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Abstract—An approach based on the use of the arithmetic of intervals
and Interval Analysis for the solution of inverse scattering problems
is presented and assessed. By exploiting the property of the Interval
Analysis to find the global minimum of a functional in a n-dimensional
space, the proposed approach adopts a branch and bound process to
discard the regions of the solutions space not containing the global
solution, while keeping those where a feasible solution is expected until
a suitable converge criterion is reached. A representative set of results
concerned with the reconstruction of circular dielectric objects within
the first-order Born approximation are reported and discussed to show
potentialities and current limitations of the proposed approach.

1. INTRODUCTION

The goal of electromagnetic inverse scattering [1, 2] is the retrieval of
the physical parameters (i.e., the dielectric permittivity and the electric
conductivity in case of non-magnetic targets as those considered in this
contribution) and/or the geometrical features of unknown scatterers
embedded in an inaccessible domain and probed by a set of known
microwave radiations. The data, namely the scattered field derived
from the interactions between the incident radiations and the objects,
are measured on a set of sensors, placed outside the area under test,
in the so-called observation domain. Although the problem has been
widely studied in the last decades and non-negligible advances have
been yielded in terms of efficiency, robustness, and efficacy of the
inversion methods, the interest and the need of defining more and
more effective solvers still remains as confirmed by the number of
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journal articles published every year on this subject (see [3–55] and the
references cited therein for an overview) and the sessions worldwide
organized in annual conference meetings. This is indicative of the
attention on this subject from academic, industrial, and governmental
researchers and experts. As a matter of fact, the range of potential
applications is wide and it spans from the more traditional (e.g.,
geophysical investigations and remote sensing [3–5], nondestructive
testing and evaluation [6–10], and medical imaging [11–18]) to the
latest ones mainly related to security and surveillance (e.g., through-
the-wall imaging [19–24]) up to more recent applications [25].

It is well known that inverse scattering problems are affected by ill-
posedness and non-linearity due to the finite amount of “information”
available in the scattered field data [26, 27]. In order to avoid non-
uniqueness and instability as well as to prevent the retrieval of false
solutions [28], several inversion strategies have been proposed based on
(a) a suitable definition of the integral equations either in exact [29, 30]
or approximated [31–35] forms to model the scattering phenomena,
(b) the exploitation of the available a-priori information on some
features of the scenario/scatterers under test [15, 36–39] or/and the
knowledge of input-output samples of data and reference solutions [40–
42] and/or the information acquired during the inversion process [43–
47], and (c) the use of suitable global optimization strategies [48–
55]. Whatever the approach, inversion methods generally consider
an optimization step aimed at minimizing/maximizing a suitably
defined data-mismatch cost function through gradient or evolutionary-
based algorithms with still not fully resolved drawbacks. On the one
hand, the use of local optimizers (e.g., gradient based) requires the
optimization process starts in the “attraction basin” [54] of the global
optimum to avoid being trapped into local minima (i.e., false solutions)
of the cost function. On the other hand, global optimizers do not
guarantee the retrieval of the global optimum within a finite amount
of time/iterations. Moreover, there is no evidence that the retrieved
solution is the global one since the stopping criteria, generally based
on the stationarity of the cost function or a maximum number of
iterations, do not allow an exhaustive sampling of the solution space.

The approach proposed in this paper is aimed at addressing such
a topic and it is based on the exploitation of the Interval Analysis
(IA) and the Interval Arithmetic. Originally introduced to bound
rounding errors in numeric computations [56, 57], the use of interval
analysis has been then extended to the solution of linear and non-
linear equations [58] and functional optimization [67]. Nowadays,
the use of interval analysis is widespread, but its applications to
electromagnetics are still limited to few applications mainly concerned
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with the design of robust devices [59, 60] and reliable systems [61].
In this work, the reliability of the IA in the global optimum search
as well as the intrinsic convergence conditions are exploited to define
an innovative optimization framework where the inversion problem
is firstly reformulated within the intervals arithmetic to successively
apply an IA-based optimization for identifying the global optimum of
the cost function at hand. A set of numerical experiments considering
weak scattering conditions is reported and discussed to show the
effectiveness of the approach in attaining the global optimum solutions.

The outline of the paper is as follows. The problem
is mathematically formulated according to the principles of the
arithmetic of intervals in Section 2, while Section 3 is devoted to present
the IA-based optimization strategy. Numerical inversions of dielectric
scatterers within the first-order Born approximation are then reported
(Section 4) to illustrate the behavior of the approach (Section 4.1), to
assess its robustness against noisy data (Section 4.2), and to evaluate
its effectiveness in reconstructing targets different in dimensions and
contrasts (Section 4.3). Eventually, some concluding remarks are
drawn in Section 5, where the innovative features and the peculiarities
of the proposed approach are pointed out also to envisage possible
future extensions and improvements.

2. MATHEMATICAL FORMULATION

Let us consider a two-dimensional (2D) microwave imaging setup
where a cylindrical object belongs to an inaccessible investigation
domain Γinv probed by a set of V incident TM -polarized
electromagnetic plane waves, Ev

inc(x, y, z) = Ev
inc(x, y) ẑ, v = 1, . . . , V

characterized by an angular frequency ω. The dielectric properties of
the material in Γinv are unknown and modelled by means of the object
function τ

τ(x, y) =
{

εr(x, y)− 1− j σ(x,y)
ωε0

(x, y) ∈ Ω
0 (x, y) /∈ Ω

(1)

Ω is the support of the scatterer where τ(x, y) 6= 0, εr the
dielectric permittivity, and σ the electric conductivity. A lossless non-
magnetic background is assumed with a dielectric permittivity equal
to ε0. The relationships between the object and the scattered field
Ev

scatt(x, y), v = 1, . . . , V are mathematically described through the
Lippman-Schwinger integral equation [1]

Ev
scatt(xm, ym) =

∫

Γinv

τ(x′, y′)Ev
tot(x

′, y′)Gv
2D(x, y |x′, y′)dx′dy′

m = 1, . . . , M ; v = 1, . . . , V (2)
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where Ev
scatt(xm, ym) , Ev

tot(xm, ym) − Ev
inc(xm, ym), (xm, ym), m =

1, . . . , M , being a set of sensor locations in the observation domain Γobs,
external to Γinv, where the field data are collected. In (2), Ev

tot(x, y),
v = 1, . . . , V is the total field (i.e., the field measured when the target
is present in Γinv) and Gv

2D(x, y |x′, y′) is the 2D Green’s function of
the background medium [62]. In case of weak scatterers, the first-
order Born approximation [63] holds true and the total field within the
investigation domain can be approximated as Ev

tot(x, y) = Ev
inc(x, y),

(x, y) ∈ Γinv. Since the incident field (i.e., the field without the object)
in Γinv can be measured during the calibration of the imaging system
or it can be estimated, the source of the probing field being known,
Equation (2) turns out to be linear with respect to the unknown object
function τ .

In order to retrieve the τ distribution within the investigation
domain, Equation (2) is firstly discretized. Towards this end, Γinv is
partitioned into N sub-domains, Γn, n = 1, . . . , N , where both the
object function (1) and the incident field values are assumed to be
piecewise constant

τ(x, y) =
N∑

n=1

τnBn(x, y)

Ev
inc(x, y) =

N∑

n=1

Ev
inc,nBn(x, y)

(3)

Bn(x, y) being a rectangular pulse basis function. Because of the
presence of an unavoidable noise on the measured data samples
collected in Γobs, a generalized solution has to be looked for [1] by
minimizing the following cost function [64]

Φ(τ) =

V∑

v=1

M∑

m=1

∥∥∥∥∥Ev
scatt,m −

N∑

n=1

τnEv
inc,nGv

m,n

∥∥∥∥∥

2

V∑

v=1

M∑

m=1

∥∥Ev
scatt,m

∥∥2

(4)

where τ = {τn, n = 1, . . . , N}, Ev
scatt,m is the scattered field measured

at (xm, ym), Gv
m,n =

∫
Γn

Gv
2D(xm, ym|x′, y′) dx′dy′, ‖ . ‖ being the L2

norm.
Unlike standard approaches, the goal of the IA when applied to

inverse scattering problems is not the retrieval of the object function τ ,
but the definition of the interval vector [τ ] = {[τn], n = 1, . . . , N} (see
Appendix A) to which the actual solution belongs to (i.e., τact ∈ [τ ]):
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the smaller the interval, the lower/greater is the uncertainty/precision
in determining the final solution. With reference to (3), it means that
a set of solutions/objects, more precisely an interval of solutions, is
taken into account

[τ(x, y)] =
N∑

n=1

[τn]Bn(x, y) (5)

where [τ(x, y)] is an interval of contrast distributions. By
substituting (5) in (2) and performing the mathematical operations
according to the arithmetic of intervals (see Appendix B) and the
Fundamental Theorem of IA (see Appendix C), the IA counterpart,
[Φ([τ ])], of the cost function in (4) assumes the following explicit
expression

[Φ([τ ])] =

V∑

v=1

M∑

m=1

∥∥∥∥∥Ev
scatt,m −

N∑

n=1

[τn]Ev
inc,nGv

m,n

∥∥∥∥∥

2

V∑

v=1

M∑

m=1

∥∥Ev
scatt,m

∥∥2

. (6)

3. IA-based OPTIMIZATION

In order to determine the optimal interval [τ ]opt containing the actual
contrast [i.e., the global optimum of the cost function in (4)], τact ∈
[τ ]opt , the minimization of (6) is carried out by applying the “branch

s

ps

L

(p  )R
s

(0)

1

R
(k)
s

Φ (p )

Φk, i

(k)
s

Φk, i

(p  )R
s

(k)

(k)
s i(p  )L

s

(k)

(k)
s i

(p  )L
s

(0)

1

Figure 1. IA-based approach — Intervals and sketch of the branch-
and-bound for functional optimization.
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Figure 2. IA-based approach — Flowchart of the interval splitting
and testing IA-based procedure.

and bound” technique (BB) as pictorially summarized in Fig. 1. With
reference to a model-based representation of the scatterer in terms of
a set of S descriptors†, [P ] = {[ps] = [pL

s , pR
s ]: s = 1, . . . , S}, the

BB iteratively splits the initial interval [P ](k), k = 0 (k being the
† Please notice that the case S = N reduces to the pixel-representation of the scatterer,
while in general it can “code” either qualitative/geometrical (i.e., shape, position) and/or
quantitative (i.e., dielectric values) scatterer descriptors.
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iteration index), which extends to the whole solution space, into sub-
intervals discarding those (e.g., black-boxes in Fig. 1) not containing
the global minimum P opt until the convergence (k = K). The
process works as shown in Fig. 2 where, for the sake of description
simplicity, only a single descriptor (i.e., the s-th parameter ps) has
been taken into account being the extension to the multi-parameter
case, although mathematically straightforward, quite complex to be
pictorially described. More specifically,

• Step 0 — Initialization (k = 0). Set the bounds of the
initial single interval of the s-th parameter (I(k)

s = 1) such as
[ps](k) = [ps]

(k)

i
(k)
s =1

= [pL
s , pR

s ], i
(k)
s and I

(k)
s being the interval index

(i(k)
s = 1, . . . , I

(k)
s ) and the total number of intervals of the s-th

descriptor at the k-th iteration, respectively. Update the iteration
index, k ← k + 1, and go to Step 1;

• Step 1 — IA-based Optimization Loop. Set i
(k−1)
s = 1, i

(k)
s = 0,

and D
(k)
s = 0, D

(k)
s being the number of intervals of the s-th

descriptor deleted at the k-th iteration. Perform the following
steps:

– Step 1.a — Interval Splitting . Split the interval [ps]
(k−1)

i
(k−1)
s

into

two sub-intervals, [̃ps]
(k)

j
(k)
s

and [̃ps]
(k)

j
(k)
s +1 as shown in Fig. 3 and

defined as

[̃ps]
(k)

j
(k)
s

= [pL
s , χ](k−1)

i
(k−1)
s

[̃ps]
(k)

j
(k)
s +1 = [χ, pR

s ](k−1)

i
(k−1)
s

(7)

where χ = m[ps]
(k−1)

i
(k−1)
s

is the mid point of the interval [ps]
(k−1)

i
(k−1)
s

and j
(k)
s = 2 × i

(k−1)
s − 1. Therefore, it turns out that

[ps]
(k−1)

i
(k−1)
s

= [̃ps]
(k)

j
(k)
s
∪ [̃ps]

(k)

j
(k)
s +1;

– Step 1.b — Interval Testing . Check if the two sub-
intervals in (7) could potentially contain the global optimum
(i.e., minimum) according to the so-called “lower-bound”
test. Let Φ̃L

k,j
(k)
s

(ΦL

k−1,i
(k−1)
s

) and Φ̃R

k,j
(k)
s

(ΦR

k−1,i
(k−1)
s

) be

the left and the right endpoints of the interval function [Φ]

within the interval [̃P ]
(k)

j
(k)
s

([P ](k−1)

i
(k−1)
s

), namely [Φ([̃P ]
(k)

j
(k)
s

)] =

[Φ̃L

k,j
(k)
s

, Φ̃R

k,j
(k)
s

] ([Φ([P ](k−1)

i
(k−1)
s

)] = [ΦL

k−1,i
(k−1)
s

, ΦR

k−1,i
(k−1)
s

]), if
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Figure 3. IA-based approach — Splitting and testing of intervals
according to the procedure of Fig. 2.

Φ̃L

k,j
(k)
s

> Φ̃R

k,ι
(k)
s

or Φ̃L

k,j
(k)
s

> ΦR

k−1,ι
(k−1)
s

, ι
(k)
s = 1, . . . , j(k)

s + 1,

ι
(k)
s 6= j

(k)
s , ι

(k−1)
s = i

(k−1)
s + 1, . . . , I

(k−1)
s , then discard the

interval vector [̃P ]
(k)

j
(k)
s

= ([̃ps]
(k)

j
(k)
s

; s = 1, . . . , S) and update

D
(k)
s (D(k)

s = D
(k)
s + 1). The same evaluation is done for

interval [̃P ]
(k)

j
(k)
s +1. Doing so, one of the following event verifies:

∗ Interval Deletion — Both sub-intervals are deleted,

namely [̃ps]
(k)

j
(k)
s
⇒ ∅ and [̃ps]

(k)

j
(k)
s +1 ⇒ ∅, then [ps]

(k−1)

i
(k−1)
s

⇒ ∅
and D

(k)
s = D

(k)
s + 2;

∗ Interval Preservation — Both [̃ps]
(k)

j
(k)
s

and [̃ps]
(k)

j
(k)
s +1

(i.e., [ps]
(k)

i
(k)
s +1

= [̃ps]
(k)

j
(k)
s

and [ps]
(k)

i
(k)
s +2

= [̃ps]
(k)

j
(k)
s +1) are
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kept then [ps]
(k−1)

i
(k−1)
s

⇒ [̃ps]
(k)

j
(k)
s
∪ [̃ps]

(k)

j
(k)
s +1 and ik ← ik + 2;

∗ Interval Reduction — Only half interval is maintained

(i.e., [ps]
(k)

i
(k)
s +1

= [̃ps]
(k)

j
(k)
s

if [̃ps]
(k)

j
(k)
s +1 ⇒ ∅ or

[ps]
(k)

i
(k)
s +1

= [̃ps]
(k)

j
(k)
s +1 if [̃ps]

(k)

j
(k)
s

⇒ ∅) then [ps]
(k−1)

i
(k−1)
s

⇒
{

[̃ps]
(k)

j
(k)
s

if [̃ps]
(k)

j
(k)
s +1 ⇒ ∅

[̃ps]
(k)

j
(k)
s +1 if [̃ps]

(k)

j
(k)
s
⇒ ∅

, ik ← ik + 1, and D
(k)
s =

D
(k)
s + 1;

Update the interval index (i(k−1)
s ← i

(k−1)
s +1) and go Step 1.c;

– Step 1.c — Iteration Termination Check — If i
(k−1)
s ≤ I

(k−1)
s

then go to Step 1.a, otherwise set I
(k)
s = I

(k−1)
s −D

(k)
s and go

to Step 2;
• Step 2 — Convergence Check — Compose the admissible solution

space at the k-th iteration as the union of the interval not

deleted yet, [ps](k) =
⋃I

(k)
s

i
(k)
s =1

[ps]
(k)

i
(k)
s

, s = 1, . . . , S, being [ps]
(k)

i
(k)
s

=
[(

pL
s

)(k)

i
(k)
s

,
(
pR

s

)(k)

i
(k)
s

]
. Stop the iterative process related to the s-

th parameter setting k = K when
∣∣∣
(
pR

s

)(k)

i
(k)
s
− (

pL
s

)(k)

i
(k)
s

∣∣∣ < δs, δs

being a user-defined threshold on the minimum width for a sub-
interval of the s-th descriptor. Since generally I

(K)
s > 1 (i.e.,

multiple intervals wherein Φ values close to the optimal one have
been defined), the final estimate for the s-th descriptor is chosen
belonging to the interval whose upper value is minimum among
the I

(K)
s remaining intervals

[ps]opt = arg

{
min

i(k)
s = 1, . . . , I(K)

s

(
ΦR

k,i
(k)
s

)}
, (8)

and it is defined as popt
s = m[ps]opt . Otherwise (i.e., |(pR

s )(k)

i
(k)
s

−
(pL

s )(k)

i
(k)
s

| ≥ δs), k ← k + 1 and go to Step 1.

4. NUMERICAL ASSESSMENT AND VALIDATION

The performance of the proposed IA-based approach and its
behavior are examined in the following by reporting and discussing
representative results from a set of numerical experiments. The
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reference geometry is a square investigation domain of side L = 2λ
probed by V = 7 TM -polarized plane waves impinging from directions
θv = 2π(v−1)

V , v = 1, . . . , V . For each v-th view, the field data
(both amplitudes and phases) have been collected at M = 7 locations
equally-spaced on a circle of radius R = 5λ. From a numerical point
of view, such scattering data have been synthetically generated and
successively blurred with an additive Gaussian noise, η, with zero mean
and standard deviation [69] given by

dev{η} =

V∑

v=1

M∑

m=1

|Ev
scatt (xm, ym)|2

2× SNR× {M × V } , (9)

SNR being the signal-to-noise ratio. Moreover, the investigation
domain Γinv has been partitioned for the inversion in a grid of Ninv =
32× 32 cells [65].

4.1. Off-centered Homogeneous Circular Cylinder

The first example deals with a lossless circular cylinder with
homogeneous contrast τact(x, y) = 0.1 and radius ρact = 0.25λ, located
at (xact

c , yact
c ) = (−0.5λ,−0.5λ) as shown in Fig. 4(a). The measured

field data have been synthetically generated by applying the forward

(a)

(b) (c)
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(d) (e)

(f) (g)

Figure 4. Off-centered homogeneous circular cylinder [ρ = λ
4 , τ = 0.1,

(xc, yc) = (−λ
2 , −λ

2 ), SNR = 50 dB]. Object Reconstruction —
Distribution of the object function for (a) the actual solution and those
retrieved by means of the IA-based approach when (b) k = 1, (c) k = 3,
(d) k = 5, (e) k = 7, (f ) k = 9, and (g) k = K = 19.

solver with a finer discretization grid (Nfwd = 51 × 51) to avoid the
“inverse crime” [66]. With reference to a model-based representation
of the scatterer, the descriptors at hand are here the value of the
object function τ and the geometrical parameters of the cylinder,
namely the radius ρ and the center coordinates (xc, yc). Accordingly,
the unknown interval vector turns out being of S = 4 descriptors:
[P ] = {[ps]; s = 1, . . . , S} = {[τ ], [ρ], [xc], [yc]}.

At the initialization of the IA-based inversion (k = 0), the
intervals in Table 1 have been considered. The boundaries (i.e.,
minimum and maximum values) for each parameter have been selected,
on the one hand, to encompass all the retrievable‡ cylinders and, on
the other, to avoid unfeasible solutions.
‡ By virtue of the discretization of the inverse problem, the length of the side of each cell
is l = L√

Ninv
= 0.0625λ. Accordingly, the minimum radius of the object which can be

mapped into the grid for the evaluation of the cost function (6), namely the left endpoint

of [ρ](0), has been set to (ρL)
(0)
1 = l

2
.
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Table 1. Off-centered homogeneous circular cylinder [ρ = λ
4 , τ =

0.1, (xc, yc) = (−λ
2 , λ

2 ), SNR = 50 dB]. Initialization — Intervals
considered at the initialization k = 0 of the IA-based optimization
process.

Unknown Parameter Intervals Feasible Solution Space
[τ ](0) = [(τL)(0)

1 , (τR)(0)
1 ] [0.0, 0.3]

[ρ](0) = [(ρL)(0)
1 , (ρR)(0)

1 ] [0.03125λ, 1.0λ]

[xc](0) = [(xL
c )(0)

1 , (xR
c )(0)

1 ]
[(−1.0 + (ρL)(0)

1 )λ,
(1.0− (ρL)(0)

1 )λ]

[yc](0) = [(yL
c )(0)

1 , (yR
c )(0)

1 ]
[(−1.0 + (ρL)(0)

1 )λ,
(1.0− (ρL)(0)

1 )λ]

Figures 5 and 6 show the evolution of the admissible solutions
space Ω(k) =

⋃I(k)

i(k)=1[P ](k)

i(k) throughout the optimization process where
the colored regions belong to the union of the I(k) intervals that
can potentially contain the optimal solution at the k-th iteration.
Concerning the splitting and testing of the intervals, only the
geometrical features (namely the coordinates of the center and the
radius) have been considered at the beginning of the optimization
process (until |(pR

s )(k)

i
(k)
s

−(pL
s )(k)

i
(k)
s

| < δs, being ps = {ρ, xc, yc}), while the

contrast has been kept to the initial interval value (i.e., [τ ](k)

i(k) = [τ ](0)).
Such a choice has been adopted to point out the effectiveness of the
approach when used as a qualitative inversion strategy and then as a
quantitative reconstruction method.

At the end of the “qualitative” step (k = 5− Λ(k) =
∑k

ξ=1 I(ξ) =
17949) when the maximum subdivision of the intervals for ρ and (xc, yc)
has been obtained, the portion of the solution space still admissible,
namely Ω(k)

{xc,yc} = {⋃I(k)

i(k)=1[xc]
(k)

i(k) ,
⋃I(k)

i(k)=1[yc]
(k)

i(k)} and Ω(k)
{xc,yc,ρ} =

{⋃I(k)

i(k)=1[xc]
(k)

i(k) ,
⋃Ik

i(k)=1
[yc]

(k)

i(k) ,
⋃Ik

i(k)=1
[ρ](k)

i(k)}, is shown in Figs. 5(e)–
5(f) and it amounts to 25.17% and 74.57% (Table 2) of the whole
solution space, respectively. As expected, the support of the scatterer
is over-estimated because of the uncertainty on the value of the object
function not defined yet. Successively (k > 5), the optimization of
the dielectric properties takes place to also quantitatively image the
scattering scenario a hand. Fig. 6 shows the progressive reduction
of the admissible solution space Ω(k)

{xc,yc,ρ,τ} until the actual value of
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Figure 5. Off-centered homogeneous circular cylinder [ρ = λ
4 , τ = 0.1,

(xc, yc) = −λ
2 , −λ

2 , SNR = 50dB]. IA-based Procedure Analysis —
Admissible solution space when k = {1, 3, 5, 7, 9,K = 19} related to
(a), (c), (e), (g), (i), (k) the barycenter (i.e., Ω(k)

{xc,yc}) and (b), (d), (f),

(h), (j), (l) the scatterer support Ω(k)
{xc,yc,ρ}).

the object function at convergence (K = 19) [Figs. 6(e)–6(f)] when
Λ(K) = 51756 different intervals have been evaluated. It is worth
noting that, thanks to the optimization of the value of τ , not only the
object function is correctly determined [Figs. 6(e) and 6(f)], but also
the scatterer support turns out to be faithfully estimated as pointed
out in Figs. 5(k)–5(l).

Figure 7 gives the number of admissible intervals I(k) versus the
iteration number, k. As it can be observed, I(k) rapidly increases
when only the qualitative reconstruction takes place because of the
difficulty to delete intervals. Then, it drastically reduces when the
also the scatterer contrast is processed. It is worth pointing out that
the CPU -time in evaluating a single interval T

(k)

i(k) is almost constant
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Figure 6. Off-centered homogeneous circular cylinder [ρ = λ
4 , τ = 0.1,

(xc, yc) = (−λ
2 ,−λ

2 ), SNR = 50 dB]. IA-based Procedure Analysis —
Admissible solution space when k = {7, 9,K = 19} related to the
potential scatterers (i.e., Ω(k)

{xc,yc,ρ,τ}): cuts of Γinv for (a), (c), (e)
xc = 0.5λ and (b), (d), (f) yc = −0.5λ.

and quite inexpensive§ nevertheless the width of the interval. After
2.23× 103[sec] (almost 0.6 hour), the dielectric profile generated from
§ The simulations have been carried out on a 3GHz PC with 2 GB of RAM.
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Figure 7. Off-centered homogeneous circular cylinder [ρ = λ
4 , τ = 0.1,

(xc, yc) = (−λ
2 ,−λ

2 ), SNR = 50 dB]. IA-based Procedure Analysis —
Number of “admissible” intervals at each iteration I(k), k = 1, . . . , K.

Table 2. Off-centered homogeneous circular cylinder [ρ = λ
4 , τ = 0.1,

(xc, yc) =
(−λ

2 ,−λ
2

)
, SNR = 50 dB]. IA-based Procedure Analysis —

Percentage of admissible solution space when k = {1, 3, 5, 7, 9, K =
19} for the barycenter (i.e., Ω(k)

{xc,yc}) and the scatterer support

Ω(k)
{xc,yc,ρ}).

k 1 3 5 7 9 19
Ω(k)
{xc,yc} [%] 92.16 43.56 25.17 15.49 3.62 0.04

Ω(k)
{xc,yc,ρ} [%] 100 96.33 74.57 60.65 39.99 5.42

the IA-optimized descriptors P opt = {xopt
c , yopt

c , ρopt
c , τopt

c } is that
shown in Fig. 4(g). For completeness, the best reconstructions at the
iterations in Table 2 are given in Fig. 4 whose corresponding intervals
are reported in Table 3.

Concerning the quantitative evaluation of the reconstruction
accuracy, the following error indexes have been computed

ξreg =
1

Nreg

Nreg∑

n=1

∣∣∣τact(xn, yn)− τopt
n

∣∣∣
|τact (xn, yn) + 1| (10)

τact and τopt being the relative dielectric permittivity of the actual
object and the reconstructed one, respectively, while Nreg identifies
either the number of discretization cells of the investigation domain
(reg ⇒ inv, total reconstruction error) or the actual object support
(reg ⇒ int, internal reconstruction error) or the background (reg ⇒
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Table 3. Off-centered homogeneous circular cylinder [ρ = λ
4 , τ =

0.1, (xc, yc) =
(−λ

2 ,−λ
2

)
, SNR = 50dB]. Object Reconstruction —

Intervals containing the best solutions retrieved by means of the IA-
based approach when k = {1, 3, 5, 7, 9, K = 19}.

k [xc] [yc]

1 [−0.726563,−0.484375] [−0.968751,−0.484375]

3 [−0.605469,−0.484375] [−0.605469,−0.484375]

5 [−0.514649,−0.484375] [−0.514649,−0.484375]

7 [−0.514649,−0.484375] [−0.514649,−0.484375]

9 [−0.514649,−0.484375] [−0.514649,−0.484375]

K = 19 [−0.514649,−0.484375] [−0.514649,−0.484375]

k [ρ] [τ ]

1 [0.031250, 0.273438] [0.000000, 0.300001]

3 [0.031250, 0.091797] [0.000000, 0.300001]

5 [0.152343, 0.182618] [0.000000, 0.300001]

7 [0.243164, 0.273438] [0.000000, 0.150001]

9 [0.212890, 0.243165] [0.075000, 0.112501]

k = 19 [0.212890, 0.243165] [0.097576, 0.097596]

Table 4. Off-centered homogeneous circular cylinder [ρ = λ
4 , τ = 0.1,

(xc, yc) = (−λ
2 , λ

2 ), SNR = 50dB]. Error Indexes — Values of the
error indexes of the best solutions retrieved by means of the IA-based
approach when k = {1, 3, 5, 7, 9, k = 19}.

k ξinv ξint ξext ∆c ∆ρ

1 1.8× 10−2 4.6× 10−2 1.6× 10−2 1.6× 10−1 36.1

3 3.7× 10−3 7.3× 10−2 0.0 5.2× 10−2 38.7

5 3.1× 10−3 6.2× 10
−2

0.0 0.0 29.5

7 2.5× 10−3 2.3× 10−2 1.4× 10−3 0.0 4.7

9 6.0× 10−4 7.0× 10−3 2.7× 10−4 0.0 14.7

K = 19 4.4× 10−4 3.6× 10−3 2.8× 10−4 0.0 14.7

ext, external reconstruction error). On the other hand, the qualitative
imaging accuracy has been quantified in terms of the location error

∆c =

√[
xopt

c − xact
c

]2
+

[
yopt

c − yact
c

]2

λ
(11)
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Figure 8. Off-centered homogeneous circular cylinder [ρ = λ
4 , τ = 0.1,

(xc, yc) = (−λ
2 ,−λ

2 ), SNR = 50 dB]. Functional Analysis — Evolution
of the parameter values {x(k)

c , y
(k)
c , ρ(k), τ (k)} estimated by means of

the IA-based approach for the solutions in Fig. 4 and actual parameter
values.

and the occupation area error

∆ρ =

∣∣ρopt − ρact
∣∣

ρact
× 100, (12)

(xc, yc) and ρ being the coordinates of the center and the
equivalent radius of the object, respectively, and xopt

c =
1
2

(∑Ninv
n=1 {xn<(τopt

n )}
∑Ninv

n=1 {<(τopt
n )} +

∑Ninv
n=1 {xn=(τopt

n )}
∑Ninv

n=1 {=(τopt
n )}

)
, yopt

c = 1
2

(∑Ninv
n=1 {yn<(τopt

n )}
∑Ninv

n=1 {<(τopt
n )}

+
∑Ninv

n=1 {yn=(τopt
n )}

∑Ninv
n=1 {=(τopt

n )}
)

, while ρopt=1
2




∑Ninv
n=1



<(τopt

n )

√
(xn−x

opt
c )2−(yn−y

opt
c )2

maxn=1,...,Ninv
<(τopt

n )





∑Ninv
n=1

{
<(τopt

n )
maxn=1,...,Ninv

<(τopt
n )

}
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+

∑Ninv
n=1



=(τopt

n )

√
(xn−x

opt
c )2−(yn−y

opt
c )2

maxn=1,...,Ninv
=(τ

opt
n )





∑Ninv
n=1

{
=(τ

opt
n )

maxn=1,...,Ninv
=(τ

opt
n )

}


, <( . ) and =( . ) being the real

and imaginary parts.
As for the test case under analysis, the value of the internal

error, ξK
int = 4.4 × 10−4 (Table 4), confirms the effectiveness of

the inversion with the reconstruction of the background without any
artifacts (ξK

ext = 2.8× 10−4 — Table 4).
In order to assess the reliability of the IA-approach in reaching

the global optimum, a functional analysis has been carried whose
results are summarized in Fig. 8 where, in each plot, the behavior
of the functional (4) is reported by varying only one parameter within
the range of values admitting physical solutions while the others are
kept fixed to the actual parameter values {τact, ρact, xact

c , yact
c }. Each

sample of a graph gives the value of the estimated parameters for
the solutions of Fig. 4. The dashed lines are related to the width of
the corresponding solution intervals at the iteration indicated by the
sample. As expected, the global optimum of the functional (i.e., the
actual solution) is reached by the IA-based optimization strategy with
an excellent precision since the interval width at k = K is negligible
and therefore representative of a uniform solution.

Finally, Fig. 9 shows the behavior of the quantitative errors for the
best solution determined after the evaluation of each interval with the

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0  10  20  30  40  50  60

10
-2

10
-1

10
0

10
1

10
2

re
g

b
e
s
t k

Number of Evaluated Intervals, i [          ]×103

reg=inv

reg=int

reg=ext

ξ Φ

Φ

Figure 9. Off-centered homogeneous circular cylinder [ρ = λ
4 , τ = 0.1,

(xc, yc) = (−λ
2 ,−λ

2 ), SNR = 50dB]. Error Indexes and Fitness
Function — Values of the total, internal, and external error indexes
and of the fitness function of the best solution retrieved through the
IA-based optimization process after the evaluation of each interval.
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corresponding values of the cost function. Both the total error and the
cost function value monotonically decrease confirming the efficiency of
the IA approach to step-by-step approximate the actual profile.
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Figure 10. Off-centered homogeneous circular cylinder [ρ = λ
4 ,

τ = 0.1, (xc, yc) = (−λ
2 ,−λ

2 ), SNR ∈ [5, 50] dB]. Error Indexes and
Fitness Function — Plot of (a) the total, internal, and external error
indexes and the fitness function and of (b) the location and occupation
area error of the best solutions retrieved by means of the IA-based
approach for different level of SNR.
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Figure 11. Off-centered homogeneous circular cylinder [ρ = λ
4 ,

τ = 0.1, (xc, yc) = (−λ
2 ,−λ

2 ), SNR ∈ [5, 50] dB]. IA-based Procedure
Analysis - Number of iterations required to determine the final solution
and number of admissible intervals at convergence for different level of
SNR.
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τ = 0.1, (xc, yc) = (λ
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8 ), SNR = 50 dB]. Error Indexes and Fitness
Function — Values of the total, internal, and external error indexes
and of the fitness function of the best solutions retrieved by means
of the IA-based approach for different sizes of the actual object:
ρ = {λ

8 , λ
5 , λ

4 , λ
3 , λ

2}
.

4.2. Robustness Analysis against Noise

To investigate on the robustness of the IA-based inversion to noisy
data, the reconstruction of the same scatterer profile of the previous
example has been performed by varying the noise level within the
range SNR = [5, 50] [dB]. As indicated by the amount of the error
indexes in Fig. 10, the scatterer retrieval turns out to be very accurate
whatever the data blurring. As a matter of fact, the maximum total
error results of about ξK

inv = 10−3 when SNR = 5 dB [Fig. 10(a)].
This means that in the worst case, the mismatch between the actual
object and the reconstructed one is around 0.1%. Moreover, it is worth
noticing that the internal errors are of the order of 1% in severe noisy
conditions (i.e., SNR = {5, 10} dB) and decreases for higher SNRs.
Furthermore, the background is free of artifacts with errors strictly
below 0.1% [Fig. 10(a)].

Conversely, the noise impacts in a more significant way on the
computational costs. As shown in Fig. 11, the number of interval
evaluations to achieve the convergence grows with the noise level as
well as the the number of admissible intervals at k = K (i.e., it is more
difficult to delete intervals in the presence of significant noise levels).
Besides the growing difficulties when dealing with noisy environments
as for standard state-of-the-art approaches, Table 5 indicates that the
best intervals [P ]opt among the I(K) admissible at the convergence
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are substantially the same for a wide range of SNR values (i.e.,
SNR ≥ 15 dB) further assessing the robustness and effectiveness of
the IA-based strategy.

4.3. Performance Analysis against Dimensions and
Contrasts

To assess the IA-inversion performance when modifying the
parameters of the actual scatterer, the first experiment of this section
considers the radius of the circular object, located at (xact

c , yact
c ) =

(0.25λ, 0.125λ), varying between ρact = 0.125λ up to ρact = 0.5λ. The
IA-based optimization process has been run starting from the initial
intervals [P ](0) in Table 1. The final results are summarized in Fig. 12
where the values of the errors are plotted. As an indicative result, let
us consider that the total error is always smaller than 1% whatever ρ.

For illustrative purposes, Fig. 13 reports both the actual scatterers
[Fig. 13(a) and Fig. 13(c)] and the corresponding reconstructions
[Fig. 13(b) and Fig. 13(d)] in correspondence with two representative

(a) (b)

(c) (d)

Figure 13. Off-centered homogeneous circular cylinder [ρ = {λ
8 , λ

2},
τ = 0.1, (xc, yc) = (λ

4 , λ
8 ), SNR = 50 dB]. Object Reconstruction

— Distribution of the (a)(c) actual and (b)(d) reconstructed object
function for (a)(b) ρ = λ

8 and (c)(d) ρ = λ
2 .
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(b)(a)

(d)(c)

Figure 14. Off-centered homogeneous circular cylinder [ρ =
λ
4 , τ = {0.025, 0.4}, (xc, yc) = (λ

4 ,−λ
4 ), SNR = 50 dB].

Object Reconstruction — Distribution of the (a)(c) actual and
(b)(d) reconstructed object function for (a)(b) τ = 0.025 and (c)(d)
τ = 0.4.

test cases: ρact = 0.125λ and ρact = 0.5λ. As it can be observed, the
retrieved profiles are very close to the actual ones and the existing
mismatch is mainly due to the different discretization used in the
forward and the inversion problems.

In the second experiment, the performance of the IA-based
method has been evaluated by changing the values of the permittivity
as well as the dimension of the investigation domain, but still within
the first-order Born approximation [63]. As an example, the size of Γinv

has been reduced to L = λ and the cylinder center and its radius have
been fixed to (xact

c , yact
c ) = (0.25λ,−0.25λ) and ρ = 0.25λ, respectively,

while the contrast has been varied between τ = 0.025 and τ = 0.4. By
choosing the inversion grid of Ninv = 20 × 20 cells and the initial
values of the intervals as in Table 6, the final reconstructions for two
representative contrasts (i.e., τ = 0.025 and τ = 0.4) are shown in
Fig. 14. As expected and analogously to the previous tests, the IA
inversions provide faithful reconstructions with reduced or sometimes
negligible errors (Fig. 15).
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Table 5. Off-centered homogeneous circular cylinder [ρ = λ
4 , τ = 0.1,

(xc, yc) = (−λ
2 ,−λ

2 ), SNR ∈ [5, 50] dB]. Object Reconstruction —
Intervals containing the best solutions retrieved by means of the IA-
based approach for different level of SNR.

SNR [dB] [xc] [yc]
5 [−0.514649,−0.484375] [−0.544922,−0.514648]
10 [−0.514649,−0.484375] [−0.514649,−0.484375]
15 [−0.514649,−0.484375] [−0.514649,−0.484375]
20 [−0.514649,−0.484375] [−0.514649,−0.484375]
25 [−0.514649,−0.484375] [−0.514649,−0.484375]
30 [−0.514649,−0.484375] [−0.514649,−0.484375]
50 [−0.514649,−0.484375] [−0.514649,−0.484375]

SNR [dB] [ρ] [τ ]
5 [0.212890, 0.243165] [0.090981, 0.090983]
10 [0.212890, 0.243165] [0.088838, 0.088843]
15 [0.212890, 0.243165] [0.094070, 0.094080]
20 [0.212890, 0.243165] [0.097128, 0.097138]
25 [0.212890, 0.243165] [0.096807, 0.096827]
30 [0.212890, 0.243165] [0.097357, 0.097376]
50 [0.212890, 0.243165] [0.097576, 0.097596]

Table 6. Off-centered homogeneous circular cylinder [ρ = λ
4 , τ =

{0.025, 0.4}, (xc, yc) = (λ
4 ,−λ

4 ), SNR = 50 dB]. Initialization —
Intervals considered at the initialization k = 0 of the IA-based
optimization process.

Unknown Parameter Intervals Feasible Solution Space

[τ ](0) =
[(

τL
)(0)

1
,
(
τR

)(0)

1

]
[0.0, 0.4]

[ρ](0) =
[(

ρL
)(0)

1
,
(
ρR

)(0)

1

]
[0.025λ, 1.0λ]

[xc](0) =
[(

xL
c

)(0)

1
,
(
xR

c

)(0)

1

]
[(
−0.5 +

(
ρL

)(0)

1

)
λ,(

0.5− (
ρL

)(0)

1

)
λ
]

[yc](0) =
[(

yL
c

)(0)

1
,
(
yR

c

)(0)

1

]
[(
−0.5 +

(
ρL

)(0)

1

)
λ,(

0.5− (
ρL

)(0)

1

)
λ
]
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Figure 15. Off-centered homogeneous circular cylinder [ρ = λ
4 ,

τ ∈ [0.025, 0.4], (xc, yc) = (λ
4 ,−λ

4 ), SNR = 50dB]. Error Indexes
and Fitness Function - Values of the total, internal, and external
error indexes and of the fitness function of the best solutions retrieved
by means of the IA-based approach for different values of the object
function: τ = {0.025, 0.5, 0.75, 1.0, 1.5, 2.0, 3.0, 4.0}.

5. OUTCOMES AND CONCLUSIONS

The arithmetic of intervals and Interval Analysis have been applied
for the first time, to the best of the authors’ knowledge, to the
solution of electromagnetic inverse scattering problems. The problem,
reformulated according to the arithmetic of intervals, has been faced
by means of an optimization strategy based on IA able to:

• find the global solution by eliminating, according to effective tests
on the intervals processed at each iteration, the regions of the
solution space not containing the minimum values of the cost
functional at hand;

• consider the whole solution space not limiting the analysis to a
portion of it;

• obtain the final solution in a finite number of iterations by
exploiting stopping conditions naturally defined on the required
accuracy of the expected solution.

The reported results have proved the effectiveness of the proposed
approach in reconstructing weak scatterers when solving first-order
Born approximation inversion problems. Moreover, its robustness to
noisy data has been assessed.

As final remarks, it is worth pointing out that the IA-based
method guarantees to reach the global optimum, while its main
drawback lies in the computational burden that grows exponentially



700 Rocca et al.

with the number of unknowns making unfeasible pixel-based inversions
and intractable high-dimensional problems. On the other hand, since
there is a great attention towards model-based strategies, mainly to
enable 3D imaging and/or the reconstruction of large 2D scenarios, it
is authors’ opinion that IA can play a key-role in such a framework
especially when facing inverse scattering problems where the retrieval
of the exact solution is mandatory and real-time performances are not
necessary.

Future works, currently under development, but out-of-the-scope
of this paper, are concerned with the extension of the range of
applicability beyond Born approximation as well as to different
parameterization. Of course, the computational issues are argument of
a continuous evolution for overcoming current limitations of IA-based
techniques as applied to inversion.

APPENDIX A. INTERVAL DEFINITION

Let us suppose x ∈ < being a real variable. A closed real interval
[x] = [xL, xR] consists of the set of real numbers x such that {x:
xL ≤ x ≤ xR}, where xL and xR are the left (minimum) and
right (maximum) endpoints of the interval. Geometrically, [x] can be
represented by a segment on a line. As far as the value x is concerned,
it is equivalent to the interval [x, x], which is indicated as degenerate
interval.

If the variable is complex, z, the closed interval [z] = [zL, zR]
stands for a two-dimensional box, namely a rectangular parallelepiped,
whose sides are a = |<{zR} − <{zL}| and b = |={zR} − ={zL}|, <{·}
and ={·} being the real and imaginary parts, respectively, and | · | the
absolute value.

APPENDIX B. INTERVAL ARITHMETIC

Let us denote with “+”, “−”, “∗” and “/” the operators of addition,
subtraction, multiplication and division, respectively. Let op be any of
these operations for the arithmetic of the real numbers x and y, then
the corresponding operation for the arithmetic of interval numbers [x]
and [y] is

([x] op [y]) = {x op y : x ∈ [x], y ∈ [y] } . (B1)

From (B1), it follows that the interval ([x] op [y]) contains every
possible value x op y for each x ∈ [x] and y ∈ [y]. Accordingly,
the endpoints of [x] op [y] are determined from the knowledge of the
endpoints of [x] and [y]. More specifically
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(1) Interval Sum
Let [x] = [xL, xR] and [y] = [yL, yR] be two real intervals. The
sum operation is defined as

[x] + [y] =
[
xL + yL, xR + yR

]
; (B2)

(2) Interval Subtraction
Let [x] = [xL, xR] and [y] = [yL, yR] be two real intervals. The
subtraction operation is defined as

[x]− [y] =
[
xL − yR, xR − yL

]
; (B3)

(3) Interval Multiplication
Let [x] = [xL, xR] and [y] = [yL, yR] be two real intervals. The
multiplication operation is defined as

[x] ∗ [y] =
[
min

(
xLyL, xLyR, xRyL, xRyR

)
,

max
(
xLyL, xLyR, xRyL, xRyR

)]
; (B4)

(4) Interval Inverse
Let [y] =

[
yL, yR

]
be a real interval. The inverse interval 1/[y] is

defined as
1
[y]

=
[

1
yR

,
1
yL

]
0 /∈ [y]; (B5)

(5) Interval Division
Let [x] = [xL, xR] and [y] =

[
yL, yR

]
be two real intervals. The

interval division is defined by means of the interval inverse and
the interval multiplication as

[x]
[y]

= [x] ∗
(

1
[y]

)
0 /∈ [y]; (B6)

(6) Interval Power
Let [x] = [xL, xR] be a real interval. The power operation is
defined as

[x]n =



[1, 1] if (n=0)[(
xL

)n
,
(
xR

)n
]

if
(
xL≥0

)
or

[(
xL≤0≤xR

)

and (n is odd)][(
xR

)n
,
(
xL

)n
]

if
(
xR ≤ 0

)
[
0,max

{(
xL

)n
,
(
xR

)n
}]

if
[(

xL ≤ 0 ≤ xR
)

and (n is, even)]

;(B7)
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APPENDIX C. FUNDAMENTAL THEOREM OF IA

Let us consider a real-valued function f of N real variables x1, . . . , xN

and an interval function [f ] of interval variables [x]1, . . . , [x]N . The
interval function [f ] is an interval extension of f if

[f(x1, . . . , xN )] = f(x1, . . . , xN ) (C1)

for all xn, n = 1, . . . , N . This means that if the arguments of [f ] are
degenerate intervals then [f([x]1, . . . , [x]N )] is a degenerate interval
function equal to f(x1, . . . , xN ).

In case [x]n⊂[y]n, n = 1, . . . , N and the following condition holds
true

[f([x]1, . . . , [x]N )] ⊂ [f([y]1, . . . , [y]N )]. (C2)

[f ] is said to be inclusion monotonic. By virtue of (B1), it is possible
to state that the arithmetic of intervals is inclusion monotonic and
therefore if [x]n ⊂ [y]n, n = 1, 2 then

([x]1 op [x]2) ⊂ ([y]1 op [y]2) . (C3)

The Fundamental Theorem of Interval Analysis [68] states that
being [f([x]1, . . . , [x]N )] an inclusion monotonic interval extension of a
real function f(x1, . . . , xN ), then [f([x]1, . . . , [x]N )] contains the whole
values of f(x1, . . . , xN ) for all xn ∈ [x]N , n = 1, . . . , N .

The main outcomes from the Fundamental Theorem of Interval
Analysis are that:

• If a real function f is evaluated on an interval by means of an
inclusion monotonic extension F , the resulting interval contains
all the values of f within the interval;

• There is no unique interval extension [f ] of a given function f ;
• The best interval extension of a given function is that where

[f([x]1, . . . , [x]N )] = {f(x1, . . . , xN ): xn ∈ [x]n, n = 1, . . . , N},
[f([x]1, . . . , [x]N )] being an inclusion monotonic interval extension
of a real function f(x1, . . . , xN ). It means that the resulting
interval function [f ] contains exactly the range of f over the set
of values xn ∈ [x]n, n = 1, . . . , N ;

• The best interval extension of f can be computed only if f can be
expressed in a form where every independent interval is considered
only once.
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