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Abstract

The uniqueness of the Perron vector of a nonnegative block matrix
associated to a multiplex network is discussed. The conclusions come
from the relationships between the irreducibility of some nonnegative
block matrix associated to a multiplex network and the irreducibility
of the corresponding matrices to each layer as well as the irreducibility
of the adjacency matrix of the projection network. In addition the
computation of that Perron vector in terms of the Perron vectors of
the blocks is also addressed. Finally we present the precise relations
that allow to express the Perron eigenvector of the multiplex network
in terms of the Perron eigenvectors of its layers.

1 Introduction and notation

Throughout the last years, the development of the theory of complex net-
works has been providing radically new ways of understanding many differ-
ent processes and mechanisms from engineering and physical, information,
social and biological sciences [1, 2, 3, 6, 8, 24].

One of its fundamental tools, the Perron-Frobenius theorem, has shown
how a 100 years old mathematical result, of essentially theoretical content,
may have applications in many different areas of science and technology,
and, specifically, in the analysis of social and complex networks (see, for
example [5, 21]).

A lot of work has been done during the last years to understand the
structure and dynamics of complex systems composed by multiple systems
and/or layers of connectivity, leading, recently, to the concepts of multilayer
and multiplex networks [1, 6, 8].

Following [1], a multiplex network M with M layers is a set of lay-
ers {Gq; a € {1,---,M}}, where each layer is a (directed or undirected,



weighted or unweighted) graph G, = (X,, Es), with X, = {x1,--+ ,an}.
In other words, multiplex networks consist of a fixed set of nodes connected
by different types of links. A very simple and clarifying type of examples of
multiplex networks appear in the modelling of social systems, since each of
them can be seen as a superposition of many complex social networks, where
nodes represent individuals and links in different layers represent different
types of social relations.

Very recently, some relevant aspects in the theory of multiplex networks
have been considered with the help of adequate block matrix representations
of the networks, and of the analysis and interpretation of their eigenvalues
and eigenvectors [6, 7, 8, 27, 30, 31].

This analysis typically includes the study of the existence and uniqueness
of a positive and normalized eigenvector (Perron vector). The existence is
guaranteed if the corresponding matrix is irreducible (by using the classical
Perron-Frobenius theorem). As for the spectral properties, it is possible to
relate the irreducibility of such a matrix with the irreducibility in each layer
and the irreducibility in the corresponding matrix of the projection network
[7, 30]. Some of these considerations are properly addressed with the help
of the Perron vector of the block matrix which represents the multiplex
structure.

The main goal of this paper is twofold. Firstly we show the unique-
ness of the Perron eigenvector of the nonnegative block matrix associated
to a multiplex network when the matrices of the layers and the matrix of
connections between layers (or influence matrix) have some properties. Sec-
ondly we show how the Perron vector of the multiplex network relates to the
lower-dimension Perron vectors of the layers and the Perron vector of the
influence matrix in a precise way. Remarkably this relationship is shown to
be non linear; thus it becomes evident that the information framed in a mul-
tiplex network goes beyond a simple linear combination of the information
provided by the layers.

This paper is divided in four sections. The first and second sections
contain the notation employed and some background as well as a detailed
description of the matrix products used along. The third section is entirely
devoted to justifying the existence and uniqueness of the Perron eigenvector
of the multiplex structure while the fourth section presents the precise (non
linear) relations that allow to express the Perron eigenvector of a multiplex
network in terms of the Perron eigenvectors of its layers. The computations
of this section are collected in a final appendix.

In the rest of the paper a multiplex network is a set M = {S1,---, S}
(m € N) of (directed or undirected, weighted or unweighted) complex net-
works Sy = (X, Ey) (each of them called a layer or state of the multiplex
network) where X = {1,--- ,n} is the same set of nodes for all £ and Ey is



the set of edges in each Sy, that is
E;={(i,j) € X x X | iis linked to j in the layer Sy} .

The adjacency matrix of each layer Sy will be denoted by A, = (a;;(¢)) €
RTZXTL'

In many situations, if we consider a multiplex network M of m € N
layers {S1,---,Sm}, we also take a nonnegative (meaning that its entries
are all nonnegative) influence matrix 0 < W = (w;;) € R™™, where w;;
measures the influence of the layer S; in the layer S;. Note that if we consider
a random walker in a multiplex network, then each w;; can be understood
as the probability of the walker jumping from layer S; to layer S; (i.e. W
is the transition matrix between the states of the multiplex network in the
stochastic process given by a multiplex random walker) and therefore W
is a row stochastic matrix. Hence in the rest of the paper, we will always
assume that the influence matrices W are row stochastic.

A multiplex network with only one layer, that is, a network in the
standard sense, will be usually called here a monolayer (or monoplex) net-
work. Given a multiplex network M several (monolayer) networks that
give valuable information about M can be associated to it. A first ex-
ample of these (monolayer) networks is the unweighted projection network
proj(M) = (X, E), where X is the same set of nodes of the layers of M and

It is clear that if A = (a;;) € R™™" is the adjacency matrix of proy(M),

then
a--—{ 1 ifa;j(¢) =1 for some 1 < ¢ <m
iy =

0 otherwise.

A first approach to the concept of multiplex networks could suggest that
these new objects are actually (monolayer) networks with some (modular)
structure in the mesoscale. It is clear that a (monolayer) network M can
be associated to M as follows: M = (X, E), where X is the disjoint union
of all the nodes of Sy,---, S, i.e.

X=|J xi={G.k)i=1,...,n k=1,..,m}

1<i<m

(the node (i, k) € X shoud be understood as the i-node of X in k-state).
Now FE is given by

E={((i,k),(5. k)| (i.5) € Bx, 1 <k <m} | J{(G k), (6,D) | i € X, 1 <k #1<m}.

Notice that an edge ((¢,k), (j,k)) belonging to the first set in this union
reflects that nodes ¢ and j in X are linked in layer k& (horizontal link) while



and edge ((7,k)(7,1)) belonging to the second set in the union means that
the node i considered in layer k is connected to itself considered in layer [
(vertical link).

Notice that M is a (monolayer) network with n-m nodes whose adjacency
matrix can be written as the block matrix

Al In In
A _ In A2 In c RvMmXnm
I, | I, A,

It is important to remark that the behaviours of M and M are related
but they are different since a single node of M belonging to several layers
corresponds to m different nodes in M. Hence the properties and behaviours
of corresponding (monolayer) network M could be understood as a kind of
non-linear quotient of the properties of the a multilayer M.

Other examples of (monolayer) networks associated to a multiplex net-
work M that give valuable information about the properties of M come
from the study of several structural and dynamical properties of M. In
this paper we will consider the associated monolayer networks coming from
the study of the eigenvector centrality of multiplex networks [30] and from
random walkers in multiplex networks [7].

If we want to extend the concept of eigenvector centrality to multiplex
network, in [30] the concept of global heterogeneous centrality of a multiplex
network M with influence matrix W is introduced from the Perron vector
of the block matrix

t t t
win A7 | wa A Win1 Ap,
t ; t
w12A1 w29 A2 ’U)mQAm XTI
By = eR s
3 ; 3
wim A7 | wam A4S Wnm AL,

where Az is the transpose of the adjacency matrix of layer Sy. Note that
this kind of block matrix also appears if we consider some random walkers
in multiplex networks. In this case, the distribution of the stationary state
of the random walker is given from the Perron vector of the block matrix

t t t
wil] | worly Win1 Ly,
t t t
’U)12L1 w22L2 wmng XTI
B, = eR
t t t
wlle w2mL2 wmmLm

where Lz is the transpose of the row normalization of the adjacency matrix




of layer Sy, i.e. if Ly = (L;;(£)), then for each 1 <i,j <n
aij (£)

T )
k

Note that each L, is row stochastic and therefore Lz is colum stochastic.

Similarly, in [7] a general framework for random walkers in multiplex
networks is introduced and the distribution of the stationary states of these
random walkers are given from the Perron vector of some block matrices.
In particular, if we consider random walkers with no cost in the transition
between states, the distribution of the stationary state is given in terms of
the Perron vector of

Li;(€)

t t t
’LU11L1 wglLl s wm1L1
t t t
w12L2 w22L2 s wm2L2 XTI
BZ = . . . . eR 5
t t t
Wim Ly, | WomLy, | -+ | WmmLy,

while if we consider random walkers with cost in the transition between
states, the distribution of the stationary state is given in terms of the Perron
vector of

¢
wi Ly | worly | - | wmaly
7
wizly | waaly | -+ | wmaly
]Bg — . i ' : 6 anxnm.
7
Wimdn | Wom Iy | -+ wmmLm

As we will see in section 3, it can be proven that, under some hypotheses,
if the adjacency matrix of the projection network is irreducible, then these
matrices are also irreducible and hence the corresponding random walkers
have a unique stationary state.

This kind of arguments can be also applied to the supra-Laplacian £ of
a multiplex ([10] and [31]) since we have the splitting

L=L"+ L

where £™ stands for the supra-Laplacian of the independent layers and £’
for the interlayer supra-Laplacian. The first one is just the direct sum of
the intralayer Laplacians,

ﬁL: . . . . I
01]0 L,




while the interlayer supra-Laplacian may be expressed as the Kronecker (or
tensorial) product (see section 2) of the interlayer Laplacian and the n x n
identity matrix I,

L'=L"®I.

2 Block Hadamard and Block Khatri-Rao Prod-
ucts

In addition to the conventional matrix product, there are some other matrix
products which will be used throughout this paper.

Note that, for example,

t t
wi Ly |- | wmaly,
Lt1... It
Wim g Wmm Ly,

is the Hadamard product of

t t

wllln wmlln Ll Lm
and : : ,

1, |--- 1 Lt ... | Lt

Wimln Wmm In 1 m

where 1, the matrix n x n whose components are all equal to one, or the
generalized Khatri-Rao product of

t t
wiy | oo | wm Lt | L,
and .
w oo law Ltl... | Lt
im mm 1 m

This section provides a brief survey on such definitions and basic prop-
erties without proofs. Throughout this section we refer to some standard
references of matrix theory for details.

Let us consider two matrices A and B of m x n and p x ¢ orders re-
spectively. Let us suppose that A = [A;;] is partitioned with A;; of order
m; x nj (A;; is the (i, 7)™ block submatrix of A) and let B = [By] be par-
titioned with By of order py, x q; (B is the (k, 1) block submatrix of B).
Denote by m = S2t_ mi, n = Z;-lzl nj,p =Y pey Pk, and ¢ = > ,_; q. For
simplicity, we say that A and B are compatible partitioned if A = [A”]f i1
and B = [Bij];jzl are square matrices of order m X m and partitioned,

respectively, with A;; and Bj; of order m; x mj (m = >t_, m; = Zz»:l mj).



Let AR B, Ao B, AOB, and A * B be the Kronecker, Hadamard,
Tracy-Singh, and Khatri-Rao products, respectively, of A and B. All the
definitions of the mentioned four matrix products can be found in [17], [18]
as follows:

(i) Kronecker product

The Kronecker product of matrices is also called the tensor product, or
direct product of matrices. This product is applicable to any two matrices.
We refer to [12] for a complete discussion.

Let A = (ai;) € R™*™ and B = (b;;) € RP*4. The Kronecker product of
A and B is defined as

anB  ai2B -+ a,B
ang CLQQB tee ag B

A® B = (a;jB)ij = . . € R,
amlB amgB cee amnB

(ii) Hadamard product

The Hadamard product (elementwise multiplication), also referred to
as the Schur product, arises in a wide variety of mathematical applications
such as covariance matrices for independent zero mean random vectors and
characteristic functions in probability theory. The reader is referred to [12],
[33], [28] for more details about it.

Let A = (ai;), B = (bsj) € R™*". The Hadamard product of A and B is
defined as

a11bir aizbiz - apbin
a21ba1  agebr - agpboy,

mXxXn

Ao B = (a;jbij)ij = . . _ , € R™*",
am1 bml amemZ te amnbmn

(iii) Tracy-Singh product
AOB = [A;;0B]i; = [[Aij @ Balrlij,

where A = [A;;], B = [By,] are partitioned matrices of order m xn and p x g,
respectively, A;; is of order m; xn; , By of order py, x q; , Aij ® By of order



d
mipr X n;q, Aij©OB of order m;p x njq (m = 25:1 m;, n = ijl ng, p=
> w1 Pk, @ =>4 @), and AOB of order mp x ng;

In order to avoid confusion we use parentheses for ordinary matrices,
whose entries are numbers, multiplied as usual, and square brackets for
cores (core matrices), whose entries are blocks.

(iv) Generalized Khatri-Rao product

A« B = [Ai; ® Bijlij

where A = [A;;], B = [B;;| are partitioned matrices of order m x n and
p X g, respectively, A;; is of order m; x n; , By of order p; x q; , A;; ® B;j of
d d
order m;p; X n;q; (m = 2521 mg, n = Zj:l ng, p= 2221 Di, @ = Zj:l q;
t d
), and A B of order MxN (M =3, mipi, N =35 n;q;).

Note that the generalized Khatri-Rao product is defined based on a par-
ticular matrix partitioning, i.e., different matrix partitionings will lead to dif-
ferent results. Note also that the Kronecker product, the Hadamard product
and the Khatri-Rao product [14], [26] are all special cases of the generalized
Khatri-Rao product based on different matrix partitionings.

Recall that given two matrices A and B with the same number of
columns, m, and denoting their columns by a; and b;, respectively, the
(column-wise) Khatri-Rao product is defined as A * B = [a1 ® b1,a2 ®
by, ,am ® by] (we refer to [20], [33] or [19] for details). Note that the
Khatri-Rao product can be constructed by selecting columns from the Kro-
necker product. To show this, define the Kronecker selection matrix S, =
Iy, * I, and verify A B = (A ® B)S,,, where I, is the identity matrix in

Rm)(m

Additionally, [17] shows that the generalized Khatri-Rao product can be
viewed as a generalized Hadamard product and the Tracy-Singh product as
a generalized Kronecker product, as follows:

(1) for a nonpartitioned matrix A, their AOB is A ® B;

(2) for nonpartitioned matrices A and B of order m X n, their A x B is
Ao B.

The Khatri-Rao and Tracy-Singh products are related by the following
relation [17], [18] :
Ax B = ZI'(AOB)Z,,

where A = [A;;] is partitioned with A;; of order m; x n; and B = [By]

is partitioned with By, of order py X ¢; (m = Zﬁzl mi, n = 2?21 nj, p =



Sk Pk A=Y 1-1GQ1), Z1isan mpxr (r = Zle m;p;) matrix of zeros and
ones, and Z; is an ng x s (s = Z;l:l n;q;) matrix of zeros and ones such
that Z1' 2y = I,, 21 Zy = I, (I, and I are r x r and s x s identity matrices,
resp.).

In particular, if m = n and p = ¢, then there exists a mp x r (r =
Z';f:l m;p;) matrix Z such that Z7Z = I, (I, is an r x r identity matrix)
and Ax B = Z"(AOB)Z. Here

A
Z = )
Zy

where each Z; = [0;1 -+ 0ii—1 Im,p; Oiiv1 -+ O] is a real matrix of zeros
and ones, and 0; is a m;p; X m;py zero matrix for any k # i. Note also that
ZTZ; =T and

ZZ»T(AZ‘J'@B)ZJ' = ZZ-T(AU & Bk:l)k:le = Aij ® Bij, 1,7 =1,2,--- 1.

The generalized Khatri-Rao product was also used, e.g., in [32].

Let A and B be matrices respectively expressed as r x t and t X u block
matrices

A A - Ay Byy B2 -+ B
Agp Asy - Ay By By -+ DBy
A= . . . and B = . . . ;
Arl AT2 e Art Btl Bt2 e Btu
where each A;; (i =1,2,--- ,rand j =1,2,--- ,t) is an m x p matrix, and

each B;; (i =1,2,---,tand j = 1,2,--- ,u) is a n x ¢ matrix. In [29] the
strong Kronecker product is defined for two matrices A and B of dimensions
r X t and t X u respectively as the matrix:

Cii Ci2 -+ Chy
Cor Cop -+ Cyy

C = : . ) ,
Crl CT2 o CTU

where each
Cij :Ail®Blj+Ai2®B2j+"'+Ait®BU’

is an mn X pg matrix. It is important to note that the operation is fully
determined only after the parameters r, t, and u are fixed. Generally, the



partitioning of the matrices will be clear from the context, and then we call
C the strong Kronecker product of A and B, denoted by A® B. The strong
Kronecker product, developed in [29], supportes the analysis of certain or-
thogonal matrix multiplication problems. The strong Kronecker product is
considered a powerful matrix multiplication tool for Hadamard and other
orthogonal matrices from combinatorial theory [16]. In [25] the strong Kro-
necker product is shown to be a matrix multiplication in a permuted space.
Similarly, if m = n and p = ¢, the strong Hadamard product A ® B of A
and B is defined in [4] as

Diyi D1 -+ Diy
Da1 Dy -+ Doy
Drl DT‘2 co Dru

where each
D’Lj :AiloBlj+Ai20B2j+"‘+AitOBtj7
is an m X p matrix.

Let A = (4;j) and B = (B;;) be p x p block matrices in which each
block is an n x n matrix. In [13] a block Hadamard product AOB is defined
by AOB := (A;;B;;), where A;;B;; denotes the usual matrix product of A;;
and Bij.

There are other definitions of partitioned matrix products, see for in-

stance [11] where a generalized Kronecker product for block matrices is de-
fined.

3 Irreducibility and uniqueness of Block Perron
Vectors through properties of the blocks

In this section we will discuss irreducibility of the block matrices that ap-
pear in our different descriptions of multiplex networks. Let us start by
introducing some notation.

10



3.1 Products of block matrices

In the sequel we will consider block matrices consisting of m? blocks of
dimensions n X n with real nonnegative coefficients:

P | Pia |- | Pim

Poi | Pog |-+ | Po 8
P = . ) i . , P e R"™™

Pml Pm2 e Pmm

The set of all this matrices will be denoted by M, .(R), or simply M, .
For two such block matrices P and P’, let us consider the strong Hadamard

product defined above:

m
(PO P)ij=)Y_ PyoPy,
k=1

where Pj o P,éj denotes the Hadamard product (i.e. the componentwise
product) of the blocks P, and P;, ;-

For a given a sequence of n x n matrices (41, ..., A,,) we can consider
the diagonal block matrix A matrix defined by:

Al o]0
0 Ay [~ 0
A= 1. .
0ol o0 1A,

We will denote by I,, the n x n identity matrix, and by 1, the matrix n x n
whose components are all equal to one. Then the identity element of the
product ® is 1, that is, the diagonal block matrix given by the sequence
(In,..., 1,).

Let us denote by Rs the Boolean algebra with two elements {0,1}, on
which we have two operations, namely:

+10(1 101
0101 010
1111 1101

Then, for every nonnegative matrix P € Mf[mn we may define its booleaniza-

tion B(P) as the nm block matrix with coefficients in Ry given by:

1 si (Pij)kr 7’é 0

= { 0 i (Pl =0

foralli,j=1,....m, k,r=1,... n.

11



Notice that the map 5 : M,j‘m’n — Mymn(R2) preserves, by definition,
sums, and the usual, Hadamard and strong Hadamard products; notice also
that the irreduciblity of a nonnegative matrix, which is the main topic of
this section, depends only on its booleanization, which can be thought of as
a matrix-representation of the graph defined by the matrix.

A partial order can be defined in My, »,(R2) as B < B’ if and only if there
exists B” € Mymn(R2) such that B + B"” = B’. It becomes obvious that,
if P € M, , is irreducible, then any other matrix P’ € M,f, , satisfying
B(P) < B(P') must be irreducible as well.

Finally we note that for every block matrix P € M,;“myn a new block

matrix P € M,f 1 can be defined by reordering the coefficients as follows:
(Pkr)’L]:(Plj)kra iajzlv"'ana k,rzl,...,m

This new matrix is formed by n? blocks of dimension m x m.

3.2 Block matrices for multiplex networks

In order to model multiplex networks as they appear in nature, scientists
have introduced several types of special block matrices. Generally speaking,
they are all constructed upon the following data:

e A set of m nonnegative n x n matrices { Ay, ..., A}, each A; is the the
adjacency matrix of the i-layer belonging to the multiplex network. In
this context the matrix A := % Yo, A;, whose associated graph is the
projection network of the complex network under study, is considered.

e Two nm x nm nonnegative block matrices, encoding the interrelation
between layers:

Wi | Wig | -+ | Wi Vit | Via | -+ | Vim

War | Wag | -+ | Way, Vor | Vag | -+ | Vo,
W = ) . } , V= . . .

Wml Wm2 e Wmm le Vm2 e me

We may think of W as the matrix encoding interrelations between layers
(influence matrix), whereas V' represents interrelations between layers aris-
ing from the set of all the specific influences that a node in a layer has over
a node in another (not necessarily different) layer.

Then, upon this data, we consider the matrices:

B=AOW+VandB =WeoA+V,

Notice that both B and B’ have their own eigenvector centrality.
Two particular cases of the previous general scheme have a clear interest.

12



1. The term V is identically zero. Then we have two block matrices
Bi=AoWand B =W o A

(this is the situation when modelling random walkers with no cost for
the sate transition).

2. The term W is equal to 1, so that our two block matrices are equal:
Bo=A01+V=A+V=10A+V =Bl
Typically in this case one would ask V' to satisfy the following property:
(x) Vi; diagonal, for all 4, j

In other words, the property (x) is satisfied whenever V = B being
B = (By,...,B,) a sequence of m x m nonnegative matrices.

Each matrix B; represent the way in which one may switch between
layers, while staying at node j (this is the situation when modelling
random walkers with no cost for the sate transition).

In search of irreducibility conditions we will work on this general scheme;
this is the content of the next subsection.

3.3 Irreducibility conditions

As announced the rest of the section is devoted to describing irreducibility
conditions of the matrices described above. Since we are going to discuss ir-
reducibility through is graph-theoretical counterpart —strong connectedness—
we need to introduce first some notation.

Given a multiplex network determined by one of the matrices B (or B')

described above, we will write ¢ LA 7 when the node 7 is linked to the node j
in layer k, i.e. when the coefficient (Ay);; is different from zero. We will now
consider a new monolayer network with nodes X = {(i,k)|1=1,...,n, k=
1,...,m} and write (i, k) — (j,¢) when the coefficient in the position ij of
the block k¢ of B (or B’) is different from zero. In other words, we consider
the weighted graph (X,B) (or (X,B’)) supported on the monolayer network
M.

In the case 1, we will start by analizing the case in which the projected
network is strongly connected, that is, in which A is irreducible. Unfortu-
nately, in this case, even if W is positive, very simple examples show that
B; and B} are not necessarily irreducible. However we may state that there
exists a unique Perron vector for them.

Theorem 3.1. With the same notation as above, assume that A is irre-
ducible and W is positive. Then By and B} have a unique Perron vector.

13



Proof. We will present the proof of the uniqueness for B, being the proof
for B} analogous.

Note that the matrix B; may have rows completely equal to zero, pre-
venting it from being irreducible. If W is strictly positive, this happens
precisely if there exists a sink in the graph of one of the layers. In order to
deal with this situation, we consider a permutation matrix P that reorders
the rows of B; so that all the rows equal to zero appear in the first positions.
Then the product P - By - P! takes the form:

0o --- 0lo --- 0
- 0 00 0
’ ]“ - * “ e *

* “ .. *

and it suffices to show that R is an irreducible matrix, because in this case
the algebraic multiplicities of the spectral radius of B; as an eigenvalue of
B; equals its multiplicity as an eigenvalue for R, which is equal to one.

In order to check the irreducibility of R note first that, by the positivity
of W:

(i55) = ((,k) = Gk) = ((,k) = (G,0) forall L=1,...,m

. (3.2)
Considering then the weighted subgraph of (X,B;) associated to R, and
denoting by Xpg its set of nodes, that is:

Xr={(i,k)| i£>j for some j},

it suffices to show that (Xg, R) is strongly connected. )
Let then (i, k), (¢, k") be two nodes of this subgraph. Since (i, k) € Xg,
there exist j; € {1,...,n} such that

(i,k) — (j1,¢) for all £.

Moreover, by hypothesis on A, we know that there exist two sequences of
indices (j1,...,4r =1, jp € {1,...,n}, and (ka,... k), kp € {1,...,m},
such that: i i i

Wtk

and so (jp, kp+1) = (Jp41,£) for all £. Summing up, we have a sequence of
edges linking (7, k) to (¢, k'):

(i, k) = (j1, k2) = (jo, k3) = -+ = (jr—1. kr) = (7', k).

14



Remark 3.3. Note that, denoting by 1, € M, , the matrix whose coef-
ficients are all ones, the proof holds for every nonnegative block matrix W
satisfying S(W) > B(A® 1ym) (or (W) > B(1pm @A), when we are dealing

with B).
The next corollary is an immediate consequence of the previous proof:

Corollary 3.4. With the same notation as above, assume that A is irre-
ducible and that W is strictly positive. Assume moreover that each layer Ay
of the network has no sinks (respectively, no sources). Then By (resp. B})
15 irreducible.

Let us consider now the case 2. Here we will infer the irreducibility of
By = B from properties of (Ay,...,4,,) and (B, ..., By).

Proposition 3.5. With the same notation as above, assume that one of the
following properties holds:

(i) A and every B; are irreducible.
(ii) Every Ay and B are irreducible.
Then By is irreducible.

Proof. As usual, we will discuss the proof in terms of the subjacent networks.
In the first case, given two pairs (i,k), (i, k') € X, the irreducibility of A
provides a sequences of edges:

i=jo gl By
That is, we have links
(i =Jo. k1) = (i, k1),  (Ji,k2) = (G2, k2), ooy (1 k) = (' = jr, Ky).

Denote ko := k, k.1 := k. Then, the irreducibility of the B;’s provides
sequences of edges joining (jp, kp) with (jp, kpy1) forall p =0, ..., 7. Joining
all these sequence conveniently, we have a sequence of edges joining (i, k)
and (i',k"). The irreducibility of By under the second set of hypotheses is
analogous. O

Remark 3.6. As we may see in this Proposition, in this second setup, the
links within layers and between layers play a symmetric role. In this way,
every theorem about By written in terms of A and B will always have a
symmetric counterpart.
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4 Computation of Block Perron Vectors in terms
of low-dimensional vectors

Our approach is based on the Perron complementation method for finding
the Perron eigenvector of a nonnegative irreducible matrix A,, ., with spec-
tral radius p, see [22]. This method consists of uncoupling A into smaller
matrices whose Perron eigenvectors are coupled together in order to re-
cover the Perron eigenvector of A and it is described in Appendix A. The

7r
77r2
Perron eigenvector m = ) > 0 of each of By, Bs, B3 is of the form
®

£'p;
Epo _ '

T = . > (0 where each p; is the Perron eigenvector of the Perron
&k

complement P;;, and will be calculated for all the three cases, and the nor-
malizing scalars or coupling factors &; turn to be the i*"-components of the
Perron eigenvector of WY,

Our only assumption is that W is row-stochastic and that no 4
W equals the i*"-vector of the canonical basis e; of R™ (this means that all
layers have influence at least on some other layer).
Block matrix of type Bq: The obtention of the Perron eigenvector « of By
follows from combining the p}s with the coupling factor, which is the Perron
eigenvector of W*!. Remember that

h_row of

t t t
wnLl w21L2 ce wmle
t t t
’U)12L1 w22L2 s wmng XTI
By = ) . . ) eR .
t t t
wlle w2mL2 <o | Wnm Ly,

Let us calculate the Perron eigenvector p; of the Perron complement Pij.

Q2
: Q . : :
First calculate . , which is an eigenvector associated to 1 of the
Qm
matrix
wlthl
i
~ (1 ~ (1 w13L1
APY = wi L+ Wl(l) — wnLVVl(l) + : (wgng R wmlLin)
wlmLﬁ
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L?i .|l o0 W Lt2 coo | wme Lfn
0 Ltl te ~ w23Lt2 te w 2Lt
where L = T : and I/Vl(l1 ) — e
ol..- Lﬁ Wom, Lg o | Wim Lgn
Once the Qs are obtained use
w2 L} woo Ly | -+ | wmaLt, Q2
wig L} waslh | -+ | wmaLf, Qs
pr=|Id— .
wlmLtl w2mL§ s wmmLfn Qm

to get L!p; (remember that some of the wy; # 0), and then the equality

Q2
Q3

p1 = w1 Lipy + (wor LS .. w1 LE)

Qm
to recover pj.
The remaining p;s are analogously calculated.
Block matrix of type Bo: The obtention of the Perron eigenvector m of Bo
follows from combining the p}s with the coupling factor, which is the Perron
eigenvector of W!. Remember that

t t t
wnLl w21L1 ce wmlLl
t t t
w12L2 w22L2 s wm2L2 XTI
By = . . ] . eR .
t t t
wlmLm meLm s wmmLm

Let us calculate the Perron eigenvector p; of the Perron complement Pij.

Q2
. Q . . .
First calculate ; , which is an eigenvector associated to 1 of the
Qm
matrix
wlng
o7t
~ (2 ~ (2 'U)13L3
APt :wnL—l-Wl(l) —wuwl(l)L—i- : (’wglLﬁ,...,wmlLtl)
wlmLfn
L?i ... ]lo0 w22L§ wmng
oLt |--. _ U)23Lt ngt
where L = 1 ! . and Wl(f) = . ’ S
0o1l--- Ltl w2mLfn wmmLfn
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Once the Qs are obtained,

p1 = (wa1 Ly, ..

S wmiLy)

The remaining p/s are analogously obtained.
Block matrix of type Bs: The obtention of the Perron eigenvector 7w of Bg
follows from combining the p}s with the coupling factor, which is the Perron
eigenvector of W*t. Remember that

wllLtl wglfd wmlld

wlzld w22LtQ wmQId
Bs = .

wimld | womld Wi L,

e anxnm

The calculation of the Perron eigenvector p; of the Perron complement Pi;

Q2
Q3 o . .
can be done as follows: calculate | — | , which is an eigenvector associ-
Qm
ated to 1 of the matrix
w12ld
~ - wlgfd
AsPt :w11L+W1(f) —U}HLWﬁ)’) + | ('LUQ]_Id...U)m]_Id)
wlmld
Lli s 0 wszg ’w32Id wmzfd
0 L)i = (3) ’U)23Id w33L§ ’U)mQId
where L = i and W’ = .
0 - L'i womld | wymId wmmLfn
Once the Qs are obtained use
'U}lgfd wgng ’w32]d ’U}mQId QQ
wizld wozld | - Wi LL, Q3
. pr= | Id— . .
wimld womId | wamId wmmLﬁn Qm

to recover p; (remember that some wq; # 0).

The remaining p}s are analogously calculated.
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4.1 Particular case of two layers (m = 2)

We will show that the eigenvectors associated to the principal eigenvalue
1 can be computed in terms of the eigenvectors associated to 1 of certain
matrices related to L, LY and the elements of W. The only assumption on
W is that it is row-stochastic. The details of the calculations will be shown
in §A.

Block matrix of type By, m = 2:

t t

B, — wiy L ‘ wa1 Ls
= ; A E

wig L ‘ waa Ly

where L} is the transpose of the row normalization of the adjacency matrix
of layer Sp.

(a) If both w1 # 1 and way # 1 then if (Zl) is an eigenvector associated
2

to the eigenvalue 1, we get that 7w and 7o are eigenvectors associated to 1
to the column stochastic matrices

AT = (winL§ + waa Ly + (1 — w11 — waz) L5 LY), and
A71r2 = (’LUllL)i + 'U)QQL% + (1 — w11 — w22)Lz‘iLg)

(b) If wy; = 1 then wia = 0 and if the vector <Zl> is associated to the
2

eigenvalue 1 then we have one of the three following situations:

(b.1) 0 < wgy < 1: the eigenvectors associated to 1 of B; have the form

(ﬂ-l) where 7 is an eigenvector of L} associated to 1.

0
(b.2) wea = 0: the eigenvectors associated to B; have the form (?)

where m; is an eigenvector of L! associated to 1.
(b.3) wea = 1: the eigenvectors of B; associated to 1 have the form (77?)
2
where 71 is an eigenvector of L} associated to 1 and 72 an eigenvector of L}
associated to 1.
(c) If weg = 1 then, arguing as in case (b) either wy; = 1 and we are again
in the situation of (b.3) or the eigenvector of B; associated to 1 are of the
0 . . .
form <7r> where 7y is an eigenvector of L} associated to 1.
2
Block matrix of type Bo, m = 2:

t t

BQ . wllLl ‘ ’LU21L1
- t t )

wigLf ‘ waa L

where L} is the transpose of the row normalization of the adjacency matrix
of layer Sp.
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(a) If both wy; # 1 and wag # 1 then if <Zl> is an eigenvector associated
2
to the eigenvalue 1 and defining 7{%* = (I — w11 L}) ™ (I — woe LY) "1 Lim

and w4 = (I —woa L) 1 (I — w11 L) "1 Limo, we get that m{“® and 73%* are
eigenvectors associated to 1 of the column stochastic matrices

paux t t trt trt

Ayt = (win L] + wae Ly — wiwaa Ly LY + wigway Ly L7), and
,n_(luf):'

A22 — (wllLtl + w22L§ — lU11w22L1iLt2 + w12w21L§Lg)'

After computing 7" and 7§"*,

T = wigway Lim{",
T = ’LU12’LU21L§7T(2“M.

(b) (w11 = 1) and (c¢) (wae = 1) give the same results as for matrices of type
B;.
Block matrix of type B3, m = 2:

B, — < w11 LY | warl )
2 — T )
wizly | woa Ll

where L} is the transpose of the row normalization of the adjacency matrix
of layer Sp.

(a) If both wy; # 1 and wag # 1 then if <Zl> is an eigenvector associated
2

to the eigenvalue 1, we get that m; and 7o are eigenvectors associated to 1
to the column stochastic matrices

t t trt
Agl = (wnLl + w22L2 — w11w22L2L1 + w12w21[2), and
P t t trt
.A22 = (wllLl + ’LU22L2 — w11w22L1L2 + w12w21[2).

(b) (w11 = 1) and (c) (w2 = 1) give the same results as for matrices of type
B;.
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A Mathematical proof of the results of section 4

Perron complementation method for finding the Perron vector of a nonneg-
ative irreducible matrix A, x, with spectral radius p ([22]): This method
consists of uncoupling A into smaller matrices whose Perron vectors are cou-
pled together in order to recover the Perron vector of A. Let us briefly recall
it:

Given a k-level partition

A | Agg | -+ | Agg

Ay | Agp | -+ | Ay
A= : . )

Apt | Ao | - | Akk

where all the diagonal blocks A;; are square, we consider the principal block
submatrices A; of A obtained by deleting the i*'-row of blocks and the 4th-
column of blocks from A. We also consider

A = (AnAig - Aii1 Aiip1 - Aig)
and

Ay

Ai—1
Ait1

A
The Perron complement of A;; in A is defined as the matrix
Py = Ay + Aiu(pld — A;) T Ay

The importance of the Perron complements stems from the fact that
if A is nonnegative and irreducible with spectral radius p, then P;; is also

nonnegative and irreducible with spectral radius p. In addition, if # =

’/Tl

7r2

> 0 is the Perron vector of A, partitioned accordingly, then Pjr! =
F
pr’, that is, 7 is a positive eigenvector of P;; associated to p ([22, Thm 2.1

and 2.2]). Call p; , the Perron vector of P;;. The normalizing scalar

7.‘.7,
Ikl

¢ = ||n?||1, or coupling factor, turns out to be the i*'-component of the
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é—l

2
Perron eigenvector ) of the coupling matriz C' = (c;j) , where ¢;; =
5.
£ 'p1
521172
| Asjpjlli. Thus, the Perron vector 7 can be expressed as m = ;
& i

Our immediate task is to identify the Perron complements for each of
the three types of matrices considered and proceed accordingly. Fach Ly
is row stochastic and therefore Lz is column stochastic; similarly W is row
stochastic, hence each of the matrices B1,Bo and B3 given in Section 1 is
also column stochastic and its maximal eigenvalue is one.

It will be assumed that no i*"-row of W equals the i*P-vector of the
canonical basis e; of R™ (this means that all layers have influence at least
on some other layer).

As for the coupling matrix C, since Lz are column stochastic, in each
of the three cases we get that C = W' and therefore the coupling factors
correspond to the Perron eigenvector of Wt.

Block matrix of type B1: The obtention of the Perron vector 7 of By follows
from combining the p}s with the coupling factor, which is the Perron vector
of W1,

¢ t ¢
wi Ly | waly | - | wmiLy,
T ; T
wigLy | woalh | -+ | wmaly,
B, = : ) ] ) € Rmmxnm,
i ; i
wim Ly | wom Ly | -+ | wmm Ly,

Let us calculate the Perron vector p; of the Perron complement Pjq. It
satisfies

t t -
’LU22L2 s wmng
; ;
‘ ‘ " ’U)23L2 s ’u}mng
p1 = wnLipt + (wai Ly ... wmiLy,) | Id —
; 3
wom Ly | -+ | Wmm L,
Then
t t ¢
wlng w12L1 w12L1
7 7 7
w3 Ly w1z Ly . wizLy . .
= Lipi+ war Ly ... w1 Ly,)
p1 = wn . 1P1 . ( 2149 ml1dlyy,
Cwim Lt Cwim Lt Ll
Wim il Wim Wimdn

25

t
w12L1

t
wlng

t
wlle

Q2
Q3

b1



where the following change of variables is used

Q@2

t
'U)QQLQ

wmgLin wlgLﬁ
Q wa3 L} wma LY, wyz LY
. = - P1-
Qm w2mL§ wmmLfn wlmLtl
Equivalently
U)QQLE ’wmzL,tﬂ QQ Lﬁ 0 0 wlgLﬁ
IU23L§ ’wmgLﬁn Q3 0 Ltl 0 wlgLﬁ
Id — . = W11
wgng wmmLﬁn Qm 010 Lt1 wlmLﬁ
wia L} Q2
wiz L} Q3
(wglLtQ e wmngn) . s
wlmLtl Qm
or
way LY wma Ly, Q2
e wa3 L wmQ'Lﬁn Q3 B
Ltl 0 0 ’LUQQLtz ’lUmQLf,n QQ
0 Lg 0 w23L§ ’wmQLfn Qg
w11 . Id —
leLﬁ Q2 QQ
wlth Q Q3
+ 71 (wor LY .. w1 LL) : . This is equivalent to :
wlmLtl Qm Qm

being an eigenvector associated to 1 of the matrix

t
w12L1

. - w3t
APt = w11L+W1(11) —wuLWl(P + | (w21L§ wmlLfn)

t
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Lﬁ cee 0 U}QQLE ’U)mQLin
0 Lli . U]23Lt w. 2Lt
_ 1) _ 2 me=m
where L = . : and Wy = .
0 |-+ | L} wom LY Wim LE,
Once the Q)s are obtained we use
wig L} wa L wma Lt Q2
wiz L} w3 L W2 Ly, Q3
pr=|1ld— .
wlmLﬁ meLé wmmLfn Qm

to get L!p; (since some wy; # 0), and then the equality

Q2
Q

p1 = wi Lipy + (war L .. wpi L) :

Q@m

to recover pj.

The remaining p)s are analogously calculated.
Block matrix of type Bo: The obtention of the Perron vector 7 of By follows
from combining the p}s with the coupling factor, which is the Perron vector
of Wt.

t t t
wp L | walj Wi Ly
; T I
w12L2 w22L2 wm2L2 XTI
By = ceR .
3 T T
wim Ly, | wam Ly, Wmm Ly,

Let us calculate the Perron vector p; of the Perron complement Piq. It
satisfies

-1

t t t
wyo L W2 LY w2l
t t t
‘ ‘ ‘ w23L3 wm2L3 w13L3
p1 = wi Lipr+(war Ly ... w1 L) | Id — p1
t t t
w2mLm wmmLm wlmLm
t t t
w22L2 ’U)mQL2 w12L2
t t t
. . . wa3z Ly W2 Ly wi3Ly
SO (Id—’wHLl)pl = (’wglLl .. .wmlLl) Id — P1
t t t
’meLm wmmLm wlmLm
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or, as wy # 1,

woo L wma L
1U23Lt w 2Lt
p1 = (Td—wi L) Ywn LY . wmy LY) | 1d — : e
wom LE, Wim LE,
Now, calling
(Id —wy L)t 0 0
_ (Id —wy L) =t 0
C=1Id— —
0 (Id—wnLﬁ)_l
we get by matrix commutation
wao L wma L - w2 L}
~ U)23Lt w 2Lt wlth
p1= (WLt .. wa L) C | Id - : e —
w?mLfn wmmLfn wlmLfn
metQ
wlng
Multiplyig in both sides by | = | and using the change of variables
wlmLfn
Q2 wyo L Wia LY wig L
Q3 - w3 L Wino L wi3 L}
. =C | Id- : e — p1 we get
Qm 'meLgn wmmLfn wlmLin
Q2
@ | . : .
that . is an eigenvector associated to 1 of the matrix
Qm
wlng
~ ~ wlng
AP = wn L+ W —wn WL+ | = | (war L}, .., wan L)
wlmLfn
Ltl--- o wyo L Wina L
0 Lt ~ U)Qth w QLt
where L = T ! and Wl(f) = ; . e
0 Ltl wgmLfn wmmLfn
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Once the Qs are obtained we use

Q2
Q

p1 = (warLa, ..., wpn1l1) :
Qm
to get p1. The remaining p}s are analogously obtained.
Block matrix of type Bs: The obtention of the Perron vector 7 of B3 follows

from combining the p}s with the coupling factor, which is the Perron vector
of Wt.

wllLtl wor ld | - - wm1ld
Bg _ wmld w22Lt2 e wm2ld c R XM
wimld | wonId | -+ wmngn

In this case the Perron vector p; of the Perron complement P;; satisfies

woa L | wsald | -+ | wmeld - wild
‘ U}23Id s wmngn wl‘gId
P1 :w11L1P1+(w21Id...wm1Id) Id— : -
womld | wymId | -+ wmmLfn wimdd
w12Id
w13[d
Then, multiplying in both sides by | — . | and using the change of
wlmId
variables
Q> waa L | wsald | -+ | wmald -1 wild
Q3 wozld | - wia Lt wy3ld
: =|Id—- - D R
Qm womId | wapmId | -+ | wypmLE, wimld
SO
’U}lgfd ’U}lgfd wlzfd QQ
’u}lgfd ’u}lgfd ' w13[d Qg
: p1 = w1 : Lip1+ : (worId. .. wpy1ld) i
wlmld wlmld wlmld Qm
wigld Lﬁ Of---10 wigld
wlgfd 0 L’i cee 0 wlgld
or . pr = wi | Id——"" 1. ) . Lip: +
wlmld 0 0 ce Lﬁ wlmld




w12Id QZ

’wlgld QS
- (wglfd. wmlld)

. This is equivalent, by the change

wimld Qm

Q2
_ Q3 , , .
of variables above, to . being an eigenvector associated to 1 of the
Qm
matrix
wlgfd
- . wigld
APt :w11L+Wl(f) —wnLVVl(f) + (world. .. wpld)
wlmId
Lt~ o wooLh | wyold | -+ | wmald
where L = 1 . and W)’ = 3

Once the Q}s are obtained we use the change of variables above to recover
p1 (since some of the wyi # 0):

wigld wgng wsaold | -+ | wmald Q-

wizld wozld | - wia LY, Qs
; pr= | Id— ) .

wimld womId | wapmId | -+ | wypmLE, Qm

The remaining p)s are analogously calculated.

A.1 Particular case of two layers (m = 2)

We will show that the eigenvectors associated to the principal eigenvalue
1 can be computed in terms of the eigenvectors associated to 1 of certain
matrices related to L', L and the elements of W. Instead of using the
techniques of [22] we will do all the calculations directly. Moreover, we will
deal with all possible cases of W under the only hypothesis that this matrix
is row-stochastic.

Block matrix of type By, m = 2:

t t

B, = wip L ‘ way L
= ; aE

wig L ‘ waa Ly
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where L} is the transpose of the row normalization of the adjacency matrix
of layer Sp.

(a) If both wy; # 1 and wag # 1 then if <Zl> is an eigenvector associated
2

to the eigenvalue 1, we have

_ t t
T = w11L17T1 + ’LU21L2772,
t t
Ty = w12L17T1 + w22L27r2.

From here, taking into account that both (I —wy;L}) and (I — wyeLb) are
invertible matrices, we get that m = woi (I — wnLtl)_ngm, and m =
wio(I — wggLé)lLﬁm. Substituting in the above equations we get

{ 71 = (w11 LY} 4+ wigwe L5 (I — wao LE) 1LY )7y,
Ty = (wQQLtQ =+ wlgwglLtl(I — wllLﬁ)_ng)Trg.

Now multiplying the first equation by the matrix (I — waoL}) on the left,
and the second equation by the matrix (I — w1 L}) on the left we get

{ ™ = (wllLYi + UJQQL; + (1 —wi — w22)L§L§)7T1’
Ty = (wllLi + wzzLé +(1—wn — ’U)22)L3Lt2)7r27

i.e., m; and mwy are eigenvectors associated to 1 to the column stochastic
matrices

AT = (w11 L} + woo L + (1 — win — wag) LLLY), and
A71T2 = (wllLli + ’U)22Ltz + (1 — w11 — w22)Lt1Lg)

(b) If wy1; = 1 then w2 = 0, in which case By is of the form,
( Lﬁ wglLtQ >
Bl = I3 )
0 | waalLs
and if the vector (?) is associated to the eigenvalue 1 then
2
m = Lim + woy L,
Ty — ’LUQQL;']TQ.

We have one of the three following situations:

(b.1) 0 < wge < 1: in this case 2 = 0 since L} is column stochastic and
cannot have nonzero eigenvectors with associated to an eigenvalue 1/wgg >
1. Therefore the eigenvectors associated to 1 of By have the form <7B1>
where 7 is an eigenvector of L} associated to 1.

(b.2) waa = 0: in this case wy; = 1 and we have that the eigenvectors

. us . .
associated to B; have the form <01> where 71 is an eigenvector of Lﬁ

associated to 1.
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(b.3) waa = 1: in this case W is the identity (there is no influence of a
layer into another layer) and the eigenvectors of B; associated to 1 have the
form <:1> where 71 is an eigenvector of Lt1 associated to 1 and w5 an
2
eigenvector of LY associated to 1.
(c) If wog = 1 then, arguing as in case (b) either wy; = 1 and we are again
in the situation of (b.3) or the eigenvector of By associated to 1 are of the
0 . . :
form <7r> where 9 is an eigenvector of L} associated to 1.
2
Block matrix of type By, m = 2:

t t

B, — w11 Ly ‘ wo1 LY

- t t
’LU12L2 ‘ U)22L2 ’

where Lz is the transpose of the row normalization of the adjacency matrix
of layer Sj.

(a) If both wi; # 1 and wag # 1 then if (?) is an eigenvector associated
2
to the eigenvalue 1, we have

t t

™ = 'U}11L17T1 + wglLlﬂ'Q,
_ t t

Ty = wiaLym + waaLyms.

From here, taking into account that both (I — w1 L!) and (I — wqoLb) are
invertible matrices, we get that m = woi(I — wy1 L) 1 Lim, and m =
w2 (I — woa L)L L. Substituting in the above equations we get

{ (I — wnL’i)Trl = w12w21L§(I — wgng)_ngm,
(I — wgng)ﬂ'g = w12w21L§(I — wnLtl)flLliﬂ'Q,

so using that L! and (I — wi1L!)~! commute and L} and (I — wooLb) ™!
commute we have

T = wlgwglLi(I — wnLtl)_l(I — wgng)_ngm,
Ty = wlg’u}gng(I — wQQLté)*l(I — wllLl‘i)*lL’iﬁg.

(1)

Let us define 78" = (I — w1 L) NI — woe L) ' Lim and 7§%* = (I —
woa LE) YT — w1 LY) " Lims. . By the equations (1)

_ ¢
T = wipwa L] m{e, 2)
Ty = wigway LYmgHe,

and from (1) and (2)

¢ ¢ Tt _ Tt ¢

(I —waaLs)(I — w1 L)) 7" = Lim = Lywigwey Ly wi™®,
¢ ¢ ¢ 1 ¢

(I —waaLs)(I — w1 L)7§** = Lime = Ljwiaway Lym§"®,
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ie., m{"* and 7§"* are eigenvectors associated to 1 of the column stochastic

matrices

T t t t +

Ayt = (wi1Lf + waa L — wiiwaa L5 LY + wigwar LY LY), and
rouw t t trt trt

Ay = (win L] + woa L — wigwaa L Ly + wigwa L1 Ly).

After computing 7" and m§"*,

{ T = wigwyy L w{¥e,

T = wlg’u}gngW%ux.

(b) (w11 = 1) and (c¢) (wag = 1) give the same results as for matrices of type
B;.
Block matrix of type B3, m = 2:

B — < w1 LY | war L >
2 — T )
w122 ‘ waa Ls

where L} is the transpose of the row normalization of the adjacency matrix
of layer Sp.

(a) If both wy; # 1 and way # 1 then if (Zl) is an eigenvector associated
2
to the eigenvalue 1, we have

_ ¢
m = wi1Lim + worma,

¢
Ty = W12T1 + Wwaa L5ms.

Taking into account that both (I —w11 L}) and (I —wg2Lb) are invertible ma-
trices, we get that m = wa1 (I — w11 LY)~1mo, and mo = wio(I — wao L) ~tmry.
Substituting in the above equations we get

{ (I —wiLy)m = wigway (I — wopLb) ™y,
(I — woa Lh)my = wigwoy (I — wllLi)_lﬂ%

so multiplying in both sides by (I —w11L}) and (I —wagLh) respectively we

have
{ wigwam = (I — woa L) (I — wyy LY)my,
W12W9o1 Ty = (I — wnLﬁ)(I — wgng)ﬂ‘Q.

Therefore, m; and my are eigenvectors associated to 1 to the column stochas-
tic matrices

t t trt
T2 __ t t trt
./422 = (’LUHLI + w22L2 — w11w22L1L2 + w12w21]2).

(b) (w11 = 1) and (c¢) (wae = 1) give the same results as for matrices of type
B;.
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