Il we intragdlee notion of polyhedral billiards and
describe a hybrid model. In Sections Ill and IV, we presenbgl results on tracking and state estimation
developed for billiards with one boundary and, under appatg assumptions, in Section V we extend
these results to billiards with multiple walls. The two apgpches are combined in Section VI to design
an output feedback controller.

Notation: The Euclidean norm of a vector is denoted |by|. For any given set4, the quantity|xz| 4 denotes the distance
of x to A, that is,|z|4 := infse4 |z — a|. Given a matrixP = PT > 0, |z|p := V2T Px. Given two matrices4, B, then

A ® B denotes their Kronecker product. A ryatrix is Hurwitz if &k ieigenvalues have negative real part. Given a function
(x,y) = f(z,y), thenV, f(x,y) = [%} . For any given vectors andy, (z,y) = 2Ty. Forn € N, I,, denotes the



identity matrix I € R™*™, Given two setsC, 7, K C F means that every element &f is also an element aF. Table |
reports a selection of the main symbols used in the paper.

[I. THE HYBRID DYNAMICS

Consider two translating massé&s and X moving within a convex polyhedral region and subject to
impacts. In the typical scenari&, is thereference systemnd X’ is thecontrolled/observer systeand we
aim to make the state vectorof X’ track or estimate the state vectoof Z. For simplicity, we decompose
each state vector € R* into s, € R? ands, € R?, denoting respectively position and velocity subvectors,
and we callbilliard the polyhedral regioF constraining the motion of the masses, to emphasize the fact
that the dynamics of and X resemble the behavior of two balls moving on a billiard angating on
its boundary. A billiard is defined by

F={seR"VieZ (F,s,—s) <1} (1)

wherer is the number of billiard wallsfF; € R?, i € Z = {1,...,r} C N, fix the shape of the billiard
and s, fixes its location in the plane. Thaynamic boundarys of the billiard is

J={seF|Fel (F,s,—s.) =1,(F,s,) >0} (2)

where, by (F;,s,) > 0, s belongs to7 when the velocity subvectas, triggers an impact. Figure 1
represents the case of a one-wall billiard with=0.

Postponing the description of the controlled/observetesysstructure to the next sections, the contin-
uous motion of the reference system is characterized bydit@rving equations

. fp = v
z { Z, € afz) (3)

wherea : R* = R? is a set-valued mapping that satisfies mild regularity coma (which are made
precise later, in Assumption 1). A special case covered isexena is replaced by a continuous function
defined onF. We allow for set-valued accelerations for the referenagabée z, in order to allow for
nonunique trajectories of. While the acceleration is not assumed to be unique, thetsdl@cceleration
at each time is assumed to be known by the control/estimatigorithm. When the acceleration is not
assumed to be known but a bound on the acceleration is kntswvefféct typically can be mitigated using
high feedback or observer gains.
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Figure 1. Two translating massesand X in a one-wall billiard withs, =0.

An impact on the wallF" occurs when the position subvectey satisfies(F’ z, — s,) = 1 and the
velocity subvectorz, pierces (or is parallel to) the wall, that is, (F, 2,) > 0. The position does not

1Our model permits trajectories that graze a wall and correspondingsjting do not change the state; however, the number of such
jumps is limited by an average dwell-time mechanism that is introduced into tielrtader, in (7).



change at impacts, that is; = z,, while the velocity is reflected (reset) in a direction treatetermined
by the velocityz, before the impact and the wall orientatiéfh given by z;" = M(F)z,, where

M(F) = R(F)Tdiag1, —1)R(F)

=5[] o[ 3

with |F| = \/FTF In fact, M (F) inverts only the component of, normal to the wallF', by combining
the matrix[{ ° | with the the rotation matmR( ) that transforms the Cartesian component®f the
velocity into the coordinate systefii % §] & T TF } whose components correspond to the tangential and
normal directions to the wall, respectlvely Thus, the istpdynamics can be compactly written as
2t € “ ] = m(F;, z
ie/\LAJ(z) { M (F;)zy ieH(z) ( ) (5)
M(z) ={i € T|(F;, 2z, — so) = 1,(F}, z,) > 0}

where, for each vectoF; (associated to wall),

c(F) = F-2(1+F's,)/|F? (6a)
M(F) := diag M(F),M(F)) =1, ® M(F) (6b)
AF) = [P O ] =[}]®c(F) (6c)
m(F,z) = M(F)z+¢(F), (6d)

and for convenience of notation, we udé(0) = 7 and ¢(0) = 0. The union fori € M(z) in (5) is
motivated by the fact that the reflection of the velocity weds not unique whenZ impacts a point
shared by two wallsF; and F}, i,j € Z, so thatM is not a singleton (this point can be intuitively
visualized as a billiard “corner”, where two walls intergec The next claim establishes some useful
relations.

Claim 1: Given the quantities i(6),
() M(F)M(F)=M(F)" M(F)=T,
(i) (M(F) + De(F)=0;
(iiiy FTM(F)s=—FTs, for all scR?;
(iv) s=M(F)s +c(F) iff (F,s—s,) =1, for all s € R?;
(V) m(F,m(F,s))=s, for all seR*;
(vi) [M(F)s|=]s|, for all scR*.

Proof: (i) M(F)M(F) = R(F)" [} %][§2°

(M(F) + De(F) = o <] [§8] [F17 ] F(1+ FTso)/|F|P = 0 by FTJF = 0, wherex indicates

(F

quantities multiplied by zero. (iif" M(F)s = % (e r] [ %) [ pr]s =[o1][_fr]s = —FTs. (iv)
R FT]s—|2;‘|€—|—2FFT50/]F]2:C(F) when

Consider<F s — o) = a then(I — M(F))s = = 7 [+ r][5%]
vec

f—r'_'

or weveas, = M (F)M(F)s, by (i) above,
while for the position vector we havM(F)(M(F)sp +c(F)) +c(F) = s, + (M(F)+ 1)c(F) = s,
by (i) and (i) above. (vi) We have to prove that/(F)s| = |s| for eachs € R?. Indeed,|M(F)s| =
VSTM(F)TM(F)s = VsTs = |s|, by (i) above. u

For reasons of control design, we restrict the motionZotvithin a compact selC that prevents the
statez from reaching any billiard corner.

Assumption 1: For the compact sktC F, if z € J N K then M(z) is a singleton. Moreovegy in
(3) is outer semicontinuous,locally bounded, andy(z) is nonempty and convéx < F.

“Namely, for each converging sequenag, z;) with y; € a(z;) for all i, we havey € a(z) where (y, z) = lim;— oo (¥i, 2:).



Moreover, to rule out solutions that jump infinitely many éshand never evolve continuously, which can
occur whenZ impacts a wall with a velocity that is either zero or tangenttte walf we augment the
plant with an average dwell-time automaton [6], [11, eq.)(%84)]. In particular, letNV be a positive
integer andp > 0, we add the dynamics

o € [0,p] o € [0, N] (7a)
ot = o—-1 o€ [l,N]. (7b)

The hybrid dynamics arising from the continuous evolutidiow) of Z according to (3), (7a) and the
discrete evolution (jump) of according to (5), (7b) can be represented using the hybriddiism in
[11], selecting the flow set (where the system can flow)zas) € K x [0, N] and the jump set (where
the system can jump) as< [1,N] andz € 7 N K.

Remark 1:For a hybrid system having state iR", sequences of flows and jumps which possibly
characterizesolutions[12] to a hybrid system are typically denoted by functignsdom ¢ — R, where
dom¢ is a subset ofR-, x N called hybrid time domain12], given by the union of infinitely many
intervals of the formjt;,¢;41] x {j} where0 =t, < t; <t, < ..., or of finitely many such intervals,
with the last one possibly of the forfn;, ;1] x {j}, [t;, t;+1) x {7}, or [t;,00) x {j}. According to [6],
the dwell-time automaton (7) guarantees that any solutibilas a hybrid time domain such that for any
pair (t,j), (s,i) € dom¢ satisfyingt + j > s + i, we havej —i < p(t — s) + N, which clearly imposes
an upper bound on the total number of jumps that occur betweitwo hybrid times depending on the
amount of flow elapsed between them. As a consequence, no stdummon can occur. Note that larger
values ofp and N will impose less stringent bounds on the average dwell-toestraint. J

Remark 2:We emphasize that the average dwell time paramdjerd’) are not used in the control
and observer design, which implies that our global expoakptoperties hold for any selection of these
parameters, that is, for any arbitrarily fast impact ocence. Therefore, the only effect of the automaton
(7) is to remove defective Zeno solutions from our analysis. J

[11. STATE FEEDBACK TRACKING: SINGLE WALL

We first present our solution for impacts occurring on a gnghll. The proposed approach will be
used in the next sections when addressing multiple wallauswe characterize a wall with an arbitrary
orientation. Nevertheless, much intuition can be gainedolbysing on the special case of the wall being
the horizontal axis, namely the set = 0 which, usings, = [9] gives F' = [ °]. See Remark 4 for a
few observations regarding this special case.

A. Controlled system

Consider a controlled systet’ which is controlled only during the continuous-time evaut and
consider the goal of finding a control inputfor that system that guarantees asymptotic convergence of
the positionz, to the positionz, of the reference systeri. The dynamics of the controlled systei
resembles that of as follows:

X : i=Ar+B(¢(x)+u), v€F (8)

where A = [31] € R*4, B = [9] € R*2, ¢ : R* — R? is a continuous function representing possible
nonlinear terms characterizing the dynamicsAof and « is the control input; the impact dynamics is
given by
X . axte U mF,x) z€J. )
ieM(z)

The flow dynamicof the complete system is given by (8), (3) and (7a) wher, o) € C,
C:=FxKx|[0,N] (10)

3By (i) of Claim 1, (F,s,) > 0 if and only if (F,s]) < 0, thuss € J ands™ € J may occur only when(F, s,) = 0.



while thejump dynamicss given by (9),2* = 2 and (7b) when(z, z,0) € D,, and byz* = «, (5) and
(7b) when(zx, z,0) € D,, where

D, = JxKx]I1,N],
D, = Fx(JNK)x[l,N] (11)
D = D,UD..

B. Control algorithm for a single wall billiard

The tracking problem may be addressed by an inptitat enforces asymptotic convergence to zero of
the x — = dynamics by asymptotically stabilizing the sét = {(z, z) | x = z} in the absence of impacts.
But in the presence of impacts, classical algorithms maytéaguarantee stability and convergence, as
shown in the following example.

Example 1:In Figure 2 the horizontal motion of the two mass&sand X’ is constrained on the left
by a wall placed a. The continuous dynamics is given by=[J}]z+ [_Ou] wherey > 0 is a constant
external force, and: = [J}]z + [{] v where the inputu = —pu + [-4 -4| (x — 2) guarantees that the
matrix A = [ % 1,] of the error dynamics: — 2 = A(z — z) is Hurwitz.
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Figure 2. Example 1: Sketch of the two masses (top-left); time evolutioneofuihctionV (z, z) = (z — 2)” P(z — z) whereP = PT > 0
satisfiesA” P + PA < —I (top-right); time evolution of the positions ¢t and Z (bottom).

Given zy = [0 v]T andzy = 2 + ¢, with € € R? typically small, for a specific set of initial mismatches
¢ defined next, the cyclic behavior of the two masses can betataly characterized as a sequence
of a continuous motion (where the two masses reverse thegctthn under the effect of the forge),
followed by the impact oft’ to the wall, then by the impact of, from which this sequence repeats.
The mismatche — z at thekth impact of Z is given approximately, with increasing accuracy for seall

values ofe, by
v k —1 0 [0 1 ]24 k
Ajr (;) €= ({(8+2‘;) —1] el—4-4 “) €, (12)

where the matrix4 ;- (%) (whose deduction is given below) presents an unstable wagenwhen the ratio

ﬁ is smaller thar0.613. For example, givem = 1 andu = 2, the value of the unstable eigenvaluel i34
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and the corresponding eigenvectorCis- [0.0773 —0.997]T, thus pickinge = A(, with 0 < A < 1, we have
that the erroe = = — z immediately after theéth impact of Z is given by1.34%¢, i.e. impacts destabilize
the system. Note that the other eigenvaluedgf has norm less than one, therefore the unstable behavior
would appear also for an initial mismatehnear\¢, 0 < A < 1.

Using the notation of hybrid time domains introduced in Rémay , = 2 andv = 1, consider
e(0,0) = x9g—20 = ¢ ~ X, 0 < A < 1. Forv > 0 and A small, the time spent by and X to
go back to zero is given approximately by := 27” and fort € [0, 7] the time evolution of the error
is given bye(t,0) = exp(At)e(0,0). Thus, definingAp() = eXp(A%“), immediately before the first
impact we havee(r,0) := Arp(5)e(0,0) = [ %8s %.i5%5] €(0,0), from which we can also infer that
impacts first since foe(0,0) ~ A(, e(1,0) ~ X[ 01035 0.0031]", that is, z,(71,0) < z,(71,0). Consider
now the interval of time between the impact &f and the impact of£2 which is given approximately
by 7 = —@. When X' impacts, the position does not changg(r;,1) = x,(m,0) = 0, while the
velocity resets fromr,(71,0) = e,(71,0) +2,(71,0) = €,(71,0) + (—v+p72) = €,(71,0) — (v + Eep(71,0))

to z,(r1,1) = v + ey(11,0) — ey(71,0), from which we havee(r;, 1) ~ [2%2%?&536()]&%(71,0)] . The

input between the two impacts can be approximateduby —u + [-4 -4]e(m,1) >~ —u — 8v, from
which the error dynamics between the impacts is approxi@gtigiven byée, = e, andé, = —8v.
Thus, by integration, at timér; + 7, 1) (immediately before the impact &), we havee, (1, + 72, 1) =
e(11,1) = 8vmy = 20+ 2L¢,(11,0) — e, (71, 0) + 802 ~ 2 ¢, (71,0) + (8 +2L)e, (11, 0) ande, (7, +

79, 1) = e,(11,1) +e,(71, 1) — dv7s ~ —e,(71,0), from whiche(r +75,1) = 2v—ev(n,g)e—ﬁgig)%)ep(ﬁ@)] .

From here,Z impacts and reverses its speed, from which the mismatchvenddy e(r; + 7,2) =

ep(T1+72,1 —ep(71,0) L -1 0 .
—2vzji-(ei(+7'1i—7'l,l) = 7ev(71,0)+1(78+12%)ep(7170) = AJ(%)e(Th O)’ WhereAJ(%) T 8428 -1 | - Flna”y1 after
both impacts, the two masses repeat the behavior analyzee aherefore the mismaitchafter thek-th
impact of 2 can be characterized byl (5)Ar(7))"e(0,0) = AJF(ﬁ)’“e(O,O). J

The unstable behavior of Example 1 can be avoided by antiogpahe fact that future impacts will
invert the (normal) speed of the ball, and by enforcing a mrdtrategy in whichX may decide to
track either thereal referenceor the mirrored reference mirrored through the boundary as shown in
Figure 3, which intuitively reverses the effect of an impadathematically this approach can be enforced
by combining aselection policyof the reference to track and (@f Claim 1, which guarantees that when
either X or Z impacts the wallF" at a points € 7, it satisfiesm(F, s*) = m(F, m(F,s)) = s.

mirrored
target

m(F, Z)

v

Figure 3. A possible interpretation of the hybrid tracking algorithm.

The control algorithm uses an automaton associated to tiex ivariable; whose dynamics is given by



¢- = 1—q  qe{0,1} (13b)
which is related to the impacts of and Z, since its state is updated only at jumps. Note thatmply
toggles betweed and1 each time either mass impacts the wall. The control algoriih parameterized
by a vectorK € R? satisfying the following assumption.
Assumption 2: The gaill := [k k] is such thatd, := [ ., ] is Hurwitz.
By introducing the quantities

M@O)=1, ¢0)=0 K:=Ko I, (14)
the control law for a single wall billiard is given by
u=—¢(x) + M(qF)a + K(x —m(qF, 2)) (15)

wherea € a(z) represents the acceleration gfat the current time. In particulat, tracks the real target
z when ¢ = 0 since K(z — z) is enforced, and it tracks the mirrored targetF, z) whengq =1, i.e.
K(z —m(F,z)) is enforced. Since is toggled at each impact, the transient tracking respoegertis
on the initial value ofg. For example using(0,0) = 1 whenz(0,0) = z(0,0) will induce a large initial
transient. This transient was avoided in the local solupoesented in [7] wherg was selected as the
minimizer of the functionlV' defined later in (27). Unfortunately such a choice does ndtice global
results because the minimizer is not well defined globallgvédtheless, one could select the initial value
of ¢ as the minimizer of/, thus inducing improved transient responses.

The continuous dynamics of ttsngle-wall tracking closed-loop systamgiven by (8), (3), (7a), (13a),
(15), as summarized below. L& = (x, 2, 0,¢q), C := C x {0,1} (see (10)) andv € a(z) as in (15). For
X ec, _
= Az+ Ba
= Az + B(M(qF)a+ K(z —m(qF, 2)))
=0
€ [0,p].

Based on Section Ill-A and (13b), the discrete dynamics spoeds to (5)x" =
(v,2,0,q) € D, := D, x {0,1}, and toz" = z, (9), (7b), (13b) for(x,z,0,q) € D, :

(16a)

Q. 8N

z, (7b), (13b) for

Lo (el Al D, x {0,1}.
DefiningD := D x {0,1} = D, UD,, (see (11)), it can be summarized as
2t = m(F,z2) 2zt = 2z
¢t = 1—q gt = 1—q 7 (16b)
X eD., X €Dy,

meaning that ifD, N D, the jump map is the union of the two values above. We can note #ta main
result on exponential tracking, which is proven in the nedtion.

Theorem 1: Under Assumptions 1 and 2, there exist 1 and A\ > 0 for which each solutionX =
(x, z,0,q) to the tracking closed-loop system (16) satisfies

[ (t,5) = 2p(t, )| < 7e D 2(0,0) — m(q(0,0)F, 2(0,0))] (17)
for all (t,j) € dom X.



C. Closed loop results
We prove Theorem 1 by showing exponential stability of thenpact set

A= {(z,2,0,9) € R*xKx[0,N]x{0,1} |z = m(qF,z)} (18)

according to the following definition.

Definition 1: Consider a hybrid systefd with stateX € R™ and a compact sel C R". We say that
A is globally exponentially stabléGES) if there existy > 1 and A\ > 0 such that each solutioX to H
satisfies| X (¢, j)|4 < ve )] X(0,0)| 4 for all (¢,5) € dom X.

In fact, we show below in Proposition 1 that, z,0,q) € A impliesz, = z,, so that exponentially
stabilizing A implies the result of Theorem 1. Note that Proposition 1 igially true if z, is on
the boundary ofF where the position is not mirrored. However, we prove it Hereall states inC U D
intersected with4. Then, we introduce some notable identities in Claim 2, wiaiehused in Proposition 2
to show that a suitably defined Lyapunov functitn decreases during flows and does not increase at
jumps. Combining these preliminary results with [29, Theor2], we establish exponential stability of
the setA.

Proposition 1: Letr := Igleé}é{{l, |z — m(F,z)|}. For the compact setd defined in(18), for each
X eCuD,

[ — 2| < v —m(gF, 2)| < r|X|a < rle — m(gF, 2)|. (19)
Moreover,r = z for eachX € A\ D.
Proof: ConsideringX = (z, z, 0, q) € CUD, which implies(z, o, q) € K x [0, N] x {0, 1}, from the
definition of A we have
z—m(BF,a)
[ X[a = i —— ] |
q—B

min
aek,y€[0,N],8€{0,1}

(20)

0
0

xz—m(qF,z)
< 1|77 = e e
which establishes the last inequality in (19). For the nexast inequality in (19), by using) |v; —vs| =
|M(BF)(vy—vp)| = |m(BF,v1) —m(BF,vs)|, Yu1,v, € R*, B € {0,1} which follows from (6d) by (vi) of
Claim 1, (i) |v; —a|*+|va — al? > vy —va|?, Vi, ve, a € R", and(iii) r|qg— 8| > |m(BF, z) —m(qF, z)|
which holds for allg, 8 € {0,1}, we have

) z—m(BF,a) )
X2 = min i«
X €K ~€[0,N],6€{0,1} B |
. m—m(ﬂF,a):| 9
= min Z—« |
ack,pe{0,1} q—p
in || m@rmom(Ra) ||
= min m(BF,z)—-m(BF,«
aek,Be{0,1} q—B (21)
= min [[7n0r] )
pe{0,1}
> min S|z — m(BF,2)|? + |q — B|?
> min Ll —m(3F. 9 +1g - |
2ﬁn%in}v%(|$—m(ﬁF,z)|2+|m(ﬁF>2)_m(C]Fa 2)I?)
€{0,1
Z %2|37 - m<qF7 Z)|2 :

It follows that |x — m(qF, z)| < r|X|4 which establishes the next to last inequality in (19).
Finally, for the first inequality in (19), consider the lidiehat connects, to M (F)z,+c(F') represented
by the vectorz, — M(F')z, — ¢(F), and note that this line is perpendicular to the wall In fact, take
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F, € R? such thatF'T F = 0. Then, using the definitions in (4) and (6),
F{ (2 — M(F)z, — c(F)) =

= F{((I = M(F))z, — o(F))

:FLT< P)T (38 R(F)zp = (1 + FTs.) ) (22)

= F_I( J7F F[39] [IE,TTJ} zp—QF(l—i-FTSO))

= 7z (2FF"2, = 2F(1+ FTs.))

= ﬁFTF (FTz, — (14 FTs,)) = 0.
Moreover, for positions on the wall' given by Sr := {s € R?| FT(s — s,) = 1}, we have

2plse = |M(F)zp + c(F)|s- (23)

To see this, note thatzp|5F = EQ};I; |z, — €| = ||F|( —¢)| for all £ € Sp (where the second identity
holds becausq”i z, — &) evaluates the component of the vectgr— ¢ that is orthogonal t&Sg), from

which|z,|s, = |F| (2, — §+so o) = ‘F‘|FT(zp s.)—1|. Then, in asimilar wawM (F)z,+c(F)|s, =
|F|]FT( (F)zp+c(F)—so)—1| = |F|] Flzy4+242FTsg— FTs,—1| = vl ]FT( Zp+50)+1| = |2plsps
where in the second identity we used (iii) of Claim 1 and theriédin of ¢(F") in (6). Consider now
the set of points that belong to the lidefrom z, to M(F)z, + ¢(F'), denoted byS, := {s € R?|s =
Azp+ (1= N)(M(F)z,+c(F))}, and define) := argmin |z, — s|, which geometrically is the point af,

seSy
on the intersection between the lidieand the line perpendicular tbpassing through:, (which is also

parallel to the wallF’). We get

|zp— Zp’z ’xp|8 +|n— ZpP )
|2y — M (F)zp—c(F)| !l’p|sg+!77 M(F)z,—c(F)[*.

Then, F*(z, — s,) <1 guarantees™ (n — s,) <1, from which | — z,|* <|z,|3, = |M(F)z, + c¢(F)|3, <
In —M(F)z, —c(F)|?. It follows that |z, — z,| <|z, — M (qF)z, — c(¢F)| < |# — m(qF, 2)|.
For the last claim of the proposition, take a poiat z,0,q) € A and suppose that # z, then
r =m(Fz2). If F'(2, —s,) < 1then FT(z, — s,) = FI'(M(F)z, + c¢(F) — s,) = —FTz, +2(1 +
FTso))— FTs, = —FT(z,—s,) +2 > 1, where the second identity follows from (iii) of Claim 1, thus
does not belong toF. In a similar way, if 7 (z, — s,) < 1 then F¥(z, — s,) > 1. The remaining case is
FT(z,—s,) = F'(z, — s,) = 1, and byz = m(F, z) we have thatr, = M (F)z,, thusF'z, = —FT2,,
that is, eitherz or z must belong tqQ7. [ |
Remark 3:The generalization of the set, defined just before Example 1 to the sét= A, U Ap
in (18), where A, := {(z,z,0,q9)| v = z, ¢ = 0} and Ap := {(z,2,0,q9) | x = m(F,z), ¢ = 1}, plays
a fundamental role in establishing the next result on stgbbecause the introduction o allows for
the invariance of the setl along the hybrid dynamics, through the relaxation of thest@mntz = > at
jumps. To appreciate this, consider the example in whiich, o, q) = (£,£,0,0) € A, and Z impacts
the wall. Then,(z, z,0,9)" = ({,m(F,§),0 — 1,1) € Ar. Moreover, suppose that alst impacts the
wall, then this second jump resets the staténtq F’, &), m(F, &), 0 — 2,0) € A.. 4
We prove next two identities about the behavior of the tnaglkslosed-loop system at impacts.
Claim 2: For any givenP = PT € R?**?, defineP := P ® I,. For eachz,z € R* and F € R?,
() |z = m(F, 2)|p = [m(F,z) = z[p, (i) [m(F,z) —m(F,2)|p = |z - z|p.

Proof: Consider the identity.S; ® Ss)(S3 ® Sy) = S1.53 ® S254 whereS;, ..., S, are matrices. For
eachS € R?*? such thatS” S = I, we have thatliag(S”, S”)Pdiag(S, S) = (L@ ST) (PR L) (I,®S) =
[LIQP) WTIQ)](IQ(gS) [(P]Q) (IQST)](_[2®S) (P@]Q)(IQ@ST)(IQ®S) =P®I :?, thus
M(F)"PM(F) = P, for eachF € R?. It follows that (i) [z — m(F, 2)|5 = & — m(F, 2) |57y pa0(8) =

(24)
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|M(F)x — M(F)m(F,z)|p = |[m(F,z) — z|p, where in the last identity we used (i) and (ii) of Claim 1;
and (i) [m(F, z) —m(F, z)|p = [M(F)x — M(F)z|p = |v — zl57(myrpmr) = |2 — 2|p- m
Remark 4:In the special case commented at the beginning of Sectiprvhién the wall corresponds
to the horizontal axis in the plane and = [?], F = [ % ], many of the developed derivations simplify
1017,
becausen(F, [ ]) = [‘1) ‘01] " |, namely the second component of position and velocity chsusign.
0 —1]%
Then, Claim 2 intuitively states that the distance betweesnd >z remains unchanged despite this sign
change. Similar intuitive facts also apply to the equditsated in Claim 1. Finally, the position of any
mirrored ball is either at the same position as the origimed or in the set where, < 0, namely outside
the billiard: this is the intuition behind Proposition 1. J
Using the following assumption, we build a Lyapunov funotid” that does not increase at jumps (by
Claim 2) while it decreases during flows, by observability tfie linear sense) ofH, A,), as specified
next.
Assumption 3: The pair of matricé$’, H) is such that

P=pPT>0,
ATP+ PA, < —HTH, (25)
and (H, A,) is observable,

where A, is defined in Assumption 2.
If Assumption 2 holds, there always exists a pdit H) that satisfies (25). Define

P=P®l, H:=H®I, (26)

from which we have the following proposition: o
Proposition 2: Under Assumption 3 and using (26), consitter functioniV : CUD — R, given by

(27)

W(z,2,0,q) = |z —m(¢F, 2)|p.

Then, usingX = (z, z,0,q) andr := mz}é({l, |z —m(F, 2)|}
ze
. )\mm(P>|X|?4 S W(CC,Z,O', Q) AR}
0 { A P2 X P > W(a,z,0,q) T CCUP
(i) W(X) < —|z —m(qF, z)]%Tﬁ, VX eC,
(i) W(XH) < W(X) VX € D.
Proof: From the definition ofV, A\ (P)|z —m(qF, 2)|?* < W(X) < Apax(P)|z —m(qF, 2)|?. Then,

(i) follows from Proposition 1.
For (ii), using Ac(qF) = 0 and M (¢F)A = (I, @ M(¢F))([34] ® L) = (I2[§§]) @ (M(qF)I,) =

([98] 1) @ (I.M(qF)) = ([33] ® L) (I, @ M(qF)) = AM(qF') in the second identity, we get

W(X) = 2(¢—m(gF,2)"P-
- (Az — M(qF)Az + BK (x — m(qF, 2)))

= 2(|x - m((q]; z)));(PAd ® I)(z — m(qF, 2))
= |z —m(qF, 2) 2.

(iii) Consider a jump ofZ. Using (v) of Claim 1 forg = 0, andm(0, m(F, z)) = m(F, z) = m(qF, 2)
for ¢ = 1 (which follows from M (0) = I and¢(0) = 0), we get

|I+_m<q+F7 Z+)‘ﬁ - |I_m((1_Q>F7m(F7 Z>>|ﬁ
= [z—m(qF.2))lp.
Consider a jump oft. From (i) of Claim 2, and by using the argument above, we get

2" —m(¢"F 20)p = [m(F,x) —m((1 - q)F 2)|p
= |z —m(qF,2))lp

(29)
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Proposition 2 will be used in the proof of the next theoremgtablish global exponential stability of
the setA. Subsequently we will prove Theorem 1 and provide some resnar

Theorem 2: Under Assumption 2, for eagh- 0 and N > 0, the compact set| is globally exponen-
tially stable for the tracking closed-loop system.
For the proof of Theorem 2, if wanting to establish only glolaaymptoticstability, we could use
Proposition 2, observability of H, A,), the average dwell-time constraint imposed by (7), and the
invariance principle [25]. However, since we need to eshbfjlobalexponentialstability, we introduce
the following lemma, which is a reformulation of [29, Theore?] (see also the proof of [29, Theorem
2]). The lemma will also be used to establish similar restdtsthe observer and the output feedback
algorithm of the next sections.

Lemma 1: Consider an observable pai#, A), with A € R"*", a mapG : R* x R™ = R", and two
sets€. C R", £; C R™ x R™. Suppose that there exists a function R” — R, defined as/(e) := |e|%
for all e € R”, with P € R™"™ symmetric and positive definite, satisfying:
(a1) (VV(e), Ae) < —\eﬁ{TH Ve € &,
((12) V(Q) < V(€> v(€7£) € 5d7vg € G(Qé)
Then, for each paif(p, N) € R.y x Z~, there exists a function” : R"* x [0, N] — R, and scalars
)\1, )\2, A3 >0, \q € [0, 1), such that

(1) Mle]? <Y(e,0) < Xslel?, Vo € [0, N], Ve € R"
(1) (V.Y (e,0), f)+ (VeY(e,0),Ae) < =A\3Y (e, 0),

Vo € [0, N], Ve € E.,Vf € [0, p]
(iii) Y(g,0 — 1) < MY (e, 0),
Vo € [1,N], V(e, &) € £, Vg € G(e,€).

Proof of Theorem 2Under Assumption 2 we can find a pair of matri¢é3 /) that satisfies Assump-
tion 3. Consider the coordinate transformatienoc, &) := (x—m(qF, z),0,(z,q)). Then, for each solution
X = (x,2,0,q) to the tracking closed loop system, using the new coordsnatel Proposition 2, define
V(e) = W(X) and note that = Ay, ® I, V(e) = W(X) = |e3, V(e) = W(X) = (VV(e), Ag @ L) <
—|e|2ﬁTﬁ on flows andV (e™) = W(XT) < W(X) < V(e) on jumps. Thus, ford in Lemma 1 given by
Ay ® I, and by a suitable definition aF, £. and&,, each condition of Lemma 1 is satisfied. Therefore,
from (i)-(i4i) of Lemma 1 and by (i) of Proposition 1, defining(X) := Y(e,0) = Y (z — m(qF, 2),0)
andr := I?ealé({L |z —m(F, z)|}, we get

o M|X[4 < Mz —m(gF, 2)]? < Y(X) < M|z — m(gF, 2)|* < V2rXs|X[%4, VX € CUD;

¢ Y(X) < -\Y(X), VX €C;

o V(XT) < \Y(X), VX €D,

which, according to [29, Theorem 1], establish global exgial stability of the setd in (18). [ |
Proof of Theorem 1The proof follows from Proposition 1 and Theorem 2. |
Remark 5:For given(p, N), the average dwell-time automaton (7) may terminate preratsolutions

that start from points where the initial value of is very large since such solutions may produce a

large number of impacts before settling into tracking. Nthaless, because of the independence of the

stability result from the parameter selection, prematerenination can be addressed by selecingnd

N sufficiently large, based on the size qf. a
Remark 6:Given A, Hurwitz, according to Assumption 3, the results in Proposi2 are obtained

for pairs (P, H) such thatA, P + PA, < —H"H with (H, A,) observable. The generality of allowing

HTH > 0 instead of requiringd”H > 0 will be exploited in next section to analyze some specific

multiple-wall billiards (parallel walls) for which the nawcreasing feature of the functio” at jumps

cannot be guaranteed by afywhich satisfiesd’, P + PA, < 0. J
Remark 7:The hybrid dynamics of the two translating masses, the obmtigorithm presented in

Sections Il and 1ll, and the analysis performed above candmemglized to spaces of higher dimension.
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For example, the whole approach can be lifted to a threestinoeal space, with impacts occurring
on walls (planes) denoted by vectofs € R3. Indeed, the mirroring functiom:(F, z) would preserve
the structure given in (4), since it inverts only the compunef the velocity subvector parallel t&
(orthogonal to the plane). J
Remark 8: The effect of small delays on impact detection can be modejexkplacingg in (15) with
a new logic variablej, whose value is updated to the valueqoéfter a delay bounded hsx > 0, which
produces a bounded perturbation of duration shorter thagoal toA on the inputu after each impact
(¢ is constant between impacts). The analysis of the pertusigsttm can then be developed within the
robustness framework on hybrid systems [11], [26], [24]stow that the perturbation om produces
perturbed trajectories, whose distance from the desired trajectoriesn a graphical sense [12], shrinks
to zero asA goes to zero, which leads to practical stability resules, convergence of solutions to the
set A + v(A)B, where~ is a continuous function, strictly increasing and such thd@) = 0. These
considerations also apply to the observer and output fedédt@ntroller designs of the next sections.

IV. OBSERVER CONSTRUCTIONSINGLE WALL
A. Observer structure and single wall algorithm
We consider the problem of designing @oserverX to estimate the state & from the outputy = C'z,

C:=[1]0]eR?**4, ie.when the speed, is not available for measurement.
We replace the continuous dynamics (3) of the referencesyst by
Z : 2€Az+BalCz), z€ek (30)

which differs from (3) only for the restriction of the setlvad mapa : R?> = R?, which is now

an outer semicontinuous and locally bounded set-valued ma&mg nonempty convex values for each

z, = Cz € II(F) := {%, ]|z € F}. As before, we allow for set-valued accelerations for thiersnce

variablez, but the selected acceleration at each time is assumed todvenKoy the observer algorithm.
The observer continuous dynamics is given by

X : i=Ar+u, z€F (32)

where here the action af = | v | ul ]T € R* affects bothi;, andi,. The jump dynamics of the observer
resembles the impact dynamics of the tracking case, and/és diy
X o zte U m(F,z), (zpz,+u,) €J (32)
ieM(x)

which differs from (9) due to the definition of the jump conalit, which now explicitly depends on the
input subvector,. In fact, the dynamics, = x,, of the tracking approach is now replacedhy= z,+u,,
from which the impact condition#;, #,) = (F;, z,) > 0 is replaced by(F;, &,) = (F;, z, + u,) > 0.

Remark 9: Although the jump dynamics of the observer is not necegsadhnected to the impacts
physics of the billiard (no “physical’” walls are impacted the observer), with the new definition of the
jump set, we preserve the analogy with the tracking caser@nfy a reset behavior of the observer that
resembles the impact behavior of a translating mass whdseityeis given byz, = s+ s3, With s, = z,
and s, = u,. Note that whenu, = 0, the jump dynamics oft' (both the jump set and the jump map)
coincides with the jump dynamics &. J

Following the approach of Section IlI-B, the observer aion is parameterized by a vectdr € R?
satisfying the following assumption.

Assumption 4: The gaift = [« ] is such thatd, := [ {] is Hurwitz.
Thus, using (4) and (6) anfl := L ® I,, the inputu for a single wall billiard is given by

u = E(qF)Ea + L(Cz — M(qF)Cz — ¢(qF))
M

(¢F)Ba + LC(x — m(qF, 2)), (33)
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wherea € a(Cz) is the acceleration of,, and theobserver closed-loop systemas flow dynamics given
by (31), (30), (7a), (13a), and (33), which is enabled (forz, o, q) € C, where

C:=F x K x[0,N] x{0,1}, (34)

while the jump dynamics is given by (32) = 2, (7b), (13b) when((z,, z, +u,),2,0,q) € D., and by
xt =z, (5), (7b), (13b) wher(z, z, 0, q) € D., where

D, = JxKx|[1,N] x{0,1},
D. = Fx(JNK)x[1,N]x{0,1}, (35)
D = D,UD,.

B. Closed-loop results

Following the approach of Section IlI-C, we state below thainmresult of the current section, on
stability of the set4 defined in (18).

Theorem 3: Under Assumption 4, for eagh- 0 and N > 0, the compact setl is globally exponen-
tially stable for the observer closed-loop system.

Proof: Under Assumption 4, consider two matridg3 H) satisfying (25) withA., = [} ;] and define

W :CUD — Rxg asW(z, z,0,q) = |z —m(qF, z)|%. Then, the functiod? and the jump dynamics of
the observer closed-loop system satisfy statements (iYiandf Proposition 2, which can be established
by following exactly the argument proposed at points (i) &nylof the proof of Proposition 2. Moreover,
following (i) of the proof of Proposition 2, using the relans A¢(¢F) = 0 and M (¢F)A = AM (¢F) in
the second identity below, we get

W(X) 2(x —m(qF, 2))"P - -

- (Az + L(Cz — Cm(qF, z)) — M(qF)Az)
2(x —m(qF, 2))TP(A+ LC)(z —m ) (36)
2(x —m(qF, 2))T(PAy @ L) (x —m )

—|z — m(qF, z)|2ﬁTf.

IAIA I

Then, global exponential stability follows from Lemma 1 aj#®, Theorem 1] using the coordinate
transformation(e, 0, §) := (x — m(qF, 2),0,(z,q)), as in the proof of Theorem 2. [ |
Remark 10:The second identity in (36) follows from/(¢F)Az = AM(qF)z = A(M(qF)z +E(F)j,

since A¢(qF) = 0 (with A given after (8)). These identities also hold whéris of the form[ 8 i

A, € R**2 while they do not hold whent is of the form j ffv } A, A, € R A, # 0. However,
this type of dynamics can still be described by our modelpbeeapzp can be accounted for within the
function o(C'z). 4

The combination of the jump set in (32) and ©fin (33) guarantees that ifr,, z, + u,) € J with
(F,z, + uy) > 0, then (z,,z, + u,)"™ ¢ J, as established in the next proposition. This guarantees
that no Zeno solutions are induced by the observer algorithnfact, the dwell-time automatos has
been introduced in Section Il to rule out trajectories tmapact a wall with null normal component, i.e.
(F,&,) = (F,z, + u,) = 0, that is usually associated with a translating mass slidiogg the wall, and
for which the connected Zeno phenomena can be essentialidesed as a mathematical side-effect of
the particular model adopted. Proposition 3 guarantedsalka for the observer closed-loop system the
dwell-time automaton only operates on those trajectosiese the jump dynamics (32) does not introduce
new Zeno phenomena.

Proposition 3: For the observer closed-loop system(ffz,—s,) = 1 and (F,z,+u,) > 0 then
(F, (zy+u,)™) <O0.

Proof: Supposer”(z, — s,) =1 and F* (x, + u,) = FT(z, + l1[x, — M(qF)z, — c(¢F)]) > 0. In

this caseyx, = M(F)x, + c(F) = z, (by (iv) of Claim 1) andz; = z, (no jump). For the case = 0,
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=1, usingM (¢F) = M(0) = I andc(qF) = ¢(0) = 0 in the next to last identity, and (iii) of Claim 1

in the last identity, we have

F' (v, 4u,) " =

= F(a} + G[ef — M(¢*F)zF — c(q" F)))

= FU(M(F)y+0[M(F)zy+c(F) = M(F)z—c(F)))

= FTM(F)(z, + bz, — 2))

= FIM(F)(zy + bz, — M(qF)z, — c(qF)))

= —F"(z, +u,).
For the caseg = 1, ¢™ = 0, using in the third identity (i) of Claim 1 and”¢(F) = —FT"M(F)c(F) (by
(iii) of Claim 1), we have

FT(IW + up>+ =
— et e — M(G*F)33 - olg*F)

= FI'(M(F)x, + (;[M(F )$p+c( ) = %))
= FTM(F)(z, + li]x, — ¢(F) — M(F)z,))
= FTM(F)<JJU + gl[ﬂfp — M(C]F>Zp - C(qF)D

= —FT(z, +uy).

|
Summarizing, Theorem 3 establishes global exponentibllgyaof A which, by Proposition 1, corre-
sponds to the set where= = (zero observation error), except for the hybrid times whangs occuf.
Moreover, Proposition 3 guarantees that when the obserassiimpacts a wall after the arising jump,
the mass is reflected back toward the interior of the billizrd

V. SPECIAL BILLIARDS WITH MULTIPLE WALLS
A. Tracking and observer closed-loop systems for billiasdgd multiple-walls

Henceforth, we generalize the global results on stabifitye previous sections to multiple-wall billiards
having specific polyhedral shapes. This section is condeeith the local tracking technique presented
in [7], [8], which is developed for general billiards, i.elliards with a locally Lipschitz boundary (like
polyhedra), and with the global tracking technique preseénih [8], which proposes a Lyapunov-based
selection policy between mirrored and real targets.

The first step toward the generalization of the results ofpilexious sections is the redefinition of the
input » in (15) and (33). For the billiardF in (1) with walls F; with i € Z := {1,...,r} C N, define
Fy:=0andZ := {0} UZ, and consider an automaton generalizing that in (13) anengby

qg = 0, qeQ (37a)

q" = 0(g,1), g€ Q, (37b)

whered : Q x T — Q is a function whose definition depends on the particular shafpthe billiard (it
will be characterized in next sections), where the statelba ¢ belongs to a given se@ C N, Z C Q,

and the inputi is given by the wall impacted by eithe? or X'. Consider also the following quantities:
for i € Z ands € R*, generalizing those in (6):

M, = M(F,), M, := M(F),

38
& = o(F), andmq(s) == m(F} s). (38)
“Indeed, at those times4 allows for an instantaneous mismatch of the speeds={ M (F)z, # z,) arising from a pair of consecutive
jumps occurring at the same ordinary timd-or example, iZ jumps first, ther(z, (¢, 7), 2v (¢, §)) = (Zv, Zv) = (2o (t,7+1), 20(t,j+1)) =

(Zo, M(F)Z0) = (20(t,§ 4 2), 20(t, 5 + 2)) = (M (F)Z0, M(F)Z0)
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Moreover, fori € Q \ Z and s € R*, consider new matrices/; ¢ R**? andc; € R? (to be chosen), and
define

Mi = dlag(MZ, MZ), C; 1= [Cﬂob@]? ml(s) = MiS + ¢, (39)
where, intuitively, for each € Z, m,(s) is the “mirroring” of s through theith wall, while fori € Q\Z, the
maps — m;(s) will be used for tracking or observing extra mirrored tasgednstructed as the “mirroring
of the mirroring” of the real target, that is, based on the position of the mirroring transformation in
(4), applied to different walls. Then, the control inpuis given by

=, == —d(z) + Mya + K(x — my(2)) (40a)

u=u, = M,Ba+ L(Cz — Cm,(2)), (40b)

respectively, for the tracking and state-estimation caséere, as before, either € «a(z) in (40a) or

a € a(Cz) in (40b) represents the accelerationzgfat the current timeK := K ® I, L := L ® I, and
K and L satisfy Assumptions 2 and 4, respectively. Thus, for midtipall billiards,

» thetracking closed-loop systehmas the flow dynamics given by (8), (3), (7a), (37a), (40a)ictviis

enabled for(z, z, 0, q) € C, where
C:=FxKx[0,N]xQ, (41)

while its jump dynamics is given by (9)," = 2, (7b), (37b),i € M(z), when(z, z,0,q) € D,, and
by ™ =z, (5), (7b), (37b),i € M(z), when(z, z,0,q) € D,, where

D, = JxKx][1,N]xQ,
D, = Fx(JNK)x[l,N]xQ, (42)
D = 5xU52;

« theobserver closed-loop systdmas the flow dynamics given by (31), (30), (7a), (37a), (4@kjich
is enabled for(z, z, 0, q) € C, with C in (41), while its jump dynamics is given by (32)t = z, (7b),
(37b),i € M(z), when ((z,,, z, + u,), z,0,q) € D,, and byxz* = z, (5), (7b), (37b),i € M(z),
when (z, z, 0,q) € D., with D, andD, in (42).

B. Closed-loop results
Following the approach of Section Ill, we consider the cootzet.A given by

A:={(z,2,0,q) €ER* x K x [0, N] x Q|z =m,(2)}, (43)

and we make the following assumption, needed to show sexesalts below, which restrict the analysis
proposed below to specific classes of billiards.

Assumption 5:For all X = (z,2,0,q) € A, if X €CUD thenq € Z.

Remark 11:Assumption 5 holds for many interesting cases, including parallel walls, two perpen-
dicular walls, and rectangles as presented in Section VsSusption 5 is typically established by noticing
that z, is never at a corner point of the billiard whenc K (by Assumption 1), and then showing that
if z, is not at a corner, them # m;(z) fori € Q\ 7. a

Now, paralleling Proposition 1, we show that, z, 0, q) € A impliesz, = z,, and(z, z,0,q) € A\ D
implies z = z, and finally we prove thatd is globally exponentially stable for the tracking closed
system and the observer closed-loop system defined above.

Proposition 4: Letr := max {1,|mg(z) — m,(2)|}. Under Assumption 5, for the compact sét

. . EK,B,q€Q
defined in(43),
|2 = my(2)] < r|X]a < vz —my(2)], (44)

for eachX = (z, z,0,¢q) € CUD. Moreover, there exists > 0 such that for each = (z, z,0,¢) € CUD
if g€ Z or |X|4 < e then
|Zp — 2p| < |z — my(2)]; (45)
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Finally, for eachX € A\ D, x = z.

Proof: To establish the inequalitigs — m,(z)| < r|X|4 < r|z —my(z)|, consider (20)-(21). Then,
the result follows by replacing € {0,1} with § € Q, m(8F, ) with mg(«), andm(qF, o) with m, ()
in those equations. For inequality (45), consiger Z. We can repeat the proof of the first inequality of
Proposition 1, gettingr, —2,| < |z—m,(z)| for all ¢ € Z. Consider now the other case. By Assumption 5,
for eachX = (z,2,0,q) € AN (CUD), q belongs toZ, therefore (i) for eacks € Q\ Z, x # m,(2),
i.e. |z —ms(z)| > 0, and (i) |z, — 2,| = 0 since|x, — z,| < |z —my(z)| < r|X|4 = 0. Therefore, for
eachX € AN (CUD), |z, — 2,| < |z —m,(2)|. Then, using the continuity ofr,(z) for s € 9\ Z,
there exists > 0 (sufficiently small) such that for eache Q \ Z and eachX € (A +¢B) N (CUD),
it holds that|z, — z,| < |z — ms(z)|. In fact, suppose that this claim is false so that for eaclitipes
integer: there existX; € (A+ 5B) N (CUD), such thatx,, — z,,| > [x; — my,(z)|. Then, there exists
a subsequence which converges to a pginte AN (CUD) such thatjz; — 25| > [2* — m,-(2*)| which
contradicts the fact established above that— z,| < | — m,(z)| for eachX € AN (C U D). Finally,
using Assumption 5, the claim = z for eachX € A\ D can be proved using the same argument of
Proposition 1. [ |
We can now state the main results of this section on globabrptial stability of the se#d. The next
two theorems are based on a specific condition at jumps (dezhwcan be satisfied for several cases
including two parallel walls, two perpendicular walls, arattangles, as shown in Section V-C.

Theorem 4: Under Assumption 2 and 5 consider a pga&lrH) that satisfieg25) for A, = [,?1 ,32],

and defineP := P ® L. If for each(x, z,0,q) € D,

[ = mg (27)[p < o —mg(2)]p, (46)

then for eachp > 0 and N > 0, A is GES for the tracking closed-loop system.

Theorem 5: Under Assumptions 4 and 5 consider a g&irH) that satisfieg25) for A, = [} ;]
and defineP := P ® I,. If (46)is satisfied for eacliz, z, o, q) € D, then for eactp > 0 and N > 0, A
is GES for the observer closed-loop system.

Proof of Theorems 4 and 3We develop the analysis of the tracking system using thetiomd) =
|2 —my(2)|%. Under the assumptions of Theorem 4, following the appradiche proof of Proposition 2,
W satisfies (i)-(iii) in Proposition 2, withn(gF, z) in Proposition 2 replaced by, (=), and withr defined
in Proposition 4. Then, to achieve global exponential sitglof the set.A we invoke Lemma 1 and [29,
Theorem 1], using the coordinate transformatierv, {) := (v — m,(2), 0, (2,¢)) as shown in the proof
of Theorem 2. The proof of Theorem 5 follows similar steps. [ |

C. Sufficient conditions for Theorems 4 and 5

The cases of a single wall presented in Sections Il and I\éfyathe assumptions of Theorems 4 and 5
with @ =7 = {0, 1} andé(q, i) defined byi(q,i) :=1—¢q , for (¢,i) € Z (indeed, this definition ob
coincides with the update rule fgrused in (13)).

Proposition 5 (Two parallel walls): ConsideF;, F, € R? such that% = —%, 7 := {0,1,2}, and

defineQ := 7 and assume thaP > 0 is a diagonal matrix. Then, Assumption 5 is trivially saédfiand
(46) is satisfied for a functio given by (see also Figure 4)

5(0,1):=1, 6(0,2):=2, d(q,i):=0for q,i € {1,2}. (47)

1,2

Figure 4. Definition of§ for two parallel walls. The node labels represenivhile the arcs labels representThe direction of the arcs
points to the valuéi(q, ), namely, the update law" in (37b).
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Proof: We have to analyze only the cages {1,2} when eitherX or Z impacts theith wall with
1 # ¢, since the remaining configurations have been analyzecionk-wall case of the previous sections.
Consider an impact of on theith wall, i # ¢, andi, ¢ € {1,2}. We have,

|27 =mg (20)[p = | = M (ma(2))|5
[z —mi(2)|7 (48)

< o —my(2)p

where the last inequality can be established by using thetfet F; and F; are parallel. Indeed,
given the diagonal structure @, we have thatz — m;(z)| — |x — m,(2)| depends on the differences
|z, — Mz, — ¢i| — |z, — Myz, — ¢,| and |z, — M;z,| — |z, — M,z,|. For the second difference, sinég
and F;, are parallel,M; = M,, from which Mz, = M,z,, thus|z, — M;z,| — |z, — M,z,| = 0. For the
first difference, note that

1) |z, — Mz, — ¢i| = |z, — 2|, by (i) of Claim 1,

2) |wp—Mozp—cq|=lap — Mizp — cg+ci — | =

. . o L 2F; 1 1 ).
= |z, — 2, + ¢; — ¢,|, whereg; cq—|Fi‘<|Fi‘+‘Fq‘>,

FT T
3) (2 —mp) = 7 (3 — So —ap + 55) =
BT Ff 1 1
= Bi(ep = o) + (= 50) < (7 + 1)
Therefore,
|xp—Min—Ci|2_|xp_MqZp_Cq‘2 =

= |z, — 2> — ‘xpz_ zp+ci— ¢ )
T rr
= (ﬁ(xp - Zp)) - (ﬁ(xp —Zpt i Cq))
F,FT FT 2
— ~2(z, — ) T (6 — ) — (g (e — o) (49)

Finally, consider an impact ot’, then

2" —mg+(2T)|p = ;ngl’; - W’Lt?(qﬂ')(ZNP
= mlz)— 2|p
50
= o= mi()lp (%0
< o —mg(2)lp
where the last identity follows from (i) of Claim 2, and thetlasequality follows from (49). [ |

Proposition 6 (_Two orthogonal walls): Considédr,, F, € R? such thatF['F, = 0, 7 = {0,1,2},
and defineQ := Z U {3}, M3 := M Ms, c3 := Mjcy + c1, SO thatmg(z) = mq(ma(z)). Then, under
Assumption 1, Assumption 5 is satisfied §46) is satisfied for the function in Figure 5.

g\i |1 2
0|1 2
110 3
2 |3 0
312 1

Figure 5. Definition ofé for two orthogonal walls.

The proof of Proposition 6 is based on the following lemma.

Lemma 2: M1 My = MyMy = —1, Micy + ¢ = Macy + co, @andmy(ma(s)) = ma(my(s)), for each
s € R*. Moreover, for eachs € R*, mz(my(s)) = ma(s), mz(ma(s)) = my(s), mi(ms(s)) = ma(s),
ma(ms(s))=my(s).
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Proof:
MMy = R(F\)"[§ %] R(F)R ( 5)" (6 %] R(Fy)
- _R(F1>TR(F1) (F2> ( )

—R(FQ)TR(F2)R(F1)TR(F1) (51)

= R(Fy)"[§ %] R(F)"R(F) 6 & ] R(F)T
== Mng.
From (51), we also have that; = — M5, S|nceM1M1 = I Using this fact, the fact that)c, = Fye; = 0,

and (iii) of Claim 1, consider the basis given l@y— i ‘} and assumec {1,2} andj € {1,2},j # 1,
then

FT FF
|(Mc]—|—cz) = |F|( ¢ta) = Fe = (52)
T
|F|Mcl ‘F‘Mcl = |F‘(Mci—|—cj).

Thus, the identitym;(ma(s)) = ma(my(s)) follows from (51) and (52). Finally, the identities on;(s)
follow from the definition ofms(s), mi(ms(s)) = ma(m(s)) and (v) of Claim 1. u
Proof of Proposition 6 Supposgz —mg3(z)| = 0 with z, 2z € F. ThenF(x, — s,) < 1, ¢ € {1,2}, which
implies F/' (M;(M;z, + ¢2) + ¢1 — so) < 1, wherej € {1,2},j # i. Moreover, we have

FN(Mi(M;zy+¢j) 4+ ¢ — s0) =

= F(=(Mz+e) + ¢ = 50)
= F(Miz+ ¢ — 50)

= F'(—%+c—so) (53)
= —F(z,—s0) = 2F so+Fl¢;
= —FF(2,—50) — 2FFso +2(1+ Fl's,)

= —Fl(z, —so)—|—221,

therefore F;(x, — s,) = Fi(z, — s,) = 1. Looking at the velocity vectorf'z, = EFM;M;z, =
—FI'M;z, = —F[z,, since M; does not modify the component ef normal to F;. Thus, eitherz or z
impacts on theth wall. In a similar way,F;x, = F;M;M;z, = F;M;M;z, = —F;M,;z, = Fjz,, thus
eitherz or z impacts on thejth wall. It follows that eitherM (z) = {1,2} or M(z) = {1, 2}, which is
forbidden by Assumption 1. This proves Assumption 5 .
To establish (46) we analyze the cage$) ¢ € {1,2}, i € {1,2},i # ¢, and(c2) ¢ = 3, i € {1,2},
since the remaining cases have been developed in the psessmtions, for the one-wall case. Kof),
consider a jump ofZ, then

2T —mg (2T)lp = |z — Mg (mi(2))p

= |z —ms(mi(2))|p (54)

= |z —my(2)lp,
where the last identity follows from Lemma 2. For a jumpXfthe analysis above can be repeated, by
using|m;(x) —meq.)(2) |5 = |r—ms(msq,i)(2))|p and Lemma 2. Fofc2), consider a jump o, and note
that if i € {1,2} andq = 3 thend(q,i) = j € {1,2},5 # @, thusmy(g:)(mi(2)) = m;j(mi(z)) = ms(2).
Then,

[ = mge (27)[p = |2 = magga) (mi(2)) |5 = [& = my(2)|p, (55)

The analysis of a jump ait’ follows similar steps. |
By combining parallel and orthogonal walls, we can charaesufficient conditions for rectangular
billiards.
Proposition 7 (Rectangles) Consider wallg, i € 7 := {1,2,3,4} such thatF'F, = 0, FI'F, = 0,
) = —p and 2 = —gh. ConsiderZ = Z U {0}, defineQ = Z U {5,6,7,8} and assume that
P>0isa dlagonal matrix. Define als@d/; := M, M,, Mg := MyMsz, My = MsM,, Mg := MM,
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A BADNNOOOOUIO R
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A BANNNOOOWW
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Figure 6. Definition of the update functi@nfor a rectangular billiard. For simplicity, we used an intuitive notation in th@lgrapresentation
of § and on the billiard representation, in which the four wdlls 2, 3,4} are denoted respectively &ast, North, West, andSouth walls,
while the extra mirroring functions, given lye {5, 6,7, 8} are denoted respectively &&E, NW, SW, andSE. Note the iterative application
of the results for parallel and orthogonal walls

and cs ;= Micy + c1, cg .= Macs + co, ¢7 := Msca + 3, cg : = Mycy + ca. Then, under Assumption 1,
Assumption 5 is satisfied, ar{d6) is satisfied ford given in Figure 6.

Proof: From the hypotheses of Propositionis(s) = mq(ma(s)), mg(s) = ma(ms(s)), mz(s) =
ms(my(s)), and mg(s) = my(my(s)), for all s € R* Thus, Assumption 5 can be established by
considering the analysis developed in the proof of Projmosi6. Moreover, looking at the automaton
in Figure 6, note thaty is constructed by combining Propositions 5 and 6, thus thayais can be
developed by following the arguments of those propositi@ases not analyzed directly in Propositions 5
and 6 arise from the configuratiop € {5,6,7,8} for impacts on walls3, 4, 1,2, respectively. The
proof, in these cases, follows the approach of the two-fgralalls case, from which we have that
[z —ms(ms(2)) [ = |r—ma(mi(ma(2)) [ < [r—ma(2) 5, |2 —ma(ms(2)) |5 = [r—ma(ma(ma(2)))| <
[z —ma(2)lp, [z — mi(mz(2))lp = [ = ma(ms(ma(2))lp < |z —ma(2)|p, and |z —ma(ms(2))lp =
|z = ma(ma(mi(2)))|p <l —ma(2)]p. u

Remark 12:Further results on sufficient conditions for Theorems 4 ar@hib be established for two
walls that meet at special acute angles and for equilateeaigies, as documented in [8, Section VI.F]
and [8, Section VI.G]. J

Remark 13:Propositions 5-7 characterize a selection policy amongon&d targets and real target
based on a specific function whose definition strictly depends on the billiard shapdfeently from
this approach, tracking in [8] is characterized by a Lyapdbased selection policy between mirrored and
real targets, which is implemented by enforcing updateg that satisfyg* = argmin, g [+ —m;(27)|5,
where Q and eachm;(s), i € Q, depend on the particular billiard shape, and wheteand z* denote
the reset ofr andz given by an impact on some wall of the billiard. These two apphes are connected
to each other through the functi@n which can be interpreted at impacts as the explicit sauabthe
minimization problem, that is, if the initial condition(0,0) = argmin;.g [2(0,0) — m;(2(0,0))| then
at each impact(q,i) = argmin;.g |27 — m;(z7)|, where either(z™, z%) = (m,(z),z) or (z7,27) =
(x,mi(z)), 1 € T. 4
Finally, for the billiards considered in this section we catiend Proposition 4 as follows, to provide a
parallel to Proposition 1.
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Proposition 8: For billiards defined by parallel walls, orthogonal wallsdarectangles|z, — z,| <
|z —my(2)| for eachX = (z,z,0,q) € CUD.

Proof: (Sketch)The case of parallel walls follows from Proposition 1 sinbere no extrag are
introduced. The proof for rectangular billiards is simitar that of the orthogonal walls case. For two
orthogonal walls we havé = {0,1,2} and Q = {3} UZ. Consider the lin¢ that connects\/, z, + ¢,
to My Msz, + Mics + ¢ = Msz, + ¢ and note that is orthogonal toF; (a similar argument can be
developed for the line connecting,z, + c» and Msz, + c3 which is orthogonal ta¥}). Then, following
Proposition 1, defing, := {s € R?*|s = AN(Miz, + ¢1) + (1 — \)(M3z, + ¢3)}, n := argmin |z, — s|,

SESy
and Sp, := {s € R*|Fy (s — so) = 1}. For these sets we havé/,z, + cils,, = [Msz, + cslsy, ,
and [z, — Mz, — s = [y[3, + [n — Msz, — c3* > |2,[5, + I — Mizy — a1* = |2, — Miz, — e,
where the second inequality follows frofi (n — s,) <1, since F (z, — s,) < 1. Following a similar
argument forMsz, + ¢ and Msz, + c3, we can establish thatt — ms(z2)| > |z, — M3z, — c3| >
max(|z, — Mz, — 1|, |x, — Maz, — co|) > |z, — 2,|, Where the last inequality follows from Proposition 1.
|

VI. OUTPUT FEEDBACK TRACKING

Henceforth, we combine the tracking and state estimatigordéhms of the previous section to construct
an output feedback controller. We consider the followintugeZ is the exogenous systeand we have
full access to its state} is the controlled systenfthe plant) and we measure its positign= C'z, and
X is thedynamic controllerwhose output drivest’ to achieve asymptotic tracking &. We assume to
know the wall impacted by each system.

The exposition of the dynamic controller uses notation agslilts from the previous sections, thus it
is based on the quantitie®/;, c; andm;(s), i € Q C N, Q D Z, defined in (38) fori € Z, and in (39)
for i € @\ Z. The continuous (flow) dynamics of treosed-loop systeris given by

z;{ : = Az + Bd,
X-{ i = Az + B(ds + u.)

y=Co (56)
R T = AT + u,
X q=20

q =0,

and by (7a), where, for simplicity of notatiod; andd, are signals measured by the dynamic controller,
possibly replacing functions like: in (3) or (30) and¢ in (8), used in previous sections. Generalizing
the results of the previous sections, andu, are defined by

u. = Mydy + K(mg() — my(2)) (57a)
U, = MgB(dy+u.)+ L[CE — Cmy(z)] (57b)

whereCmy(z) = My +c;, andK € R?** and L € R**? are respectively the controller and the observer
gains. The overall state is defined &s= (z,z, %, ¢, §,0) and the flow set is given by

C=KxFxFxQxQx|[0,N], (58)

where Q € N, Q D Z, characterizes the set where the two automata with statesl j take values.
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The discrete (jump) dynamics is given by

(e Um(F,z2) [ 2t==z (o=
+ieM(Z) zte Um(Fi,z) | at=x
rt=z M) gte Um(F;, 2)
it=7 Q=1 ; M@ (59)
q=6(q,1) q+— d(q,17) ¢'=q
it=a = 06(q,1) G=04(q,1)
\0‘+:0'—1 \0'+_0'_1 \O-+:O-_1

respectively forX € D, X € D,, and X € D;, with those sets defined as

D, = {XG?’ZGJ,UG[LN]},
D, = {Xell|lxe J,oe]ll, N}, (60)
D;: = {X e€C| (&, % +Uuop) € T,0€[1,N]},

D := D,UD,UDs;.

Similar to (16b), in the four different intersections amofy, D,, D;, the jump rule is the union of
the corresponding jump rules in (59). This definition pragki@an outer semicontinuous set-valued jump
map, thereby guaranteeing robustness (see [12]). Theidantin (59) depends on the billiard shape, as
discussed in the previous sections, and the vegfgrused in the definition of the jump set above is given
by u, = [ ul, | ul, ]T (this follows from the observer construction in Section.Wpte thatq is updated
when eitherZ or X" jumps, following the approach of Section ILlk(tracks Z), while g is updated when
either X or X jumps, following Section IV (note that’ plays here the role of the exogenous system of
Section IV whose state is estimated by the obsem)ar

The next stability result is based on the following two asptiams which extend to the output feedback
case the assumptions of the previous sections.

Assumption 6:The exosysteniZ is restricted to a compact s& which satisfies Assumption 1
satisfies Assumption 2 anll := K ® I,; L satisfies Assumption 4 anbl := L ® 1.

Assumption 7:Given the compact set

A:={(z,x,2,q,q,0) € ICXR4XR4XQXQX[O N]|
= my(2), & = mg(x)}, (61)

forall X = (z,2,%,¢,4,0) € A, if X €CUD theng,gcT.
Using the argument of Proposition 4, it is possible to shoat thhenX < A thenz, = z, = 2, and that
z =1 = ¢ for eachX € A\ D. Moreover, the following bounds hold.

Proposition 9: Under Assumption 7, fot in (61), for eachX = (z,2,%,q,4,0) € CUD,

75 (|7 = my(2)] + |9:6—mq(2)|) < | Xa (62)
V2(Jz —mg(2)| + |2 = m(2)]) > [X]a
where
r = max(ry,rs),
r = zeICI,IslﬁieQ{l’ |m81 ('Z) - m82(2)|}7
e 1= max {17 ‘msl (m33(2>) - m32<m33(z))|}'

2€K,s1,52,53€Q
Proof: We use(i) and (i) in the proof of Proposition 1. For the last inequality in (62)
X4 = min (|—al [z —ms(a) [ —mj(ms(a)) P+
- + lg—BP+1q—B1%)
)P | = mg(my () 2 (63)
|2 = (@) 4 [mq(e) = mq(my (=)
|2 = mq(2)]° + [& —mg(z)|” + | —my(2)|
()| + & = mg(2)])

VAIVARVANVAN
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For the first inequality in (62), consider the following twacts which will be proven next, in (65) and
(66): (@1) |X |4 > L[z — my(2)] and @) | X|u > | — mg(m,(2))]. Then,

(X% = g2 @lw = mg(2)]? + |2 — mg(mg(2))]?)
= gz (|2 = my(2) P + mg(xz) — mg(me(2)* +
+ 17— mg(mg(2))[?) (64)
> 3r2 (|2 —my(2)* + I@—mq(fﬁ)lz)
> gz (lr = mg(2)| + 12 — my(2)])

where the last inequality follows frofu|? + [b> > 2[a|[b], from which|a|? 4 [b]* > £(]a| + [b])?.
Considering the proof of Propositions 1 and 4, to pravg (ve can reason as follows
| X1% min |2 —af* + o —ms(a)* + |g = B

ack,5eQ (65)
> Fle—my()P = Flr—me(2)]*

In a similar way, for ;) we use the identity

ro=ma[my(ms (=) — ma(my(2))], getting

(Xla 2 _min (le—af'+|2—ms(ms(a)) +
; +16=5*+lg—FAF)
= min(lmg(mp(2)) —myz(ms(a))|* +

a€k,B,eQ ~ A A
+H&—mg(mg(@)*+1d =" +1a—PI*)
> ﬁHﬁlieIlQ|i—m5(mB(Z))|2+|d—5|2+|q_5|2 (66)
> glelélrz\x mg(mg(2))]* + g — BI?
> min z\x mg(mg(2))|* +
+ 1zlmg(mp(2)) — mg(mq(2))]?

v

2|2 — mg(mg(2))]*.

|
We can now state the exponential stability of the deih (61).

Theorem 6: Under Assumptions 6 and 7, consider a (&ir H.) which satisfie§25) for A, = [kl kQ]

a pair (P., H.) which satisfy(25) for A, = [ o], and defineP, = P. @ I, P, = P, ® L. If for each
X eD,
7" —mg ()lp, < o —m(2)lp, (672)
27 —mg+(2)p, < |2 —mg(a)lp,, (67Db)
then, for eachp > 0 and N > 0, A in (61) is GES for the closed-loop system. L
___Proof: Define e, := & — my(x) ande, := x — my(z). During flows, using the identity/ ;Az =
AM jx = Amy(x) (see the proof of Proposition 2), we have

é1 = At + MyBu, + LC[& — my(z)] — M;(Az+ Bu,)

= (A+ LC) (& — mg(x)) = (A+ LC)ey, (68)
and using the identitie® M,d, = M,Bd,, M,Az = Am,(z), and M z¢(4) + ¢(§) = 0, we have
éos = Ax+ BM,d, + BK(my(2) —mg,(2)) +

= M, (Az + Bd,)

= Az —my(2)) + BK(my(&) — mqy(2))

— Ao~ my() + BR(myfd) — o + 2 - my(2) (69)
(A+ BK)es + BK (my(2) — )

= (A+ BEK)ey + BEM(& — mg(z))

= (A4 BK)es+ BKM4ey
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Thus, usinge := [T ¢} ] the continuous dynamics efcan be written as

A+LC| 0
BKM, | A+ BK | °

(70)

e =

Define nowW(e1) = [e1|} and We(ez) := [ezf7; . From Assumption 4, we havd/,(e;) < |€1‘2ﬁfﬁo

during flows, where the matrikl, = H,® I, guarantee$H ,, A+ LC') observable. Moreover, from (67b),
Wo(ei) < Wo(er) at jumps. Thus, using the coordinates, o, (, z, ¢, ¢)) and Lemma 14 in Lemma 1
is given in this case byl + LC), we get the functiony’ (61, o) which satisfies #-(iii) of Lemma 1.
In a similar way, where; = 0, we havell/, (e2) < |€2| T during flows, whereH,. = H, ® I, and

the pair(H,., A + BK) is observable, and by (67aWc(62) < W.(e9) at jumps. So, for the coordinates
(e2,0,(2,4,4,e1)), supposing; = 0, by Lemma 1, we get the functiori.(e,, o) which satisfiesi)-(iu:)
of Lemma 1.

Define nowV (X) := pY,(e1,0) + Y.(ea,0), wherep > 0 is selected below and’ = (z,z, 2, q,q, o).
Note thatl” is positive definite with respect td. Then, considering the cascade structure in (70), and
the properties:}-(iiz) of Lemma 1 satisfied by both, and Y., and using a constant > 0 such that
Vleallei] > (Ve,Ye(es, 0), —BK Mgeq), for X € C, we have

V(X> S _fVIﬁ}/o(eho-) _'71}/C<€270-) +
+ /2lez|le1], for somey; > 0

< —mpYo(er,0) = mYe(ez,0) + ey |* +
+ 2%|eg|2, for any y3 > 0

< —mpYo(er,0) — nYe(ep, o) + LY (e, 0) +
+722—,;T;Yc(62, o), for somey, > 0

= —5 (pYoler,0) + Ye(er,0))

(71)

where~s := ’7% andp := ’”z—f’“ Moreover, from (67) and Lemma 1, for eaghe D we have
V(X+> = ﬁ’y}/;(eh U) + 7}/C<€27 0) = ny(X>7 (72)

for some~ € [0,1). Then, using the bounds in Proposition 9, by [29, Theorenhé]detA4 is GES. ®
Remark 14:Sufficient conditions for Theorem 6 are presented in Sed#i@h Intuitively, the inputu,
and the definition ob parallel the tracking case of Section V, wheigin (57a) differs fromu in (40a)
only for the termx replaced bym,(z). In a similar way, the input,, and¢ parallel the observer case of
Section V, wherey, in (57b) differs fromw in (40b) for the new term,. a
Example 2:Consider a translating mass on a rectangular billiard (Proposition 7) which tracks the
referenceZ. The billiard is represented in Figure 6 and is definedsby- 0 and

1 _
[Fl‘FQ‘F?,‘FzL]Z:Z—L[g\g\03~_04}. (73)
Using (38) and Proposition 7, the dynamics of the closed ktem is given by equations (56)-(60),
with d; = d = 0. Simulation results from, = [0 02 72]T, xo = [0.505 2 Q]T, and iy = [0102 -1 3]T
are reported in Figure 7, respectively f¢gy = ¢o = 0, andgy = 3, §o = 8 and clearly illustrate the
asymptotic tracking properties established in Theorem 6. a
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Fourth row: velocitiesgy = 3. §o = 8.
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VIl. CONCLUSION

We introduced a hybrid model for the impact dynamics of tvam&lating masses within billiards and

we

proposed two algorithms which guarantee global expaaetmticking and global exponential state

estimation for billiards whose shape is defined by a singlé, wao parallel walls, two perpendicular
walls, and rectangles. Then, by combining these two algmst we achieved global exponential tracking
by output feedback. Each algorithm presented is robust fmaindetection delays and does not require
high gain feedback.
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