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Brain-computer interfaces based on functional magnetic resonance imaging (fMRI-BCI) allow volitional control of anatomically
specific regions of the brain. Technological advancement in higher field MRI scanners, fast data acquisition sequences, prepro-
cessing algorithms, and robust statistical analysis are anticipated to make fMRI-BCI more widely available and applicable. This
noninvasive technique could potentially complement the traditional neuroscientific experimental methods by varying the activity
of the neural substrates of a region of interest as an independent variable to study its effects on behavior. If the neurobiological basis
of a disorder (e.g., chronic pain, motor diseases, psychopathy, social phobia, depression) is known in terms of abnormal activity
in certain regions of the brain, fMRI-BCI can be targeted to modify activity in those regions with high specificity for treatment. In
this paper, we review recent results of the application of fMRI-BCI to neuroscientific research and psychophysiological treatment.
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1. INTRODUCTION

Brain-computer interfaces (BCIs) enable control of comput-
ers and of external devices with regulation of brain activity
alone (Birbaumer et al. [1], Donoghue [2], Wolpaw et al.
[3], Nicolelis [4], Wolpaw and McFarland [5], Hochberg and
Donoghue [6]). Two different traditions of BCI research have
dominated the field: invasive BCI, based on animal stud-
ies and realized with implanted electrodes, and noninva-
sive BCI, primarily using electroencephalography (EEG). In-
vasive multielectrode BCIs in animals enabled execution of
reaching, grasping, and force control from spike patterns and
extracellular field potentials. Clinical applications have been
derived predominantly from noninvasive approaches: com-
munication for the completely paralyzed and locked-in pa-
tients using slow cortical potentials, sensorimotor rhythm,
and the P300 event-related potential, and restoration of
movement and cortical reorganization in high spinal cord le-
sions and chronic stroke.

EEG-BCIs have certain drawbacks. Mainly, EEG provides
only a low spatial resolution and ambiguous localization of
neuronal activity, since underlying electric sources need to
be reconstructed from the distribution of electric potentials
across the scalp (Weiskopf et al. [7]). A BCI based on real-
time fMRI allows for noninvasive recording of neuronal ac-
tivity across the entire brain with relatively high spatial res-
olution and moderate temporal resolution (in the range of
millimeters and seconds, resp.). Unlike EEG-BCI, fMRI-BCI
allows brain activity in very specific parts of cortical and sub-
cortical regions of the brain, for example, the left anterior in-
sula, to be extracted and used for online feedback (Caria et al.
[8]). However, major disadvantages of fMRI-BCI are its high
cost and complexity of development and usage. With the
wide-spread use of MRI systems in the clinics and research
centres, and the emergence of real-time fMRI data processing
and analysis tools such as turbo-brain voyager (Brain Inno-
vations, Maastricht, The Netherlands) and TurboFIRE (Sefan
Posse, NM, USA), fMRI-BCI might become more accessible
in the future.
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Despite the fact that BOLD is an indirect measure, there
is growing evidence for a strong correlation between the
BOLD signal and electrical brain activity. Studies have char-
acterized the relationship between localized increases in neu-
ronal activity and the corresponding increase in BOLD (Lo-
gothetis et al. [9], Shmuel et al. [10]), making it possible
to interpret positive functional responses in terms of neural
changes. These results constitute a convincing basis for using
fMRI in BCI studies. With innovations in high-performance
magnetic resonance scanners and computers, and develop-
ments in techniques for faster acquisition, processing and
analysis of MR images, real-time fMRI has recently become
a possibility. With improvements in real-time fMRI, a novel
type of noninvasive fMRI-BCI has emerged.

Studies that have been reported so far (Yoo and Jolesz
[11], Posse et al. [12], Weiskopf et al. [13], DeCharms et al.
[14], Weiskopf et al. [15], Yoo et al. [16], DeCharms et al.
[17], Sitaram et al. [18], Caria et al. [19], Rota et al. [20],
Veit et al. [21]) have demonstrated that human subjects us-
ing real-time fMRI can learn voluntary self-regulation of lo-
calized brain regions. These studies manipulated different
cortical and subcortical areas, namely, supplementary mo-
tor area (SMA) (Wagner and Barrett [22], Weiskopf et al.
[15], Sitaram et al. [18]), sensorimotor area (Yoo and Jolesz
[11], DeCharms et al. [14], Yoo et al. [16]), posterior part
of the superior temporal gyrus (Yoo et al. [16]), medial
superior frontal gyrus (Yoo et al. [16]), parahippocampal
place area (PPA) (Weiskopf et al. [15]), the anterior cin-
gulate cortex (ACC) (Weiskopf et al. [13], temporal gyrus
(Yoo et al. [16]), medial superior frontal gyrus (Yoo et al.
[16]), parahippocampal place area (PPA) (Weiskopf et al.
[15]), the anterior cingulate cortex (ACC) (Weiskopf et al.
[13], Yoo et al. [16], Caria et al. [19]), insula (Veit et al.
[21]), Broca’s area (Rota et al. [20]), and amygdale (Posse
et al. [12]). Importantly, these studies have reported evidence
for behavioral modifications that accompany self-regulation
training.

FMRI-BCI is a general system employing real-time fMRI
technology that enables various applications including train-
ing to self-regulate activity in precisely specified regions of
the brain to study plasticity and functional reorganization,
application of the knowledge so derived in psychophysio-
logical treatement, quality assurance of neuroimaging data,
presurgical patient assessment and teaching of brain imag-
ing methods (Weiskopf et al. [7]). In the context of a self-
regulation experiment, fMRI-BCI can extract BOLD activ-
ity from voxels in one or more regions of interest (ROIs) in
the brain to compute average activity in the ROIs, or cor-
relation coefficient of activity between ROIs, or any other
function that could be used to provide feedback to the par-
ticipant. However, fMRI-BCI need not necessarily function
based on self-regulation of brain activity alone. There has
recently been much progress in the detection and discrim-
ination of mental states using fMRI data (Haynes and Rees
[23]). Although much of the research work has focussed on
offline pattern classification of brain states using machine
learning techniques, there are also attempts to develop on-
line classification (Laconte et al. [24]). With this approach
the participant does not have to be trained to regulate ac-

tivity in the brain. On the contrary, the system learns to
recognize the patterns of activity that spontaneously occur
in a participant’s brain. This new approach promises ap-
plications such as lie detection, and detection of cognitive,
perceptual, and emotional states for neuroscientific research
and clinical treatment. The output from such a system could
also be used for communication and the control of external
devices.

Section 2 presents the general architecture of an fMRI-
BCI system and its components. Section 3 paints a picture of
potential applications of this emerging approach for neuro-
scientific research. Section 4 describes possible applications
in psychophysiological treatment. Section 5 offers conclud-
ing remarks.

2. ARCHITECTURE OF fMRI-BCI

An fMRI-BCI system is a closed-loop system that can be de-
picted as shown in Figure 1. It has the following major com-
ponents: (1) the participant, (2) signal acquisition, (3) signal
analysis, (4) signal feedback. The last 3 components are usu-
ally executed on separate computers for optimizing the sys-
tem performance, and are connected by a local area network
(LAN).

Localized brain activity is measured by fMRI using the
BOLD effect which is the vascular response to neural activ-
ity. FMRI signals are usually acquired by echo planar imag-
ing (EPI). Our experiments are conducted using a 3T whole
body scanner (Trio, Siemens, Erlangen, Germany) with stan-
dard head coil. EPI sequence parameters used are repetition
time TR = 1.5 seconds, echo time TE = 45 milliseconds, flip
angle = 70◦, 16 slices, bandwidth 1.3 KHz/pixel, FOVPE =
210, FOVRO = 210, image matrix = 64 × 64, voxel size 3 ×
3 × 5 mm3. Images are reconstructed, distortion corrected,
and averaged on the magnetic resonance scanner computer.
The signal analysis component is implemented in our work
using turbo-brain voyager (Brain Innovations, Maastricht,
The Netherlands) (Goebel [25]). The signal analysis com-
ponent retrieves reconstructed images, and performs data
preprocessing (including 3D motion correction) and statis-
tical analysis. The time series of selected regions of interest
are then exported to the custom-made visualization software
which provides feedback to the subject using either a video
projection or MRI compliant goggles.

Feedback is presented with a delay that depends on the
time involved for image acquisition and processing. A short
delay is critical (the best achieved so far is about 1.3 seconds
in our lab) for volitional control. The advantage of fMRI
in comparison to EEG is its superior spatial specificity and
resolution. Most studies so far have used the BOLD signal
from static regions of interest (ROIs) from one or multiple
EPI slices of the human brain for feedback. ROI is chosen by
drawing a rectangular area on the functional map computed
in the signal analysis software (e.g., TBV). To improve selec-
tion of ROIs, functional maps could be coregistered with pre-
viously acquired anatomical scans of the subject. Studies have
also used differential feedback (Weiskopf et al. [13], Weiskopf
et al. [15]) between two ROIs to subtract out global signal
changes. Specificity of the signal can be further improved by
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Figure 1: An fMRI-BCI system is a closed-loop system that has the following major components: (1) signal acquisition, (2) signal analysis,
(3) signal feedback, and (4) the participant. The first 3 components are usually executed on separate computers for optimizing the system
performance, and are connected together by a local area network (LAN). Spatially localized brain activity is measured by fMRI using the
BOLD effect which is the neurovascular response to electric brain activity. Usually, echo planar imaging (EPI) sequences are applied to
acquire functional images when the subject is performing a mental task or imagery. Images are reconstructed, distortion corrected, and
averaged by the signal acquisition component. The signal analysis component retrieves the data, and performs data preprocessing, such as
including 3D motion correction, and statistical analysis. The signal time series of interactively selectable regions of interest are then exported
to the custom-made visualization software (signal feedback component) which provides feedback to the subject using video projection.

designing a protocol that includes bidirectional control, that
is, both increase and decrease of the BOLD activity in the
ROI. General effects of arousal and attention caused by the
demands of the task or the state of the subject are thus can-
celed out leaving only the effects of increase or decrease of
the signal.

Average BOLD values from ROIs are computed by the
signal analysis software and stored in a continuously updated
file to be retrieved in real-time by the signal feedback com-
ponent. In our work, we have developed a custom software
called “BCI-GUI” that provides a graphical user interface to
configure the fMRI-BCI experiment, enter user input, choose
one among a variety of feedback modalities, present feedback
to the subject in real-time, and report experimental results
as graphs and charts at the end of the feedback session (see
Figure 2).

Many feedback modalities, such as verbal, visual, audi-
tory, olfactory, tactile, and a combination of these, are possi-
ble. However, most studies have used visual feedback. A va-
riety of visualization methods have been employed by dif-
ferent researchers to indicate the required level of activation
over time. Scrolling time series graphs and curves of BOLD
activation of the ROI is a computationally fast yet effective
method to provide immediate information to the subject
(Weiskopf et al. [13], DeCharms et al. [14], Weiskopf et al.
[15]). Sitaram et al. (Sitaram et al. [18]) introduced the ther-
mometer type of feedback that shows a snap-shot of brain
activity as variations of the thermometer. Positive BOLD ac-
tivity with respect to baseline activity can be shown in one
color (red) to differentiate negative BOLD activity (blue).

Sitaram et al. also introduced virtual reality (VR) for feed-
back (Sitaram et al. [18]) (Figure 3).

3. fMRI-BCI APPLICATION TO NEUROSCIENTIFIC
RESEARCH

3.1. Background

There are two general approaches in neuroscience for study-
ing the interaction between brain and behavior. The first cat-
egory involves the manipulation of the neural substrate and
the observation of behavior as a dependent variable (Moo-
nen and Bandettini [26], Feinberg and Farah [27]). The ef-
fects of stimulation and lesions of brain areas are studied with
this approach. The second approach is less intrusive in na-
ture, manipulating behavior as an independent variable and
neural function as a dependent variable, constituting the psy-
chophysiological approach.

fMRI-BCI is in a unique position to combine both ap-
proaches. It is a manipulative approach, as the subject is
trained to voluntarily change the activity in a particular re-
gion of the brain as an independent variable to observe the
changes in behavior. It realizes also the psychophysiological
perspective as it incorporates experimental paradigms with
neural response as the dependent variable. Using the EEG
neurofeedback and BCI approaches, studies on slow cortical
potentials (SCPs) reported behavioral effects on lexical pro-
cessing, motor action, and musical performance (Rockstroh
et al. [28], Pulvermuller et al. [29], Egner and Gruzelier [30]).
FMRI-BCI has the advantage of targeting a localized brain
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Figure 2: “BCI-GUI” is a software tool with a graphical user interface to configure the fMRI-BCI experiment, enter user input and protocol
parameters, choose one among a variety of feedback modalities, present feedback to the subject in real-time, and report experimental results
as graphs and charts at the end of the feedback session. The software is extensible, allowing development of additional preprocessing, analysis,
and feedback methods. Modifications to the system can be tested offline by simulating fMRI data before bringing it to the MRI scanner.

(a) (b)

(c)
(d)

Figure 3: An important criterion in successfully training subjects to self-regulate their BOLD response is the feedback. (a) shows the ther-
mometer feedback that gives regularly updated snap shot of brain activity as graduations in the thermometer. Positive BOLD activity with
respect to baseline activity can be shown in one color (red) to differentiate negative BOLD activity (blue). Using this feedback the subject
has an intuitive grasp of increasing or decreasing the thermometer graduations during self-regulation. (b) shows an exemplar virtual reality
environment for feedback. A well-designed virtual reality feedback system can enhance the efficacy of training subjects to self-regulate a
localized brain region. Volunteers have to control a 3D animated character, a fish in water, by self-regulating their BOLD response to carry
out a task of moving the fish towards a food item (a smaller fish) and eating it. (c) shows the localization of supplementary motor area (SMA)
as the region of interest (ROI). (d) shows a participant’s time series of self-regulation of BOLD response from SMA after 3 training sessions.

region, with high spatial resolution and a reasonable tempo-
ral resolution. BOLD feedback with a latency of less than 1.3-
second interval has been achieved (Weiskopf et al. [13]). We
discuss below fMRI-BCI applications in emotional process-
ing, language processing, pain processing and pain percep-
tion, motor control, sensory perception, and aversive condi-
tioning.

3.2. Emotional processing

Weiskopf et al. (Weiskopf et al. [13]) used fMRI-BCI to study
the effect of volitional control of anterior cingulated cor-
tex (ACC) on emotional processing. From previous anatom-
ical and functional studies two major subdivisions of the
ACC are distinguished, which subserve two distinct types
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of functions. The dorsal ACC is called the “cognitive di-
vision” (ACcd) and the rostral-ventral “affective” division
(ACad). Due to its involvement in different functional net-
works, physiological self-regulation was applied to study cog-
nitive and emotional parameters, for example, emotional va-
lence and arousal, dependent on the differential activation of
the two subdivisions. In this study, two continuously updated
curves were presented to the subject depicting BOLD activ-
ity in ACcd and ACad. During blocks of 60-second duration,
subjects were instructed to move both curves upwards (alter-
nating 60 seconds rest and 60 seconds up-regulation). The
subject was instructed to use his own strategy for voluntary
BOLD regulation. The subject reported that he used the im-
agery of winter landscapes, engaging in snowboarding and
social interactions during up-regulation, and attending to
the feedback curve without performing any specific imagery
during the rest blocks. An improved control of the rostral-
ventral affective subdivision was observed during training.
Subsequent testing of the affective state using self-assessment
Manikin (SAM) (Bradley and Lang [31]) showed an increase
in valence and arousal during the up-regulation of BOLD in
the ACad only.

In a recent study (Caria et al. [32], Figure 4), we investi-
gated whether healthy subjects could voluntarily gain con-
trol over right anterior insular activity. Subjects were pro-
vided with continuously updated information of the tar-
get ROI’s level of activation by the thermometer feedback.
All participants were able to successfully regulate BOLD—
magnitude in the right anterior insular cortex within three
sessions of four blocks each. Training resulted in a signif-
icantly increased activation cluster in the anterior portion
of the right insula across sessions. An increased activity was
also found in the left anterior insula but the percent signal
change was lower than in the target ROI. Two different con-
trol conditions intended to assess the effects of nonspecific
feedback and mental imagery demonstrated that the training
effect was not due to unspecific activations or non-feedback-
guided strategies. Both control groups showed no enhanced
activation across the sessions which confirmed our main hy-
pothesis that rtfMRI feedback is area specific. The increased
activity in the right anterior insula during training demon-
strates that the effects observed are functionally specific and
self-regulation of right anterior insula only is achievable.
This is the first group study demonstrating that volitional
control of an emotional area can be learned by training with
an fMRI-BCI. We are presently conducting further studies to
understand the behavioral effects of volitional control of in-
sula.

3.3. Neuroplasticity of motor systems

Study of neuroplasticity and functional reorganization for
recovery after neurological diseases such as stroke is of rel-
evance. Real-time fMRI feedback could be used to succes-
sively reactivate affected regions of the brain. Sitaram et al.
(Sitaram et al. [18]) trained 4 healthy volunteers to control
the BOLD response of the SMA. Offline analysis showed sig-
nificant activation of the SMA with training. Further, with
training there was a distinct reduction in activation in the

surrounding areas, indicating that volitional control training
focuses activity in the region-of-interest (Figure 5).

3.4. Language processing

Rota et al. (Rota et al. [20]) explored human capacity for
differential self-regulation of the BOLD activity recorded lo-
cally in Broca’s area (BA 45). The linguistic task used to lo-
calize the ROI (BA 45) was previously shown to activate the
inferior frontal gyrus (Dogil et al. [33]). The task consisted
of reading and manipulating the syntactic structure of Ger-
man sentences. Four healthy volunteers were trained with a
thermometer feedback of activity from the ROI for a total
of 12 sessions in a 3T Siemens Trio with the following EPI
parameters: TR 1.5 seconds, TE 45 milliseconds, flip angle
= 70◦, 16 slices, bandwidth 1.3 KHz/pixel, voxel size 3 × 3
× 5 mm3. For behavioral assessment of the effect of feed-
back training, two linguistic tests were performed by the
volunteers immediately before and after the feedback ses-
sions. The two tests involved grammatical judgement and
emotional prosody identification. Their results showed that
up-regulation of the right BA 45 correlated with emotional
prosody identification.

3.5. Visual perception

Tong et al. (Tong et al. [34]) used fMRI to study binocular
rivalry when a face and a house were presented to different
eyes. As the retinal stimulation remained constant, subjects
perceiving changes from house to face were accompanied by
increasing activity in the fusiform face area (FFA) and de-
creasing activity in the parahippocampal place area (PPA),
while subjects perceiving changes from face to house was
seen during opposite pattern of responses. Although corre-
lations have been found between increased brain activities
in certain regions during reported conscious perception, as
summarized above, a definite causal link has not been estab-
lished. Is the firing activity of these neurons merely covary-
ing with the percept? Are these cells really the central players
in the percept? How tight is the link between the onset and
strength of activity and the behavior on a trial-to-trial basis?
We propose that fMRI-BCI can be applied to clarify these is-
sues.

There are 3 stages to our proposed experiment: pretest,
volitional control training, and posttest. In the pretest, the
subject observes the rival images of houses and faces pre-
sented separately and simultaneously to the two eyes, and to
press a button to indicate the changing percepts. This stage
will establish the frequency and duration of the percepts.
During the volitional control training, the subject’s brain re-
gions considered to be implicated in the one of the percepts
(ROI) are localized. The subject is then trained in several
sessions to self-regulate the ROI (i.e., FFA). During train-
ing, the subject is conditioned to decrease (or increase) the
BOLD activity of the ROI of the face area. In the posttest,
the binocular rivalry task is presented again to measure fre-
quency and duration of the changing percept. If the sub-
ject has been successfully trained to self-regulate the BOLD
activity in FFA, one may expect a significant change in the
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Figure 4: (a) Single subject statistical maps (left) and BOLD time-courses (right) of the right anterior insula in the first (upper) and in the last
sessions (lower). The selected region of interest is delineated by the green box. The time course of the BOLD activity (white line) is related
to the ROI selected and is showing the progress during the regulation blocks (green) and the baseline blocks (grey). Number of volumes
is along the x-axis and magnitude of the signal is along the y-axis. (b) Random effects analysis on the experimental group confirmed an
increased BOLD magnitude in the right anterior insular cortex over time course. SPM2 analysis of the single sessions showed no significant
activation during the first session in the target area; a significant activation cluster (t = 4.50; P = .001 uncorrected) during the second session
(MNI coordinates: 39,33,0); and a highly significant activation cluster (t = 10.23; P < .001 uncorrected) during the third session located
(MNI coordinates: 36,26,6) (Caria et al. [32]).

Overlay of localization and up-regulation

Start session Midsession Last session

Figure 5: Study of neuroplasticity and functional reorganization is of much research interest. Real-time fMRI feedback could be used to
successively reactivate affected regions of the brain. (a)-(d) show results of offline analysis in terms of functional activity superimposed
on the anatomical structure of a healthy volunteer trained to self-regulate supplementary motor area (SMA). (a) shows significant activity
around the SMA during the functional localization session when the volunteer carried out self-paced finger tapping task. (b)-(d) show
brain activity during the first, middle, and last session of self-regulation training. With increased training there was a distinct reduction in
activation in other areas, indicating that self-regulation training focuses on activity in the region-of-interest.
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perception of faces. This establishes the causal link between
conscious perception of the image and the brain activity in
the corresponding region.

4. fMRI-BCI APPLICATION TO
PSYCHOPHYSIOLOGICAL TREATMENT

4.1. Background

Behavior medicine focuses on the application of learning
theories to the treatment of medical disorders. To give an ex-
ample: patients with attention-deficit and hyperactivity dis-
order (ADHD) (Fuchs et al. [35]) were treated with self-
regulation of 12–15 Hz EEG brain activity. Epilepsy patients
were trained to suppress epileptic activity by self-regulation
of slow cortical potentials (SCP) (Kotchoubey et al. [36]). If
the neurobiological basis of the disorder is known in terms of
abnormal activity in a certain region of the brain, fMRI-BCI
can be targeted to those regions with greater specificity for
treatment. Many types of disorders, namely, memory disor-
ders, chronic pain, motor disorders, psychopathy, social pho-
bia, depression, emotional disturbances, anxiety, and post-
traumatic disorder might be treated with fMRI-BCI.

4.2. Stroke rehabilitation

A potential clinical application of fMRI-BCI is the rehabili-
tation of the victims of motor disorders. Hemiparesis (paral-
ysis or weakness affecting one side of the body) is a com-
mon neurological deficit after stroke (Kato et al. [37]). Re-
cent studies have suggested that the recovery after stroke is
facilitated by the reorganization of cortical motor areas in
both damaged and nondamaged hemispheres. Despite the
potential of recovery, relearning of the movement of the dis-
abled arm does not occur spontaneously. A treatment modal-
ity consists of successive reinforcement of the elements of the
required behavior to activate the neural network involved
in arm movement (Dobkin [38]). This might be achieved
by training patients first to learn to reactivate the premo-
tor area, and then in a stepwise fashion the primary motor
cortex, basal ganglia, and cerebellum. The reorganization of
the brain regions could be assisted with fMRI-BCI. Yoo and
Jolesz reported successful modification of motor function in
response to real-time fMRI feedback (Yoo and Jolesz [11]).
Scharnowski et al. (Scharnowski et al. [39]) trained volun-
teers to differentially self-regulate SMA and PPA in four ses-
sions, and then tested for effects on reaction times in a bi-
manual motor task. An increase of activity in the SMA only
correlated with a speeded response.

We are exploring a new approach to assist movement
restoration in stroke victims using fMRI-BCI. There is ev-
idence for motor recovery and cortical reorganization after
stroke when patients undergo treatment involving mental
practice and mental imagery (de Vries and Mulder [40]).
These results indicate that enhancing neural activity in the
motor cortex is bilateral to the lesion (target ROI) while si-
multaneously inhibiting activity in the motor cortex con-
tralateral (secondary ROI) to the lesion may help in stroke re-
habilitation. This means that the fMRI-BCI training should

aim to increase activity in the target ROI while maintaining
a negative correlation with the activity in the secondary ROI.
In order to achieve this, we compute online a feedback value
proportional to the product of the negative correlation coef-
ficient of the activation time courses for the specified num-
ber of time points (e.g., last 10 time points) of the two ROIs,
and the magnitude of the activation in the target ROI. The
feedback value computed is presented to the subject as ther-
mometer bars or a dial indicating positive to negative correla-
tion. Subjects can be trained to increase the bars of the ther-
mometer to enhance activation in the ipsilesion area while
inhibiting the contralesion area. Our preliminary results with
2 healthy volunteers who were provided feedback of motor
imagery have shown that subjects could be trained to en-
hance activity in the target ROI in counter-correlation with
the activity in the contralesion hemisphere. Our future work
is aimed at establishing the behavioral effect of this enhanced
activity and the suitability of this method for stroke therapy.

4.3. Treating chronic pain

Chronic pain is one of the most frequent clinical prob-
lems. Chronic pain can be substantially affected by cogni-
tive and emotional processes (DeCharms et al. [17]). Sub-
regions within rostral ACCr in association with other brain
regions are implicated to be involved in the perception of
pain. Hence, it is possible that by altering the activity in the
rACC, pain perception might be accordingly varied. Indeed,
Maeda et al. (Maeda et al. [41]) reported a substantial de-
crease of symptoms in chronic pain patients by training pa-
tients to self-regulate ACC. A further report from the same
group (DeCharms et al. [17]), involving 16 healthy volun-
teers and 12 chronic pain patients, indicates the potential ap-
plication of real-time fMRI for treating chronic pain. Sub-
jects were able to learn to control activation in the rostral an-
terior cingulate cortex (rACC), a region involved in pain per-
ception and regulation. The authors reported that if subjects
deliberately induced increases or decreases of rACC fMRI ac-
tivation, there was a corresponding change in the perception
of pain caused by an applied noxious thermal stimulus. Con-
trol experiments showed that this effect was not observed af-
ter training without real-time fMRI feedback, or using feed-
back from a different region, or sham feedback derived from
a different subject. Chronic pain patients were also trained
to control activation in rACC and reported decreases in the
ongoing level of chronic pain after training.

4.4. Treating emotional disorders

Emotional regulation training for patients suffering from de-
pression, anxiety, posttraumatic disorder, and other emo-
tional disturbances might be another application of fMRI-
BCI. Experiments by Caria et al. (Phan et al. [42]) have
shown that the emotional system can also be self-regulated.
In another study (Posse et al. [12]) subjects were trained to
self-regulate their amygdala activation by a strategy of self-
induced sadness. Behavioral tests showed that the subjects’
emotional ratings correlated with their activity in amygdala,
substantiating the earlier findings that amygdala is involved
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in negative emotions (Anders et al. [43]). Weiskopf et al.,
(Weiskopf et al. [13]), Caria et al., (Caria et al. [19]), Veit
et al., (Veit et al. [21]) have reported that volitional control
of ACC and insula correlated with changes in emotional va-
lence and arousal.

4.5. Psychopathy and social phobia

Criminal psychopathy is a major problem encountered by
society. Psychopaths form only 15–30% of prison popula-
tion, but they commit 50% more crime than nonpsychopaths
(Viding [44], Viding [45]). The brain regions and neural
mechanisms of the disorder are not well understood. A psy-
chopath is characterized by poverty of affect and lack of
shame, superficially charming, manipulative, and shows ir-
responsible behavior. Previous studies have implicated or-
bitofrontal cortex, amygdala, anterior insula, anterior pari-
etal cortex and anterior cingulated cortex (Brennan and
Raine [46], Blair [47], LeDoux [48]). Our studies (Veit et al.
[21], Birbaumer et al. [49]) have shown that a hypoactive
frontolimbic circuit may represent the neural correlate of
psychopathic behavior, whereas an overactive frontolimbic
system may underlie social fear. Increased activation in the
emotionally relevant areas such as amygdala, anterior insula,
and medial frontal cortex may lead to improved aversive con-
ditioning. A real-time fMRI system for the specific treat-
ment of criminal psychopathy is currently under develop-
ment. Criminal psychopaths are trained to self-regulate their
BOLD activity in localized brain areas implicated in the dis-
order, such as, anterior insula and amygdala. Behavioral ef-
fects of this training are investigated by conducting aversive
delay conditioning and other behavioral tests before and af-
ter treatment.

5. DISCUSSION

Brain-computer interfaces based on fMRI enable real-time
conditioning of circumscribed brain regions to learn voli-
tional control of those regions. This is an emerging field of
intense research excitement. Technological advancement in
higher field MRI scanners, data acquisition sequences and
image reconstruction techniques, preprocessing algorithms
to correct for artefacts, more intelligent and robust analysis
and interpretation methods, and faster feedback and visual-
ization technology are anticipated to make fMRI-BCI widely
available and applicable. Examples of such future develop-
ments are z-shimming sequence adapted for fMRI-BCI to
correct for magnetic inhomogeneity differences; connectiv-
ity analysis, for example, using dynamic causal modelling
(Friston et al. [50]) incorporating a whole network of neu-
ral activity instead of just one local ROI; support vector and
other machine learning and pattern classification approaches
(LaConte et al. [51], Mouräo-Miranda et al. [52]); indepen-
dent component analysis (Esposito et al. [53]) for extract-
ing BOLD response of interest; motion compensation (The-
sen et al. [54]) for head motion artefact removal; and aug-
mented virtual worlds for more immersive feedback. An-
ticipated developments in dedicated purpose MRI scanners
(such as those of ONI Medical Systems, Inc, Wilmington,

Mass, USA) that offer high-field performance at a low-price
compared to whole body scanners can make fMRI-BCI ap-
plications more user-friendly, affordable and hence widely
accessible.

There are certain limitations to the current fMRI-BCIs
that future research would have to overcome. Conventional
neuroimaging methods seek to find out how a particular per-
ceptual or cognitive state is encoded in brain activity by mea-
suring brain activity from many thousands of locations re-
peatedly, but then analyzing each location separately (uni-
variate analysis). If the responses at any brain location dif-
fer between two states, then it is possible to use measure-
ments of the activity at that location to determine or de-
code the state. However, it is often difficult to find individ-
ual locations where the difference between conditions is large
enough to allow for efficient decoding. In contrast to the
conventional analysis, recent work shows that neuroimaging
may be improved by taking into account the spatial pattern of
brain activity (Haynes and Rees [23]). Pattern-based meth-
ods use considerably more information for detecting the cur-
rent state from measurements of brain activity. LaConte et al.
(Laconte et al. [24]) have reported probably the first imple-
mentation of real-time multivariate classification that could
be applied to fMRI-BCI. With such improvements, FMRI-
BCI has the potential of establishing itself as a tool for cer-
tain types of neuroscientific research and experimentation,
and also as an aid for psychophysiological treatment.
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[52] J. Mouräo-Miranda, A. L. W. Bokde, C. Born, H. Hampel, and
M. Stetter, “Classifying brain states and determining the dis-
criminating activation patterns: support vector machine on
functional MRI data,” NeuroImage, vol. 28, no. 4, pp. 980–995,
2005.

[53] F. Esposito, E. Seifritz, E. Formisano, et al., “Real-time inde-
pendent component analysis of fMRI time-series,” NeuroIm-
age, vol. 20, no. 4, pp. 2209–2224, 2003.

[54] S. Thesen, O. Heid, E. Mueller, and L. R. Schad, “Prospec-
tive acquisition correction for head motion with image-based
tracking for real-time fMRI,” Magnetic Resonance in Medicine,
vol. 44, no. 3, pp. 457–465, 2000.


	INTRODUCTION
	ARCHITECTURE OF fMRI-BCI
	fMRI-BCI APPLICATION TO NEUROSCIENTIFIC RESEARCH
	Background
	Emotional processing
	Neuroplasticity of motor systems
	Language processing
	Visual perception

	fMRI-BCI APPLICATION TO PSYCHOPHYSIOLOGICAL TREATMENT
	Background
	Stroke rehabilitation
	Treating chronic pain
	Treating emotional disorders
	Psychopathy and social phobia

	DISCUSSION
	ACKNOWLEDGMENTS
	REFERENCES

