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Simulation, computation and dynamics in economics
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Computation andSimulationhave always played a role in economics – whether it be pure
economic theory or any variant of applied, especially policy-oriented, macro- and
microeconomics or what has increasingly come to be called empirical or experimental
economics.Computations and simulations are also intrinsically dynamic.This triptych –
computation, simulation and dynamic – is given natural foundations, mainly as a
result of developments in themathematics underpinnings in the potentials of computing,
using digital technology. A running theme in this essay is the recognition that,
increasingly, the development of economic theory seems to go hand in hand with
advances in the theory andpractice of computing,which is, in turn, a catalyst for themove
away from too much reliance on any kind of mathematics for the formalisation of
economic entities that is inconsistent with the mathematical, methodological and
epistemological foundations of the theory of computation.

Keywords: simulation; computation; dynamics; computable; constructive; proof;
algorithm

Jel Classification: B41; C63; C65; C68; D58

1. Simulation, dynamics and computation: A brief preamble

Ulam first used ‘synergesis’ in the context of the ‘Computing machine as a heuristic aid’ in
mathematical research . . . . This was a new mode of working. . . . .

From ‘synergesis,’ I formulated the visiometrics approach . . . Visiometrics is the process of
producing cogent 2D and 3D images and parameter-scaled (normalized) graphs for
developing intuition and aiding in mathematical model formation. (Zabusky, 2005, p. 10;
italics added)

Theart of gleaningepistemological lessons, from simulatingamathematicalmodelgenerating

dynamic behaviour, on a (digital) computer, was elegantly outlined byWeissert (1997, p. 106;

italics added), in the context of the famous Fermi–Pasta–Ulam problem (Fermi, Pasta, &

Ulam, 1955), which was the setting for Zabusky’s path from ‘synergesis’ to ‘visiometrics’:

The goal of simulation in dynamics is to learn about the true solution by simulating the
trajectories of the associated differential equations . . . Whether or not the true solution of a
model actually relates to physical reality depends upon the fundamental laws used and the
approximationsmade to obtain the model. As the simulation teaches us about the true solution,
we make decisions about the adequacy of the model. Simulation’s function is to reveal the
properties of the true solution and to aid our decisions about how well the model suits the
physical system. As doubts arise about the model’s adequacy, but we are reasonably confident
of the simulation, we must turn our attention to the approximations made in the model. Several
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times . . . . a researcher indicates an implicit belief that the simulation does tell us something
about the physical reality. Such an [indication] implies a trust in a long chain of inferences and
approximations beginning from the adequacy of the fundamental theory itself, to the
equivalency of an infinite series expansion of terms, then to the approximations that aremade to
obtain a model, and finally to the simulation and what it might be telling us about the model.

Weissert’s concise, yet elegant, encapsulation of a research program on the

epistemology of simulation in dynamics leaves a few crucial questions un-broached. First

of all, even if there is such a thing as one ‘true solution of a model’, the means – i.e., the

methods of proof – used to demonstrate the existence of such a true solution of a model, in

theory, may or may not provide any information on the ‘adequacy of the model’ and ‘how

well [it] suits the physical system’ it aims to ‘model’. Second, ‘the approximations [to the

physical system]’ to obtain the model may not be definable uniquely. Third, the methods

of approximations may not be independent of the methods of proof used to demonstrate

the existence of a true solution. Fourth, unless the chosen methods of approximations are

very carefully selected most models that are even reasonably faithful – in any one of many

possible ways of ‘defining’ this tortuous term – cannot be forced to yield unique solutions.

Finally, and most disturbingly, from the point of view of simulation of the dynamics of ‘the

trajectories of the differential equations’ associated with the model, by machine

computation – i.e., by, say, a digital computer – is the following question: can a

dynamical system, whose equilibrium existence – i.e., ‘true solution of a model’ – is

proved by non-finite means, be simulated by finite means to obtain epistemological

answers to questions on the ‘true solution of a model’?

Let us illustrate this last point more explicitly. Consider one possible elementary

statement of the Peano existence theorem for the initial value problem (IVP) of ordinary

differential equations (ODEs), (Iserless, 1996, pp. 364–365; italics added):

Let the function f : ½t0; t0 þ a� £ U ! Rd ðwhere : U h RdÞ be continuous in the

cylinder:

S ¼ t; x
� �� �

: t [ t0; t0 þ a
� �

; x [ Rd; x2 y0k k # b; ð1Þ

where: a; b . 0 and the vector norm k·k is given. Then, the ODE:

y0 ¼ f t; y
� �

; t [ t0; t0 þ a
� �

; y t0ð Þ ¼ y0 [ Rd; ð2Þ

where a ¼ minfa; b=m} and m ¼ sup
ðt;xÞ[S

kf ðt; xÞk possess at least one solution

However, it can be shown that ’f ðt; yÞ, satisfying the hypotheses of the Peano

existence theorem, such that there is no solution to the IVP (Aberth, 2001). Why is this

so? This is because the existence of a solution violates a cardinal theorem of computable

calculus: the Unsolvability of the Halting Problem for Turing Machines. More

specifically, there are a series of nonsolvable problems by finite means, in the computable

calculus, some of which have to be made solvable by non-finite means for the Peano

existence theorem to be satisfied. In the case of the Peano existence theorem, the relevant

nonsolvable problems are:

Proposition 1. It is undecidable (by finite means) whether, ;a [ R; a or , a is rational.

Proposition 2. It is undecidable (by finite means) whether, ;a [ R; a $ 0 or a # 0.

K. Vela Velupillai and S. Zambelli2
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Thus, implicit in any standard proof of the Peano existence theorem there are appeals

to non-finite means to decide (intrinsically undecidable) disjunctions. No amount of

simulation, even by an ‘ideal’ computer – say, Turing Machine (or any of its equivalents,

by the Church–Turing Thesis) – can contribute epistemologically to any question about

the ‘true solution of a model’, which is analytically fully characterised, but using standard

real analysis underpinned by set theory plus the axiom of choice.

However, it must be noted that Peano went out of his way to avoid any appeal to the

axiom of choice in his proof. Furthermore, Peano dropped the assumption of the Lipschitz

condition in his original paper of 1890 (thereby losing uniqueness, Ince, 1944, p. 66).

Indeed, it was during the course of this proof that the ubiquity of this controversial axiom

was first recognised and avoided.1

This is, by the way, an instance of the ignorance of alternative mathematical traditions

and careless understanding of the underpinning axioms which leads, in turn, to ignorant

assertions on the interactions between simulation, mathematical formalisms, formal

solutions, approximations and so on.2

But what is a computation? The lucid, elementary, answer to this question, entirely in

terms of computability theory was given by Martin Davis in a masterly exposition (Davis,

1978). Here, we are interested in an answer that links computation and simulation.

We shall assume the following ‘claims’ to try to come to grips with a possible answer

to the question, ‘What is a computation’, in a meaningful sense.

Claim 3. Every computation is a dynamical system

Claim 4. Every simulation of a dynamical system is a computation

What can we know, what must we do and what can we hope from a computation,

which is, by the above claim, a dynamical system? This, in turn, means what can we know,

what must we do and what can we hope from studying the behaviour of a dynamical

process during a computation? Since, however, not everything can be computed, it follows

that not every question about a dynamical system can be answered unambiguously. But by

the second of the above-mentioned claims, we have expressed an ‘identity’ between a

simulation and a computation, via the intermediation of a dynamical system, which

implies that not everything can be learned about the behaviour of a dynamical system by

simulating it on (even) an ideal device that can compute anything that is theoretically

computable (i.e., a Turing Machine, assuming the Church–Turing Thesis). Above all, we

cannot delineate, in any meaningful sense – i.e., in an algorithmically decidable sense –

between what can be known or learned and that which lies ‘beyond’ this undecidable,

indefinable, border, on one side of which we live our scientific lives.

Now, observe the following:

An argument deriving the truth of a universal arithmetical sentence from that of its numerical
instances suggests that the truth of the numerical instances has some kind of epistemological
priority over the truth of the sentence itself: our knowledge of the truth of the sentence stems
from the fact that we know all its numerical instances to be true... I shall show that it is just the
other way around. . . . [T]he source of our knowledge of the truth of the totality of its
numerical instances is the truth of the sentence itself. (Serény, 2011, p. 48; italics added)

Juxtapose this inversion of ‘epistemological priority’ between the ‘truth of a universal

arithmetical sentence’ and ‘the totality of its numerical instances’ – remembering that the

latter is obtained by computations – with Cohen’s causal conjecture between ‘the

revolution in computing’ and ‘its inspiration in mathematics’:

Journal of Economic Methodology 3
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Hilbert’s vision of a universal algorithm to solvemathematical theorems3 required a unification
of Logic, Set Theory and Number Theory. This project was initiated by Frege, rerouted by
Russell, repaired byWhitehead, derailed by Gödel, restored by Zermelo, Frankel, Bernays and
von Neumann, shaken by Church and finally demolished by Turing. Hence, to say that the
interest in algorithmic methods in mathematics or the progress in logic was engendered by the
computer is wrongway around. For these subjects it is more correct to observe the revolution in
computing that was inspired by mathematics. (Cohen, 1991, p. 323; italics added)

The rest of the article is organised as follows. In the next section, a brief outline is given

of the main fields in economics where reliance on (digital) computation, enhanced by the

possibilities of ‘learning by simulation’, plays significant roles. In Section 3, an example of

learning new alternatives of dynamics, by digital simulation, is given. Section 4 discusses

the alternative duality, that between computation and simulation, in implementing

conjectures and constructing (digital) machine-based proofs – a field that is unbroached in

economics in the mathematical mode. The concluding section is a kind of hope for a new

research tradition, taking seriously the mathematics underpinning the digital computer and

learning to explore the limits of them – the mathematics and the digital computer – for

exploring new frontiers in economics, but based on the rich tradition of the subject.

We attempt to summarise, as concisely as possible, the core areas of economics which

initiated and maintained what we call ‘the noble tradition of simulation in economics’ with

reflections and hopes on what must be done to keep the bright shining light of computation,

simulation and dynamics focused on economic theory and its formalisation.

2. Simulation and computation in economics

There are at least five frontier research fields in economics, encompassing both micro and

macro aspects of economic theory,wheremachine computation4, in its digitalmode, enriched

by simulational exercises, is claimed to play crucial roles in formal modelling exercises5:

1. Computable General Equilibrium Theory (CGE) (and its ‘extensions’: Recursive

Competitive Equilibrium (RCE)&Dynamic Stochastic General Equilibrium (DSGE)

theories) – The Scarf Tradition.

2. Computable General Equilibrium Modelling – The Johansen–Stone Tradition

(cf., Johansen, 1960 (1974), Dixon & Parmenter, 2009).

3. Agent-based computational economics (cf., Tesfatsion, 2006, Epstein, 2006).6

4. Classical behavioural economics (CBE, as distinct from MBE: Modern behavioural

economics, see Velupillai & Kao, 2014).

5. Computable economics7.

That CGE in the Scarf Tradition is not underpinned by either computable or

constructive mathematics is, by now, fairly well known (cf., Velupillai, 2010) But it is less

well documented that the claims of computability of the Johansen–Stone tradition is

equally untenable. Therefore some comments may be in order.

Somewhat surprisingly, the adherents and aficionados of Leif Johansen’s classic work

on AMulti-Sectoral Study of Economic Growth (Johansen, 1960 [1974]) claim that this

was ‘the first CGE model’ (Dixon & Parmenter, op.cit., p. 6). Their rationale for this claim

is the following (p. 6; last two italics, added):

[The Johansen model] was general in that it contained.. cost minimizing industries and utility-
maximizing household sectors . . . . His model employed market equilibrium assumptions in
the determination of prices. Finally, it was computable (and applied). It produced a
numerical, multi-sectoral description of growth in Norway using Norwegian input-output

K. Vela Velupillai and S. Zambelli4
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data and estimates of household price and income elasticities derived using Frisch’s . . .
additive utility method.

This is an untenable claim8 The Johansen model has no underpinning whatsoever in

any formal model of computation, least of all a computable (or constructive) one.

There is a serious epistemological deficit in all of the approaches, but can be

discovered only in the last two, precisely because the latter are underpinned by

computability and constructivity theories, in their strict mathematical senses, and the

former are not (see the appendix to this section). However, this claim does not imply that

classical behavioural economics and computable economics are ‘complete’ from an

epistemological perspective, especially from the point of view of natural or intrinsic

dynamics of formal models. The epistemological deficit and the epistemological

incompleteness, it is suggested, can be resolved by a theory of simulation, itself based on

recognising the double ‘duality’ between dynamical systems and numerical analysis, on

the one hand, and that between computation and simulation, mediated by dynamical

systems, both ‘dualities’ interpreted computably or constructively, leading to the core triad

of computation, simulation and dynamics (because numerical analysis can be interpreted,

equivalently, in terms of dynamical systems or computability). Hence, hopefully, paying

heed to Turing’s Precept: ‘the inadequacy of “reason” unsupported by common sense.’

We end this preliminary reflection on a computably underpinned simulational

approach to a discussion of the epistemological deficit intrinsic to the interlinked triad of

computation, simulation and dynamics by invoking Feynman on our side:

Computer science touches on a variety of deep issues. . . . . It naturally encourages us to ask
questions about the limits of computability, about what we can and cannot know about the
world around us. (Feynman, 1996, p. xiii; italics added)

One final remark on a classic in the rich interaction between simulation, computation

and dynamics is, we feel, appropriate, here. In their fascinating recapitulation of the

circumstances under which Fermi, Pasta and Ulam tried to resolve a theoretical

conundrum – and still completely unresolved – with a discrete approximation of a

continuum model implemented on one of the first available digital computers – the

MANIAC – Porter, Zabusky, Hu, and Campbell (2009) point out the many ways in which

the simulations interacted with the analytical theory to enrich both in surprising ways. The

methodological implications, of the interaction between computation and dynamics via a

series of simulations that have been implemented, with increasing precision, detail and

generalisations in the 55 years since the original ‘experiment’, are exhaustively discussed

and dissected in the admirable monograph by Thomas Weissert9 (op.cit). As Porter et al.

perceptively10 note (2009, pp. 214–216; italics added):

. . . .Fermi had long been fascinated by a fundamental mystery of statistical mechanics that
physicists call the ‘arrow of time’ [irreversibility]. . . . . Fermi believed that the key [to the
unlocking of the mystery of irreversibility] was nonlinearity . . . . He knew that it would be far
too complicated to find solution to nonlinear equations using pencil and paper. Fortunately,
because he was at Los Alamos in the early 1950s, he had access to one of the earliest digital
computers [the MANIAC]. . . . . The FPU problem was one of the first open scientific
investigations carried out with the MANIAC, and it ushered in the age of what is sometimes
called experimental mathematics. . . . ..[by] which we mean computer-based investigations
designed to give insight into complex mathematical and physical problems that are
inaccessible, at least initially, using more traditional forms of analysis. . . . . With Pasta and
Ulam, Fermi proposed to investigate what he assumed would be a very simple nonlinear
dynamical system... The Key question FPU wanted to study was how long it would take the
oscillations of the masses and nonlinear springs to come to equilibrium. . . . They were
absolutely astonished by the results.

Journal of Economic Methodology 5
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The FPU problem exemplifies many interesting, even unresolvable, aspects of the

felicitous link between computation, dynamics and simulation. One of us (see Zambelli,

2011) has attempted to resolve dynamic perplexities by structured simulation studies, in

close combination with established macrodynamic and interindustrial economics,

formalised computably.

2.A Visiometrics and the graph theorems

The problems of scientific computing often arise from the study of continuous processes, and
questions of computability and complexity over the reals are of central importance in laying
the foundations for the subject. The first step is defining a suitable computational model for
functions over the reals. Braverman and Cook (2006, p. 318); italics added.

Of the five frontier research fields in economics claiming computational under-

pinnings, mentioned above, only the first and the last two are explicitly based on ‘a

suitable computational model for functions over the reals’. Moreover, both classical

behavioural economics and computable economics are either explicitly or implicitly

defined over the computable, constructive or non-standard reals. However, computable

general equilibrium theory (in the Scarf mode), even though it is defined over the reals,

does not develop its theory on a model of computation that is consistent with its basis on

all of the standard reals (a fortiori for recursive competitive equilibrium (RCE) and

DSGE). Neither computable general equilibrium economics (in the Johansen–Stone

mode), nor agent-based computational economics (and finance), are based on any kind of

formal (or informal) ‘computational model over the reals’. None of the above-mentioned

five frontier research fields, except every kind of agent-based computational economics

(and finance) practice11 rely overwhelmingly on an elementary – and undefined – kind of

Visiometrics, appealing to computer graphics, without the slightest basis in the

mathematics of the computer (of any variety). In this brief appendix, we outline the kind of

care needed to make sense of the excessive claims of the practitioners of agent-based

computational economics (and finance),12 so that they can be brought into the fold of

serious Visiometrics.13

Zabusky’s more discursive description – we shall not call it a formal definition – of

what he means by Visiometrics is something like the following (loc.cit, p.12; italics in the

original):

VISIOMETRICS is the process of: Visualization, projection, identification and juxtaposition
of evolving amorphous coherent structures and statistical backgrounds in massive
multidimensional data sets. The goal is to produce cogent images and specific, parameter-
scaled (normalized) graphs for intuition building and mathematization.

The crucial terms are ‘cogent images’ and ‘graphs for intuition building and

mathematization’, especially in the case of economic visiometrics, where the ‘massive

multidimensional data sets’ reside, at best, in the set of rational numbers.

Essentially, all of the above-mentioned five frontier computational economic research

areas theorise in the domain of the real numbers and real number functions (of arbitrary

high dimensions), but agent-based computational economics, in particular, seeks to extract

patterns from the projected dynamics on the screens of digital computers (there are, of

course, enlightened exceptions to this general rule). If the theorising is in terms of real

analysis, then the ‘graphs’ of theory are subject to the classical graph theorem:

Theorem 5. The ‘Classical’ Graph Theorem: A function (or mapping or transformation),

K. Vela Velupillai and S. Zambelli6
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c : A! B is any subset c # ðA £ BÞ such that ð;x [ AÞð’!y [ BÞ & ½ðx; yÞ [ c� and
ð;x [ AÞðy [ BÞ; ½ðx; yÞ [ c�&½ðx; y0Þ [ c ) y ¼ y0�

Where: A : Domain set; B : Range set: ! : ’ exactly one;

Theorem 6. The Recursion Theoretic Graph Theorem: Let f and j be, respectively, a

partial and a total function. Then:

1. f is partial recursive iff its graph is a recursively enumerable set;

2. j is recursive iff its graph is a recursive set;

To these theorems we would like to add, and invoke, what we call Brattka’s Theses

(Brattka, 2008):

Criterion 7. Brattka’s Thesis I: A function z: Rn ! R is computable iff it can be evaluated

on a physical computer with arbitrary given precision.

Criterion 8. Brattka’s Thesis II: A closed subsetF # R2 is recursive iff it can be displayed

by a physical computer for an arbitrary given resolution.

Conjecture 9. No function employed in any agent-based computational model satisfies

either of Brattka’s Theses.

Remark 10. This is too strong a conjecture; we should be more specific about the particular

agent-based model. However, we want only to give a flavour of the kind of conditions that

have to be satisfied for some of the enthusiastic, vague and imprecise claims to be valid.

From these theorems and criteria any discerning reader can understand why we claim

that classical behavioural economics and computable economics are eminently suitable for

Visiometric explorations. Moreover, these theorems and criteria are also the reasons why

we made ‘the main claim’ of this article, mentioned above.

3. Discovering dynamics by simulation in macroeconomics

Progress in our understanding of the natural sciences has always depended upon the give-and-
take between modelling (or theorising), analysis and experiment. With large-scale computers,
we can process experimental data from a variety of sensors and juxtapose them readily with
large-scale simulations – numerical solutions of ordinary and partial differential equations,
etc. The insights gained from attempting to bring these results into agreement can synergise14

the rate of improvement of models, algorithms, analytical methods and experimental
procedures. Zabusky (1981, p. 236); italics added.

Consider the following nonlinear equation:

e
d2x

dt 2
þ xþ x 2

� � dx
dt

þ xþ a ¼ 0 ð3Þ
This can be represented as:

dx

dt
¼ e 21ðy2 f ðxÞÞ ð4Þ

dy

dt
¼ 2 xþ að Þ ð5Þ

Journal of Economic Methodology 7
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and the ‘characteristic’ f ðxÞ; is given by:

f ðxÞ ¼ 1

3
x3 þ 1

2
x2 ð6Þ

For a ¼ 0 and if ð1=2Þx2 is replaced by x, the system reduces to the classic van der Pol

equation on the Liénard plane.15

It is clear that y is the ‘slow’ variable; i.e., it is finite for all finite points of the domain

of the plane; x, then, is the ‘fast’ variable and takes infinitely large values for some finite

values of its domain. If the trajectory of y is defined to be on that curve at which _x ¼ 0,

then its graph is given by f ðxÞ:
The proof of existence of counter-intuitive cycles being attracted to unstable

manifolds, for the van der Pol system, is straightforward. Let us simply state it, in as

heuristic and intuitive way as possible, to illustrate what we mean; the interested reader

can get a clear idea from the exceptionally clear and detailed article by Zvonkin and

Shubin (1984). The only thing to keep in mind is that a is an infinitesimal in the sense of

non-standard analysis. Then,16 (Zvonkin & Shubin, op. cit., §4.2):

Definition 11. An admissible form for the characteristic, f ðxÞ.
f ðxÞ has an admissible form on a closed interval, say ½b1;b2�; if:
(1) f ðxÞ [ ½b1;b2� is standard and C2;

(2) f ðxÞ [ ½b1;b2� has exactly two isolated extremum points, say a minimum at x0,

and a maximum at x1; and b1 , x1 , x0 , b2; so that: f 0ðxÞ . 0 on ½b1; x1Þ and
ðx0;b2� and f 0ðxÞ , 0 on ðx1; x0Þ;

(3) f ðb1Þ , f ðx0Þ and f ðb2Þ . f ðx1Þ;

Theorem 12. Existence of ‘counter-intuitive’ cycles in the van der Pol system [(2) or (3)–

(5)].

Suppose f ðxÞ has an admissible form on ½b1;b2�; if xb [ R and xb [ ðx1; x0Þ; then ’
value of the infinitesimal a, for which the van der Pol system has a ‘counter-intuitive’

cycle, for which the location of xb is precisely identifiable.

The point of the exercise is that a knowledge of the possibilities for exploring a

dynamical system with parameters and variables taking infinitesimal and infinite values is

indispensable – not just for reasons of pure mathematical aesthetics; but also for eminent

economic reasons. An economist, narrowly trained in standard mathematics will always

have to resort to ad hockeries to handle the infinitesimal and the infinity – for example, in

models capable of relaxation oscillations. Quite apart from aesthetics and pragmatics, it is

also the case that the mathematics of non-standard analysis is intuitively natural and much

simpler, without all the artificial paraphernalia of the ‘12 d’ calisthenics.
But the purist may wonder whether the mathematics of the digital computer, on which

the above simulations helped us ‘discover’ counter-intuitive dynamics, is faithful to the

underpinning logic of algorithmic mathematics. Without the space to go into details we

may refer the interested reader to Palmgren (2001) and Laugwitz (2001), where,

particularly in the former, there is a concerted – and we believe successful – attempt is

made to reconcile the constructive and the non-standard worlds of mathematical analysis.

Suppose, now, we are made aware of Ralph Abraham’s conjectures on stability

(Abraham, 1985, pp. 120–121; underlined emphasis in the original):

K. Vela Velupillai and S. Zambelli8
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The ubiquity of structurally unstable motions . . . . suggests that structural stability is not an
appropriate concept for experimental systems . . . . Here we may hazard a conjecture: all
natural systems are dynamically stable. In fact, we will probably evolve the definition of
stability until this conjecture becomes true.

Simultaneously we, as economists, recall Leontief’s characteristically perceptive

observation (Goodwin, 1953, p. 68; italics added):

Professor Leontief does not accept [that instability is an unrealistic hypothesis] and maintains
that we may utilize dynamical systems that are unstable throughout and cites capitalism as an
example.

The question, then, is: whether dynamic economics (aggregative or not), modelled as a

(nonlinear) dynamical system, is a natural system (Abraham), an experimental system

(Abraham) or an empirical system (Leontief)? There is no a priori reason for any of these

kinds of dynamical systems to be stable for observational, simulational or experimental

purposes (Plott & Smith, 1999) – especially also since it is easy to show that only

dynamical systems incapable of being underpinned by any notion of maximisation

(Samuelson, 1970 [1972], p. 12) are capable of computation universality and, hence,

consistent with the standard assumption of rationality in economics.17

Finally, the simulated dynamics, on only a ‘laptop’ computer, illustrate

unambiguously, the precepts for the synergy enunciated by Norman Zabusky with

which we started this section: ‘The insights gained from attempting to bring these results

into agreement can synergize the rate of improvement of models, algorithms, analytical

methods, and experimental procedures.’ The two most important, unexpected or surprising

improvements were the generation, entirely by the simulation of an orthodox dynamical

system, of the counterintuitive notion of a trajectory attracted to an unstable manifold,

justified by an ‘alternative’ mathematical formalism. Economists, in particular, schooled

for centuries on a particularly narrow vision of what Paul Samuelson quite perceptively

referred to as the ‘dogma of stability’ (Samuelson, 1974, p. 10) in business cycle

theorising, and almost totally ignorant of alternative mathematical formalisms, have much

to gain from what we should henceforth refer to as the Zabusky Precept.18

4. Computation, discretisation, proof and simulations

[T]here is, strictly, no such thing as mathematical proof; that we can, in the last analysis, do
nothing but point19; that proofs are what Littlewood and I call gas, rhetorical flourishes
designed to affect psychology, pictures on the board in the lecture, devices to stimulate the
imagination of pupils. This is plainly not the whole truth, but there is a good deal in it. Hardy
(1929, p. 18); italics in the original

In discussions of the interaction between individual rational behaviour and

equilibrium, an equilibrium that is used to solve an analytical problem is based on

mutual expectations. This, in turn, requires a resolution of an infinite regress in mutual

expectations.

Essentially, one is groping towards a definition of a Nash equilibrium. It is, then,

frequently claimed that20:

‘Computers cannot model such an infinite regress’;

Computers, are ‘based on21 constructive mathematics’;

Constructive mathematics ‘cannot handle’ infinite regress.

We shall take these claims in the above order. First of all, it is plainly incorrect that

‘computers cannot handle an infinite regress’. The infinite regress in expectation in
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economics and game theory is usually ‘broken’ by the utilisation of one or another fix

point theorem, usually non-constructive and uncomputable ones. There are eminently

respectable constructive and computable fixed points that can be utilised to ‘break’ the

infinite regress emerging from the potential indeterminacies of mutual expectations.

In Velupillai (2007, §4), we have, in fact, devised and derived a perfectly well-defined

rational expectations equilibrium using the standard mathematics of the computer – i.e.,

‘recursion theory’. Moreover, there is an eminently rigorous fixed point theorem in

constructive mathematics, derived and proved constructively, on the basis of intuitionistc

logic, by no less an authority than Brouwer (1952), which can be used to define the kind of

equilibrium with the infinite regress of mutual expectations.

The caveat to these objections and our counter-claims are, of course, the implication

that one must go back to the proverbial ‘drawing board’ and formalise the basic closures of

economic theory – especially preferences and endowments, but technology, too,

eventually – either in recursion theoretic terms or constructively. Both of these enterprises

are feasible, have been achieved successfully and are, then, entirely consistent with using

either a computer running on recursion theoretic principles or on constructive mathematics

foundations.22

Second, it is simply not true that computers – i.e., any standard, working, digital

computer – and their associated workings are ‘based on constructive mathematics’.

In every standard, working, digital computer, the mathematical basis is recursion theory

(computability theory), if anyone cares to think deeply enough about it. It is not as if one

cannot make a working computer on the basis of constructive mathematics, or even make

the standard Turing Machine realisation implement programs written in a language

adapting some version of constructive mathematics.23

Third, it is absolutely false that constructive mathematics ‘cannot handle infinite

regress’. It is entirely feasible to handle varieties of ‘infinite regress’ within constructive

mathematics, except that the kind of ‘infinities’ are more carefully defined and invoked

and, therefore, the nature of economics in a constructive mode would be very different

from the orthodox theory of individual rational behaviour, equilibria – whether game

theoretic or not – and, above all, the associated solutions (particularly via existence

proofs, typically of equilibria).

Incidentally, many in economics contrast a ‘digital proof’ with a so-called ‘analytical

proof’. If what is meant by a ‘digital proof’, those theorems that are provable by

programming a digital computer, then every analytical proof, say in standard textbooks on

constructive analysis (Bishop, 1967; Bishop & Bridges, 1985 or Bishop & Cheng, 1972)24

is a digital proof. If by proof is meant, say, those sanctioned by intuitionistic logic only,

then practically every so-called proof in almost any kind of formalised economic theory

fails to be acceptable. Even if not underpinned by intuitionistic logic, in many varieties of

constructive analysis – for example in Bishop (1967) – no appeal will be made to the

tertium non datur in cases where infinitary instances have to be considered. Hence, any

proof of a theorem in mathematical economics or game theory, derived with appeal to the

Bolzano–Weierstrass theorem, cannot and will not be considered a valid proof existence.

By now many are aware that both the Nash equilibrium and the Arrow–Debreu

equilibrium are theorems whose proofs are based on the Brouwer25 (or Kakutani) fixed

point theorem, but few note that this is mainly because the so-called proofs invoked the

Bolzano–Weierstrass theorem, which makes them unimplementable on a digital computer

underpinned by computable, constructive or non-standard mathematics.

In addition, every proof is a logico-mathematical argument. Now, every valid

computer program is a ‘kind of logico-mathematical argument’, but what kind of logic and
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which branch of mathematics underpins a computer program? That will depend on

whether one thinks of a computation in recursion theoretic of constructive sense.

However, Tymoczko’s discussion of ‘surveyability’ of proofs (Tymoczko, 1979)

suggests (p. 59) three characteristics of proof: that they should be convincing, surveyable

and formalisable. He then goes on to claim that surveyability and formalisability ‘are the

deep features [of a proof]’, and that (pp. 61–62; italics added):

It is because proofs are surveyable and formalizable that they are convincing to rational
agents.

Surveyability and formalizability can be seen as two sides of the same coin. . . . . Can there be
surveyable proofs that are not formalizable or formal proofs that cannot be surveyed? Are all
surveyable proofs formalizable? . . . . Given any sufficiently rich theory, we can find a
surveyable proof of a statement of that theory which has no formal proof. . . .

Are all formalizable proofs surveyable? . . . Here the answer is an easy no.

However, if we stop to think about this situation, it appears unlikely that this logical
possibility can ever be realized. . . . .

In summary, although formal proofs outrun surveyable proofs, it is not at all obvious that
mathematicians could come across formal proofs and recognize them as such without being
able to survey them.

Surely, one cannot let these interesting remarks pass unchallenged! First of all, who or

what is a ‘rational agent’? It is entirely conceivable – and formally demonstrable (see, for

example, Putnam (1967, [1975]), Velupillai (2000), especially chapter 3, and Velupillai

(2010), especially parts II and IV) – that an effective characterisation of the behaviour of a

rational agent in the sense of economic theory is formally equivalent to the computing

activity of a Turing Machine. Next, Tymoczko is admirably clear in defining the concept

of formalisability and formal proof – both by appealing to results in model and proof

theory and to Gödel numberings of formal proofs considered as mathematical objects –

but does not define or characterise the meaning – formal or not – of surveyability! In the

case of surveyability he falls back on intuitive concepts such as ‘rational agents’, humanly

surveyable’, ‘recognise’ and so on. Suppose, however, Tymoczko did formally define or

characterise formally the notion of surveyability, in the same sense in which the intuitive

notion of effective calculability was encapsulated in the formal notion of a Turing

Machine or the l-calculus, or partial recursive functions – all formally equivalent to each

other by the Church–Turing Thesis. Then, it will be possible to show that a rational agent

will not be able to recognise as surveyable the proof of some theorems by appealing to the

Halting Problem for Turing Machines. Tymoczko’s admirable and informal discussion is

valid – formally, of course – only on the basis of an invalid asymmetry between his way

of defining, implicitly, the notion of formalisability and formal proofs, but leaving to the

intuitive domain the characterisation of surveyability. This makes the rest of his

‘philosophical’ arguments against accepting, for example, the Appel–Haken proof of the

four-colour theorem much less than formally convincing.

There are many other ways we can cast seriously rigorous doubts against Tymoczko’s

loose, allegedly philosophical, arguments against considering ‘computer-assisted proofs’

as ‘mathematical proofs’, but this must suffice for the moment.26 Within this context of the

discussion of computer-aided proofs, it may also be useful to mention that program

verification is a part of denotational semantics (see Davis, Sigal, & Weyuker, 1994).

However, a serious discussion of program verification requires much more depth and

understanding of the issue, for example as in Platek’s crystal clear, almost pedagogic, yet

deep, article (Platek, 1990). There are those who claim, for example, that ‘program
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verification is more difficult in practice than verifying an analytical proof’ because ‘there

are simply more factors that can go humanly wrong.’ It is easy to give many counter-

examples to this kind of ‘prejudice’.

Just off the cuff, we have in mind something that is of concern for us in our own

research on economic dynamics: the (in)famous example of Dulac’s Theorem, claiming to

have ‘proved’ a theorem contributing to the resolution of the second part of the 16th of

Hilbert’s famous 23 Problems.27 It was published by Dulac in 1923; it was only more than

half a century later, that the errors in the original proofs by Dulac were corrected, by Yulij

Ilyashenko, and, independently, by Écalle (1993)28 (see, for example, Dulac, 1923,29

Perko, 1991, chapter 3 and Ilyashenko & Yakovenko, 1995).

More pertinently, we would like to provide two examples of ‘computer-aided’ proofs,

both executed with full cognizance of the difficulty of program verification but, at the

same time, with rigorous and transparent criteria explicitly made to make sure that any

‘factors’ that ‘can go humanly wrong’ can be detected and corrected, if anyone wishes to

do so. But more importantly, the first example shows the intimate way mathematical

theory, experimental simulation and deep numerical analysis were brought to bear to

resolve a long-standing paradox. The first is the very recent proof of the existence of the

Lorenz Attractor (Tucker, 1999). In 1985, no less an authority on dynamical systems

theory than Morris Hirsch observed, for the Lorenz System30 (Hirsch, 1985, p. 191; second

set of italics added):

[C]haotic behaviour has not been proved. As far as I am aware, practically nothing has been
proved about this particular system. . . . It is of no particular importance to answer this
question; but the lack of an answer is a sharp challenge to dynamicists, and considering all the
attention paid to this system, it is something of a scandal.

In the same volume in which Hirsch’s article appeared, another distinguished

dynamical system theorist, Ralph Abraham, added his nuanced opinion – in softer phrases

– to this ‘scandal’ (Abraham, 1985, p. 117; italics added):

The chaotic attractor of mathematical theory began with Birkhoff in 1916. The chaotic
attractor of simulation experiment arrived with Lorenz in 1962. . . . The identification of these
two objects has not yet succeeded, despite many attempts during the past twenty years.
Of course, everyone (including myself) expects this to happen soon . . . .

However, Abraham’s own take on the ‘scandal’ was expressed in another way, a little

further down (p. 118; underlined phrase in the original, italics added):

However, most of the time experimentalists observe not braids (rationally related frequencies)
but quasi-periodic motions (apparently irrationally related frequencies). That is the quasi-
periodic paradox. More than one scientists has lost faith in mathematics because of the
ubiquity of this illegal motion in the natural world.

The most interesting point here is that the ‘scientist lost faith in mathematics’ because

it was not able to make sense of the ‘simulation experimentalists’ observation.

Now, the Lorenz system is the paradigmatic repository of the property that almost

characterises so-called chaotic dynamical systems: sensitive dependence on initial

conditions (SDIC). For example, in the above case of the Lorenz system, can one expect

the analyst, experimenter, simulator or whoever to be able to use the digital computer to

faithfully replicate the dynamics of the continuous time-space Lorenz system’s nonlinear

dynamics – SDIC and all – ‘exactly’ (in any sense)? No serious experimenter, simulator,

numerical analyst or even a mathematically competent dynamical system theorist would

forget that the digital computer has its own way of truncating floating point representation
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of real numbers, depending on its internal, built-in, precision. A system of nonlinear

equations, such as Lorenz’s, susceptible to the problems of SDIC, cannot, therefore,

almost by definition be represented ‘exactly’, if we interpret the phrase in its obvious,

intuitive, way (for lack of a formal definition).

However, suppose we interpret ‘exactly the same way’ to mean that the numerical

method that is implemented on the digital computer to simulate, experiment with, or

analyse, the Lorenz system, should be mathematically equivalent to it, then we must ask

what ‘mathematical equivalence’ entails. This is one kind of frontier research in the

interface between nonlinear dynamics and theoretical numerical analysis, elegantly

summarised in Stuart & Humphries (1996).

Another way to make sense of this thorny issue of ‘exactly’ would be to construct a

Turing Machine equivalent of, in this case, the Lorenz system. Then, of course, the

question becomes: What is the meaning of ‘Turing Machine equivalent? Again, a precise

answer can be given (as we have tried, over the years and in many of our writings; cf., for

example, Velupillai, 2000), so that one circumvents the pitfalls of discretisations and the

rounding errors due to the computer’s internal floating point (or ‘fixed point’ – not in the

sense of the usual ‘fix point’ theorems) representations and truncations.

Finally, there is the fairly straightforward alternative of using interval analysis (cf.,

Moore, 1966) for the numerical method that is implemented in the digital computer to

analyse, experiment or simulate the continuous time-space system, in this case, of course,

the Lorenz system. It is this alternative that is chosen in Tucker’s computer-aided proof of

the existence of the Lorenz attractor (Tucker, op. cit., especially pp. 1200–1211).

But, surely, the existence of the Lorenz Attractor should be a classic analytical proof

– perhaps utilising one or another (non-constructive) fix point theorem? Why, then, this

preoccupation with ‘discretisations’ and ‘presentations of exactly the same model’ to a

digital computer? For the same reasons that the proof of the four-colour theorem was

achieved by Appel and Haken with the aid of a digital computer (see, for accessible, but

quite complete details, Saaty & Kainen, 1986, chapter 3). The parallels are even more

than just the recourse to a digital computer to evaluate complex numerical calculations.

In Tucker (op. cit., p. 1199), he begins with a classic mathematical method of an Ansatz,

an intuitive hunch, which will, hopefully, be confirmed by the results of the complete

analysis and necessary evaluations. The intuitive hunch is not a frivolous guess; it is an

educated guess of the right starting point, based on a thorough knowledge of all possible

aspects of an unsolved problem – in this case that of finding a correspondence between

a mathematical object and an experimentally discovered one. In Tucker’s Ansatz, normal

form theory is combined with rigorously implemented digital computations are brought

to bear on getting the desired final result. In deriving the normal form, an analytic

change of coordinates leads to a classic small divisor problem, which to complete a

necessary element of the analytic proof requires the numerical evaluation of 19,386

low-order divisors.31 It is here that the ‘computer-aided’ part of the proof acts as a

‘scratch pad’.

Correspondingly, it is possible to identify the Ansatz in the Appel–Haken proof: it is a

particularly well-informed probabilistic argument establishing, with almost absolute

certainty that32 (Saaty & Kainen, op.cit., p. 83; italics added):

[T]here must exist some discharging procedure producing an unavoidable set all of whose
configurations are reducible. That is, they showed that the computer-assisted reducibility
proof was overwhelmingly likely to succeed . . .

Journal of Economic Methodology 13

D
ow

nl
oa

de
d 

by
 [

St
ef

an
o 

Z
am

be
lli

] 
at

 2
2:

52
 1

3 
D

ec
em

be
r 

20
15

 



However, in these kinds of hybrid proofs, where the analytic (usually non-

constructive) and the numerical or combinatorial elements are brought to bear upon a

procedure or a thought-experiment, the dividing line between the domain of the two has to

be carefully distinguished. In Tucker’s case, (1199):

a change of variables . . . in a small cube centered at the origin, transforms the Lorenz
equations . . . into a carefully selected normal form . . . Inside the cube, we can then estimate
the evolution of trajectories analytically, and thereby we avoid the problem of having to use
the computers in regions where the flow times are unbounded.

The construction of the small cube, via the change of variables, entails ‘an analytic change

of coordinates, which . . . introduces a small divisor problem’, all 19, 386 of them, which

then necessitates recourse to a digital computer and to interval analysis to compute,

numerically, their estimates. The versatile Tucker wrote a ‘small C-program, SMALLDIV.C’

(Tucker, 1999, p. 1200) to estimate these small divisors.

An illustration of this point is made in Ruelle’s report of one of Oscar Landford’s

computer-aided proofs (Ruelle, 2007, p. 100).33

My colleague Oscar Landford reported once on a theorem [whose] proofs [was] computer
aided, which means that it consists of some mathematical preliminaries and then a computer
program. The program (or code) uses interval arithmetic to check various inequalities; if these
are found to be correct, the theorem is proved. The complications of the problem forced
Landford to write a relatively long program, about 200 pages. . . . . Oscar Landford is a very
careful person, and he took pains to check that, when the code is fed into the computer, the
computer does exactly what it is supposed to do. In this manner – after the computer has
agreed with the inequalities in the code – the proof of the theorem is complete.

Scarf’s elegant, clear and complete exposition of the genesis of the CGE research

program (Scarf, 1973), admirable though it is – and resides as the core fountainhead of the

genesis of the core of current orthodoxy in the Neowalrasian cloisters, the real business

cycle (RBC) model’s RCE – simply does not confront the conflict between the analytical

and the constructive or the computable domains. The interplay between the analytical and

the numerical was bridged by the Uzawa equivalence theorem and the parallels with

discharging procedures, unavoidable sets and reducibility can be identified with the

construction of a specific sequence of primitive sets, replacement operations, labelling,

etc. In fact, a study of the precise structure of the computer-aided nature of the

establishment of Scarf’s Theorem (Scarf, 1973, p. 45, Theorem 2.5.1) and its utilisation in

demonstrating the original Brouwer fixed point theorem would be the starting point for a

way to reduce the remaining indeterminacy in this research program (p. 51): the

constructive or computable determination of ‘a convergent subsequence of subsimplices

. . . which tend in the limit to a single vector x *.’ The missing link is an imaginative

Ansatz.34 In its absence, the CGE program, followed by its uncritical application by the

applied general equilibrium practitioners and, then, taken up even more uncritically by the

RBC theorists, remains unfinished because (Scarf, 1973), p. 52:

The passage to the limit is the nonconstructive aspect of Brouwer’s theorem, and we have no
assurance that the subsimplices determined by a fine grid of vectors on [the price simplex]
contains or is even close to a true fixed point of the mapping.

Yet the whole program has been accepted as having been successful in determining

constructive and computable methods to locate Walrasian equilibria proved to exist by

Arrow and Debreu, of course, non-constructively. This magic transformation of a non-

constructively derived uncomputable equilibrium, via an algorithm that appeals to an

undecidable disjunction during its execution, is uncritically accepted by the inhabitants of

the Neowalrasian cloisters and is taken to define – implicitly, of course – the ‘perfect
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model’ of the economist. This kind of economist knows, perhaps, instinctively, that there

is no point in simulating anything, using a non-constructive algorithm, to find an

uncomputable equilibrium

Finally, it may well be apposite to remember another aspect of computer-aided

proofs – the candour and care with which those who appeal to the computer, at any

particular stage of a proof, make available the codes and the kind of Ansatz that may have

forced them to seek the aid of the computer, so that any interested person could repeat,

check or whatever, the procedures adopted in the interface and by the computer. How

many analytical proofs are made transparent in this way – particularly in the cloisters of

mathematical economics?

5. Reflections and bright hopes

The vital discovery which made possible the analysis of a process of change, in properly
economic terms, was the introduction of accounting procedure. While economists were
fumbling around to find a set of categories by which they could make a formal analysis of
economic change, other people were doing the job in a professional manner. In all its main
forms, modern economic dynamics is an accounting theory. It borrows its leading concepts
from the work of which had previously been done by accountants (with singularly little help
from economists); and it is in accordance with this that social accounting should be its main
practical instrument of application. Hicks (1956, p. 141); italics added.

It was fitting that Hicks, who considered himself An Accountant Among Economists

(Klamer, 1989), made these observations in the Festschrift for Lindahl, himself the

founding father of Macroeconomics underpinned by social accounting. There is no better

exponent of this particular vision of modern economic dynamics as an accounting theory

and social accounting as its main instrument of application than Lance Taylor. It is in this

particular sense that we believe Taylor carries on the noble tradition of Petty, the Swedes

of the Period of Shackle’sHigh Theory – in particular, Lindahl, Myrdal and Svennilsson –

and the parallel work of Frisch in the same period, inherited by Leif Johansen, and the

Keynes of How to Pay for the War (Keynes, 1940), from which the Political Arithmetic

of Stone emerged.35 It was profoundly misleading for the computational economists who

underpinned their economics in equilibrium and rationality to seek to claim they were

working in the traditions of Leif Johansen, who was balancing accounts in a social

accounting framework.

The numbers that make up a social accounting system – whether in formal matrix

format or in any other scheme that allows the accounting balance, over time, of credits and

debts, retrospectively or prospectively – are, at best, rational numbers. The founding

father of Political Economy, Petty, laid the foundations for Political Arithmetic, in his

opening statement in Political Arithmetick36

The Method I take to [carefully examin[e] whatever tends to lessen my hopes of the publick
Welfare, is not yet very usual].. for instead of using only comparative and superlative Words,
and intellectual Arguments, I have taken the course (as a Specimen of the Political
Arithmetick I have long aimed at) to express my self in Terms of Number, Weight, or
Measure; to use only Arguments of Sense, and to consider only such Causes, as have visible
Foundations in Nature; leaving those that depend upon the mutable Minds, Opinions,
Appetites, and Passions of particular Men, to the Consideration of others.

William Petty, Preface to Political Arithmetick (3rd ed., http://www.marxists.org/reference/
subject/economics/petty/); italics added

The natural data types of the ‘number, weights and measures’ in economics and

finance are the integers or rational numbers. But almost without exception all economic
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and finance theorising assumes that observable data – or even digitally generated data,

from these two spheres – are real numbers (or, in moments of enlightened weakness, one

or another kind of the non-standard reals). How the real numbers of theory are related to

the numbers that a digital computer can process, is never specified – at least not in any of

the standard advanced (or even elementary) textbooks in economics, finance, IO, game

theory or whatever. Maury Osborne’s warning to traders in the stock market, not to

approximate by the continuous that which is intrinsically discrete,37 made over a quarter of

a century ago, has never been heeded by the ‘traders’ but, even worse, not even those who

sometimes provide the hilfskonstruktion of computer programs for their ‘mechanised’

responses to actual events, represented by the ostensibly patterned data on computer

screens:

As for the question of replacing rows of closely spaced dots by solid lines, you can do that too
if you want to, and the governors of the exchange and the community of brokers and dealers
who make markets will bless you. If you think in terms of solid lines while the practice is in
terms of dots and little steps up and down, this misbelief on your part is worth, I would say
conservatively, to the governors of the exchange, at least eighty million dollars per year.
(Osborne, 1977 [1995], p. 34; italics added)

Hayes (2003) reminded us – at least those of us concerned with respecting the discrete

and finite precision nature of digital computers – of the dangers of arbitrary

approximations and routinised truncations of standard computations:

On February 25, 1991, a Patriot missile battery assigned to protect a military installation at
Dahrahn, Saudi Arabia, failed to intercept a Scud missile, and the malfunction was blamed on
an error in computer arithmetic. . . . In combination with other peculiarities of the control
software, the inaccuracy caused a miscalculation of almost 700 meters in the predicted
position of the incoming missile. Twenty-eight soldiers died. (Hayes, 2003, p. 484; italics
added)

What was this tragic ‘error in computer arithmetic’? It is simply due to the fact the

binary fraction for the decimal fraction 1021 ¼ 0:1 is not terminating:

1021 ¼ ð0:1Þ10 ¼ ð:0001100110011 . . . Þ2 ¼ ð0 0011 0011 0011 . . . :Þ2 ð7Þ
In other words, the decimal fraction, in its binary notation, cycles and is non-

terminating and will have to be truncated with unpredictable consequences, unless a

serious approximation analysis is included in the software which truncates automatically

for some predetermined instruction. But there is another alternative, in the case of pitfalls

due to the discrete and finite nature of the digital computer and its arithmetic. This

alternative would be to use interval analysis, where an ‘interval of real numbers is treated

as a new kind of number, represented by a pair of real numbers, namely its right and left

end points’ (Moore, 1966, p. vii; italics added). Had such numbers been used in the

software that was built into the operation of the control software referred to above, the

error would have been eliminated.

But there are, in fact, (at least) six ways of mathematical theorising where a

computational basis is naturally embedded:

. Varieties of Constructive Mathematics and Constructive Analysis (Bridges &

Richman, 1987)

. Computability Theory and Varieties of Computable Analysis (Cooper, 2004,

Weihrauch, 2000)

. Interval Analysis (Russian Constructivism, cf., Aberth, 2001, Moore, 1966, Moore,

Kearfott, & Cloud, 2009)
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. Real Computation (the ‘Smale School’, cf., Blum, Cucker, Shub, & Smale, 1998)

. Smooth (Infinitesimal) Analysis (cf., Bell, 1998)

. Numerical Analysis (cf., Stuart & Humphries, 1996)

We have, in a series of writings over the past decade (see many of the essays in

Velupillai, 2010 and Velupillai, 2009), reflected on the nuanced differences in these

mathematical theories, and their applications in economics. The interested reader is

referred to them for more detailed information on these mathematical theories, their

alternative logical foundations, the nature of their algorithmic underpinnings, and much

else – for example, in particular, on the role (or non-role, as the case may be) of the

Church–Turing Thesis in the different theories. If economic theorising eschews an

underpinning in one or another of these mathematical theories, the computational claims

and, hence, the feasibility and meaning of simulation by machine computation to explore

their non-analytical aspects borders on the absurd (in the noble sense of The Theatre of

the Absurd – pace Esslin).

We have argued that economic relationships, whether micro or macro, whether in

game theoretic or IO modes, whether in finance or interindustrial analysis, should be

formulated as Diophantine equations. Such equations, or systems of equations, are rarely

algorithmically solvable, in general, without extensive simulational experiments which

lead to new theoretical insights, encapsulated in innovative conceptual analysis.

Essentially, the case we are putting forward is that the framework developed for studying

and resolving Hilbert’s Tenth Problem should be the paradigmatic one for any research

field in economics, whose theoretical basis is underpinned by digital machine computation

Consider, for example, the following three apparently ‘simple’ Diophantine equations

(Poonen, 2008, p. 344), and ask the seemingly straightforward question whether they have

solutions in integers:

X 3 þ Y 3 þ Z 3 ¼ 29 ð8Þ

X 3 þ Y 3 þ Z 3 ¼ 30 ð9Þ

X 3 þ Y 3 þ Z 3 ¼ 33 ð10Þ
To date, we know that the answer is in the affirmative for (8), and for (9), that the

answer is ‘yes’ is known only since 1999 (the solution is: 2283059965, 22218888517,

22204229320). However, (10) is still to be ‘cracked’! Of course, in a strictly economic

context, interpreting the right hand side as the available ‘budget’ for spending and the left

hand side as the allocation of spending on three items – without bringing into play the

motivational base for the alternative choices – it is clear one seeks solutions that are not

only integer valued, but also non-negative. One must ask, in this context, why the

mathematisation of economics, which claimed to go beyond the ‘Walrasian’ method of

simply (sic!) counting equations and variables to ensure consistency and ‘meaningful’

solutions, did not go further than considering non-negative real values for economic

variables? I have my own answers to this quasi-hypothetical question, but this is not the

place to express and attempt to justify it.

In any case, continuing the theme of advocating a Diophantine approach to economic

theorising and modelling, it may well be appropriate, at this point – and given many of the

themes discussed above, particularly in Section 2, we might as well state the Diophantine

conundrums of dynamics, from the point of view of computability, and hence, obviously,

the importance of simulation to help resolve some, at least of the ‘conundrums’. Indeed, to
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take up the subject discussed above, the Peano Existence Theorem for the IVP of ODE’s,

one of the frontier research results in applied recursion theory is the following, (see,

Matiyasevich, 1993, chapter 9):

Theorem 17. There is no effective method for determining, for an arbitrary system of

differential equations of the form,

P1 x;J1 xð Þ; . . . ;Jk xð Þ;J0
1 xð Þ

� �
¼ 0

. . .

. . .

Pk x;J1 xð Þ; . . . ;Jk xð Þ;J0
k xð Þ

� �
¼ 0

; ð11Þ

where P1; . . . ;Pk are polynomials with integer coefficients, whether the system has a

solution on the interval 0; 1
� 	

:
This is just one representative result, in an important applied domain, derived using a

uniform method of proof.

Essentially this means one has to resort to what we have called the Zabusky Precept to

breach the algorithmic walls and make conceptual advances in economics in the

Diophantine mode. Nothing less than simulation by machine computation of Diophantine

dynamics should be the research program of economics.

Richard Stone was prescient, as he always had the penchant to be, when dealing with

issues that had to do with computations, simulations, numerical collation of statistical data

and quantitative modelling:

Our approach is quantitative because economic life is largely concerned with quantities.
We use computers because they are the best means that exist for answering the questions we
ask. It is our responsibility to formulate the questions and get together the data which the
computer needs to answer them.

Richard Stone, Foreword to Stone & Brown, 1962 p. viii; italics added.

If we supplement this admonishment to the empirically oriented economic theorist,

with David Deutsch’s equally important – and eminently rigorous – insight, we – as

economists – are well on the way to an empirically implementable algorithmic research

program encompassing the triad of computation, simulation and dynamics indissolubly

(Deutsch, 1985, p. 99):

Every finitely realizable physical system can be perfectly simulated by a universal model
computing machine operating by finite means.

Deutsch enunciated the Turing Principle on the basis of a searching analysis of the

meaning of the Church–Turing Thesis. He came to the conclusion that underpinning the

Church–Turing Thesis there was a physical principle, which he enunciated as the above

Turing Principle. Naturally, the Turing Principle, as given above, requires a precise

statement of what is to be meant by ‘perfectly simulated’. Deutsch, being the serious

scientist he is, did not forget to add a definition of ‘perfect simulation’ (Deutsch, 1985,

p. 99; italics added):

Definition 18. A computing machine M is capable of perfectly simulating a physical

system S, under a given labelling of their inputs and outputs, if there exists a programPðSÞ
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for M that renders M computationally equivalent to S under the labelling. In other words,

PðSÞ converts M into a ‘black box’ functionally indistinguishable from S.

Much of our discussions above have had as a backdrop the precise theory of

computation, which is underpinned by the Church–Turing Thesis. But we have also

consciously adopted – although, we hasten to add, only pro tempore38 – Deutsch’s

important extensions, all of which seem to be consistent with the stand taken also by

Gandy (1980), on the physical principles that will have to be the basis on which the

Church–Turing Thesis is interpreted in computability theory. Even though we worked

with an informal – but, hopefully, precise – definition of ‘simulation’, our arguments

above have been made with the precise definitions of Deutsch in mind. It is, therefore, just

as well, we state them precisely, at this concluding stage.

It is our belief, in this time and age, that economists with aims and ambitions to

construct models and theorise with mathematical tools, should be exposed to the

availability of a variety of mathematics and, correspondingly, different logical bases for

them. To be taught mathematical economics as if real analysis and set theory are the be

all and end all is absurd, especially when the next step is to use the mathematical

models built on such foundations for computation by a digital computer, which is based

on wholly different mathematical and logical principles: constructive mathematics and

proof theory, on the one hand; or the theory of computation and recursion theory, on

the other – with category theory in the wings to help us dispense with set theory

altogether.

From our own experiences in teaching and interaction with colleagues, we are

painfully aware that economists are, in general, blissfully ignorant of any notion of limits

to computation, even with ideal machines. But even worse is the equally blissful ignorance

on the intrinsic limits to the results obtained with real analysis, underpinned by set theory

plus the axiom of choice, let alone the impossibility of adapting such results, from such

domains, for computation on machines built on a wholly different mathematics – even

with the most rigorous and careful notion of ‘approximation’.

Economists have never shunned simulation. However, they may have misused it,

perhaps due to a misunderstanding of the notion, nature and limits of computation, even by

an ideal machine. Engineers do not attempt to design perpetual motion machines that

violate the laws of thermodynamics or mechanics, although cranks, over the centuries,

have claimed to have done so; most of the models emanating from work in economic

theory belong to The Museum of Unworkable Devices39– at least when viewed from the

vantage point of constructive mathematics or recursion theory, i.e., from the point of view

of computation. How those in the Walrasian, Neowalrasian and New Keynesian cloisters

make their unworkable devices perform the tasks that need to be done, just for survival, is

beyond our commonsense comprehension.

Surely, a strong case can be made for making economists, at least at the level of

graduate pedagogy, aware of The Museum of Unworkable Devices and The Association for

the Study of Failure (Shippai Gakkai)! An imposing catalogue of unworkable devices and

their failures can easily be composed, entirely out of the products coming out of the above

three – and other – cloisters, even without any mediation from constructive mathematics

or recursion theory.

Only common sense of a universal variety and the ability to think logically –

preferably, but not necessarily, along the natural lines outlined by the Brouwerian

Intuitionists – are required to understand, and work with, the above concepts, all of which

are elementary in a deep mathematical sense. We have never found any advanced

undergraduate or graduate student of reasonable maturity to have had any difficulty
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whatsoever with understanding the case we make for an economic theory framed in a

mathematics that can handle these concepts. Since an economic theory encapsulating the

possibility of, say, a computationally universal dynamical system, can only be explored by

actual simulation – ‘to collect specimens, to describe them with loving care, and to

cultivate them for study under laboratory conditions’ (Temple, 1958) – of the relevant

system, it is natural for such students to realise that there is a wholly different world of

economics than the one peddled by the purveyors of the ideas and tools emanating from

the above cloisters.

No one equipped with the above concepts and their mathematical and epistemological

underpinnings would dream of thinking that bounded rationality is some special subset of

the economist’s notion of rationality – the quintessential ‘unworkable device’. No one

who understands the ubiquity of non-maximum dynamical systems and understands the

notion of computation universality would try to anchor a norm in equilibrium dynamics.

No student of economics, equipped with these concepts, even at the level of nodding

acquaintance, would feel comfortable in the Walrasian, Neowalrasian and New Keynesian

cloisters, themselves located in Cantor’s Paradise. It may well be apposite to end this long

essay, a paen (we hope) to the triad of computation, simulation and dynamics in their

epistemological settings, remembering the thoughts of two of the giants of 20th century

mathematics and philosophy, David Hilbert and Ludwig Wittgenstein:

Hilbert (1925 [1926], p. 191): ‘No one shall drive us out of the paradise which Cantor has
created for us.’

Wittgenstein (1974, p.103): ‘I would say, “I wouldn’t dream of trying to drive anyone out of
this paradise.” I would try to do something quite different: I would try to show you that it is not
a paradise – so that you’ll leave of your own accord. I would say, You’re welcome to this; just
look about you.” ’
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Notes

1. Long before Zermelo gave it the name, axiom of choice, 14 years later.
2. An unfortunate example of this kind of infelicty can be found in Boumans, 2001, especially

pages 74 & 81.
3. We suspect Cohen means ‘solve mathematical problems’, since ‘solving mathematical

theorems’ seems a meaningless phrase.
4. The claims on computation in standard advanced microeconomics (e.g., Mas-Colell, Whinston,

& Green, 1995, especially § 20.D) or general equilibrium theory (e.g., Arrow & Hahn, 1971,
especially chapter 5 and §. 5 in Appendix C) are easily shown to be untenable from the point of
view of any of the six mathematical frameworks for a model of computation, listed in the
concluding section.

5. The discerning reader would easily recognise that we disagree quite comprehensively with the
discussion, characterisation and visions of ‘computational economics’ in Mirowski (2002,
especially in chapter 8, p. 523 ff). There are also at least five varieties of game theory: (vN-M/
Nash orthodox) Game Theory, Algorithmic Game Theory, Constructive Game Theory,
Arithmetic Games and Combinatorial Games. Of these the second is really only an attempt at
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‘algorithmising’ orthodox game theory in the same sense in which computable general
equilibrium theory tried to make computable sense of orthodox general equilibrium theory.
The last three are intrinsically computational – with the third squarely in the constructive
mathematics fold and the fourth (mostly) underpinned by classical recursion theory.
Combinatorial game theory could be underpinned by either constructive or computability
theory.

6. The word ‘constructive’ in the title of the article by Testfatsion (loc.cit) has nothing whatsoever
to do with any ‘variety of constructive mathematics’. The claims, definitions and
characterisations of constructive mathematical aspects of agent-based economics in Epstein
(2006, chapter 1) are technically incorrect. In particular, the characterisation of
nonconstructive existence proofs in terms of acceptance of the tertium non datur, implying
that the contrary in the case in constructive existence proofs (ibid, pp. 11-12), is not accurate
(cf., Brouwer, 1908 [1975]). This is because the author has not stated the kind of tertiium non
datur unacceptable in constructive mathematics. Above all conflating computability theoretic
statements, themselves imprecisely stated, with constructive ones, makes the whole argument
meaningless, from a mathematical point of view.

7. Once again we are in profound disagreement with the views expressed in Mirowski, 2002 on
the origins and current status of this area of research. In particular, his technical discussions of
the work of Alain Lewis (cf., Velupillai, Zambelli, & Kinsella, 2011, for many of the published
classics by Lewis and the Introduction, loc cit., for a summary of his contribution to the ‘proto-
history’ of the subject) are technically incorrect and misleading in many instances. Moreover,
the technical contents of the letters by Lewis to Debreu, quoted on pp. 431-2 and pp. 526-7, of
Mirowski, op.cit., contain serious errors, which makes the implications drawn in the text
meaningless. In particular, the notions of combinatorial, finite and totally finite models,
continuity and Peano Arithmetic are used, and referred to, by Lewis in unfortunately imprecise,
indeed incorrect, ways. The juxtaposition of combinatorial and recursive analysis, on the one
hand, and combinatorial and totally finite models is simply incorrect, from a purely
mathematical point of view.

8. Our stance on this issue is reflected exactly by the view held by our friend, Lance Taylor. After
attending the recent 50th anniversary celebrations of the Johansen Model, held in Oslo, Lance
wrote as follows (E-mail to Velupillai, 27 August, 2010; italics added):
[Most participants at the] conference in honor of the 50th anniversary of Johansen’s MSG
model [held in Oslo in May, were] thinking that Leif was taking off from Arrow–Debreu
when in fact he was doing disaggregated macro planning, moving around the numbers in
a set of accounts that they had been constructed to satisfy. There is certainly no mention of
A-D in his book.

9. Although even this admirable monograph is now – 13 years after publication – clearly out of
date, given the massive research and results on variations of the Fermi–Pasta–Ulam
(henceforth referred to as FPU) problem that have been, and are being, conducted at the
frontiers of what has come to be called ‘experimental nonlinear dynamics’.

10. One of the authors of this crystal clear exposition of the FPU problem, Norman Zabusky, was
himself a pioneer in extracting new theoretical directions of research – and, indeed, together
with his co-author, Martin Kruskal, to whose memory this particular article by Porter et al., is
dedicated in (re-)discovering and giving a mathematical formalism to ‘solitary waves’, now
called solitons. By retaining the original continuum domain of the FPU theoretical framework,
and eschewing the discretisations necessary for digital computer implementation, they were
able to predict the existence of solitons (see, in particular, Zabusky, 2005).

11. The field is a paradigmatic example of that classic approach Koopmans called ‘measurement
without theory’.

12. An egregious example of such an excessive and completely unfounded. in any kind of practice
or theory – claim is the one made by Leijonhufvud (In his chapter, titled Agent-Based Macro
[Tesfatsion & Judd, 2006], p. 1626; italics added):
Agent-based computational methods provide the only way in which the self-regulatory
capabilities of complex dynamic models can be explored so as to advance our
understanding of the adaptive dynamics of actual economies.
Quite apart from the many undefined and even formally (unambiguously) undefinable concepts
in this statement, the extraordinary claim that ‘agent-based computational methods provide the
only way’ to understand anything, let alone of the ‘adaptive dynamics of actual economies’
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must rank with the most foolish claims, even in a field replete with an embarrassment of riches
of this class of assertions.

13. Zabusky’s imaginative Visiometric approach was developed independently of Ralph
Abraham’s equally illuminating development of the Vismath vision for studying the geometry
of dynamic behaviour (see, for example, [Abraham & Shaw, 1984]).

14. Zabusky has almost from the outset of his sustained work on the Fermi–Pasta–Ulam problem
used the word.synergize.in the sense in which it was first used, in a similar context, by Ulam
(cf., [Ulam, 1960], chapter VIII, § 10):
I use the word ‘synergetic’ here to mean the enhancement in the rate and depth of
mathematical understanding through the combined use of analysis and computer
simulation.
May one be forgiven for wondering, in ‘Nozick mode’, if not simulation by a computer, then
simulation by what?

15. We chose the ‘characteristic’ with the 1=2x 2 term, instead of the x term only because we had
severe difficulties of precision to get the kind of phase-plane dynamics we could have got with
a computer capable of more precise computations.

16. This is only a sufficient condition and the ‘admissible curve’ is simply a formalisation of the
traditional ‘cubic characteristic’ for the van der Pol equation. We conjecture that a ‘counter-
intuitive’ cycle in the sense defined above, can be shown to exist even without a ‘cubic
characteristic’; say, for example, with a ‘characteristic’ of the form: tðe_x 2 2Þ. Such a form
would have only one isolated maximum or minimum.

17. A concise summary of the relevant results are:

Definition 13 Dynamical Systems capable of Computation Universality:
A dynamical system capable of computation universality is one whose defining
initial conditions can be used to program and simulate the actions of any arbitrary
Turing Machine, in particular that of a Universal Turing Machine.

Proposition 14 Dynamical systems characterisable in terms of limit points, limit cycles or
‘chaotic’ attractors, called ‘elementary attractors’, are not capable of universal
computation.

Theorem 15 There is no effective procedure to decide whether a given observable trajectory is
in the basin of attraction of a dynamical system capable of computation universality

Claim 16 Only dynamical systems capable of computation universality can generate behaviour that
cannot be encapsulated in, or rationalised by, any notion of maximisation.

18. We must hasten to add that what we have referred to here, as the ‘counterintuitive notion of a
trajectory attracted to an unstable manifold’ is not an entirely new or fanciful notion for
economics. It is a partial property of the famous Keynes-based Hicksian, piecewise linear,
endogenous, model of the trade cycle (cf. Sedaghat, 1997).

19. But ‘point’ at what? At selecting, in the face of an undecidable disjunction, a particular
subsequence from a closed and bounded sequence of which it is a member? Or does one point
at the choice – i.e., a ‘selection’ – of an element from an uncountable infinity of sets, appealing
to the axiom of choice? These are the kinds of selections and choices that are routinely appealed
to, and claimed as feasible, in the proofs of theorems by orthodox mathematical economists

20. Of course, in all of the ensuing three counterfactual statements it is to a digital computer that
reference is made. Only insignificant modifications need be made to our discussion if, instead
of ‘constructive’, we had used ‘recursion-theoretic’.

21. Presumably, one means ‘computer behaviour’, i.e., the underlying program on the basis of
which the computer processes data, whether numerical or not.

22. For a representative, but not exhaustive, sample of such work, see Velupillai et al. (2011).
23. See the eminently readable text by Nordström, Petersson, and Smith (1990) for an elegant and

accessible introduction to Martin-Löf’s type theory, developed ‘with the aim of being a
clarification of constructive mathematics’ (Nordström et al., 1990, p. 1). Several of the essays
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in [Crosilla & Schuster, 2005], particularly chapters 1 & 6, are equally illuminative on the kind
of approach to programming practicable computers with program languages developed for the
specific purposes of encapsulating constructive mathematics.

24. See also the elegant and illuminative discussion on Algorithm in Modern Mathematics and
Computer Science by Knuth (1981), where he states unambiguously (p. 94):
The interesting thing about [Bishop’s Constructive mathematics] is that it reads essentially
like ordinary mathematics, yet it is entirely algorithmic in nature if you look between the
lines.

25. Of course Brouwer did derive, as mentioned above, 40 years after he first derived the non-
constructive version of the fixed point theorem that bears his name, a fixed point theorem based
on intuitionistic logic, that had the express aim of avoiding any reliance on the Bolzano–
Weierstrass theorem (see the first footnote in Brouwer, 1952).

26. We should refer, here, to ‘De Millo, Lipton, & Perlis, 1979’ (De Millo et al., 1979), to begin a
discussion on program verification and to the counter-argument given with pungency and
clarity by Fetzer (1988). Actually, however, the nuanced discussion in De Millo et al. (loc. cit)
is far richer and more persuasive than a first reading may suggest.

27. The second part of Hilbert’s 16th Problem remains unsolved, to this day.
28. Incidentally, Écalle’s proof of Dulac’s conjecture was constructive.
29. Wemust confess that we have never actually read the original by Dulac in the detail it deserves.

Our own favourite text on this problem, which also gives a complete report on the rich Chinese
tradition of research in this area, is the monograph by Ye Yan-Qian and his many collaborators,
(Ye & Others, 1986).

30. The Lorenz System is as follows:

dx

dt
¼ 210xþ 10y

dy

dt
¼ 28x2 y2 xz

dz

dt
¼ 2

8z

3
þ xy

31. The knowledgeable reader would immediately recognise the similarity with the origins of what
eventually became the celebrated Kolmogorov–Arnold–Moser (KAM) theorem in dynamical
systems theory. Small divisors, quasi-periodic orbits, perturbations (of Hamiltonians) – all
issues we have had to mention in our various discussions, above – play significant parts in the
motivation and the eventual formalisation Kolmogorov’s original conjecture.

32. Having first produced 1936 reducible configurations, at least one of which had to occur in any
planar triangulation.

33. In the spirit of complete honesty and candour with which we hope we have written this article,
in fairness to the sceptics of the mathematical purity of computer-aided proofs, we must inform
the reader the following fact. The continuation of the above quoted paragraph by Ruelle may be
‘rather disheartening’ to people like us, who believe that such proofs are on an equal footing,
mathematically, to so-called ‘analytical proofs’.

34. The Ansatz will have to find a way either to avoid any appeal to the Bolzano–Weierstrass
theorem or to work directly with constructive mathematics without undecidable disjunctions.
In fact, Brouwer’s Intuitionistically corrected proof of his original theorem (Brouwer, 1952) is
the solution – but only if the foundations of the theory developed in the Neowalrasian cloisters
is redone in terms of constructive mathematics. Our own intuition is that ordinary economic
theory, formalised on N;Q; orZ, would avoid reliance on fix point theorems for the proof of
equilibrium and, hence, would be amenable to a fruitful interaction of the analytic and the
combinatorial to prove, with the aid of the digital computer, the existence of an equilibrium.

35. The third of the many books Sir John Hicks wrote (Hicks, 1942) was titled The Social
Framework: An Introduction to Economics, of which the two chapters of the last part, Part
V, are entirely devoted to social accounting systems. Hicks began writing it around the time
How to Pay for the War was completed and Stone began his work, under Keynes, in putting
together the accounts to implement the Radical Plan for the Exchequer advocated in it. The
Swedes had a head start on this – and Hicks was intimately aware of the Swedish work on
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social accounting as an underpinning for the emerging field of macroeconomics. We want to
add here that Social Accounting is one thing; so-called Stock-Flow Consistent Modelling is
quite another animal. Where the latter is non-trivial – which is a rare event – it is part of some
meaningful Social Accounting System. Lindahl and Myrdal, in their work in the 1920s and
1930s, developing what later came to be called Macroeconomics, knew and worked within the
discipline such awareness entailed.

36. We do not know why, when and how the k in Political Arithmetick disappeared!
37. We want to make it crystal clear that no where have we argued that all economic theorising

should be in terms of so-called discrete models; nor have we ever supported the ridiculous
suggestion that ‘continuity’ is irrelevant in economic theorising. Nothing in the kind of
economics called computable economics, which we practice, has anything to do with these
kinds of absurd claims.

38. This is partly because we are not completely convinced that the particular physical principle
Deutsch derives and states as the Turing Principle encapsulates entirely, for example, Gandy’s
Principles for Mechanisms. It is the latter that we have usually worked with and have refereed
to it as Gandy’s Principles for Mechanisms. Of course, this also requires a precise definition of
simulation, but which turns out to be slightly more complicated and lengthy to formulate than
the admirably succinct definition derived by Deutsch. A deep and persuasive critique of
Deutsch’s Turing Principle can be found in Timpson (2004).

39. See the illuminating website dedicated to The Museum of Unworkable Devices: http://www.
lhup.edu/dsimanek/museum/unwork.htm
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