
SoftReal–TimeScheduling forEmbeddedControl Systems ⋆

Daniele Fontanelli a, Luca Greco b, Luigi Palopoli a

aDipartimento di Scienza e Ingegneria dell’Informazione (DISI),University of Trento, Via Sommarive 14, Povo (TN), Italy

bL2S - EECI - Supélec, Université Paris Sud XI, 3 rue Joliot-Curie, 91192 - Gif sur Yvette, France

Abstract

We deal with the following problem: how to implement a feedback controller on a CPU, with variable computation time, on a
CPU that is shared with other tasks so that 1) the task satisfies its Quality of Control (QoC) requirements, 2) the CPU can be
efficiently managed to host other concurrent activities. We propose a solution based on the combination of a predictable model
of computation and of a scheduling algorithm that enables a fine control on the evolution of the delay. This combination of
techniques enables us to set up an optimisation problem where the scheduling parameters are synthesised in order to minimise
the CPU utilisation and guarantee the QoC requirements for the control task.

Key words: Adaptive algorithms, Computer controlled systems, Control engineering applications of computers, Stochastic
jump processes, Time schedule controllers, Real-time tasks, Real-time systems

1 Introduction

In the industrial practise, we frequently observe a dis-
crepancy between the performance of control systems at
design time and in their final implementation. An effect-
ive strategy to address this problem is by characterising
the limitations to the performance that a platform can
provide (Quality of Service (QoS)), and by establishing a
relationwith the Quality of Control (QoC) offered by the
system (stability, robustness, H2 norms, etc.). In clas-
sical digital control design, the QoS is simply associated
with the (T, D) pair, where T denotes the sampling time
and D is the loop delay. The standard tools of digital
control allow the designer to identify the QoC perform-
ance given a (T, D) QoS specification. The (T, D) pair
is easy to identify when the controller is implemented us-
ing dedicated hardware resources. However, in a modern
system (e.g., an automobile) hardware sharing is key to
both cost reduction and simplification of system engin-
eering. In this paper, we focus on a particular hardware
resource: the Central Processing Unit (CPU). Feedback

⋆ This paper was not presented at any IFAC meeting. This
paper subsumes and extend the results previously reported in
a conference paper by the same authors [11]. Corresponding
author D. Fontanelli. Tel. +39-0461-882080. Fax +39-0461-
282093.

Email addresses: fontanelli@disi.unitn.it (Daniele
Fontanelli), lgreco@ieee.org (Luca Greco),
palopoli@disi.unitn.it (Luigi Palopoli).

controllers are implemented as concurrent tasks, which
are periodically activated by a timer. Control tasks com-
pete for the CPU with other tasks, some equally import-
ant as the control task, such as sensor data processing,
communication and security tasks. A scheduler allocates
the CPU in presence of simultaneous execution requests.
The presence of other tasks introduces random delays
and input jitter. This problem is traditionally addressed
using a combination of solutions. The adoption of a time–
triggered model of computation [16] allows the control
task to receive input samples with a very accurate peri-
odicity T and to release its output after a fixed delay D
(deadline). The real–time scheduling theory [20] offers
analytical conditions for all tasks tomeet their deadlines.
Thereby, it is possible to recover the (T, D) QoS model
and apply classical digital control approaches [31]. The
recent technological developments are gradually restrict-
ing the space for this approach. The use of such sensors as
cameras, RADARS, or laser scanners introduces a large
variability in the computation time. In these cases, the
hard real-time scheduling theory is overly conservative
and reduces the number of applications that can be ex-
ecuted simultaneously. This is hardly acceptable, since
the strict respect of every deadline is not needed in sev-
eral control systems [5]. This new generation of applic-
ations calls for scheduling solutions combining perform-
ance guarantees with an efficient resource utilisation.

Contributions of the paper. The objective of this
paper is to ensure a safe coexistence in the same CPU of

Preprint submitted to Automatica 28th March 2013



control tasks with guaranteed QoC with the largest pos-
sible number of concurrent activities. In the wide range
of possible applications of our technique, we have isol-
ated two significant scenarios for illustrative purposes.
In the first one, we aim for the maximum number of ap-
plications that receive real–time guarantees along with
the control task. In the second one, the CPU is shared
with best effort activities and we aim to give the latter
optimised chance of execution. The cornerstone of our
approach is a generalisation of the classical (T, D) QoS
model. In our model, we still have a period T used to
trigger the activation of the control tasks, but samples
are not always collected at the timer expiration. The
loop delay D is not fixed, but it evolves according to a
stochastic model FD. Because of the possible stochastic
switches in the loop delay, the resulting closed loop dy-
namics is that of a Stochastic Jump Linear System [22].
The construction of this model allows us to set up an op-
timisation problem where the decision variables are the
scheduling parameters of the control task, and the goal
is to minimise the CPU utilisation under the constraint
that the system attains some specified QoC goals. The
result of this process can be different for different ap-
plication scenarios. In some cases, we generate a static
scheduling policy, where the scheduling parameters are
fixed, in others a dynamic policy, where they are subject
to change depending on the delay accumulated during
the execution. The two key enablers for this approach
are the adoption of an analytically tractable notion of
QoC (second moment stability [9]) and of a predictable
model of computation. The latter, in combination with a
soft real–time scheduling algorithm, allows us to assign
scheduling parameters so that delays evolve according
to the model FD resulting from the optimisation [30,1].

The paper is organised as follows. In Section 2, we
present our model of computation and our scheduling
algorithm. In Section 3, we show how to set up the con-
trol problem. In Section 4, we describe the optimisation
problem resulting from the combination of the model
of computation and of our QoC objective. In Section 5,
we offer a numeric evaluation based on a large number
of simulations. In Section 6, we compare our approach
with existing work. Finally, in Section 7 we draw our
conclusion and announce the future working directions.

2 Platform model

Definitions.We consider a scenario where a set of tasks
T = {τi} i ∈ {1, . . . , nτ}, nτ ∈ Z share the same compu-
tation platform. Some elements of T are real–time tasks
(which include the tasks used for control purposes), the
others are best–effort tasks. The former have temporal
constraints on their execution, while the latter do not re-
ceive any kind of temporal guarantees: their execution is
optional but adds value to the quality perceived by the
user. A real–time task τi consists of a stream of jobs Ji,j ,
j ∈ Z≥0. Each job Ji,j is activated at time ri,j and fin-

ishes at time fi,j after executing for a time ci,j . Job Ji,j
is also characterised by a deadline di,j , that is respected
if fi,j ≤ di,j and is missed if fi,j > di,j . We focus on
periodic tasks with task period Ti (i.e. ri,j+1 = ri,j+Ti),
where each activation time is also the deadline of the pre-
vious instance (i.e. di,j = ri,j+1). The task is said hard
real–time if all deadlines are met, and is said soft real–
time if deadlines are met with a given probability. The
quantity Ui = supj

ci,j
Tj

is defined worst case utilisation.

2.1 The Scheduling Algorithm

In this paper, we assume that the presence of a CPU
scheduler adopting the Resource Reservations (RR)
policy. Resource Reservations are shortly explained as
follows. Each task τi is associated with a reservation pair
(Qi, Ri), meaning that it is allowed to execute for Qi

(budget) time units in every interval of length Ri (reser-
vation period). Clearly, the budget Qi has to be chosen
in the range {0, . . . , Ri}. The bandwidth allocated to
the task is defined as Bi = Qi/Ri and corresponds to
the fraction of CPU time allocated to the task. The
reservation period Ri is typically chosen as an integer
sub-multiple of the task period: Ti = NiRi, Ni ∈ N.

The particular implementation of the RR approach that
we consider is the Constant Bandwidth Server (CBS) [1].
When the CBS is used, the bandwidths assigned to the
different tasks have to be chosen respecting the following
constraint: ∑

i

Bi ≤ Ulub. (1)

with Ulub = 1. The meaning of this condition is that
the sum of the bandwidth assigned to the different tasks
cannot exceed a bound (Ulub), which quantifies the effi-
ciency of the scheduling algorithm (100% for the CBS,
if the OS overheads are neglected). We remark that this
scheduling technology is currently implemented in a pop-
ular real–time patch of the Linux Kernel 1 and is likely
to become mainstream in the future releases.

Choosing the Reservation Parameters. When con-
dition (1) is respected, the CBS enjoys the temporal isol-
ation property, meaning that temporal guarantees can
be given to each task based on its computation require-
ments and on its scheduling parameters, regardless of
the parameters of the other tasks in the system. There-
fore, the policy used to choose the reservation paramet-
ers (Qi, Ri) depends on the real–time constraints of the
task and on its computation requirements.

A first possibility is to use a static policy, whereby such
parameters are chosen once and for all and kept constant
throughout the execution of the task. For instance, for an
hard real–time task, we can guarantee the respect of all

1 http://gitorious.org/sched_deadline/pages/Home

2



its deadlines as long as it is assigned a bandwidth greater
than or equal to its worst case utilisation [1]: Bi ≥ Ui.
For a soft real–time task with known distributions of
the computation time, we can compute a bound for the
probability that it will meet its deadlines for any choice
of the budget and of the reservation period [2].

A second possibility is to use a dynamic policy, where
the bandwidth is changed in every job to adapt the QoS
provided by the task. In principle, it is possible to change
the bandwidth by operating on the budget and/or on
the reservation period. However, for periodic tasks, the
reservation period is set to an integer sub-multiple of the
task period and adaptations are made by changing the
budget Qi. This particular choice is mandated by effi-
ciency reasons because it reduces the waste of computing
power in the scheduling process [8]. The adaptation of
the budget is typically made by a feedback control loop,
where measurements collected inside the OS are used to
assess the QoS and to fine-tune it as required. For this
reason such policies are usually referred to as adaptive
reservations [29]. In the following we will provide a con-
crete example of such a policy.

As far best effort activities are concerned, the CBS can
be complemented with additional mechanisms that en-
able an effective reclaiming of unused bandwidth. As dis-
cussed in Section 4, an effective solution of this kind can
be built relying on an adaptive reservation mechanism
for the real–time tasks.

2.2 QoS Model for the control task

We now focus on a specific task implementing the con-
troller, which will be denoted by τ removing the i sub-
script. Our objective is now to construct a QoS model
(T, FD) for the control task that describes the evolution
of the delays introduced in its computations for different
choices of the scheduling parameters. In our framework,
the control task is soft real–time and shares the CPU
with the other tasks in the set T .

The task is scheduled by a reservation (Q,R) and, in
view of the temporal isolation property, evolves inde-
pendently of the other tasks. For the choice of Q, we
will consider dynamic policies (in which the budget Qj

changes for every job Jj) and static policies. The model
below is derived for the case of dynamic policies, and the
case of static policies is easily recovered by imposing the
constraint Qj = Qj−1 for all j. The task τ is activated
with period T = NR; each activation produces a job Jj
that takes a sample yj of the plant output and produces
control value uj. To construct a QoS model that can be
used in the control design, we need to know the instant
sj when yj is sampled (sampling time) and the instant vj
when uj is released (release time). As shown next, this
is possible by the combination of an appropriate model
of computation with a CBS scheduler.

Jj Jj+1 Jj+2

R

T

0 2 4 6 8 10 12 14 16 18 20 22

vj -1 vj vj+1

єj єj+1

Figure 1. Example of schedule of a task (T = 9, R = 3,
N = 3).

Model of computation. Despite the periodical activ-
ation of the task, the collection of input samples and the
release of the computation result are affected by several
sources of timing fluctuations (jitter) and computation
time variability. To address this problem, we introduce
a set of rules (a model of computation) that specify the
possible sampling times sj and the release times vj .

Rule 1: If a job Jj finishes before its deadline (i.e. fj <
dj = rj + T ), the release of the output uj is deferred to
the end of the period (i.e. vj = rj + T is forced).

Rule 2: If a job Jj finishes after its deadline (i.e. rj +
T +(Dj − 1)R < fj ≤ rj +T +DjR with Dj ∈ N), the
release of the output uj takes place immediately at the
end of the present reservation period (i.e. vj = rj + T +
DjR is enforced and Dj is the delay of job Jj).

Rule 3: If a job Jj experiences a delay Dj greater than a
threshold, it is cancelled and a new job Jj+1 is activated.

Rule 4: The output yj is sampled at the same time the
control uj−1 is released (at instant sj = vj−1).

The purpose of Rule 1 is to reduce the output jitter due to
early terminations. As an illustrative example, consider
the schedule in Figure 1. The job Jj+1 finishes at time 15
but releases its output only at time 18. Rule 2, together
withRule 1, prevents output releases that are not aligned
with a reservation period. As a consequence the delay
experienced by a job is always an integer multiple Dj

of the reservation period. With reference to Figure 1,
job Jj finishes with a delay Dj = 1. Rule 3 avoids the
accumulation of very large delays which are impossible
to be compensated. In what follows we assume that the
maximum tolerated delay is one task period T = NR
(i.e. maxDj = N). As a consequence of Rule 1, Rule 2
and Rule 3 the release time for the output of Jj is given
by

vj = rj + T +DjR = (j + 1)T +DjR, (2)

with Dj ∈ {0, 1, . . . , N}. In view of such expression for
vj , Rule 4 ensures that output sampling always occurs at
the beginning of a reservation period, even if the task can
receive its budget later in the same reservation period
(the job Jj in Figure 1 samples yj at time 0, but starts
at time 2).

3



A few remarks on this model of computation are in or-
der. If the computation consistently terminates within
the deadline, the application of the rules recovers the
standard time–triggered behaviour [14], with periodic
sampling and a fixed delay equal to T in the compu-
tation. On the contrary, when the task execution gets
delayed, Rule 4 allows a more flexible management of the
sampling instants than a time–triggered approach: when
the next job starts its execution, it is given the possibility
of using fresher data. For instance, job Jj+1 in Figure 1
will use the data sampled at time 12 rather than the one
sampled at time 9. One potential drawback of sampling
on vj−1 instead of sampling on rj is that the classical
analysis based on periodic updates for yj and uj−1 is not
applicable. However, as discussed in the next section,
this problem is easy to solve and its importance is out-
weighed by the advantages. In some respects, we could
say that the periodic activation is used to set a periodic
reference pace for the control task. However, the com-
munication between the control task and the environ-
ment is event–triggered, and the communication events
are generated the earliest instant between the periodic
activation of the job and the termination of the previ-
ous one. As a final remark, this model of computation is
easy to implement using the techniques proposed in the
literature on time–triggered systems on top of an oper-
ating system equipped with a CBS scheduler [14,16,29].
We will not delve into these implementation details for
the sake of brevity.

Evolution of the Delays. Let Qj denote the budget
allocated to job Jj . The reservation periodR is held con-
stant (and equal to an integer submultiple of the task
period T ) to decide the granularity of the CPU alloca-
tion (a smaller value for R corresponds to a more fluid
allocation but to a greater OS overhead). The temporal
evolution of the task is described by introducing a state
variable, called scheduling error, given by the difference
between the output release time vj and the soft deadline
dj :

ǫj , vj − dj = vj − rj+1. (3)

As an example, the job Jj in Figure 1 uses four reser-
vation periods to complete. So its output release time is
vj = 12 and the resulting scheduling error ǫj = 3 time
units, i.e. a reservation period R. A positive value for ǫj
means that Jj finished beyond the deadline, i.e. it re-
ceived less bandwidth than it needed. Conversely, a neg-
ative value means that it finished before its deadline (the
assigned bandwidth was greater than the task needed,
as happened to job Jj+1 in Figure 1).

The dynamic evolution of the scheduling error can be
found in [?]. The combination of such dynamics with the
rules of the model of computation produces the following
expression for the evolution of the delay Dj:

Dj+1 ,
ǫj+1

R
= S(Dj) +

⌈
cj+1

Qj+1

⌉

−N , (4)

where S(x) , max(min(x, N), 0). The loop delays
evolve in a bounded and discrete set:Dj ∈ {0, 1, . . . , N}.
In this model the computation time cj+1 (which is un-
known before the execution of the job) plays the role of
an exogenous disturbance term. For the case of dynamic
policies, Qj can be seen as an input variable and used
to control the evolution of the delays.

3 The control problem

The control task τ is used to control a linear time–
invariant and strictly proper plant. We can describe the
plant by a discrete–time model obtained using the reser-
vation period R as sampling time 2 :

x(k + 1) = Ax(k) +Bu(k) (5)

with x ∈ R
nx , u ∈ R

nu , A ∈ R
nx×nx , B ∈ R

nx×nu ,
k ∈ Z≥0. The control u(k) is held constant between
two successive release times, that is u(k) = uj−1 for
k ∈ {vj/R, . . . , vj+1/R}, where uj−1 is the control value
released at vj . The output yj sampled at vj is given
by yj = Cx (vj/R) with y ∈ R

ny and C ∈ R
ny×nx

output matrix of the plant (5). The task τ implements
the following linear controller

zj+1 = Aczj +Bcyj (6)

uj = Cczj +Dcyj ,

where j is the index of the j-th job releasing its output at
vj , zj ∈ R

nz , Ac ∈ R
nz×nz , Bc ∈ R

nz×ny , Cc ∈ R
nu×nz

andDc ∈ R
nu×ny . The controller (6) does not evolve on a

periodical time basis, as it is updated at each new release
time instant of τ and vj −vj−1 is not constant for j ∈ N.
Nonetheless, such a controller is designed assuming a
nominal periodic behaviour with period T = NR, com-
putation delay equal to the period, and a ZoH semantics.
Let Fj ∈ {0, . . . , 2N} denote the integer variable de-
scribing the number of reservation periods in which the
control value uj−1 is held constant. Recalling (2), it is

immediate to see that Fj ,
vj−vj−1

R
= N +Dj −Dj−1.

In the nominal condition where both jobs Jj−1 and Jj
do not suffer delays we have Fj = N . According to this
definition, the controlled system dynamics between the
release time of job Jj−1 and the release time of job Jj is
given by

xj+1 = AFjxj +

Fj−1
∑

t=0

AFj−t−1Buj−1 (7)

yj = Cxj ,

2 Indeed, according to the rules in the previous section, each
output sampling and control release operation takes place at
some release time vj , which is always an integer multiple of
the reservation period.

4



where xj , x (vj/R). If the delay is greater thanN , then
a drop event takes place limiting the delay toN (Rule 3).
The drop event can be managed either by holding the
previous control value (drop and hold), or by zeroing it
(drop and zero). In both cases we consider the controller
state zj to be held (zj = zj−1). Therefore, in the drop
case, the dynamics of the controller (6) has to be mod-
ified, while the dynamics (7) remains unchanged. In or-
der to model the constant delay (of N reservation peri-
ods) and the drop event, we introduce the state variable
ζj ∈ R

nu . In this paper, we adopt the drop and hold se-
mantics, with the following dynamics for the controller:

zj+1 = Aczj +Bcyj

ζj+1 = Cczj +Dcyj

uj = Cczj +Dcyj
︸ ︷︷ ︸

no drop

and

zj+1 = zj

ζj+1 = ζj

uj = ζj
︸ ︷︷ ︸

drop and hold

, (8)

The drop and zero case is obtained by simply replacing
ζj+1 = ζj , u = ζj with ζj+1 = uj = 0.

The resulting closed loop system has the following
switching dynamics

ξj+1 = Ãφ(j)ξj (9)

yj = C̃ξj

where ξj = [xT
j , z

T
j , ζj ]

T ∈ R
nx+nz+nu and C̃ =

[C, 0, 0] ∈ R
ny×(nx+nz+nu). The piecewise constant

function φ : Z≥0 → {0, . . . , 3N +1} rules the switchings
among the different subsystems according to the delay
evolution (4) and the drop policy. Indeed, we have 2N+1
possible values of Fj for the case of regular evolution
(no drop event, i.e. φ(j) = 0, . . . , 2N), and each of them
generates a possible closed loop dynamics. Addition-
ally, we have to account for N + 1 dynamics stemming
from a drop event (i.e. φ(j) = 2N +1, . . . , 3N +1). The

expression of matrices Ãφ(j) can be easily derived com-
bining (7) and (8). For φ(j) = 0, . . . , 2N , we get 2N +1
closed loop matrices for the regular dynamics

Ãφ(j) =







AFj 0 B̃φ(j)

BcC Ac 0

DcC Cc 0






, (10)

with B̃φ(j) =
∑Fj−1

t=0 AFj−t−1B and Fj = 0, . . . , 2N .
Additionally, we have N + 1 dynamics after a drop and
hold event given by indexes φ(j) = 2N + 1, . . . , 3N + 1
that generate

Ãφ(j) = Ãdh
φ(j) =







AFj 0 B̃φ(j)

0 I 0

0 0 1






, (11)

with Fj = N, . . . , 2N and the B̃φ(j) is formally equal
to the one given previously. The drop and zero matrix
Ãdz

φ(j) can be obtained by Ãdh
φ(j) zeroing the last element

of the last row.

3.1 Problem Formulation

We are now able to state the following problem:

Problem 1 Design an adaptive reservation such that:
1) the QoS (T, FD) that it offers to the control process is
sufficient to sustain a QoC specification, 2) the bandwidth
devoted to the control task is minimised.

QoC and bandwidth consumption are in evident trade-
off. Indeed, if the bandwidth devoted to the control task
τ is permanently greater than the worst case utilisation,
all jobs complete within their deadline [1], and the con-
trolled system always evolves with its nominal dynamics
ÃN (Fj = N for all jobs Jj) where the QoC specifica-
tions are respected by design. Conversely, if the band-
width granted to τ is small, the jobs are often dropped
and the system ends up executing with its open loop dy-
namics (Fj = 2N) most of the times.

4 Stochastic Model

The sequence of the computation times of the control
task τ is modelled as an independent and identically dis-
tributed (i.i.d.), real–valued, continuous stochastic pro-
cess denoted as {cj}j∈Z≥0

. The random variable cj takes
values in the set Lc = {c, . . . , c}, where c is the worst
case execution time (WCET) and c is the best case exe-
cution time (BCET) and is distributed according to the
probability density function (pdf) f(cj). From (4), it fol-
lows that {Dj}j∈Z≥0

is itself a stochastic process that is
related to the process {cj}j∈Z≥0

, the budget Qj and the
value of the previous delayDj−1. Contrary to {cj}j∈Z≥0

this process is discrete valued. In the QoS model, FD

is defined by the set of all possible values of the delay
({0, . . . , N}) and by the associated probability.

In order to attain the desired QoC goals, we look for
a time invariant dynamic policy for the QoS (T,FD),
with the budget chosen as a function of the delay ex-
perienced in the previous job Qj = Q{Dj−1} (which
as a special case can be constant). With this choice
and assuming the process {cj}j∈Z≥0

stationary (it is
indeed i.i.d.), the process describing the evolution of

5



Dj and also the drop events is a finite-state homogen-
eous, discrete-time Markov chain (FSH MC). Denote
by {σ(j)}j∈Z≥0

such a MC, which takes on values in
the set Lσ = {0, . . . , N + 1}, with the meaning that if
σ(j) = q ∀q ∈ {0, . . . , N} then Dj = q, if σ(j) = N + 1
then Dj = N and a drop event takes place. The
stochastic characterization of {σ(j)}j∈Z≥0

is given by
the transition probabilitymatrix P = (pqg)(N+2)×(N+2),

pqg , Pr {σ(j + 1) = g | σ(j) = q} and by the initial

probability measure πσ(0) ∈ SN+1, where SN+1 ,
{

ς = (ς1, . . . , ςN+2) ∈ [0, 1]N+2 |
∑N+2

i=1 ςi = 1
}

is the

(N + 1)-dimensional canonical stochastic simplex. The
evolution of the probability distribution πσ(j) of the
MC σ is then given by πσ(j + 1) = πσ(j)P .

Recalling (4), for every q and g such that 0 ≤ q ≤ N and

1 ≤ g ≤ N , we have pqg = Pr
{

g = q +
⌈

cj+1

Q{q}

⌉

−N
}

and pqg = Pr {cj+1 ∈ V (q, g)} =
∫

V (q,g) f(x)dx,

where the set V (q, g) , (aqg, aqg], and the val-

ues aqg , min (Q{q}(g − q +N − 1), c̄) and aqg ,

min (Q{q}(g − q +N), c̄).

A special case is related to the probability to finish
with a state g = 0 associated with the event Dj+1 = 0
(i.e., the control task terminates before the deadline).
In this case, due to the presence of the S(·) operator,

we can compute V (q, 0) , (0, min (Q{q}(N − q), c̄)].
From this expression, we can easily see that by in-
creasing the budget Q{q} we can increase the prob-
ability of meeting the deadline, whilst a large accu-
mulated delay q plays adversely. Another important
special case is related to the state g = N + 1 (corres-
ponding to a drop event), with the probability pq N+1

given by: pq N+1 = Pr
{

q +
⌈

cj+1

Q{q}

⌉

−N > N
}

, res-

ulting into V (q,N + 1) , (min (Q{q}(2N − q), c̄) , c̄]
for 0 ≤ q ≤ N . The set V (q,N + 1) can be empty if
min (Q{q}(2N − q), c̄) = c̄.

An important question is ascertaining whether the FSH
MC σ is also irreducible and aperiodic, that is if there
exists a unique invariant probability distribution (i.p.d.)
π̄σ corresponding to the steady-state probability distri-
bution of the MC (i.e. limh→∞ πσ(h) = π̄σ for any πσ(0))
[22]. In such a case the MC σ will be denoted by FSHIA
MC. Conditions for this are stated in the following.

Lemma 1 The FSHMC σ is irreducible and aperiodic if

0 < Q{q} <
⌊ c̄

N

⌋

, ∀q ∈ {0, . . . , N},

0 < Q{N + 1} <

⌊
c̄

N − 1

⌋

.
(12)

Proof. It can be easily verified that for σ to be a FSHIA

MC it is sufficient that all elements on the diagonal, on
the first subdiagonal and on the first superdiagonal of
the transition matrix P be non zero. Indeed, a tridiag-
onal non-negative matrix P with no zero elements on
its diagonals is such that Pm > 0 for m > n − 1 with
n the dimension of P . This condition (called Frobenius’
test for primitivity [25]) requires, in our case, that the
integration domains V (q, q− 1), V (q, q) and V (q, q+ 1)
related to the entries on the three main diagonals of P
be not empty, and that the pdf f(·) be not identically
null on them. The latter requirement can be satisfied if
f(·) is such that

∫ c

c−1 f(x)dx 6= 0 ∀c ∈ {c, . . . , c̄}. To sat-
isfy the former requirement we impose a lower bound on
V (q, q + 1) and an upper bound on V (q, q − 1). That is
min (Q{q}N, c̄) < c̄ and min (Q{q}(N − 1), c̄) > 0. Such
conditions can be easily reformulated as in (12). ✷

Stochastic Description of the Switching Process.
In this section we derive a stochastic description for the
process {φ(j)}j∈Z≥0

ruling the switchings of the closed

loop system (9), which is thus a Stochastic Jump Linear
System (SJLS). The process {φ(j)}j∈Z≥0

takes values in

the set Lφ = {0, . . . , 3N + 1} as follows:

(1) φ(j) = N−σ(j−1)+σ(j) for σ(j−1), σ(j) < N+1;
(2) φ(j) = 2N − σ(j − 1) for σ(j − 1) < N + 1 and

σ(j) = N + 1;
(3) φ(j) = 2N + 1 + σ(j) for σ(j − 1) = N + 1 and

σ(j) < N + 1;
(4) φ(j) = 3N + 1 for σ(j − 1), σ(j) = N + 1.

According to this definition, we can define for each i ∈
Lφ a set of pair(s) Oi = {(a, b) ∈ Lσ × Lσ | σ(j − 1) =
a, σ(j) = b s.t. φ(j) = i}. Hence we can write

πφi
(j) = Pr{φ(j) = i} =

∑

(a,b)∈Oi

Pr{σ(j) = b, σ(j−1) = a}.

(13)
In order to provide the stochastic characterization of φ,
we define another process describing the evolution of two
consecutive steps of the MC σ: σ̂(j) = (σ(j), σ(j − 1)),
taking values in the set Lσ̂ = Lσ × Lσ. Hence we have

π̂ab(j) , Pr{σ̂(j) = (a, b)} = Pr{σ(j) = b, σ(j − 1) = a}

= Pr{σ(j) = b | σ(j − 1) = a}Pr{σ(j − 1) = a}

= pabπσa
(j − 1).

Recalling the definition of πσ we have πσa
(j − 1) =

∑N+1
c=0 pcaπσc

(j − 2) =
∑N+1

c=0 π̂ca(j − 1), and

π̂ab(j) = pab

N+1∑

c=0

π̂ca(j − 1) = π̂(j − 1)vapab, (14)

with π̂ , [π̂00, π̂01, . . . , π̂N+1,N , π̂N+1,N+1] and va is the

a-th column of the matrix V ∈ {0, 1}(N+2)2×(N+2) given

6



by V = [IN+2, . . . , IN+2]
T
. Equation (14) can be written

as
π̂(j) = π̂(j − 1)P̂ , (15)

with P̂ , [v0p00, v0p01, . . . , vN+1pN+1,N+1], thus reveal-
ing that σ̂ is a FSH MC. A relevant issue is establishing
if σ̂ admits a unique i.p.d.. A potential problem is that
σ̂ is not always irreducible even if σ is irreducible, which
could lead to zero steady state probability for some ini-
tial state of σ̂. However, the following proposition holds.

Proposition 1 [10] If σ is a FSHIA MC with unique
steady state distribution π̄σ = [π̄σ0

, π̄σ1
, . . . , π̄σN+1

] and
transition probability matrix P = (pab)(N+2)×(N+2),
then σ̂ is a FSH MC with a unique steady state dis-
tribution ˆ̄π = [ˆ̄π00, ˆ̄π01, . . . , ˆ̄πN+1,N , ˆ̄πN+1,N+1] with
ˆ̄πab = pabπ̄σa

.

The process {φ(j)}j∈Z≥0
is not a FSH MC, but its dis-

tribution πφ(j) is linearly related to the one of the FSH
MC σ̂. Indeed, recalling (13) we can write

πφ(j) = π̂(j)W, (16)

for a suitable matrix W = (wlh)(N+2)2×(3N+2), with
wlh ∈ {0, 1}. Hence, the process {φ(j)}j∈Z≥0

admits a

unique steady state distribution π̄φ which, recalling Pro-
position 1, is given by

π̄φ = ˆ̄πW, (17)

where ˆ̄π is the steady state probability of the FSHMC σ̂.

4.1 The notion of QoC

The description of process {φ(j)}j∈Z≥0
allows us to es-

tablish a link between the QoS model (T, FD) and the
QoC. We use the system stability as our notion of QoC.
To this end, we adapt the definitions of Second Moment
stability [9] to our class of stochastic processes, namely
processes which are not FSH MC, but whose distribu-
tions are linearly related to the distribution of a FSH
MC (see (16)).

Definition 1 Let us consider the stochastic process
{σ(t), φ(t)}t∈Z≥0

taking values in the set Lσ × Lφ ,

{1, . . . , n} × {1, . . . ,m} with n ≥ m ≥ 1. Assume that
{σ(t)}t∈Z≥0

is a FSHMC with transition probability mat-

rix P = (pli)n×n and initial distribution πσ(0) = πσ0,
and {φ(t)}t∈Z≥0

has probability distribution given by

πφ(t) = πσ(t)W with W = (wlj)n×m a row stochastic
matrix. The SJLS

xt+1 = Aφ(t)xt (18)

with x ∈ R
M , Ai ∈ R

M×M , i ∈ Lφ is said second

moment stable (SM-stable) with respect to Φ ,

{
(πσ0, πσ0W ) ∈ Sn+m−2 | πσ0 ∈ Sn−1

}
if for any ini-

tial condition x0 ∈ R
M and any initial distribution

(πσ0, πφ0) ∈ Φ we have: limt→∞ E
{
‖xt(x0)‖

2
}

= 0,
where xt(x0) is a sample solution of (18) with initial
condition x0.

For SM-stability we can use the following sufficient con-
dition [13].

Theorem 2 If there exist n matrices Gl = GT
l > 0

such that
∑m

j=1 wljA
T
j ĜlAj − Gl < 0, ∀l ∈ Lσ with

Ĝl ,
∑n

i=1 pliGi, then the SJLS (18) is SM-stable.

It is worth noting that, if the process {φ(t)}t∈Z≥0
is a

FSHMC, then the previous condition coincides with the
set of linear matrix inequalities provided in [26].

4.2 Optimal Reservation Policies

We are now in condition to solve Problem 1. Let us define
the stochastic process {q(j)}j∈Z≥0

as the sequence of

budgets assigned to the control task τ by the scheduler.
Such a process takes values in the set {Q{0}, . . . , Q{N+
1}} representing all the possible state dependent budget
values. All these values can be stacked in the optimisa-
tion vectorQ , [Q{0}, . . . , Q{N+1}]T . The solution set
of the optimisation problem is given by the constraints
(12) on the values of the budget and by the SM-stability
condition of Theorem 2. Assuming that a fraction of
each reservation period R has to be reserved for the ex-
ecution of other tasks than τ , then each Q{q} must be
less than a pre-specified Qmax. Therefore, defining the

vectors Q , [0, . . . , 0]T and Q , [α, . . . , α, β]T , where

α , min
(⌊

c̄
N

⌋
, Qmax

)
and β , min

(⌊
c̄

N−1

⌋

, Qmax

)

,

the budget is constrained by:Q < Q < Q. Problem 1 can
be formalised by the following nonlinear optimisation
program, the Optimal Reservation Policy - SM-Stability
(ORP-SM) problem in the vector Q and the (N + 2)2

matrices Gl:

ORP-SM Problem

min
Q

g(π̄σ, Q) s.t.

Q < Q < Q

Gl = GT
l > 0

∑3N+1
h=0 wlhÃ

T
h ĜlÃh −Gl < 0, ∀l ∈ Lσ̂

Ĝl =
∑(N+2)2−1

i=0 p̂li(Q)Gi

P̂ (Q) = (p̂li(Q))(N+2)2×(N+2)2 as in (15)

W = (wlh)(N+2)2×(3N+2) as in (16) .

7



The computation budget is usually chosen as an integer
multiple of a time interval (which is dictated by the gran-
ularity of the clock used in the OS). For this reason the
problem ORP-SM is essentially a mixed integer optim-
isation problem which can, in principle, be solved by
exaustively searching on all the possible combination of
discrete values for the vector of budget Q. For a given
choice of the elements of the vector Q, the problem re-
duces to an LMI feasibility check, which is convex and
can be solved very efficiently.

4.3 Optimisation goals

The ORP-SM solution depends on the cost index
g(π̄σ, Q), which represents the bandwidth minimisation
criterion according to the second point of Problem 1.
For a real–time platform, we identify two main prob-
lems: 1) given the control task set T = {τi}, with
i ∈ {1, . . . , nτ}, maximize the number of tasks nτ that
can be hosted on the platform; 2) maximize the amount
of CPU time allotted to other best effort (non critical)
activities sharing the platform.

4.3.1 Maximise nτ

In order to maximize the number of control tasks that
can be executed on the platform,we need tominimize the
maximum bandwidth that each one uses. This way we
can comply with the schedulability constraint (1) for a
larger number nτ . In formal terms, we can optimise w.r.t.
the following cost function g(π̄σ, Q) = ‖Q‖∞. When the
purpose is to minimise the maximum bandwidth, dy-
namic adaptation of the bandwidth is immaterial, hence
a static scheduling policy is sufficient. Therefore, the vec-
tor Q of decision variables reduces to a scalar.

4.3.2 Optimise for best effort tasks

For best effort tasks, our goal is to maximise the chance
of execution whenever possible, i.e. whenever the pro-
cessor is not utilised by tasks receiving real–time guaran-
tees (first and foremost the control task). To this end, we
need a reclaiming mechanism operating hand-in-hand
with the CBS scheduler. There are several solutions
available in the literature. The one that we advocate
here lies in the track opened by Cucinotta et al. [7]. The
solution is compounded of an adaptive mechanism in
the scheduler (an adaptive reservation) and of an addi-
tional mechanism to redistribute the unused bandwidth
to the best effort activities. The purpose of the adaptive
reservation is to track the computing requirements of
the control task (and of other soft real–time tasks) and
to allocate it a bandwidth very close to its actual needs.

An adaptive scheduler of this kind can be obtained, in
our setting, by solving the ORP-SM problem with a cost
index that minimises the mean bandwidth allocated to

the control task. A suitable cost index, which provides a
stochastic average of the budget provided by the sched-
uler, is the long-run expected value of the budget itself.
Assuming σ is a FSHIA MC, the cost index can be writ-
ten as g(π̄σ, Q) = limj→∞ E {q(j)} = π̄σ(Q)Q.By defin-
ition π̄σ is a function of the budget Q, hence this is a
nonlinear cost index.

The solution of the optimisation problem produces in
this case a dynamic scheduling policy, where the budget
is adjusted for each job based on the delay measured in
the OS. Clearly, the optimisation of the average band-
width comes at the price of a possible growth of the max-
imal bandwidth required by the task. This can reduce
the number of tasks requiring temporal guarantees (i.e.
a minimum availability of bandwidth).

5 Simulation Results

This section reports simulations that show the effect-
iveness of the proposed approach in the two scenarios
discussed earlier. In all the experiments reported below,
we synthesised a Linear Quadratic Gaussian (LQG) con-
troller, using the same weights and assuming a nominal
condition with a constant delay of one sampling period
(see Rule 1). The computation model presented in Sec-
tion 2.2 is adopted. In the different experiments, we have
used computation times given by i.i.d. stochastic pro-
cesses with three different distributions: a uniform dis-
tribution (UD), an exponential distribution (ED) and a
beta distribution (BD).

Hosting multiple tasks with real–time guaran-
tees. In the first set of experiments, we have considered
a platform hosting three control tasks T = {τ1, τ2, τ3}
controlling three open–loop unstable, observable and
controllable plants. The task periods have been fixed to
T1 = 10 ms, T2 = 2 ms and T3 = 18 ms, each one being
four times the respective reservation periods Ri. The
BCETs have been chosen as c1 = 125µs, c2 = 25µs and
c3 = 225µs. The WCETs have been fixed to a ratio of
the reservation periods: c̄i =

Ti+Ri

3 = 5
3Ri.

By using the classic approach the three tasks cannot
be executed sharing a single real–time platform. Indeed,
the strict respect of every deadline requires an alloca-
tion of bandwidth equal to the worst case utilisation [1]

(Bi =
ci
Ti
), and this assignment violates the schedulabil-

ity constraint in (1) (
∑

i
ci
Ti

= 15
12 > 1). However, by ex-

ploiting the knowledge on the distribution of the compu-
tation times, this limit has been overcome. For example,
we have chosen the UD andBDdefined in the range given
by the BCET and WCET, while the ED has been trun-
cated (and re-normalised) in the same range. The mean
values µi and standard deviations σi have been chosen
as follows: µ1 = 1.37 ms, µ2 = 0.27 ms, µ3 = 2.46 ms,
σ1 = 0.67 ms, σ2 = 0.13 ms and σ3 = 1.22 ms for

8



the BD; µ1 = 1.53 ms, µ2 = 0.31 ms, µ3 = 2.75 ms,
σ1 = 1.06 ms, σ2 = 0.21 ms and σ3 = 1.9 ms for the ED.
The mean values of UD are µ1 = 2.15 ms, µ2 = 0.43 ms
and µ3 = 3.86 ms. By solving the ORP-SM problem as-
suming a static allocation of the bandwidth minimizing
the maximum bandwidth for each task in isolation (see
Section 4.3.1), the bandwidths allocated to the three
tasks were respectively: B1 = B2 = 0.3 and B3 = 0.35
for UD, B1 = B2 = 0.2 and B3 = 0.3 for ED, and
B1 = B2 = 0.2 and B3 = 0.25 for BD. As it may be
expected, the UD is the distribution that required the
highest allocation of bandwidth, since the shape of the
distribution is the less favorable. Since the sum of the
bandwidths for the three tasks was less than one for any
possible combination of the distributions, it was possible
to host the three tasks on the same CPU.

The previous simulations show that our approach al-
lows us to schedule a control task even in the face of a
computation time greater than the period (utilization
greater than one), which is clearly out of the question
in a hard real–time setting. To investigate further on
this issue, we have devised a specific experiment where
our scheduling proposal is confronted with a naive ap-
proach where the task is allowed to execute until the
deadline with full bandwidth and, if the execution is not
finished, the job is simply dropped (drop–out policy). To
this end, we designed a linear stabilising controller for a
Furuta pendulum with zero offset [12], whose linearised
dynamic is represented by the continuous-time transfer
function G(s) = 7.435

s(s2+34.63) between the input torque τ

and the output arm angle α. The task period was fixed
to T = 10 ms (reservation period R = T/6 = 1.66 ms).
The computation times were given by a i.i.d. process
with uniform distribution defined in the range between
BCET c = 1.66ms andWCET c̄ = 11.66ms. In this situ-
ation, the single task was not hard real–time schedulable
even if 100% of the computation time were granted. We
have carried out simulations using the drop–out policy
outlined above and compared it with the static reserva-
tion policy (Section 4.3.1). To show the generality of our
approach, we have considered here a problem of track-
ing a piecewise constant reference, which can be easily
re-cast into a stabilization problem. The reference sig-
nal was a square wave of period 10 s, π/4 amplitude
and duty cycle of 50%. Figure 2 reports the logarithm of
E{‖x(k)‖2} on 200 runs for both the drop-out (dashed)
and the static (solid) reservation policy. The evident con-
vergence of the mean squared tracking error is a direct
consequence of the SM-stability. Interestingly the drop-
out policy leaded to instability. As a final remark, even if
large fluctuations of the state variables cannot be ruled
out under SM-stability, in these experiments the transi-
ent behavior was always satisfactory, i.e., the deviation
of the system behavior with respect to the ideal execu-
tion (where the control data is always delivered on the
deadline) was consistently below 0.1 rad for all simula-
tions run.

0 5 10 15 20 25 30
10

−6

10
−4

10
−2

10
0

10
2

10
4

10
6

t [s]

E
{|

|x
(k

)|
|2

}

 

 
static

drop−out

Figure 2. E{‖x(k)‖2} of the Furuta pendulum in case of the
static reservation policy (solid) and drop-out policy (dashed).
The mean is computed over 200 independent runs with ran-
dom initial conditions.

Best-Effort Activities. In this set of experiments 100
unstable plants, whose order ranges between two and
six, have been generated. The task period has been fixed
to T = 10 ms, which is four times the reservation period
R = 2.5 ms. For the computation times, the UD and
BD are defined in the range [2.5, 10] ms (i.e. BCET of
2.5 ms and WCET of T = 10 ms), while the ED is trun-
cated (and re–normalised) in the same range. The mean
value is µ = 4.86 ms (standard deviation σ = 1.25 ms)
for the BD and µ = 5.62 ms (σ = 2.1 ms) for the ED.
We draw a comparison between a hard real–time policy
(HRT ) and the two proposed policies solution of the
ORP-SM problem: the static policy in Section 4.3.1 and
the dynamic policy in Section 4.3.2. Note that the with
HRT policy the 100% of the CPU utilisation would be
required. The objective of this set of experiments is to
quantify the amount of bandwidth saving. To this aim,
for each experiment run we measure the ratio between
the average allocated budget (i.e. total budget over num-
ber of jobs) and the budget required by the HRT (which
is constant). In Figure 3, we report the experimental
probability of this ratio in form of Cumulative Density
Functions (CDFs). In plain words, for a given value x
of the ratio, the plot shows the experimental probabil-
ity of using less than x% of the HRT budget. This set of
experiments underscores the impact of the distributions
of computation times on the QoS improvement, the UD
being the most challenging and the BD the most favour-
able. The dynamic policy is the most effective in exploit-
ing the knowledge of the distribution, e.g. for the BD
the bandwidth savings are closely concentrated around
50%.

6 Related Work and Discussion

This paper owes ideas and inspiration to several pieces
of existing work. One of the first known proposals that
relate the real–time scheduling choice with control per-
formance is due to Seto et. al [31]. The authors consider a
set of periodic tasks that implement control loops; under

9



0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

S
ta

ti
c

 

 

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

Average Q/HRT Q

D
y
n
a
m

ic

 

 

UD ED BD

Figure 3. CDFs representing the experimental probability of
using a fraction of the budget allocated to HRT for both
static and dynamic policies.

the assumption of an exponential dependence between
QoC and sampling period, they identify an analytical
form for the optimal periods. An interesting evolution is
a paper by Cervin et al. [4], where a feedback scheduler
adapts the sampling frequency of the tasks assuming dif-
ferent types of analytical dependence between QoC and
frequency. More recently, Buttazzo et al. [3] propose to
re-modulate the sampling periods when the system un-
dergoes an overload condition. Our work differs from
these in two essential aspects: 1) the scheduling mechan-
ism, which in our case adapts the bandwidth (leaving the
period unchanged), 2) the evaluation of the QoC, which
in our case is rooted in system theoretic properties.

The problem of jitter in control has been addressed by
several authors. Mart́ı et al. [23] use a monitoring mech-
anism that detects the jitter online and compensates
for it in the control algorithm. Other authors adapt the
classic notion of stability margin to make a given design
robust against the timing variations related to the jit-
ter [6,15]. In our proposal, the effect of jitter is reduced
through a time–triggered model of computation [14,16].
The use of the CBS as a scheduling solution allows us
to model the evolution of the delays by a Markov chain
and hence construct a Stochastic Jump Linear System
(SJLS), which can be easily studied in terms of QoC. A
closer link can be established with the approach under-
lying the Jitterbug tool, proposed by Lincoln et. al [17].
If the designer provides a description of the timing beha-
viour of the plant along with the control algorithm, the
tool evaluates the impact of the jitter on the QoC (the
expected value of a quadratic cost function). The tool
is based on previous results on the application Markov
Jump Linear Systems to network control [27]. A tool
like this could in principle be plugged into our method
to encompass different notions of QoC. This requires
addressing two issues: 1) the construction of a timing
model that adapts the model described in Section 2 to
the one requested by Jitterbug, 2) an adaptation of Jit-

terbug to address more general Stochastic Jump Linear
Systems. The advantage of using soft real–time schedul-
ing approaches for control has been shown in several ex-
perimental and field studies [28]. Closely related to our
idea is the approach developed by Chantem et al. [19].
The authors take to an interesting development their
previous work [18], by considering a (n, m) firm real–
time tasking model: in each window of n tasks at leastm
complete within their deadline. Given a QoC optimisa-
tion problem, they derive a Markov chain describing the
evolution of the (n, m) model and propose a heuristic
scheduling algorithm that approximates this evolution.
Our approach differs for the following reasons. First, we
do not consider an all-or-nothing model of execution,
where a job is forced to terminate within the deadline
or dropped and allow for a delayed termination. Second,
our scheduling algorithm determines an evolution of the
delays which is exactly captured by the FD model, and
is not a heuristic approximation.

An important class of approaches that is worth a
mention are state–triggered or self triggered con-
trol schemes [32,24,33], in which the idea of periodic
sampling is completely replaced by other mechanisms
related to the evolution of the plant. The difference
with our work is remarkable, since we have a period T
used to set the “reference” pace for the execution of the
control. Samples can occasionally be collected upon the
occurrence of internal events (the output release time of
a job) and do not depend on the evolution of the plant.

Finally, an important source of inspiration for our work
has been the literature of feedback scheduling. The idea
has been pioneered by Lu et al. [21], who propose an ad-
aptation of the task deadline based on monitoring the
workload in the system. The authors assume an EDF
algorithm but do not rely on a precise modelling of the
system evolution. For our purposes the adaptive reserva-
tions are a more appropriate technology for the greater
degree of predictability of their evolution and for the ex-
istence of reliable implementations [29].

7 Conclusion

In this paper, we have considered the problem of schedul-
ing a control task. Starting from an assigned control law
and from a stochastic description of its execution time,
we derive an adaptive scheduling policy that allows us to
attain stability for the system and to minimise the con-
sumption of computation resources. Our paper is, in our
evaluation, the first step in a promising direction. There
are several issues reserved for future investigation.

One of the most interesting is to extend our approach
to different notions of QoC than second moment sta-
bility. Another potentially important development is to
develop convex relaxation of the ORP-SM problem that
makes for its efficient solution.

10



Acknowledgements

This work was partially supported by the HYCON2
NoE, under grant agreement FP7-ICT-257462.

References

[1] L. Abeni and G. Buttazzo. Integrating Multimedia
Applications in Hard Real-Time Systems. In Proc. IEEE
Real-Time Systems Symposium, pages 4–13, Dec. 1998.

[2] L. Abeni and G. C. Buttazzo. QoS guarantee using
probabilistic deadlines. In Proceeding of the 11th Euromicro
Conference on Real-Time Systems (ECRTS 1999), pages
242–249, York, England, UK, 9-11 June 1999.

[3] Giorgio Buttazzo, Manel Velasco, and Pau Marti. Quality-
of-Control Management in Overloaded Real-Time Systems.
IEEE Trans. on Computers, 56(2):253–266, Feb. 2007.

[4] A. Cervin, J. Eker, B. Bernhardsson, and K.E. Årzén.
Feedback–feedforward scheduling of control tasks. Real-Time
Systems, 23(1):25–53, 2002.

[5] A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and K.-E.
Arzen. How does control timing affect performance? Analysis
and simulation of timing using Jitterbug and TrueTime.
IEEE Control Systems Magazine, 23(3):16–30, June 2003.

[6] A. Cervin, B. Lincoln, J. Eker, K.E. Arzen, and G. Buttazzo.
The jitter margin and its application in the design of real-
time control systems. In Proceedings of the 10th International
Conference on Real-Time and Embedded Computing Systems
and Applications. Gothenburg, Sweden, 2004.

[7] T. Cucinotta, L. Abeni, L. Palopoli, and G. Lipari. A
robust mechanism for adaptive scheduling of multimedia
applications. ACM Transactions on Embedded Computing
Systems (TECS), 10(4):46, 2011.

[8] T. Cucinotta, F. Checconi, L. Abeni, and L. Palopoli.
Self-tuning schedulers for legacy real-time applications. In
Proceedings of the 5th European Conference on Computer
Systems, pages 55–68. ACM, 2010.

[9] Y. Fang and K.A. Loparo. Stochastic Stability of Jump
Linear Systems. IEEE Trans. on Automatic Control,
47(7):1024–1028, August 2002.

[10] D. Fontanelli, L. Greco, and L. Palopoli. Adaptive
reservations for feedback control. In Proceedings of the 49th
IEEE Conference on Decision and Control, CDC 2010, pages
4236–4243, Atlanta, GE, USA, December 2010. IEEE.

[11] D. Fontanelli, L. Palopoli, and L. Greco. Deterministic and
stochastic qos provision for real-time control systems. In Real-
Time and Embedded Technology and Applications Symposium
(RTAS), 2011 17th IEEE, pages 103–112, april 2011.

[12] K. Furuta, M. Yamakita, and S. Kobayashi. Swing-up
control of inverted pendulum using pseudo-state feedback.
Proceedings of the Institution of Mechanical Engineers. Pt.I.
Journal of Systems and Control Engineering, 206(I4):263–
269, 1992.

[13] L. Greco, A. Chaillet, and E. Panteley. Robustness
of stochastic discrete-time switched linear systems with
application to control with shared resources. LSS,
http://hal.archives-ouvertes.fr/hal-00728093, 2012. Preprint.

[14] T.A. Henzinger, B. Horowitz, and C.M. Kirsch. Giotto:
a time-triggered language for embedded programming.
Proceedings of the IEEE, 91(1):84 – 99, jan 2003.

[15] C. Kao and A. Rantzer. Stability analysis of systems with
uncertain time-varying delays. Automatica, 43(6):959–970,
June 2007.

[16] H. Kopetz and G. Bauer. The time-triggered architecture.
Proceedings of the IEEE, 91(1):112 – 126, jan 2003.

[17] B. Lincoln and A. Cervin. JITTERBUG: a tool for analysis
of real-time control performance. In Proceedings of the 41st
IEEE Conference on Decision and Control, CDC 2002, pages
1319–1324, Dec. 2002.

[18] Q. Ling and M.D. Lemmon. Robust performance of soft
real-time networked control systems with data dropouts. In
Proceedings of the 41st IEEE Conference on Decision and
Control, CDC 2002, volume 2, pages 1225–1230, Dec. 2002.

[19] D. Liu, X.S. Hu, M.D. Lemmon, and Q. Ling. Firm real-time
system scheduling based on a novel QoS constraint. IEEE
Trans. on Computers, 55(3):320–333, March 2006.

[20] J.W.S. Liu. Real-time systems. Prentice Hall, 2000.

[21] C. Lu, J.A. Stankovic, S.H. Son, and G. Tao. Feedback control
real-time scheduling: Framework, modeling, and algorithms.
Real-Time Systems, 23(1):85–126, 2002.

[22] M. Mariton. Jump linear systems in automatic control. CRC,
1990.

[23] P. Marti, J.M. Fuertes, G. Fohler, and K. Ramamritham.
Jitter compensation for real-time control systems. In Proc.
IEEE Real-Time Systems Symposium, pages 39–48, Dec.
2001.

[24] M. Mazo and P. Tabuada. Input-to-state stability of self-
triggered control systems. In Proceedings of the 48th IEEE
Conference on Decision and Control, CDC 2009 held jointly
with the 2009 28th Chinese Control Conference, pages 928–
933, December 2009.

[25] C.D. Meyer. Matrix analysis and applied linear algebra.
Society for Industrial Mathematics, 2000.

[26] T. Morozan. Stabilization of some stochastic discrete-time
control systems. Stoch. Anal. Appl., 1(1):89–116, 1983.

[27] J. Nilsson and B. Bernhardsson. Analysis of real-time control
systems with time delays. In Proc. IEEE Conf. on Decision
and Control, volume 3, pages 3173–3178, Dec. 1996.

[28] L. Palopoli, L. Abeni, G. Buttazzo, F. Conticelli, and
M. Di Natale. Real-time control system analysis: an
integrated approach. In Proc. IEEE Real-Time Systems
Symposium, pages 131–140, Orlando, FL , USA, Nov. 2000.

[29] L. Palopoli, T. Cucinotta, L. Marzario, and G. Lipari.
AQuoSA - adaptive quality of service architecture. Software:
Practice and Experience, 39(1):1–31, 2009.

[30] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa. Resource
Kernels: A Resource-Centric Approach to Real-Time and
Multimedia Systems. In Proc. of the SPIE/ACM Conference
on Multimedia Computing and Networking, January 1998.

[31] D. Seto, J.P. Lehoczky, L. Sha, and K.G. Shin. On task
schedulability in real-time control systems. In rtss, page 13.
Published by the IEEE Computer Society, 1996.

[32] M. Velasco, P. Marti, and E. Bini. On Lyapunov sampling
for event-driven controllers. In Proceedings of the 48th IEEE
Conference on Decision and Control, CDC 2009 held jointly
with the 2009 28th Chinese Control Conference, pages 6238–
6243, December 2009.

[33] X. Wang and M. D. Lemmon. Decentralized Event-
Triggered Broadcasts over Networked Control Systems. In
Magnus Egerstedt and Bud Mishra, editors, Hybrid Systems:
Computation and Control, HSCC 2008, volume 4981 of
Lecture Notes in Computer Science, pages 674–677, St. Louis,
MO, USA, 22-24 April 2008.

11


