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1. Introduction

One of the main tasks of mathematics is to describe certain objects up to a certain equivalence
relation. Often this relation is given by an algebraic group action. Then equivalence classes are orbits
and orbit closures correspond to degenerations of our objects. Thus, describing orbits of algebraic
actions, as well as deciding whether one orbit lies in the closure of another, is an important and
interesting problem. However, this is possible only in a very few cases. One of these instances is
provided by the θ -groups introduced by the second author in the seventies, see [35,36].

Let G be a connected reductive complex algebraic group and g = Lie G its Lie algebra. Let θ be
a diagonalisable automorphism of g that either defines a Z or a Z/mZ-grading g = ⊕

gi , where
the grading components gi are the eigenspace of θ . Note that g0 = gθ is the subset of θ -stable
points. Let G0 ⊂ G be a connected algebraic subgroup such that Lie G0 = g0. If θ extends to an auto-
morphism of G , then G0 = (Gθ )◦ . The group G0 is reductive and its natural action on g1 is called
a θ -representation; the group G0, together with its action on g1, is called a θ -group.
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An orbit G0x ⊂ g1 is said to be semisimple if it is closed, and nilpotent if its closure G0x contains 0.
This is the case if and only if x is semisimple (respectively nilpotent) as an element of g. The ele-
ments of g1 inherit the Jordan decomposition x = s + n from g. Besides, G0-orbits G0(s + n) with the
semisimple part s being fixed up to conjugation are classified by the nilpotent orbits of the θ -group
coming from the pair (gs, θ |gs ), where gs ⊂ g is the centraliser of s (and it is a reductive Lie algebra)
and θ |gs is the restriction of θ to gs . This indicates that nilpotent orbits are especially interesting.
The θ -groups have several remarkable properties, one of them is that there are only finitely many
nilpotent G0-orbits in g1 and there is a method to classify them [36].

From now on suppose that g is simple. We will say that a θ -group is exceptional (respectively
classical), if g is exceptional (respectively classical). The classical case allows a more or less uniform
treatment, since here everything is determined by the canonical embedding into an appropriate gln ,
see e.g. [35]. For inner automorphisms of gln , the nilpotent orbits as well as their closures are de-
scribed by Kempken [25]. The complete answer, including the closure ordering for all classical types
and all automorphisms, is not known, but there does not seem to be any profound difficulty in getting
it, see e.g. [28].

More interesting representations arise in the context of exceptional θ -groups. Here several orbit
classifications were carried out along the lines of [36]. To mention a few [39,1,2,16]. In these papers,
all orbits, not only the nilpotent ones, were described. More recently, Pervushin treated one θ -group
in type E7 [29], he also got the closure diagram of the nilpotent orbits [30].

Despite the possibility to treat each particular exceptional θ -group by hand, the “classical” unifor-
mity is lost and one faces a long list of different examples. Dealing with all of them by hand is at least
difficult. Several computer algorithms for classifying nilpotent G0-orbits in g1 have been developed,
see [26] and [20]. In this paper, we give a method how to check whether a nilpotent orbit G0x lies in
the closure G0 y of another nilpotent orbit G0 y.

Each nilpotent element e ∈ g1 can be included into an sl2-triple (e,h, f ) with h ∈ g0. Our method
relies on the fact that this h is also a characteristic of e in the sense of Kempf and Hesselink, i.e., it
gives rise to a one-dimensional torus in G0 that takes e to zero fastest. Another important ingredient
is that G0e coincides with a Hesselink stratum, the set of all elements in g1 having h as a Hesselink
characteristic, see [38, Section 5]. Therefore G0e = G0(V�2(h)), where V�2(h) is the linear span of all
vectors v ∈ g1 such that [h, v] = kv with k � 2.

An orbit G0e′ lies in G0e if and only if its intersection with V�2(h) is non-empty. When examining
G0e′ ∩ V�2(h), we replace G0 by the union of its Bruhat cells. Further, let h′ be a characteristic of e′
and W0 the Weyl group of G0. Then Proposition 3.1 assures that G0e′ is contained in G0e if and
only if there is w ∈ W0 such that U (w) = V 2(h′) ∩ V�2(wh) contains a point of G0e′ (here V 2(h′)
is the set of all vectors v ∈ g1 such that [h′, v] = 2v). If this is indeed the case, then U (w) ∩ G0e′ is
an open dense subset of U (w) and by taking a random u ∈ U (w) we can find an element of G0e′
with probability almost one. In order to prove that the intersection in question is empty, we compute
the dimension of a maximal Z(h′)-orbit intersecting U (w) for the centraliser Z(h′) ⊂ G0 of h′ . Recall
that dim Z(h′)v < dim Z(h′)e′ for all elements v in V 2(h′)\G0e′ (see Lemma 2.5). To loop over an
orbits of the Weyl group, we use its parametrisation as a tree with edges given by simple reflections
(Section 4). Other tools are described in Sections 2.1, 5, and 6. In particular, to prove a non-inclusion
G0e′ �⊂ G0e for some orbits, we use Theorem 2.9, which is a general statement on Z-graded reductive
Lie algebras and is interesting in itself. It already appeared in the literature and was proved by Kac in
a particular case [24], see Remark 2.10 for a detailed discussion.

First examples of θ -groups are provided by the simple Lie algebras themselves, i.e., in the case
where the automorphism is the identity. Then one asks for the Hasse (closure) diagram of the nilpo-
tent orbits in g. The two most difficult, largest exceptional Lie algebras, of types E7 and E8, were
treated by Mizuno [27]. Later his results were verified and corrected by Beynon and Spaltenstein [4].
The implementation of our method in GAP also works for g. We have computed the Hasse diagrams
for the Lie algebras of exceptional type, and obtained the same diagrams as in Spaltenstein’s book [33].

The same problem for real exceptional Lie algebras has been studied by Djoković in a series of pa-
pers [8–15]. If gR is a non-compact real form of g and k⊂ gR is the Lie algebra of a maximal compact
subgroup in GR , then the complexification k(C) of k is a symmetric subalgebra, i.e., k(C) = gθ for θ of
order two. The Kostant–Sekiguchi correspondence (see e.g. [6, §9.5]) establishes a bijection between
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nilpotent GR orbits in gR and nilpotent G0-orbits in g1. Moreover, according to [3], this bijection
preserves the closure ordering. For each automorphism of order 2 of each exceptional complex Lie
algebra, Djoković gives the closure diagram for the nilpotent orbits. With the implementation of our
method in GAP we have also computed these diagrams. The results of our computations were the
same as those of Djoković, except in one case in type E8. The difference is described in Section 8.1.

The finite order automorphisms of g have been classified by Kac [23], up to conjugacy. A conjugacy
class of automorphisms is identified by its Kac diagram. Here we briefly indicate how this works for
inner automorphisms, for more information we refer to [37, Chapter 3, §3] and [22, Chapter X]. Let �

be the root system of g with a basis {α1, . . . ,αl}. Let α0 denote the lowest root of �. The Dynkin dia-
gram of the roots α0,α1, . . . ,αl is the extended Dynkin diagram of � (or of g). Let ni ∈N be such that
α0 = −∑l

i=0 niαi and set n0 = 1. Take l + 1 non-negative integers s0, . . . , sl with gcd(s0, . . . , sl) = 1

and set m = ∑l
i=0 ni si . Let ω ∈ C be a primitive m-th root of unity. Then a linear map θ : g → g that

multiplies vectors in the root space gαi (0 � i � l) by ωsi uniquely defines an automorphism of g

of order m. The Kac diagram of this automorphism (or, more precisely, of its conjugacy class) is the
extended Dynkin diagram with labels s0, . . . , sl . The automorphisms that will appear in the examples
in this paper all have the labels si equal to 0 or 1. We will give the Kac diagram of such an au-
tomorphism by colouring the nodes of the extended Dynkin diagram: a black node means that the
corresponding label is 1, otherwise it is 0.

There is also an easy way to read the θ -representation from the Kac diagram of an inner θ . The
group G0 contains a maximal torus of G and the semisimple part of g0 is generated by all root
spaces gαi (0 � i � l) with si = 0. The lowest weights of g1 (with respect to G0) are in one-to-one
correspondence with the roots labelled with 1.

There are two instances of θ -groups, one in E7 and one in E8, where G0-orbits correspond to iso-
morphisms classes of two-step nilpotent (or metabelian) Lie algebras n such that n′ = [n,n] is the cen-
tre of n and either dim(n/n′) � 6, dimn′ � 3; or dim(n/n′) � 5, dimn′ � 5, see Section 8.3 and [16].
The nilpotent orbits correspond to those Lie algebras, whose structure tensor can be contracted to zero
by a unimodular change of coordinates. Here taking closure of a nilpotent orbit can be interpreted as
the degeneration of the encoded Lie algebra. The Lie algebra structures on a given vector space form
an affine algebraic variety and some of its properties depend on the degenerations, see e.g. [34]. In
Appendix A we present the Hasse diagrams for the nilpotent orbits of both these θ -representations.

We have also computed the closures of the nilpotent orbits of SL9(C) in
∧3

(C9), see Figs. 1, 2.
This is a θ -representation treated in [39].

Section 7 contains a few further observations on algebraic actions. We briefly discuss difficulties
arising in developing a practical algorithm for describing the closure (Section 7.3); outline possible
modifications in our algorithm; and present a parametrisation for a set of the double cosets of a Weyl
group (Section 7.2), which appeared as a byproduct of our constructions.

2. Preliminaries

In this section we present some results, mainly taken from [38], on which our method is based.
Throughout we let h0 be a fixed Cartan subalgebra of g0. The Weyl group of the root system of g0

with respect to h0 will be denoted W0. We have W0 ∼= NG0(h0)/ZG0 (h0). Hence every w ∈ W0 can be
lifted to g ∈ G0 such that g|h0 = w . Usually we will denote these two elements by the same symbol.
The group G is assumed to be simple unless explicitly stated to the contrary.

We say that an sl2-triple (h, e, f ) is homogeneous if e ∈ g1, h ∈ g0, f ∈ g−1.
Let us recall a few useful facts (see [35,36]):

(1) For a nilpotent element e ∈ g1 there exist h ∈ g0, f ∈ g−1 such that (h, e, f ) is an sl2-triple. The
element h is called a (Dynkin) characteristic of e.

(2) Let (h′, e′, f ′), (h, e, f ) be two homogeneous sl2-triples. Then e′ and e are G0-conjugate if and
only if (h′, e′, f ′), (h, e, f ) are G0-conjugate, if and only if h′ and h are G0-conjugate.

Thereby a nilpotent orbit G0e corresponds to a unique G0-conjugacy class of homogeneous sl2-triples
(h, e, f ). Also, we may assume that h lies in h0. Furthermore, after possibly replacing h by a
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W0-conjugate, we may assume that h lies in a fixed Weyl chamber C0 of h0. Then h is uniquely
determined by the orbit G0e.

Throughout we will write V for the space g1. Then for h ∈ h0 we set

Vk(h) = {
v ∈ V

∣∣ [h, v] = kv
}
, V�k(h) =

⊕

l�k

Vl(h).

Also we consider the parabolic subalgebra p(h) ⊂ g0, which is the sum of the eigenspaces of h with
non-negative eigenvalues. Let P (h) denote the connected subgroup of G0 with Lie algebra p(h). We
let z(h) be the centraliser of h in g0. Let z̃(h) denote the orthogonal complement of h in z(h), with
respect to the Killing form of g. Let Z(h) and Z̃(h) be connected subgroups of G0 with Lie algebras
z(h) and z̃(h), respectively.

Now we will borrow two theorems from [38, Section 5].

Theorem 2.1. (See [38, Theorem 5.4].) Let e ∈ g1 be nilpotent and non-zero. Let h ∈ h0 be such that e ∈ V�2(h).
Then h is a characteristic of e if and only if the projection of e on V 2(h) is not a nilpotent element with respect
to the action of the group Z̃(h).

Remark 2.2. In [38, Section 5], the term “characteristic” is used in a different sense, it is not neces-
sarily a Dynkin characteristic. However, following the lines of Example 3 in [38, Section 5.5], one can
show that the orbit Z̃(h)e is closed in V , if h is a Dynkin characteristic of e. Therefore a Dynking
characteristic of e is also a characteristic in the sense of Theorem 2.1.

The next theorem is the second part of [38, Theorem 5.6] and Corollary 2.4 is an immediate
consequence of Theorem 2.3.

Theorem 2.3. Let O = G0e be a nilpotent orbit in V ; and let h ∈ g0 be a characteristic of e. Then O =
G0(V�2(h)).

Corollary 2.4. Let O′ = G0e′ , O = G0e be two nilpotent orbits in V . Let h′ , h be Dynkin characteristics of e′ , e,
respectively. Then O′ ⊂O if and only if V�2(h) contains a point of O′ .

We use the notation gi,x for the intersection of gi and the centraliser gx ⊂ g of x ∈ g. Next we have
two lemmas that we will use in the sequel. The first one is an immediate consequence of Theorem 2.3.

Lemma 2.5. Let (h, e, f ) be a homogeneous sl2-triple. Then Z(h)e is dense in V 2(h).

Lemma 2.6. Let (h, e, f ) be a homogeneous sl2-triple, and O = G0e. Then h is a (Dynkin) characteristic of all
elements of O ∩ V 2(h).

Proof. In fact, we are going to prove that Y = O ∩ V 2(h) is a single Z(h)-orbit, i.e., this intersection
is equal to Z(h)e. Let y be an element of Y . Let fi be the eigenspace of h in g0 with eigenvalue i
and let fi,y = fi ∩ g0,y be the centraliser of y in fi . Since Z(h)e is dense in V 2(h), the element y lies
in its closure. In particular, taking the limits one sees that dim fi,y � dim fi,e for all i. On the other
hand dimg0,e = dimg0,y , since these are the elements of the same G0-orbit. Taking into account
that g0,y = ⊕

fi,y and that f0,y = z(h)y , we conclude that the Z(h)-orbits of e and y have the same
dimension. Since Z(h)e is the unique Z(h)-orbit of the maximal dimension, y ∈ Z(h)e.

Now the statement about characteristics is obvious. �
2.1. Reduced θ -groups

We conclude Section 2 with a few statements concerning θ -groups appearing from Z-gradings.
In this part of the paper, G is an arbitrary (not necessarily simple) reductive group. A Z-grading
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of g = Lie G is defined by a diagonalisable one-parameter subgroup of Aut(g) and therefore by the
eigenvalues of some h ∈ g, i.e., gs = {ξ ∈ g | [h, ξ ] = sξ}, see e.g. [37, Chapter 3, Section 3.3]. Without
loss of generality we may assume that h ∈ [g,g]. Here all elements of g1 are nilpotent and therefore
there is a dense open G0-orbit in g1.

Let ρ : G → GL(W ) be a faithful linear representation of G on a finite-dimensional vector space W .
We use the same letter ρ for its differential ρ : g → gl(W ) and define a non-degenerate G-invariant
symmetric scalar product ( , ) on g by setting (x, y) := tr(ρ(x)ρ(y)) for x, y ∈ g. Note that the restric-
tion of ( , ) to each non-abelian simple factor of g is the Killing form multiplied by a positive rational
number. One of the benefits of this choice is that (h,h) > 0, whenever h �= 0, and this is assumed
to be the case. More generally, (s, s) > 0 for all non-zero s ∈ [g,g] that have rational eigenvalues
on g.

Let g̃0 ⊂ g0 be the orthogonal complement of h with respect to ( , ) and G̃0 ⊂ G0 a connected
algebraic group with Lie G̃0 = g̃0. Then the action of G̃0 on g1 is said to be a reduced θ -representation
and G̃0 a reduced θ -group. Note that G0 = G̃0(exp(Ch)).

Lemma 2.7. Let x ∈ g1 . Then G̃0x = G0x if and only if [g̃0, x] = [g0, x], and the equality takes place if and only
if the orbit G̃0x is conical.

Proof. If G̃0x = G0x, then clearly [g̃0, x] = [g0, x]. Other way around, the equality of tangent spaces
implies that dim G0x = dim G̃0x. Since G̃0 is a normal subgroup of G0, the same holds for all elements
in G0x and the two orbits coincide. Finally, being conical means that C×x ⊂ G̃0x, or, equivalently,
Cx ⊂ [g̃0, x]. Therefore G̃0x is a conical orbit if and only if there is the equality of orbits or their
tangent spaces. �
Lemma 2.8. Suppose that 2h is a Dynkin characteristic of x ∈ g1 . Then [g0, x] = g1 , but [g̃0, x] �= g1 .

Proof. If [g0, x] �= g1, then there is v ∈ g−1 such that ([g0, x], v) = 0 and also (g0, [x, v]), where
[x, v] ∈ g0. Since the scalar product is non-degenerate on g0, we obtain [x, v] = 0, which contradicts
the sl2-theory.

There is an element y ∈ g−1 such that y, 2h, and x form an sl2-triple. For this y we have
(y, [g̃0, x]) = 0, because (2h, g̃0) = 0. The inequality follows. �
Theorem 2.9. Let G be an arbitrary reductive group and the objects g1 , G0 , G̃0 as above. Suppose that x ∈ g1 .
Then G̃0x �= G0x if and only if 2h is a Dynkin characteristic of x.

Proof. Let ĥ ∈ g0 be a Dynkin characteristic of x. We can write it as ĥ = ah + h0 with a ∈ C and
h0 ∈ g̃0. Since [ĥ, x] = 2x = ax + [h0, x], either Cx ⊂ [g̃0, x] or a = 2 and [h0, x] = 0. In the latter
case (ĥ,h0) = 0. Taking into account the equality (h,h0) = 0, we get that (h0,h0) = 0. Since ĥ is a
Dynkin characteristic, it lies in [g,g]. Hence h0 ∈ [g,g], because h also does. Moreover, eigenvalues
of ad(h) are integers by the construction, and the same holds for ad(ĥ), because it comes from an
sl2-triple. Since [h, ĥ] = 0, the eigenvalues of ad(h0) are integers as well. According to our choice of
the scalar product, the equality (h0,h0) = 0 is possible only if h0 = 0. One concludes that 2h is a
Dynkin characteristic of x.

We have shown that if 2h is not a Dynkin characteristic of x, then [h0, x] = bx with b ∈ C× , in
particular, G̃0x is a conical orbit. By Lemma 2.7, G0x = G̃0x.

If 2h is a Dynkin characteristic of x, then [g̃0, x] �= [g0, x] by Lemma 2.8 and therefore
G0x �= G̃0x. �
Remark 2.10. In case g is simple and the representation of G0 on g1 is irreducible, Theorem 2.9 was
proved by V.G. Kac, see [24, Proposition 3.2]. It is also mentioned without a proof in [38, Section 8.5]
that the statement holds for an arbitrary reduced θ -group. Since we could not find a general case
proof in the literature, we decided to include it here.
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3. Criteria for inclusion

In this section we state and prove the main criterion (Proposition 3.1) that we use for deciding
whether a given nilpotent orbit is contained in the closure of another given nilpotent orbit. This
reduces the problem of checking inclusion to a finite number of checks, each corresponding to an
element of a certain orbit of the Weyl group W0. Subsequently we give some observations that help
when using the criterion.

Proposition 3.1. Let the notation be as in Corollary 2.4. Then O′ ⊂ O if and only if there is a w ∈ W0 such
that U = V 2(h′) ∩ V�2(wh) contains a point of O′ . Moreover, in that case the intersection of U and O′ is
dense in U .

Proof. The “if ” part follows directly from Theorem 2.3. Therefore suppose that O′ ⊂O.
By the Bruhat decomposition we have that

G0 =
⋃

w∈W0

P
(
h′)w P (h).

By Theorem 2.3,

O = G0
(

V�2(h)
)

=
⋃

w∈W0

P
(
h′)w P (h)

(
V�2(h)

)

=
⋃

w∈W0

P
(
h′)w

(
V�2(h)

)
.

Let (h′, e′, f ′) be a homogeneous sl2-triple. Then it follows from the above that there exist w ∈ W0,
p ∈ P (h′), and x ∈ V�2(h) with e′ = pwx, or, equivalently, p−1e′ = wx.

Next P (h′) = Z(h′) � N , where N is a connected subgroup of G0 whose Lie algebra is the sum of
the eigenspaces of h′ in g0 with positive eigenvalues. In particular, p−1 = ln with l ∈ Z(h′) and n ∈ N .
Since e′ ∈ V 2(h′), we have ne′ = e′ + y, where y ∈ V�3(h′). Now p−1e′ = le′ + ly, with le′ ∈ V 2(h′) and
ly ∈ V�3(h′). In particular, p−1e′ lies in V�2(h′). Since p−1e′ = wx and wx ∈ V�2(wh), it also lies in
Ũ = V�2(h′) ∩ V�2(wh).

The elements h′ and wh commute and thereby Ũ is stable under the action of h′ . That is, Ũ is
the direct sum of h′-eigenspaces. It follows that Ũ contains le′ , which is obviously an element of O′ .
Moreover, le′ ∈ V 2(h′) and hence le′ ∈ U , where U = V 2(h′) ∩ V�2(wh).

By Theorem 2.1, an element v ∈ U lies in O′ if and only if it is not nilpotent with respect to the
action of Z̃(h′). Therefore if the intersection of U and O′ is not empty, then it has to be open and
dense. �
Proposition 3.2. Let (h′, e′, f ′), (h, e, f ) be homogeneous sl2-triples, with e′ ∈ O′ , e ∈ O. Let κ denote the
Killing form of g. If κ(h′,h) < κ(h′,h′) then V 2(h′) ∩ V�2(h) contains no points of O′ .

Proof. Note that h ∈ z(h′), hence h = ah′ + t , where a ∈C and t ∈ z̃(h′). Moreover,

a = κ(h′,h)

κ(h′,h′)
,

which is in Q and < 1. Hence t has only positive eigenvalues on V 2(h′) ∩ V�2(h). Let T be the
connected subgroup of G0 whose Lie algebra is spanned by t . Then all elements of V 2(h′) ∩ V�2(h)
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are nilpotent with respect to T , and in particular with respect to Z̃(h′). Hence by Theorem 2.1 and
Lemma 2.6, the former space contains no points of O′ . �

Let l be a Lie algebra acting on a vector space M . Then for v ∈ M we denote its stabiliser by lv ,
i.e.,

lv = {x ∈ l | x · v = 0}.
The set of v ∈ M with dim lv minimal is open and dense in M .

Proposition 3.3. Let (h′, e′, f ′), (h, e, f ) be homogeneous sl2-triples, with e′ ∈O′ , e ∈O. Let d = dim z(h′)e′ .
Let d′ be the minimal dimension of z(h′)u , for u ∈ V 2(h′) ∩ V�2(h). Then d � d′ . Moreover, V 2(h′) ∩ V�2(h)

contains a point of O′ if and only if d = d′ .

Proof. By Lemma 2.5, the stabiliser of e′ in z(h′) has minimal possible dimension.
Furthermore, if d = d′ then there is u ∈ V 2(h′) ∩ V�2(h) such that dim z(h′)u = dim z(h′)e′ . Hence

the dimension of the Z(h′)-orbit of u is the same as the dimension of Z(h′)e′. So Z(h′)u is dense
in V 2(h′) as well. The conclusion is that Z(h′)e′ = Z(h′)u, and u lies in O′ . �
Proposition 3.4. Let (h′, e′, f ′), (h, e, f ) be homogeneous sl2-triples, with e ∈ O, e′ ∈ O′ . Set U = V 2(h′) ∩
V�2(h). Let n = Ng0 (U ) = {x ∈ g0 | [x, U ] ⊂ U }. Let u ∈ U ; if [n, u] = U , and u /∈ O′ , then U has no points
of O′ .

Proof. Indeed, if U has a point of O′ , then the intersection of O′ and U is dense in U . But also the
NG0(U )-orbit of u is dense in U . So the two sets must intersect, which is not possible. �
4. Orbits of the Weyl group

In our algorithm we need to loop over an orbit W0h, where h ∈ h0. In this section we briefly
describe how this is done. For simplicity we assume that the centre of g0 is zero. If this is not the
case then g0 has to be replaced by its derived subalgebra [g0,g0], and h0 by its intersection with
[g0,g0].

We let κ denote the Killing form of g. Since it is non-degenerate on h0 it gives an isomorphism
h∗

0 → h0, α �→ α̂. This yields an inner product on h∗
0 by (α,β) = κ(α̂, β̂).

Let �0 be the root system of g0 with respect to h0. Let 
0 = {α1, . . . ,αl} be a fixed basis of �0.
The corresponding set of positive roots will be denoted �+

0 .
For α ∈ �0 we set

α∨ = 2α̂

(α,α)
∈ h0.

The Weyl group W0 is generated by the simple reflections si = sαi . For h ∈ h0 we have si(h) =
h − αi(h)α∨

i .
We use a basis h1, . . . ,hl of h0, defined by αi(h j) = δi j . Then, if h = ∑

i aihi , we get s j(h) =
h − a jα

∨
j . The elements h of which we compute the W0-orbit, lie in an sl2-triple. This implies that

the coefficients of h with respect to this basis are integers. The dominant Weyl chamber C0 consists
of the elements of h0 having non-negative coefficients with respect to the basis h1, . . . ,hl .

Now let h ∈ h0 be the element of which we want to compute the orbit W0h. Since every orbit
of W0 has a unique point in C0, we may assume that h ∈ C0. Let ĥ ∈ W0h, then we define the length
of ĥ, denoted �(ĥ), as the length of a shortest w ∈ W0 with ĥ = wh. Then

�(ĥ) = ∣∣{α ∈ �+
0

∣∣ α(ĥ) < 0
}∣∣.
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This implies that �(siĥ) = �(ĥ) + 1 if and only if ai > 0, where ĥ = ∑
i aihi . We use a criterion due to

Snow [32]:

Lemma 4.1. Let h̃ = ∑
i aihi be an element of W0h of length k + 1. Then there is a unique ĥ of length k in W0h

such that

• there is a simple reflection si with si(ĥ) = h̃,
• a j � 0 for i < j � l.

Let h̃, ĥ be as in the previous lemma. Then we say that ĥ is the predecessor of h̃, and con-
versely, that h̃ is a successor of ĥ. Let ĥ = ∑

i bihi be a given element of W0h of length k. Then
it is straightforward to determine its successors. Indeed, let i be such that bi > 0, and write
si(ĥ) = ∑

j a jh j . Then this element is of length k + 1, and it is a successor of ĥ if and only if a j � 0
for i < j � l.

This means that we can define a tree: the nodes are the elements of W0h, and there is an edge
from ĥ to h̃ if and only if h̃ is a successor of ĥ. By traversing this tree, we can efficiently loop
over W0h. Every element of W0h comes at the cost of applying one reflection. Moreover, we do not
obtain the same element of W0h twice.

Remark 4.2. We finish this section with an observation that will be used later. Let h′ be an element
of C0. Let ĥ ∈ W0h be of length k and suppose that s jĥ is of length k + 1. Write ĥ = ∑

i aihi ; then, as
seen above, a j > 0. Hence

κ
(
s jĥ,h′) = κ

(
ĥ,h′) − a jκ

(
α∨

j ,h′)� κ
(
ĥ,h′).

Furthermore, equality happens if and only if α j(h′) = 0, which is equivalent to s j lying in the stabiliser
of h′ .

5. Complement of the dense orbit

According to Proposition 3.1, we will have to check whether a subspace U ⊂ V 2(h) contains a
point of the dense orbit Z(h)e. If U contains a point of Z(h)e then the intersection of U and Z(h)e
is dense in U (Proposition 3.1). So in that case, by trying random elements of U , we quickly find
a vector u ∈ U lying in Z(h)e; thus proving that the intersection is non-empty. The most difficult
part of the problem is to prove that U contains no points of Z(h)e. Here we present two possible
solutions.

Let v1, . . . , vs and x1, . . . , xn be bases of V 2(h) and z(h) respectively. Let also w1, . . . , ws (with
wi ∈ V 2(h)∗) be the dual basis. Let B denote the action matrix for the representation of z(h)

on V 2(h)∗ . To be more explicit, the entries of B are elements of V 2(h)∗ , bij = xi · w j . For v ∈ V ,
let B v denote the restriction of B to v . The entries of this new matrix are [xi · w j](v) = w j([v, xi]).
In the same spirit, we can define the restriction of B to U , BU , to be a matrix with entries in U∗ . The
rank of BU is calculated over the field C(U ) (note that U ∗ ⊂ C(U )).

Using the fact that [ξ, v] = 0 (with ξ ∈ z(h)) if and only if wi([ξ, v]) = 0 for all i, one can easily
deduce that

(i) dim z(h)v = n − rank B v for all v ∈ V 2(h);
(ii) dim Z(h)v = rank B v ;
(iii) max

u∈U
dim Z(h)u = rank BU ;

(iv) U ∩ Z(h)e �= ∅ if and only if rank BU = s. (5.1)
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Depending on s and n, computing the rank of BU over a function field may turn out to be rather
time consuming. For this reason we also consider an alternative method, based on another character-
isation of the elements in V 2(h)\Z(h)e, which comes from Theorem 2.9.

Proposition 5.1. Take v ∈ V 2(h). Then the three conditions: Z(h)v = Z̃(h)v, [z(h), v] = [z̃(h), v], and v ∈
V 2(h)\Z(h)e, are equivalent.

Proof. We are going to identify Z̃(h) with a reduced θ -group. To this end, for each i ∈ Z, set
î := i mod m, if θ has a finite order m; and î := i otherwise. Then l = ⊕

i∈Z li , where li = (gî)2i(h),
is a Z-graded Lie subalgebra of g with l1 = V 2(h) and l0 = z(h). Let L ⊂ G be a connected subgroup
with Lie L = l. Since κ defines a non-degenerate pairing between (gî)2i(h) and (g ĵ)−2i(h) with j = −i,
we get a non-degenerate L-invariant scalar product ( , ) := κ |l on l. In particular, l is a reductive sub-
algebra. Here e ∈ (g1)2(h) = l1, f ∈ (g−1)−2(h) = l−1 and therefore h ∈ [l, l]. Note that the Z-grading
on l is defined by the eigenvalues of h/2.

Recall that g is assumed to be simple. Restricting the adjoint action of G to L we get a faithful
representation ρ of L on g such that (x, y) = tr(ρ(x)ρ(y)) for x, y ∈ l and ( , ) = κ |l. Thus, we are in
the setting of Section 2.1 and can apply Theorem 2.9 to the Z-graded reductive Lie algebra l. Here
L̃0 = Z̃(h) and l1 = (g1)2(h) = V 2(h).

We have [z(h), v] = [z̃(h), v] if and only if the Z̃(h)-orbit Z̃(h)v is conical. Besides, h is a Dynkin
characteristic of all elements in Z(h)e. Therefore both equivalences follow from Theorem 2.9. �

Assume that the basis x1, . . . , xn is chosen in such a way that x1 = h and x2, . . . , xn form a ba-
sis of z̃(h). Let B̃ be a submatrix of B consisting of the last n − 1 rows (corresponding to the
Lie subalgebra z̃(h)). Let also B̃U be the restriction of B̃ to U . Since dim Z(h)v = rank B v and
dim Z̃(h)v = rank B̃ v , Proposition 5.1 gives us the following:

U ∩ Z(h)e = ∅ if and only if rank BU = rank B̃U . (5.2)

In other words, either rank Bu = rank B̃u or u is an element of Z(h)e and rank Bu = s. The equality
in Eq. (5.2) is satisfied if and only if the first row of BU lies in the linear span of the rows of B̃U . In
order to check this we use the following steps.

(1) Take a random u ∈ U , compute the rank of B̃u , say rank B̃u = r.
(2) Find an r × r non-zero minor of B̃u , without loss of generality suppose that it is given by the first

r rows and the first r columns.
(3) Check whether the first row of BU is contained in the span of the first r rows of B̃U .

If u ∈ U is generic, i.e., rank B̃u = rank B̃U , then the first r rows of B̃U span the row space of B̃U .
Hence step (3) verifies whether the first row of BU is contained in the row space of B̃U . Moreover,
this will be the case if and only if U ∩ Z(h)e is empty. (Also note that the check in the third step
can be done by computing s − r minors of size r + 1.) Even if u is not a generic element, it may still
be true that the first row of BU is contained in the span of the first r rows of B̃U , and the above
procedure will prove that U ∩ Z(h)e =∅.

In many cases it is easier to carry out this procedure than to check the inequality rank BU < s. For
example, some 32 × 38-matrices BU appeared while checking non-inclusions for a half-spin represen-
tation of D8 (line 3 in Table 1) and 2 760 681 minors would have to be computed for them. In other
cases it may be easier to deal with the whole matrix, if, for example, BU contains a zero column.

It is not obvious beforehand which choice is the best. In the implementation of our algorithm we
do the following: if s −n < s − r, then it is checked whether rank BU < s. Otherwise we check whether
the first row of BU is contained in the first r rows of B̃U , using the procedure outlined above. We do
not claim that this always gives the best choice, but some choice is better than none.

If it turns out that the first row of BU is not contained in the span of the first r rows of B̃U , then
it may still be the case that the intersection is empty (if this happens, then necessarily rank B̃U >
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Table 1
Running times (in seconds) for the algorithm applied to several automorphisms of the Lie algebra of type E8 and An . The first
column lists the order of θ , and the second column its Kac diagram. The third column has the number of nilpotent orbits. The
fourth and fifth columns display, respectively, the time needed for executing the GAP part of the program, and the time spent
in the Magma part.

|θ | Kac diagram of θ # orbits GAP Magma

1
� � � � �

�

� � �
69 1003 397

2
� � � � �

�

� � �
36 124 0

2
� � � � �

�

� � �
115 900 0.18

3
� � � � �

�

� � �
101 444 0.09

5
� � � � �

�

� � �
105 335 0.04

2 A9(0,5) 160 581 0

2 A10(0,5) 212 2703 0

2 A11(0,6) 360 29 292 0

rank B̃u). Then we will have to compute the rank of BU . However, the probability of this event can be
made arbitrarily small.

6. The main algorithm

Here we describe our algorithm for deciding whether one of the two given nilpotent G0-orbits
in g1 lies in the closure of the other.

First we consider the following problem: given a homogeneous sl2-triple (h, e, f ) and e′ ∈ V 2(h),
decide whether e′ ∈ G0e. We have a straightforward solution for that, based on Lemma 2.6. The ex-
istence of f ′ ∈ g−1 with [h, f ′] = −2 f ′ and [e′, f ′] = h is equivalent to a system of linear equations.
We solve this system; if it has a solution then e′ lies in G0e, otherwise it does not.

Throughout we fix a basis of the root system of g0 with respect to h0. Then the Weyl group W0
is generated by the reflections corresponding to the elements of this basis. Furthermore, this choice
also fixes a dominant Weyl chamber C0 ∈ h0. As before we let κ denote the Killing form of g.

Algorithm 1. Input: two homogeneous sl2-triples, (h′, e′, f ′), (h, e, f ), such that h′,h ∈ C0.
Output: true if O′ = G0e′ is contained in the closure of O = G0e, false otherwise.

(1) If κ(h′,h) < κ(h′,h′) then return false. Else go to the next step.
(2) For all elements wh ∈ W0h do the following:

(a) If κ(h′, wh)� κ(h′,h′) then:
(i) Select a random u ∈ U = V 2(h′) ∩ V�2(wh).

(ii) If u ∈O′ then return true. Otherwise go to the next step.
(iii) Set n = Ng0 (U ). If [n, u] �= U then decide whether U ∩ Z(h)e is empty using the methods

of Section 5. If the intersection is not empty then return true.
(3) If in the previous loop true was never returned, then return false.
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Proposition 6.1. The previous algorithm terminates correctly.

Proof. It is obvious that the algorithm terminates, we must show that the output is correct. We
claim that the algorithm checks whether there is an element wh ∈ W0h such that U (wh) = V 2(h′) ∩
V�2(wh) contains a point of O′ . Then by Proposition 3.1 the output is correct.

First of all we note that since h′,h ∈ C0 we have that the maximal value of κ(h′, wh), for wh ∈ W h,
is κ(h′,h) (see Remark 4.2). Therefore, if κ(h′,h) < κ(h′,h′) then no space U (wh) contains a point
of O′ (Proposition 3.2). So in this case we are immediately done.

Otherwise we inspect every wh ∈ W0h. If κ(h′, wh) < κ(h′,h′) then U (wh) contains no points
of O′ by Proposition 3.2. So then we can discard it. Otherwise we select a random u ∈ U (wh). If
u ∈ O′ , then we are done. If not, and [n, u] = U (wh), then U (wh) has no points of O′ by Propo-
sition 3.4. Finally U (wh) contains an element with a minimal dimensional stabiliser if and only if
U (wh) has a point of O′ by Proposition 3.3. �
Remark 6.2. Note that if U (wh) contains a point of O′ , then the set of such points is open and dense
in U (wh), by Proposition 3.1. Hence in that case the random choice has a high probability of finding
an element u ∈O′ .

Remark 6.3. Now we make some observations that help to execute the algorithm more efficiently.

• Of course, we apply the algorithm only if dimO′ < dimO, as otherwise there is no inclusion.
• Inclusion also implies that dimgk,e′ � dimgk,e for all k; so if that condition is not fulfilled, we

also do not apply the algorithm.
• When looping over the orbit W0h we use the tree structure described in the previous section.

When doing this, several shortcuts can be made. First of all if κ(h′, wh) < κ(h′,h′) then the
entire subtree below wh can be discarded, by Remark 4.2. Second, if V 2(h′) ∩ V�2(wh) contains
no points of O′ , and the successor of wh is si wh, where si lies in the stabiliser of h′ , then also
V 2(h′)∩ V�2(si wh) contains no points of O′ . Hence in that case we can immediately jump to the
next element of the orbit.

• We collect the subspaces U (wh) = V 2(h′) ∩ V�2(wh) that appear during the execution of the
algorithm. If a certain such subspace is contained in one that was treated before, then we already
know that it contains no points of O′ . So in that case we can immediately go to the next round.
All calculations are done in a basis v1, . . . , vs of V 2(h′) consisting of h0-eigenvectors. Each sub-
space U (wh) is a linear span of vi such that (wh) · vi = ai vi with ai � 2. Therefore storing and
verifying inclusions among the U (wh) is a binary problem.

We have implemented this algorithm in the language of the computer algebra system GAP4 [17],
on top of the SLA package [19], which has implementations of algorithms to list the nilpotent orbits
of a θ -group. One of the main problems for the practical computation lies in the methods of Section 5,
where minors of a matrix with entries in a function field have to be computed. For these computa-
tions we use the computer algebra system Magma [5]. We have chosen this system, because it has
very efficient implementations of algorithms to compute the determinant of a matrix with entries in
a function field.

In Table 1 we collect some experimental data with respect to the implementation of our algorithm.
All computations have been performed on a 3.16 GHz machine.

In Table 1, we let An(0,  n
2 �) denote the Kac diagram of an inner involution (automorphism of

order 2) of sln+1, having all labels equal to 0, except for two labels which are 1, and which are
located as far apart in the diagram as possible.

From the table we see that in the examples concerning E8 the GAP part essentially has no
problems. On some occasions it is not necessary to execute the Magma part, as with the second
automorphism in the table. On other occasions this part has a trivial running time, as with the last
three examples involving E8. However, it also happens that a fair amount of time is spent in the
Magma part, as with the first example. In the examples involving An (n = 9,10,11) the number of
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orbits increases rapidly, as well as the dimension of the homogeneous components of the grading. For
these examples we see a sharp increase in the running time.

Relying on this evidence, one can conclude that the program will work for all automorphisms of
the exceptional Lie algebras. It is difficult to say until what rank of g it can go in the classical case,
but here everything can be computed by hand.

7. Further remarks on groups and orbits

Here we collect some theoretical observations that could have been used in the algorithm, but
turned out not to be of much practical value.

Let ( f ,h, e) be a homogeneous sl2-triple as before, we also keep all the previous notation, in-
cluding V 2(h). First we consider the actions of Z(h) and Z̃(h) on V 2(h) more closely. As was already
mentioned, Z(h) acts on V 2(h) with a dense open orbit, Z(h)e.

7.1. The semi-invariant P

The stabiliser z(h)e , being the centraliser of an sl2-subalgebra generated by e, h, and f , is reductive
and therefore the orbit Z(h)e is an affine space. This implies that the complement V 2(h)\Z(h)e is a
divisor and is a zero-set of a single semi-invariant polynomial, say P . To check whether a subspace
U = U (wh′) = V 2(h) ∩ V�2(wh′) intersects the dense orbit, one just has to look on the restriction
of P to U . In this terms, O lies in the closure of O′ if and only if there is U (wh′) such that P is
non-zero on it. This could be a replacement for both: choosing a random element in U and generic
rank considerations.

One can try to compute a polynomial P by hand. This may involve typing errors and time con-
suming calculations. It is also possible to get P from the matrix B with entries bij = xi · w j , where
{xi} is a basis of z(h) and {w j} is a basis of V 2(h)∗ (this matrix was already considered in Section 5).
The polynomial P is the greatest common divisor of the largest, dim V 2(h) × dim V 2(h), minors of B .
In some cases the resulting formula is rather bulky and not easy to deal with, in some other Magma

was unable to finish the calculation. It turns out that Magma checks much more easily that the re-
striction BU of B to U does not have the maximal rank, dim V 2(h), than it computes the greatest
common divisor of minors. Thus we gave up the idea of using P .

7.2. Double cosets of Weyl groups

Suppose that we have two characteristics h and h′ lying in the dominant chamber of W0.
Parametrisation of W0h involves a certain numbering of simple roots α1, . . . ,αl , see Section 4. This
numbering can be arbitrary. The stabiliser W0,h′ is a Weyl subgroup generated by si with αi(h′) = 0.
Assume that rank W0,h′ = r and the simple roots orthogonal to h′ have numbers from l − r + 1
to l.

Lemma 7.1. Keep the above notation and enumeration of simple roots. Let T be a tree parametrising the or-
bit W0h, constructed according to the principles of Lemma 4.1. Then the nodes h and siĥ of T with i � l − r are
in one-to-one correspondence with the double cosets W0,h′ \W0/W0,h.

Proof. First note that h or siĥ with i � l − r lies in the dominant chamber of W0,h′ . Secondly, an ele-

ment siĥ with l − r < i does not bring a new double coset, because here si lies in W0,h′ . �
This, of course, is not a very effective way for listing the double cosets as the whole orbit W0h

has to be constructed. However, if some time consuming calculation has to be performed for repre-
sentatives of double cosets, such a treatment may be useful.

In our situation, collecting subspaces U (wh) turned out to be much more effective than refining
the Weyl-group tree. The explanation is that one and the same U = U (wh) arises for many different
elements wh ∈ W0h.
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7.3. Other algebro-geometric methods

Our algorithm is designed for θ -groups and works quite well. There are known some other, more
general, approaches, which unfortunately have a rather small range of application.

To begin with, consider a linear action a : Q × V → V of an affine algebraic group Q on a vec-
tor space V . For x ∈ V , the map g �→ gx from Q to V is regular, i.e., given by polynomials. Let
I(Q x) � C[V ] be the ideal of Q x, i.e., a set of all polynomials vanishing on Q x. In [7], algorithmic
methods are described for computing generators of the vanishing ideal of the image of a regu-
lar map. In particular, this can be applied to I(Q x). Here I(Q x) equals (a∗)−1(I(Q × {x})), where
I(Q × {x}) �C[GL(V ) × {x}] is the defining ideal of the product of the image of Q in GL(V ) and the
point x. Once the generators of I(Q x) are known, it is straightforward to decide whether a point (and
hence the orbit of that point) lies in Q x.

In order to use the algorithms for getting generators of I(Q x), we need as input the polynomials
defining Q as a subgroup of GL(V ). In our setting, V = g1 and Q is the image in GL(V ) of G0,
acting on V . In order to get equations for Q , methods from [18] can be used. However, both the
algorithm for obtaining the polynomials defining Q and the one for computing I(Q x) heavily rely on
Gröbner basis computations. These are extremely time consuming. For this reason this method is only
applicable to very small examples (e.g., when the semisimple part of g0 is of type A1, and g1 is of
dimension 5).

Now let G ⊂ GL[V ] be reductive. Then in the above considerations G can be replaced by its big
open cell, B w B , where w ∈ W is the longest element in the Weyl group W of G and B ⊂ G is a
Borel subgroup. In [31], V.L. Popov suggested an algorithm, based on this observation, for deciding
whether G y lies in Gx. That algorithm uses a system of linear equations in n

(n+2d−3
n−1

)
variables, where

n = dim V and d is the degree of G as a subvariety of L(V ). For an irreducible five-dimensional
representation of SL2(C), the number of variables equals 56 794 400. This makes it difficult, if not
impossible, to use the algorithm for practical computations.

8. Examples

In this section we show the output of our programs on several examples. The θ -groups of our
examples have all previously been studied in the literature, for various reasons.

Here we describe the examples; the next section contains the Hasse diagrams that we computed
with the algorithm, as well as tables giving the characteristics of the nilpotent orbits.

8.1. Symmetric pairs

As was mentioned in the Introduction, the order two case, or, in other words, the symmetric case,
was studied by Djoković, because of its relationship with simple real Lie algebras. We have checked
all symmetric pairs arising from the exceptional Lie algebras. The result is that Djoković diagrams
are basically correct, if one takes into account the necessary alteration that he found himself [13,15].
Our calculations confirm these corrections. Apart from this, there are two inclusions missing for one
automorphism in type E8. For the involution in question, g0 is of type D8 and g1 is a half-spin
representation, the corresponding Kac diagram is the third one in Table 1.

According to our calculations, in Table 2 of [14], 59 → 53, and 95 → 92 should be added (notation
as in the mentioned paper: 59 → 53 means that orbit number 53 is contained in the closure of
orbit number 59). This then results in several other changes. For example, [14, Table 2] states “99 →
92,94,95” and 92 has to be removed from here, because the orbit number 92 does not give rise to
an irreducible component of the boundary ∂O99.

Neither (59,53) nor (95,92) appears in the list [14, Table 5] of the critical pairs, i.e., pairs (a,b)

such that the non-inclusion a � b is (or has to be) proved. In both cases, our program immediately
found that the space U = V 2(h′) ∩ V�2(h) contains a point of O′ .1

1 This can be even verified by hand, would someone wish to do so.
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8.2. Trivectors of a nine-dimensional space

In [39], the orbits of SL9(C) acting on
∧3

(C9) were obtained. This is known as the classification of
the trivectors of a nine-dimensional space. The orbits were obtained by realising this representation
as a θ -representation. Here θ is an automorphism of order 3 of the Lie algebra of type E8, with Kac
diagram

� � � � �

�

� � �

We have that g0 ∼= sl9(C) and g1 ∼= ∧3
(C9).

In Table 4 we list the characteristics of the (non-zero) nilpotent orbits. A characteristic h is given
by the values of αi(h), where {α1, . . . ,α8} is a basis of the root system of g0. Moreover, all the
characteristics h lie in the dominant Weyl chamber with respect to this basis.

Figs. 1, 2 contain, respectively, the top half and the bottom half of the Hasse diagram.

8.3. The classification of metabelian Lie algebras

A finite-dimensional Lie algebra L is said to be metabelian (or two-step nilpotent), if [L, [L, L]] = 0.
In [16], Galitski and Timashev described the G0-orbits for the two particular θ -representations in or-
der to obtain the classification of the metabelian Lie algebras of dimensions up to 9 (over algebraically
closed fields of characteristic 0). With our algorithm we have computed the closure diagram of the
nilpotent orbits in both these cases.

For the first θ -group, θ is an automorphism of order 5 of the Lie algebra of type E8, with Kac
diagram

� � � � �

�

� � �

Characteristics of the nilpotent orbits are given in Table 5. The closure diagram is displayed in
Figs. 3, 4.

For the second θ -group, θ is the automorphism of order 3 of the Lie algebra of type E7, with Kac
diagram

� � � � �

�

� �

Characteristics of the nilpotent orbits are given in Table 6. The closure diagram is displayed in
Figs. 5, 6.

As was already mentioned, in [16] the orbits of these particular θ -groups are used for a classifica-
tion of metabelian Lie algebras. Every orbit corresponds to one such Lie algebra (up to isomorphism).
Every metabelian Lie algebra L has a signature, that is a pair (m,n) where m = dim L/[L, L] and
n = dim[L, L]. Let Z � L be a maximal abelian ideal such that Z ∩ [L, L] = 0. Then L ∼= L/Z ⊕ Z . In the
closure diagrams we indicate the signature of L/Z as it was computed in [16]. Mostly this is done
by writing the label of the node in a particular font, according to Tables 2 (for Figs. 3, 4) and 3 (for
Figs. 5, 6). For the orbits corresponding to signatures not present in these tables we have put the
signature in the diagram, next to the node.
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Table 2
Fonts for the Hasse diagram in Figs. 3, 4.

Font Example Signature

roman 10 (5,5)

bold face 14 (5,4)

italics (5,3)

underline 82 (4,4)

typewriter 92 (4,3)

Table 3
Fonts for the Hasse diagram in Figs. 5, 6.

Font Example Signature

roman 10 (6,3)

bold face 35 (6,2)

italics (5,3)

typewriter 68 (4,3)

overline 64 (4,2)

Taking the closure of a given nilpotent orbit corresponds to the degeneration of the encoded two-
step nilpotent Lie algebra. Let us explain this. Let W be a vector space (over C). Then a Lie bracket
on W can be seen as an element of Hom(

∧2 W , W ). The group GL(W ) acts on Hom(
∧2 W , W ),

and the orbits of this action are in one-to-one correspondence with the isomorphism classes of Lie
algebra structures on W . Let λ,μ ∈ Hom(

∧2 W , W ); if μ is contained in the closure of the GL(W )-
orbit of λ, then μ is said to be a degeneration of λ. We refer to [21] for an introduction into this
concept.

In relation to the variety of metabelian Lie algebras one considers two vector spaces U and V .
A metabelian Lie bracket on U ⊕ V is viewed as an element of Hom(

∧2 U , V ). Let L be the Lie algebra
defined by such an element; then [L, L] ⊂ V . The group GL(U ) × GL(V ) acts on Hom(

∧2 U , V ). Two
metabelian Lie algebra structures on U ⊕ V are isomorphic if and only if the corresponding elements
of Hom(

∧2 U , V ) lie in the same GL(U ) × GL(V )-orbit.
Write m = dim U , n = dim V , and let W be a vector space of dimension m + n. If λ ∈

Hom(
∧2 W , W ) is a metabelian Lie bracket, defining a Lie algebra L on W of a signature (m,n),

then by setting V = [L, L] and taking U to be a complement of V in W , we get an element of
Hom(

∧2 U , V ). This construction preserves isomorphism, i.e., a GL(W )-orbit of metabelian Lie brack-
ets in Hom(

∧2 W , W ) is mapped to a GL(U ) × GL(V )-orbit in Hom(
∧2 U , V ). Thus metabelian Lie

algebras of signature (m,n) are classified by the GL(U ) × GL(V )-orbits in Hom(
∧2 U , V ). Moreover,

degenerations of these Lie algebras are given by the orbits closures.
Two instances of θ -groups considered in [16] correspond to the signatures (5,5) and (6,3).

Strictly speaking, the group G0 is semisimple in both cases. Therefore, if 0 /∈ G0x with x ∈ g1, then
the one-parameter family of G0-orbits G0(ax) with a ∈ C× gives only one isomorphism class of
metabelian Lie algebras. For the nilpotent G0-orbits, there is no difference between G0x and (GL(U )×
GL(V ))x.

Note that the quotients L/Z with signatures being smaller than or equal to (5,3) appear in both
θ -groups. Therefore, the lower parts of both Hasse diagrams (Figs. 3, 4; 5, 6) are the same.

The affine variety of metabelian Lie algebras structures with signature (5,5) on a ten-dimensional
vector space W is irreducible, because of the equivalence with θ -group orbits. According to [16], it
has a one-parameter family of the maximal GL(W )-orbits. The same holds for the second case, where
signatures are (6,3) and dim W = 9, only there is a two-parameter family of the maximal orbits [16].
Since isomorphism classes of metabelian Lie algebras with smaller signatures are parametrised by
nilpotent orbits, there are only finitely many of them. In addition, our diagrams show that for each
signature (m,n), where either m � 5, n � 5 and (m,n) �= (5,5), or m � 6, n � 3 and (m,n) �= (6,3), the
affine variety of metabelian Lie algebra structures with signature (m,n) on W with dim W = m + n
is irreducible. For example, all metabelian Lie algebras with signature (5,4) are degenerations of L/Z
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(including L/Z itself), where L corresponds to the orbit number 14 of the first θ -group (in E8), up to
isomorphism, see Fig. 3. The metabelian Lie algebras with signature (5,3) are degenerations of L/Z ,
where L is encoded by the orbit number 62 of the first θ -group as well as by the orbit number 27 of
the second θ -group, see Figs. 3, 5.

Appendix A. Diagrams and tables

Table 4
Characteristics of the nilpotent orbits in the case of 3-vectors.

No. Characteristic No. Characteristic

1 6 6 6 6 6 6 6 12 2 6 6 6 0 6 6 6 6
3 6 6 6 0 6 0 6 6 4 6 0 6 0 6 6 0 6
5 0 6 0 6 0 6 0 6 6 6 1 5 1 5 6 1 5
7 6 0 6 0 6 0 0 6 8 0 6 0 0 6 0 6 0
9 0 0 6 0 0 6 0 6 10 6 1 5 1 5 0 1 5

11 1 5 1 1 4 1 5 1 12 2 2 2 2 2 4 2 2
13 0 1 5 0 1 5 1 5 14 2 2 2 2 2 2 2 2
15 1 1 4 1 1 5 1 4 16 6 0 0 0 6 0 0 6
17 3 0 3 3 0 6 0 3 18 0 6 0 0 0 6 0 0
19 2 2 0 2 2 2 2 2 20 6 0 1 0 5 0 1 5
21 0 3 0 3 0 3 3 0 22 1 4 0 1 1 4 1 1
23 1 4 1 1 1 3 1 1 24 2 0 4 2 0 6 0 4
25 0 0 6 0 0 0 0 6 26 6 1 0 1 4 1 0 5
27 3 0 3 0 3 0 3 0 28 0 4 0 2 0 4 2 0
29 1 1 2 1 1 1 1 4 30 0 1 5 0 0 1 0 5
31 2 2 2 2 0 2 0 2 32 1 0 5 0 1 0 1 4
33 2 0 2 2 0 2 0 4 34 0 0 0 0 6 0 0 0
35 1 1 4 1 0 1 0 4 36 2 0 2 0 2 0 2 2
37 0 0 1 0 5 0 0 1 38 2 1 1 1 1 1 1 2
39 0 1 0 1 4 0 1 0 40 1 0 1 0 4 0 1 1
41 3 0 3 3 0 0 0 3 42 3 0 0 0 3 0 3 0
43 1 1 0 1 3 1 0 1 44 0 3 0 0 0 3 0 3
45 1 0 1 1 2 1 1 1 46 3 0 1 0 2 1 2 0
47 2 0 4 2 0 0 0 4 48 1 1 1 1 1 1 1 1
49 2 0 0 0 4 0 2 0 50 0 2 0 0 2 2 0 2
51 1 1 0 1 1 2 1 1 52 2 0 1 0 3 1 1 0
53 1 1 1 1 0 1 1 2 54 0 3 0 0 3 0 0 0
55 0 0 0 3 0 3 0 0 56 2 0 2 0 0 2 0 2
57 0 0 0 0 0 0 0 6 58 0 4 0 0 2 0 0 0
59 0 0 3 0 0 0 3 0 60 1 1 1 1 1 0 1 1
61 0 1 0 2 0 3 0 1 62 0 0 0 0 1 0 0 5
63 1 1 1 0 1 0 2 1 64 0 1 2 0 1 0 2 0
65 1 2 1 1 0 0 1 1 66 0 2 0 0 2 0 0 2
67 1 0 1 1 0 3 1 0 68 0 0 1 0 0 0 1 4
69 1 1 0 1 1 0 1 1 70 0 1 0 0 1 0 0 4
71 0 2 2 0 0 0 2 0 72 2 0 1 0 1 1 0 1
73 1 0 1 1 0 1 1 0 74 1 0 0 1 0 0 1 3
75 0 3 0 0 0 0 0 3 76 1 2 0 0 0 1 0 2
77 0 0 2 0 0 4 0 0 78 0 1 0 0 1 0 1 2
79 0 2 0 0 0 0 0 4 80 1 1 0 1 0 1 0 1
81 0 0 2 0 0 2 0 0 82 1 1 0 0 0 1 0 3
83 0 0 0 3 0 0 0 0 84 1 0 0 1 0 1 0 2
85 0 1 0 2 0 0 0 1 86 2 1 0 1 0 0 0 2
87 0 0 0 2 0 0 0 2 88 0 1 0 1 0 0 1 1
89 0 0 0 0 0 0 3 0 90 2 0 0 1 0 1 0 0
91 2 0 0 1 0 0 0 3 92 1 0 1 0 0 1 0 1
93 0 0 0 1 0 0 2 0 94 0 1 0 0 0 1 1 0
95 1 0 0 1 0 0 1 0 96 0 0 0 0 0 2 0 0
97 0 0 1 0 0 1 0 0 98 3 0 0 0 0 0 0 0
99 2 0 0 0 0 0 1 0 100 1 0 0 0 1 0 0 0

101 0 0 1 0 0 0 0 0
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Table 5
Characteristics of the nilpotent orbits.

No. Characteristic No. Characteristic

1 10 10 10 10 10 10 10 20 2 10 10 0 10 10 10 10 10
3 10 0 10 10 10 0 10 10 4 0 10 0 10 10 10 0 10
5 10 0 10 0 0 10 0 10 6 1 9 1 9 10 10 1 9
7 10 0 3 7 7 3 7 3 8 3 7 3 7 3 4 3 3
9 0 10 0 0 10 0 0 10 10 0 0 10 0 0 0 10 0

11 1 9 0 1 10 0 1 9 12 2 0 8 2 2 2 6 2
13 0 3 7 0 3 0 7 3 14 0 0 0 0 0 0 0 10
15 1 8 1 1 10 1 1 8 16 3 3 4 3 3 3 1 3
17 5 0 5 0 0 5 5 0 18 1 2 7 1 3 1 6 3
19 0 5 0 5 0 5 0 5 20 0 0 1 0 0 0 1 9
21 2 2 2 4 2 4 2 2 22 6 0 4 0 0 6 4 0
23 3 3 1 3 3 1 2 4 24 0 3 0 7 4 3 0 3
25 1 0 1 0 0 1 1 8 26 0 1 0 1 0 1 0 9
27 0 8 2 0 10 2 0 8 28 4 2 2 2 4 0 2 4
29 0 8 2 0 0 0 2 0 30 2 2 2 2 2 2 2 2
31 1 2 1 6 4 3 1 2 32 1 1 0 1 1 0 1 8
33 1 0 1 1 1 1 1 7 34 3 2 0 5 3 5 0 2
35 3 2 0 5 2 0 3 0 36 1 1 1 1 1 1 1 6
37 2 0 0 0 0 2 0 8 38 0 2 0 0 2 0 2 6
39 0 0 5 0 0 5 0 0 40 3 1 2 1 3 1 2 1
41 2 2 0 6 4 4 0 2 42 1 2 1 3 2 1 1 2
43 2 0 1 0 1 1 0 8 44 3 3 0 4 1 0 3 0
45 0 5 0 0 0 0 0 5 46 0 0 0 3 3 0 0 7
47 1 1 1 1 1 1 2 4 48 1 1 0 1 2 1 1 6
49 0 2 2 2 2 2 0 2 50 0 4 0 0 0 0 0 6
51 2 0 2 0 2 0 2 4 52 0 0 3 0 0 3 0 4
53 1 1 1 2 1 1 1 4 54 1 3 1 1 0 1 1 3
55 0 1 0 2 3 0 1 6 56 0 1 2 1 1 2 0 4
57 1 2 1 1 0 1 1 4 58 0 3 2 0 0 2 0 3
59 1 1 1 1 1 2 1 3 60 1 0 1 1 3 1 0 6
61 0 2 0 2 2 0 2 2 62 0 0 0 0 0 0 5 0
63 2 1 1 2 1 1 1 1 64 0 2 2 0 0 2 0 4
65 1 1 1 1 2 1 1 2 66 2 0 1 2 1 1 1 2
67 0 0 1 0 0 1 4 0 68 0 3 0 0 0 0 3 1
69 5 0 0 0 5 0 0 0 70 0 1 0 1 1 0 4 0
71 1 2 0 1 0 1 2 1 72 0 0 0 5 0 0 0 0
73 2 1 0 1 3 0 1 2 74 1 0 1 0 1 1 3 0
75 3 0 2 0 1 0 2 0 76 1 1 1 1 1 1 1 1
77 0 2 0 0 0 0 4 0 78 0 1 0 4 0 0 0 1
79 0 0 2 0 4 0 0 6 80 2 1 1 0 1 0 2 1
81 1 1 0 1 0 1 3 0 82 0 0 0 4 0 0 0 2
83 1 0 1 1 1 1 2 0 84 0 1 2 0 2 0 1 1
85 0 1 0 3 0 0 1 1 86 2 0 0 0 2 0 3 0
87 2 0 1 1 1 1 0 1 88 0 0 2 0 2 0 2 0
89 0 2 0 0 0 2 1 0 90 2 0 1 0 1 0 3 0
91 1 0 1 2 0 1 0 1 92 0 0 0 3 0 0 2 0
93 1 1 0 1 1 1 1 0 94 0 1 0 2 0 1 1 0
95 0 1 0 0 0 3 0 0 96 1 0 1 1 1 0 1 0
97 1 0 0 1 1 2 0 0 98 3 0 0 0 0 0 0 1
99 0 0 0 2 0 2 0 0 100 2 0 0 1 0 0 1 0

101 0 0 2 0 0 0 1 0 102 0 1 0 1 1 1 0 0
103 1 0 1 0 0 1 0 0 104 0 0 0 1 2 0 0 0
105 0 1 0 0 1 0 0 0
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Table 6
Characteristics of the nilpotent orbits.

No. Characteristic No. Characteristic

1 6 6 6 6 6 6 12 2 6 6 6 0 6 6 6
3 0 6 0 6 6 6 6 4 0 6 0 6 0 6 12
5 2 4 2 6 4 6 6 6 6 0 6 0 6 0 6
7 6 1 5 1 5 1 5 8 0 6 0 6 0 0 6
9 0 6 0 0 6 6 0 10 4 0 2 4 2 6 6

11 0 0 6 0 0 0 6 12 1 5 0 1 5 6 1
13 1 5 1 1 4 5 1 14 2 2 2 2 4 4 2
15 2 0 4 0 2 0 6 16 2 2 2 2 2 2 2
17 0 1 5 0 1 1 5 18 2 4 2 0 4 6 0
19 0 6 0 0 0 6 6 20 2 0 2 2 2 2 4
21 1 1 4 1 1 1 4 22 2 1 3 1 1 1 5
23 0 0 0 6 0 6 0 24 0 3 0 3 0 0 6
25 2 2 0 2 2 2 2 26 1 0 2 3 1 3 3
27 0 0 0 0 6 0 0 28 3 0 3 3 0 0 3
29 0 6 0 0 0 0 0 30 0 1 0 5 0 6 1
31 1 2 1 0 2 3 3 32 1 2 0 3 1 1 5
33 2 0 4 2 0 0 4 34 1 4 0 1 1 1 1
35 0 0 1 0 5 0 1 36 0 3 0 3 0 3 0
37 2 0 2 0 2 2 2 38 0 4 0 2 0 2 0
39 0 1 0 1 4 1 0 40 2 2 0 0 2 4 2
41 0 0 0 0 0 0 6 42 0 2 0 0 4 0 0
43 2 1 1 1 1 1 2 44 0 2 0 4 0 2 4
45 1 0 1 0 4 1 1 46 0 2 0 2 0 2 2
47 1 1 0 1 3 0 1 48 0 0 0 1 0 1 5
49 1 0 1 1 2 1 1 50 3 0 0 0 3 3 0
51 0 1 0 1 0 1 4 52 2 0 0 0 4 2 0
53 1 0 2 0 1 3 0 54 0 3 0 0 0 0 3
55 3 0 1 0 2 2 0 56 0 2 0 0 2 0 2
57 2 0 1 0 3 1 0 58 0 2 0 0 0 0 4
59 0 0 2 0 2 2 0 60 0 1 0 0 2 0 3
61 0 1 0 0 0 2 4 62 1 1 0 1 1 1 1
63 0 1 0 1 0 2 2 64 0 0 0 3 0 0 0
65 1 0 0 1 1 1 2 66 0 1 0 2 0 0 1
67 1 0 1 1 0 1 0 68 0 0 0 2 0 0 2
69 0 1 0 1 0 1 1 70 2 0 0 1 0 0 0
71 0 0 2 0 0 0 0 72 1 0 1 0 0 0 1
73 0 0 0 0 0 3 0 74 0 0 0 1 0 2 0
75 0 1 0 0 0 1 0
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Fig. 1. Hasse diagram of nilpotent orbits in the case of trivectors; top half.
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Fig. 2. Hasse diagram of nilpotent orbits in the case of trivectors; bottom half.



58 W.A. de Graaf et al. / Journal of Algebra 371 (2012) 38–62
Fig. 3. Hasse diagram of nilpotent orbits; top.
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Fig. 4. Hasse diagram of nilpotent orbits; bottom.
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Fig. 5. Hasse diagram of nilpotent orbits, E7, top.
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Fig. 6. Hasse diagram of nilpotent orbits, E7, bottom.
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[25] G. Kempken, Eine Darstellung des Köchers ÃK , Dissertation, Rheinischen Friedrich-Wilhelms-Universität, Bonn, 1981, Bon-

ner Math. Schriften 137 (1982).
[26] P. Littelmann, An effective method to classify nilpotent orbits, in: Algorithms in Algebraic Geometry and Applications,

Santander, 1994, in: Progr. Math., vol. 143, Birkhäuser, Basel, 1996, pp. 255–269.
[27] Kenzo Mizuno, The conjugate classes of unipotent elements of the Chevalley groups E7 and E8, Tokyo J. Math. 3 (2) (1980)

391–461.
[28] T. Ohta, Orbits, rings of invariants and Weyl groups for classical θ -groups, Tohoku Math. J. 62 (2010) 527–558.
[29] D.D. Pervushin, Invariants and orbits of the standard (SL4(C) × SL4(C) × SL2(C))-module, Izv. Ross. Akad. Nauk Ser. Mat.

64 (5) (2000) 133–146; English translation: Izv. Math. 64 (5) (2000) 1003–1015.
[30] D.D. Pervushin, On the closures of the nilpotent orbits of fourth-order matrix pencils, Izv. Ross. Akad. Nauk Ser. Mat. 66 (5)

(2002) 183–192; English translation: Izv. Math. 66 (5) (2002) 1047–1055.
[31] V.L. Popov, Two orbits: When is one in the closure of the other?, in: Mnogomernaya Algebraicheskaya Geometriya, Tr. Mat.

Inst. Steklova 264 (2009) 152–164; English translation: Proc. Steklov Inst. Math. 264 (1) (2009) 146–158.
[32] D.M. Snow, Weyl group orbits, ACM Trans. Math. Software 16 (1) (1990) 94–108.
[33] Nicolas Spaltenstein, Classes unipotentes et sous-groupes de Borel, Lecture Notes in Math., vol. 946, Springer-Verlag, Berlin,

1982.
[34] M. Vergne, Cohomologie des algèbres de Lie nilpotentes. Application à l’étude de la variété des algèbres de Lie nilpotentes,

Bull. Soc. Math. France 98 (1970) 81–116.
[35] È.B. Vinberg, The Weyl group of a graded Lie algebra, Izv. Akad. Nauk SSSR Ser. Mat. 40 (3) (1976) 488–526; English

translation: Math. USSR-Izv. 10 (1976) 463–495.
[36] È.B. Vinberg, Classification of homogeneous nilpotent elements of a semisimple graded Lie algebra, Trudy Sem. Vektor.

Tenzor. Anal. 19 (1979) 155–177; English translation: Selecta Math. Sov. 6 (1987) 15–35.
[37] È.B. Vinberg, V.V. Gorbatsevich, A.L. Onishchik, Lie Groups and Lie Algebras, III, Sovrem. Probl. Mat. Fund. Naprav., vol. 41,

VINITI, Moskva, 1990; English translation: Encyclopaedia Math. Sci., vol. 41, Springer, Berlin, 1994.
[38] È.B. Vinberg, V.L. Popov, Invariant theory, in: Algebraic Geometry, IV, in: Itogi Nauki i Tekhniki, Akad. Nauk SSSR Vsesoyuz.

Inst. Nauchn. i Tekhn. Inform., Moscow, 1989, pp. 137–314; English translation: Encyclopaedia Math. Sci., vol. 55, Springer,
Berlin, 1994.

[39] È.B. Vinberg, A.G. Èlašvili, A classification of the three-vectors of nine-dimensional space, Trudy Sem. Vektor. Tenzor. Anal.
18 (1978) 197–233; English translation: Selecta Math. Sov. 7 (1988) 63–98.


	An effective method to compute closure ordering for nilpotent orbits of θ-representations
	1 Introduction
	2 Preliminaries
	2.1 Reduced θ-groups

	3 Criteria for inclusion
	4 Orbits of the Weyl group
	5 Complement of the dense orbit
	6 The main algorithm
	7 Further remarks on groups and orbits
	7.1 The semi-invariant P
	7.2 Double cosets of Weyl groups
	7.3 Other algebro-geometric methods

	8 Examples
	8.1 Symmetric pairs
	8.2 Trivectors of a nine-dimensional space
	8.3 The classiﬁcation of metabelian Lie algebras

	Appendix A Diagrams and tables
	References


