
Designing Sociotechnical Systems with Protos

Fatma Başak Aydemir, Paolo Giorgini, John Mylopoulos

University of Trento, Italy
email: {aydemir, pg, jm}@disi.unitn.it

Abstract. Traditional requirements engineering approaches give little
emphasis on the engineering of interactions. Increasingly, the software
systems of today are developed independently and integrated with each
other, as in sociotechnical systems, where several technical systems sup-
port the interaction between the social systems. We propose the Protos
methodology as a set of refinement rules which, once applied to the stake-
holder requirements, produce multiple specifications as a solution to the
requirements problem of sociotechnical systems. We use the London Am-
bulance System as an example domain.

1 Introduction and Objectives

A sociotechnical system (STS) is a complex interplay of humans, organizations,
and technical systems [1]. Examples of STSs include e-tourism domain (an in-
terplay of travelers, hotels, travel agencies, web sites, and other information
systems), disaster management systems (police and fire departments, technical
infrastructure, civilians, and so on), and health care systems (hospitals, labora-
tories, doctors, patients, medical equipment, information systems, and others).
STSs are designed to satisfy requirements of multiple stakeholders and the sat-
isfaction of the requirements depends not only on the independent performance
of the individual subsystems but also on the success of the interaction among
the subsystems.

i* [2] models capture actors and their respective requirements and are proven
to be useful for modeling requirements of STSs. However, i* dependencies do not
capture the reciprocal nature of social interactions within STSs. Agent–oriented
software development framework Tropos [3] fails to model the mutual interests
of agents in social interactions for it is based on i* [4].

We propose Protos that is inspired by i* and Tropos for designing sociotech-
nical systems. Protos aims to provide a requirements modeling language and a
set of reduction rules to STS stakeholders so that the stakeholders produce an
interaction protocol by applying reduction rules to their requirements as a spec-
ification for their requirements problem. A protocol consists of commitments,
which are contractual relationships from one subsystems to another. Protos re-
duction rules refine the STS design problem at hand until the design is finalized
by the stakeholders. The contributions of this research are as follows:

� We provide a requirements modeling language that also captures the essence
of interactions in STSs.



� We specify interactions within an STS as a protocol that consists of com-
mitments.

� We adapt the classical idea of refinement to provide a set of design reduction
rules that systematically produces an interaction protocol and individual
subsystem specifications of an STS.

This paper is organized as follows. Section 2 presents the research baseline.
Section 3 includes the scientific contributions and Section 4 provides the conclu-
sions, ongoing and the future work.

2 Research Baseline

Requirements and specifications. According to Jureta et al. [5], the require-
ments problem takes as input a set of requirements R and produces a specifica-
tion S and a set of domain assumptions A such that (a) A,S � R, i.e., if the
domain assumptions and the specification hold, then requirements are fulfilled;
(b) A and S are consistent, and so is R. This formulation is a variant of the
initial formulation of the requirements problem proposed in [6].

Specifications as commitments. Chopra et al. [7] add to this formu-
lation of the requirements problem by treating specifications as commitments
for multi-party systems, such as STSs. A commitment is a 4-tuple C(debtor,
creditor, antecedent, consequent) where debtor and creditor are agents (includ-
ing systems/subsystems), antecedent and consequent are propositions and the
commitment represented is that the debtor will make the consequent true pro-
vided the antecedent holds [8]. A commitment is unconditional if its antecedent
is “true”.

3 Scientific Contributions

3.1 Protos Requirements Modeling Language

Elements of the Protos Modeling language are as follows. London Ambulance
System [9], a real–life case study from the healthcare domain is used to exemplify
each concept.

Stakeholder: an autonomous entity that participates in the design process of
the STS. LAS has nine stakeholders some of which are the service consumers,
call takers, ambulance crew, and the radio operator.

Team: a non-empty set of human, organizational, or technical entities that are
designed to be part of the STS. A stakeholder may appear as a team in the
specification, or play multiple teams during the design process. In LAS, the
resource allocator and dispatcher may form a team where they closely work
together as a sub-unit of the STS.

Proposition: a state of the world in the domain of the STS that is being
designed. In LAS domain, ‘call received’, ‘call response time is less than five



seconds’, and ‘the ambulance is equipped’ exemplifies propositions related to
the domain. A proposition could be a state of the world that a stakeholder
wants to achieve, similar to a goal in i*. A proposition could also be an
assumption about the domain, that is believed to be true by stakeholders.

Requirement: a representation of a state of the world which is expected to be
achieved by a team. A requirement is represented as R(τ, π), where τ is a
team and π is the proposition that τ desires to achieve. For example, the
service consumer’s requirement of receiving an ambulance is represented as
R(SC, AmbReceived).

Conflict: an irreflexive, symmetric relationship over propositions. p⊕ q means
that the proposition p conflicts with the proposition q. AmbAtStation con-
flicts AmbSetOut for the to cannot be true at once.

Commitment: a contractual relationship between two teams where the debtor
team promises the creditor team to bring out the condition when the an-
tecedent holds. A commitment is represented as C(τ1, τ2, π1, π2) where τ1 is
the debtor team, τ2 is the creditor team, π1, is the antecedent, and π2 is the
consequent. C(CT , SC, incidentReported, incidentTaken) is the represen-
tation of the commitment between the service consumer (SC) and the call
taker (CT ), stating that the latter commits the former to take the incident
when an incident is reported.

Onus: means that a team takes on the onus of ensuring a proposition. When
the service consumer takes the final responsibility of reporting an incident,
O(SC, incidentReported) explicitly states its intention and prevents the
stakeholders taking further design actions with respect to that proposition.

3.2 Requirements Specification for STSs

The traditional requirements specification problem cannot capture STSs for (i)
STSs have a heterogeneous structure consisting of social, technical and orga-
nizational subsystems, (ii) satisfaction of stakeholder requirements heavily rely
on the success of the interaction within STSs rather than a execution of a sin-
gle machine. We reformulate the problem as A,P, {O1, . . . , On} � R where A
is the assumptions on the domain, P is the interaction protocol consisting of
commitments, and {O1, . . . , On} are specifications for teams {τ1, . . . , τn}.

3.3 Protos Design Process

Refinement of a design problem p is an incremental improvement of p to p′ where
a solution for p′ is also a solution for p. Protos design process is a continuous
refinement of the design space until a solution is created for all requirements, that
is, onuses are taken for all requirements. Stakeholder requirements constitute the
finite requirements set R. Commitments created during the design process are
added into the protocol set P, which is empty at the beginning of the design.
Onuses taken by teams are stored in the onus sets, possibly with subscripts
for the respective team On, for simplicity we use a single onus set O. We use
the term need for the requirements that are yet to be addressed during the



design episode, and keep all needs in the needs set N . Initially, N includes all
requirements. Domain assumptions are kept in the set A.

Need refinement is based on the proposition refinement. For example,
N includes R(CT, incidentReported), that is the call taker has a requirement
for incident reports. During the design process, the call taker further speci-
fies this requirement by stating that she requires the address of the incident
and the conditions of the people involved. Such refinement is represented as
incidentReported ↪→ address ∧ status. The refinement clause is added to the
assumption set A, initial need is removed from the need set N , and two new
needs R(CT, address) and R(CT, status) are added to N instead.

Commitment introduction: if τ1 has a need for q, τ1 can address that
need by obtaining a commitment from τ0 to τ1 whereby τ0 commits to bringing
about q provided its need for p is satisfied; a commitment is created and added
to P. In LAS domain, the service consumer has a requirement for incidents to be
entered to the system. Knowing that she cannot satisfy her requirement at run-
time, she gets a commitment from another team. C(CT , SC, incidentReported,
incidentTaken) states that the call taker commits to enter the incidents to the
system if an incident is reported. As a result of the commitment, incidentTaken
becomes the need of the call taker for he promises to achieve it. On the other
hand, the service consumer adopts incidentReported as her need, for it is the
antecedent that detaches the commitment and obliges the call taker to satisfy the
consequent. The need set N is updated accordingly. The commitment created is
added to the set P. A second type of commitments could be introduced to the
design when the antecedent of the commitment is a condition that is assumed to
be true, rather than a requirement that is satisfied by another team. When the
ambulance crew engages in a commitment to reach a destination in less than 30
mins if there is no traffic, the creditor (service consumer) cannot make sure that
the condition ‘no traffic’ is satisfied. Similar to the previous rule, the creditor
adopts the consequent as her need and the created commitment C(AC, SC,
noTraffic, responseT ime < 30mins) is added to the protocol set P. However,
the assumption noTraffic is added to the assumptions set A instead of being
adopted by the creditor. A third way of introducing commitments is cyclic com-
mitments, given there are at least two teams τ1 . . . τn where n ≥ 2, these teams
can create a cyclic commitment where τi commits τi+1 mod n to bring out its
need pi+1 mod n provided that its need pi holds. A reciprocal commitment is a
special case where n = 2. For example, the service consumer and the private am-
bulance service create reciprocal commitments when they commit to each other
to pay the fee when provided the ambulance service and provide the ambulance
service when the fee is paid as in C(SC, PAS, ambulanceService, feePaid)
and C(PAS, SC, feePaid, ambulanceService).

Subteams creation: A team can create subteams and delegate some of
its current needs. For example, when the call taker has needs to send the inci-
dent details to the call reviewer, save the incident details to the database, and
provide support to the service consumer, she can create a subteam ‘call center
information system’ and delegate the first two need two her subteam. This de-



sign reduction changes the set N , the first two needs of the call taker is removed
from the set and re-added as the needs of the subteam ‘call center information
system’.

Superteams creation: Two or more teams that have needs for pis where
pis jointly refine p, the teams may create a super team that has a need for p. For
example, if there are multiple technical subsystems of the LAS that deal with
the smaller pieces of a bigger task, such as communication within the teams,
a superteam may be created to deal with the communication within LAS as a
whole. As a result of the superteam creation, the needs of the initial teams w.r.t.
communication is replaced with the need of the superteam for communication
in A.

Commitment refinement: A commitment could be refined in two ways.
The first type of the refinement includes the refinement of the proposition part
of a commitment, that is either the antecedent, consequent, or both. The service
consumer and the call taker may agree to refine C(CT , SC, incidentReported,
incidentTaken) to C(CT , SC, address∧ status, incidentTaken) together. The
second type of commitment refinement is to refine the team part of the com-
mitment (debtor, creditor, or both) through creating subteams or superteams.
A commitment refinement requires the agreement of the teams that are engaged
in the commitment.

Onus: When a team declares that it accepts the final responsibilty,the onus,
for a certain need, that need R(τ, π) is removed from N and the onus O(τn, π)
is added to On. A design process is successfully terminated when N becomes
empty, therefore a solution is specified for all requirements.

The Protos design process is outlined as follows.

1. At the beginning of the process, N = R,A = ∅,P = ∅,O = ∅
2. For a need n in N apply one of the design reduction rules described above

and update the design configuration N ,A,P,O.
3. Apply Step 2. until N is empty
4. If none of the rules apply at the current design configuration and N is not

empty, the design process fails. Start over with the initial requirements set
R.

Due to the social nature of STSs, many of the design reduction rules may
include sub-steps such as negotiation or argumentation, especially for the rules
that require the agreement of the teams. In a realistic scenario, each stakeholder
either represents itself or is represent by an analyst, so the design process is
distributed. Initial stakeholders may not take any onuses for their respective re-
quirements at the end, new teams may be added to the design through commit-
ment introductions, subteam, and superteam creations. Additional teams may
add their needs to N when they are introduced, but the initial requirements set
do not change during the design. The teams may prefer to go deeper in the de-
sign process and specify the technical details, or they may stop the process at a
higher level of abstraction, do not discuss the technical details with other teams,
and deal with them individually. For the later phase, traditional approaches such
as i* and Tropos can be used.



4 Conclusions, Ongoing and Future Work

In this paper we propose a requirements modeling language and outline a design
process for designing STS. We have explained the concepts used in the modeling
language, and the design configuration. We provide a set of design reductions
and examples of how they can be applied to STS design.

We run a case study with eight participants who are familiar with goal–
oriented requirements engineering to model LAS using Protos modeling language
and the design process. The participants successfully finalized the designed pro-
cess where each technical or social subsystems (team) accepted the responsibility
for a requirement or for its refinements.

Ongoing work includes refining the modeling language, development of a vi-
sual syntax and providing tool support for the designers. We outline future work
expanding the framework by adding reasoning for analysis, conflict detection,
and conflict handling as well as various types of refinements that enrich the
language and the design process.

Acknowledgements. This work was supported in part by European Re-
search Council advanced grant 267856, titled “Lucretius: Foundations for Soft-
ware Evolution", http://www.lucretius.eu. The authors thank Amit Chopra,
Fabiano Dalpiaz, and Munindar P. Singh for their major contributions to the
Protos project.

References

1. Dalpiaz, F., Giorgini, P., Mylopoulos, J.: Adaptive socio-technical systems: a
requirements-based approach. Requirements engineering 18(1) (2013) 1–24

2. Yu, E.S.K.: Towards modelling and reasoning support for early-phase requirements
engineering. In: Proceedings of 3rd IEEE International Symposium on Requirements
Engineering. (1997) 226–235

3. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos:
An agent-oriented software development methodology. Auton. Agents Multi-Agent
Sytems 8(3) (May 2004) 203–236

4. Telang, P.R., Singh, M.P.: Enhancing tropos with commitments. In: Conceptual
Modeling: Foundations and Applications. (2009) 417–435

5. Jureta, I.J., Mylopoulos, J., Faulkner, S.: Revisiting the Core Ontology and Problem
in Requirements Engineering. RE 2008 (September 2008) 71–80

6. Jackson, M., Zave, P.: Deriving specifications from requirements: an example. Proc.
17th Int. Conf. Softw. Eng. (1995) 15–24

7. Chopra, A.K., Dalpiaz, F., Giorgini, P., Mylopoulos, J.: Reasoning about Agents
and Protocols via Goals and Commitments. AAMAS 2010 (2010) 457–464

8. Singh, M.P.: An ontology for commitments in multiagent systems. Artificial Intel-
ligence and Law 7(1) (1999) 97–113

9. Kramer, J., Wolf, A.L.: Succeedings of the 8th International Workshop on Software
Specification and Design. ACM SIGSOFT Softw. Eng. Notes 21(5) (1996) 21–35


	Designing Sociotechnical Systems with Protos

