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Abstract. The interest on shields to protect astronauts I long term missions against GCR has 

recently grown and several projects have been funded. Due to their large mass, passive shields 

for large volume habitable modules are no longer an option and the attention is focused on the 

more complex, technologically challenging active systems. Among the possible solutions, the 

most promising is based on huge superconducting coils having a bending power sufficient to 

deflect out of the habitat charged particles with kinetic energy in the order of 1 GeV. Toroidal 

magnet systems based wound with Ti clad MgB2 conductor is proposed and described. 

This work is supported by INFN (SR2S-RD) and co-funded by the EU FP7 SR2S Project.  

 

1. Introduction 

It is well known that deep space is a hostile environment for human beings: although the spacecraft 

habitable modules are designed to supply astronauts with all the necessary for their life and to protect 

them by the sun light and micrometeorites, shielding of the cosmic rays is still an open problem. 

Cosmic rays, high energy, massive particles of solar or galactic origin, represent a serious threat for 

the health of crews of future, long term missions in the deep space. The adsorbed dose during a solar 

particle event (SPE) would be fatal by acute radiation syndrome while the continuous flux of galactic 

cosmic rays (GCR) exposes the crew to a high risk of develop a cancer [1]: the measurements taken 

during the voyage of the Mars Science Laboratory show that the dose, due to the GCR, adsorbed by an 

astronaut into a non-shielded spacecraft is 1.84 mSv/day [2]. SPE are very intense, short bursts of 

relatively low energy (1-100 MeV) particles, mainly protons, so that it is possible to protect the 

astronauts recovering them in a passive shelter, made by a material of sufficient thickness, for the 

duration of the event. A protection from CGR is much more difficult to design as they are composed 

by protons and ions having a wide energy spectrum with its maximum around 500 MeV/nucleon. 

Moreover, as the flux is continuous, a CGR shield must surround the whole habitat. As long trips 

require large habitable volumes, the mass of passive shields is very high and (several hundred tons), so 

the attention is focused on active systems, which require electric or magnetic field to deflect the 

charged particles [3], [4]. 
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Among the possible solutions, the most promising is based on huge toroidal magnets having a bending 

power sufficient to deflect out of the habitable module charged particles with kinetic energy in the 

order of 1 GeV. The operation environment requires a system fulfilling peculiar characteristics: first of 

all it must be light and power saving, so it is mandatory to use superconducting coils. Moreover, it 

must be stable and must safely guarantee an endurance of at least 2 years. These requirements orient 

the choice of the conductor towards HTS coated conductors or Titanium clad MgB2.  

2. The Superconducting Magnet System 

The Space Radiation Superconducting Shield is composed by a large barrel toroid surrounding the 

habitable module as schematically shown in figure 1. The rear side of the spacecraft is passively 

shielded by the engine and propellant tanks. The front can be shielded either passively by a module 

containing equipments and supplies or actively by an end cap toroid. 

 

Figure 1. Schematic view of the Space Radiation Superconducting Shield. The 

trajectories of two particles with different angle of incidence φ are shown. 

In the case of a particle moving in the r-z plane, i.e. having zero angular velocity, the motion equations 

in an ideal toroidal field have an analytical solution [5]. It can also be demonstrated that a particle with 

zero angular speed is the most penetrating one, so the shielding power of the toroid can be written as: 
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The shielding power can also be written as a function of the particle properties and of the angle of 

incidence φ: 
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where m0 is the rest mass, q the charge and γ is the Lorentz factor. The analytical solution allows 

calculating the cut-off energy that, in the worst case, i.e. when       , is: 
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where η is the number of nucleons. Assuming an isotropic flux and using the spectra of the CREME 

database [6], an ideal, infinitely long toroid, with Ξ=5 T·m is able to shield almost 80% of the particle. 

In case of a real toroid, we have to take into account the azimuthal ripple of the magnetic field. 
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However, if the number of coils is large enough (≥12 if the internal radius is less than 3 m), the 

shielding power is not affected by the ripple and the approximation of ideal toroid can be used [5]. 

Starting from a cylidrical habitat 4 m diameter, 10 m long, our choice is oriented toward a magnet 

composed of 24 racetrack coils having a winding pack 0.55 m wide and 0.05 m thick as shown in 

figure 2. The dimensions have been chosen in order to minimize the stray field in the cabin and the 

maximum field at the conductor.  

 

 

Figure 2. Field map. The toroid is designed to keep the peak 

field at the conductor less than 4 T and to minimize the stray 

field in the habitable module. 

The outer radius is determined by the cargo launcher size. A heavy launcher with a 9.2 m diameter, 17 

m long cylindrical hold, called SLS block II is planned to be operative in the thirties [5]. This opens up 

two possible scenarios: a compact magnet to be sent in a single launch and a magnet divided in sectors 

to be separately launched and assembled in orbit. As shown in figure 3, dividing the magnet in 4 

sectors the outer radius will be 6.3 m, while a division in 6 sectors leads to 9.5 m.  

 

Figure 3. Scheme of the magnet inside the launcher hold (bold circle). Left to right: entire 

magnet, a quarter and one sixth. 

A further subdivision increases the complexity of the system without a significant gain in terms of 

shielding power. Table 1shows the shielding power and the cut-off energy of the 3 different solutions 

obtained limiting to less than 4 T the maximum flux density at the conductor. 
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Considering only the deflection of the incoming particles due to the magnetic field, the shielding 

power of the compact magnet seems to be sufficient to protect a crew for more than two years, 

however, monte carlo simulation have shown that a large part of dose is due to the secondary particle 

generated by the interaction of CGR with the materials [8]. 

Table 1. Characteristics of the different magnet solutions. 

Sectors 

No. 

Outer diameter 

(m) 

Shielding power 

(T·m) 

Cut-off energy 

(MeV) 

1 8.6 5.4 300 

4 12.3 8.3 645 

6 16.8 11.4 1000 
 

  

3. Conductor 

The conductor is a Ti clad MgB2 tape, bonded with pure aluminum strips, having 10 mm2 section area 

(15% MgB2, 40% Ti, 45% Al). Such a conductor is light, 3400 Kg/m3, and allows avoiding helium 

cryogenics. Solid hydrogen contained in tanks connected with the coils can be used both as cryogen 

and as passive radiation shield. Conductor prototypes are at present under development at Columbus 

Superconductors in Genoa, Italy.  

The current density being limited to J=70 A/mm2, the total conductor length ranges between 1479 Km 

and 1770 Km, while the masses of the windings are 49 to 58 tons including the insulation depending 

on the configuration. 

4. Conclusions. 

In the perspective of interplanetary manned missions in the near future, superconducting magnets are a 

serious option to protect crews from cosmic rays. Possible solution have been devised based on MgB2 

based conductors. 
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