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The Lazard correspondence establishes an equivalence of categories
between p-groups of nilpotency class less than p and nilpotent
Lie rings of the same class and order. The main tools used
to achieve this are the Baker–Campbell–Hausdorff formula and
its inverse formulae. Here we describe methods to compute
the inverse Baker–Campbell–Hausdorff formulae. Using these we
get an algorithm to compute the Lie ring structure of a p-group
of class < p. Furthermore, the Baker–Campbell–Hausdorff formula
yields an algorithm to construct a p-group from a nilpotent Lie
ring of order pn and class less than p. At the end of the paper
we discuss some applications of, and practical experiences with,
the algorithms.
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1. Introduction

It has been known since the 1950s that the Baker–Campbell–Hausdorff formula gives an iso-
morphism between the category of nilpotent Lie rings with order pn and nilpotency class c and
the category of finite p-groups with order pn and nilpotency class c, provided p > c. This is known as
the Lazard correspondence [5, p. 91]. It also gives an isomorphism between the category of nilpotent
Lie algebras over the rationals Q and the category of torsion free radicable nilpotent groups. This is
known as the Mal’cev correspondence [18]. For an in-depth account of these matters we refer to [15,
Chapters 9 and 10].
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Using the Lazard correspondence we can transform questions on p-groups (of class < p) to ques-
tions on Lie rings. This was exploited in the classification of groups of order p6 and p7 for p > 5 (see
[20,23]). Underlying the group classifications are classifications of the nilpotent Lie rings of order p6

and p7. The Baker–Campbell–Hausdorff formula was used to turn Lie ring presentations into group
presentations.

A related application of the Lazard correspondence was given by Evseev in [9], where he proves
Higman’s PORC conjecture for a certain class of p-groups, by translating it to a question on Lie rings,
and then solving it in that setting.

The Mal’cev correspondence was exploited in [2] to provide a fast method of multiplication in
infinite polycyclic groups.

In the next section we will describe the Baker–Campbell–Hausdorff formula (or BCH-formula for
short).

In this paper we describe computational methods to perform the Lazard correspondence in prac-
tice. That is, methods to construct the Lie ring corresponding to a given p-group (of class < p), and
vice versa, to find the p-group corresponding to a nilpotent Lie ring of order pn and class < p. For
this we need to explicitly compute various formulae. First there is the BCH-formula itself, for which
we use a method from [21], which we briefly recall in Section 3. Secondly we need the BCH inverse
formulae. The problem of computing these does not seem to have been considered in the literature
before. Methods for computing the inverse formulae are detailed in Sections 4 to 6. In Section 4 we
define some of the notation that we use. Section 5 is devoted to a method for computing the homoge-
neous components of repeated commutators, which can be viewed as BCH-formulae of higher order.
Then in Section 6 it is shown how to use this to compute the inverse BCH formulae. In Section 7 we
then describe how to compute the Lie ring structure of a given p-group of class < p.

The method can also be used to compute a Lie algebra corresponding to a T -group (see Section 7
for the definition), which is the Lie algebra of the radicable hull of the group under the Mal’cev corre-
spondence. Algorithms for this task are also given in [2]. One of these is based on the BCH-formula,
and is similar to, but different from, ours. The implementation of this algorithm (in the GAP package
Guarana [1]) is able to deal with T -groups up to class 9.

In Section 8 we report on practical experiences with our implementation of the algorithms in
Magma [4]. Currently our programs are able to deal with p-groups and Lie rings of class up to 14.
Experiments with the algorithms for computing the various formulae (see Section 8) suggest that this
might be extended to class 15 or 16. However, it seems unlikely that we will be able to go beyond
that.

Finally, in the last section we discuss two applications: one is to computing Hall-polynomials,
which give an algorithm for computing products of elements in a p-group (or in a T -group), the
second is to computing faithful representations of nilpotent Lie algebras over Q, using the Mal’cev
correspondence.

The first two authors have written a GAP package, LieRing [8], that contains, among other things,
an implementation of the algorithms outlined in this paper for computing the Lazard correspon-
dence.

In [11] Glauberman extended the construction of Lazard to certain p-groups of class � p. However,
under this construction, it is not clear to which extent the group may be recovered from the Lie ring
(cf. [11, Remark 6.11]). It would be interesting to see whether our methods can be extended to cover
also Glauberman’s construction, and then to investigate this question experimentally.

Throughout the paper, commutators play an important role. We will use the bracket notation [ , ]
both for the commutator in a group ([g,h] = g−1h−1 gh) and in a Lie ring. From the context it will be
clear which we mean. Sometimes we add an index (i.e., [ , ]G or [ , ]L ) for greater clarity. Also, if a,b
are elements of an associative algebra, then [a,b] = ab − ba. For commutators of weight greater than
two we use the right-normed convention. Thus

[x, x, y] = [
x, [x, y]] and [x, y, x, y] = [

x,
[

y, [x, y]]],
and so on.
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2. The Baker–Campbell–Hausdorff formula

Let A be the free associative algebra with unity over the rationals Q which is freely generated by
non-commuting indeterminates x, y. We have that A is spanned by the words in x and y. The weight
of such a word is defined to be the number of occurrences of x and y. We extend A to the ring Â of
formal power series consisting of the formal sums∑

n�0

un,

where un is a homogeneous element of weight n in A. If a ∈ Â, and if the homogeneous component
of a of weight 0 is 0, then we define

ea = 1 + a + a2

2! + a3

3! + · · · ,

in the usual way. The product exe y ∈ Â can be expressed in the form 1 + u for some u ∈ Â with 0 as
its homogeneous component of weight 0, and

exe y = ez(x,y),

where

z(x, y) =
∑
n�1

(−1)n−1 un

n
.

The Baker–Campbell–Hausdorff formula (see, for example, [14, §V.5]) gives z as a linear combination
of commutators in x and y, with rational coefficients. The first few components are given by

z(x, y) = x + y + 1

2
[x, y] + 1

12
[x, x, y] − 1

12
[y, x, y] − 1

24
[y, x, x, y] − 1

720
[x, x, x, x, y]

− 1

120
[x, y, x, x, y] − 1

360
[x, y, y, x, y] + 1

360
[y, x, x, x, y] + 1

120
[y, y, x, x, y]

+ 1

720
[y, y, y, x, y] + 1

1440
[y, x, x, x, x, y] + · · · .

It turns out that all the homogeneous components of z are Lie elements of A (that is, elements in
the Lie subalgebra of A generated by x and y with respect to the Lie product [a,b] = ab − ba), cf. [29,
Theorem 2.5.4].

A similar formula holds for commutators:[
ex, e y] = ew(x,y),

where

w(x, y) = [x, y] − 1

2
[x, x, y] − 1

2
[y, x, y] + 1

6
[x, x, x, y] + 1

4
[y, x, x, y] + 1

6
[y, y, x, y]

− 1

24
[x, x, x, x, y] − 1

12
[x, y, y, x, y] − 1

12
[y, x, x, x, y] − 1

24
[y, y, y, x, y]

+ 1 [x, x, x, x, x, y] + · · · .

120
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(Here [ex, e y] is the group commutator e−xe−yexe y , and w(x, y) is an infinite sum of Lie elements
in A.)

Under some circumstances we can use these formulae to turn a Lie algebra (or a Lie ring) into a
group: if a and b are two elements in a Lie algebra L, define a group product ∗ on L and the group
commutator [ , ]G by setting

a ∗ b = z(a,b) = a + b + 1

2
[a,b] + 1

12
[a,a,b] + · · · ,

[a,b]G = w(a,b) = [a,b] − 1

2
[a,a,b] + · · · .

Similarly, if G is a group, then we can sometimes invert these formulae. We have that ex+y is equal
to exe y times an infinite product of (group-) commutators in ex and e y , with rational exponents, and
of increasing weight (cf. [15, Lemma 10.7]). More specifically, if we define h1 by h1(ex, e y) = ex+y

then

h1(g,h) = gh[g,h]− 1
2 [g, g,h]− 1

12 [h, g,h] 1
12 [g, g, g,h]− 1

24 [h,h, g,h] 1
24 [g, g, g, g,h]− 19

720

· [g,h, g, g,h]− 1
30 [g,h,h, g,h] 37

720 [h, g, g, g,h] 23
720 [h,h, g, g,h]− 1

20

· [h,h,h, g,h] 19
720 [g, g, g, g, g,h]− 3

160 · · · .
We call this the first BCH inverse formula.

In a similar way (see [15, Lemma 10.7]) we have that e[x,y] is an infinite product of commutators
in ex and e y , with rational exponents (of course, e[x,y] = exy−yx). We define h2 by h2(ex, e y) = e[x,y];
then we have

h2(g,h) = [g,h][g, g,h] 1
2 [h, g,h] 1

2 [g, g, g,h] 1
3 [h, g, g,h] 1

4 [h,h, g,h] 1
3 [g, g, g, g,h] 1

4

· [g,h, g, g,h]− 1
12 [h, g, g, g,h] 1

4 [h,h, g, g,h] 1
6 [h,h,h, g,h] 1

4 [g, g, g, g, g,h] 1
5 · · · .

We call this the second BCH inverse formula.
Now we can define a Lie plus + and a Lie multiplication [ , ]L on G by setting

g + h = h1(g,h) = gh[g,h]− 1
2 · · · ,

[g,h]L = h2(g,h) = [g,h][g, g,h] 1
2 · · · .

Clearly there are several problems with these “formulae”, the main one being that they involve
infinite sums in Lie algebras and infinite products in groups. The simplest way of avoiding this
problem is to insist that the groups and Lie algebras be nilpotent. If the Lie algebra is nilpotent
of class c then we can truncate the formulae for group multiplication and group commutator at the
weight c terms. Similarly, if the group is nilpotent of class c then we can truncate the formulae for
Lie plus and Lie multiplication at the weight c terms. The other major problem is that the formu-
lae involve multiplication of Lie algebra elements by rational scalars, and involve extracting rational
roots of group elements. The simplest way of solving both these problems is to insist that the Lie
algebras be nilpotent Lie algebras over Q, and to insist that the groups be torsion free radicable
nilpotent groups. This yields the Mal’cev correspondence mentioned in the introduction. To obtain
the Lazard correspondence for p > c between the category of nilpotent Lie rings with order pn and
nilpotency class c and the category of finite p-groups with order pn and nilpotency class c, we ob-
serve that the denominators of the coefficients of weight k terms in the Baker–Campbell–Hausdorff
formula only involve primes that are at most k. This means that if L is a nilpotent Lie ring of or-
der pn and class c < p, then we can evaluate the coefficients in the truncated formulae for group
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product and group commutator as integers modulo pn . Similar considerations apply to the inverse
formulae defining a Lie plus and a Lie product in a finite p-group of class c < p, see [15, Sec-
tion 10.2].

Note that the right-normed Lie products in x and y are not linearly independent in a Lie algebra,
so there is no fixed way of expressing the BCH-formulae. Similar considerations apply to the inverse
formulae in a group. Furthermore, the inverse formulae in a group are sensitive to the ordering taken
on the right-normed group commutators in x and y.

It is important to realize that with the Lazard correspondence we have a single set which is si-
multaneously a group and a Lie ring. Similarly, with the Mal’cev correspondence we have a single
set, which is both a group and a Lie algebra. The group operations can be defined in terms of the
Lie operations and the Lie operations can be defined in terms of the group operations. Subgroups
are subalgebras, normal subgroups are ideals, the centre is the centre, the lower central series is the
lower central series, the automorphism group is the automorphism group.

3. Coefficients of the BCH-formula

As in the previous section we write exe y = ez . The subspace L̂ of Â spanned by all Lie-commutators
in x and y is called the space of Lie-polynomials. The surprising fact, which is the main content of
the BCH-formula, is that z lies in this space.

At the basis of all our methods lies the BCH-formula. We need an expression for z as a linear
combination of commutators, truncated at a previously fixed weight c. Many methods to obtain this
have been proposed in the literature (for example, [3,7,21,24]). For our purposes the method outlined
in [21], based on results of Goldberg [12], is excellent: it is easy to implement, and produces the
formulae we want efficiently. In this section we briefly review this method. It proceeds in two steps:
first we write z as a linear combination of monomials in Â, then we transform that into a linear
combination of commutators.

For the first step we use Goldberg’s method [12] for computing the coefficients of the monomi-
als in z = z(x, y). Let m � 1 and s1, . . . , sm be positive integers. Set Ωx = xs1 ys2 · · · (x ∨ y)sm , where
x ∨ y is x (respectively, y) if m is odd (respectively, even). The definition of Ωy is the same, start-
ing with ys1 . Let cx and c y denote the coefficients of Ωx and Ωy in z. For s � 1 define polynomials
ψs ∈ Q[t] by

• ψ1 = 1,
• sψs = d

dt t(t − 1)ψs−1, for s � 2.

Set n = ∑m
i=1 si , m′ = �m

2 �, m′′ = �m−1
2 �. Goldberg proved that

cx = (−1)n−1c y =
1∫

0

tm′
(t − 1)m′′

ψs1 · · ·ψsm dt.

In practice this has proved to give a very efficient method to compute the coefficients of Ωx , Ωy

(cf. [21]).
The second step can be carried out using the Dynkin–Specht–Wever theorem [14, Chapter V, The-

orem 8], as observed in [27]. Here we describe a slight refinement of this procedure. We also write
x1 in place of x and x2 in place of y. Let ϕ : Â → L̂ be the linear map defined by

ϕ(xi1 · · · xim ) =
{ [xi1 , . . . , xim ] if im = 1,

0 if im = 2.

Lemma 3.1. Let dx be the number of occurrences of x in xi1 · · · xim . Then ϕ([xi1 , . . . , xim ]) = dx[xi1 , . . . , xim ].



S. Cicalò et al. / Journal of Algebra 352 (2012) 430–450 435
Proof. As in [14, Section V.4], it can be shown that ϕ : L̂ → L̂ is a derivation, i.e., ϕ([a,b]) = [ϕ(a),b]+
[a,ϕ(b)]. Also note that the lemma is trivially true if m = 1. For m > 1 we get

ϕ
([xi1 , . . . , xim ]) = [

ϕ(xi1), xi2 , . . . , xim

] + [
xi1 ,ϕ

([xi2 , . . . , xim ])].
If i1 = 1, then by induction the second term is (dx − 1)[xi1 , . . . , xim ]. If i1 = 2 then the first term is
zero. In both cases we get the conclusion of the lemma. �

Now let a ∈ L̂, written as linear combinations of monomials xi1 · · · xim . Then we discard the mono-
mials ending in y. The others we transform into [xi1 , . . . , xim ] and divide by the weight in x. According
to the previous lemma, this way we get an expression for a as linear combination of brackets.

4. Notation

In Section 6 we describe our approach to computing the BCH inverse formulae. It is based on
a method for computing repeated commutators of ex and e y , which is outlined in the next section.
These sections are rather technical. For this reason, in this section we summarize some of the notation
that we use throughout.

We recall the definition of the algebra Â from Section 2. We also write x1 in place of x and x2 in
place of y. Also, for a ∈ Â, by [[a]]t we denote the homogeneous component of weight t of a. For the
homogeneous components of z ∈ Â (defined by exe y = ez) we also write zt in place of [[z]]t .

For n � 2 we set

In = {
(i3, . . . , in)

∣∣ ir ∈ {1,2} for 3 � r � n
}
.

When n = 2 this set consists of the empty sequence. We denote elements of In by ı̄ or by k̄. We use
the convention that, after introducing such an element, its components are automatically defined, e.g.,
the components of k̄ are denoted k3, . . . ,kn .

For ı̄ ∈ In we set

xı̄ = [xin , . . . , xi3 , x1, x2]. (1)

Throughout, as already said in Section 1, we use the right-normed convention for bracketed expres-
sions. Also we define the elements γı̄ ∈ Q by the equation

zn =
∑
ı̄∈In

γı̄xı̄ .

We also write γ0 in place of γ(); so γ0 = 1
2 .

Example 4.1. We have

z5 = − 1

720
[x, x, x, x, y] − 1

120
[x, y, x, x, y] − 1

360
[x, y, y, x, y] + 1

360
[y, x, x, x, y]

+ 1

120
[y, y, x, x, y] + 1

720
[y, y, y, x, y].

Hence
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γ(1,1,1) = − 1

720
; γ(1,2,1) = − 1

120
; γ(2,2,1) = − 1

360
;

γ(1,1,2) = 1

360
; γ(1,2,2) = 1

120
; γ(2,2,2) = 1

720
.

Now, for a positive integer n we consider the sets Jn and Sn defined as

Jn = {
( j1, . . . , jn)

∣∣ jr � 1 for 1 � r � n
}
,

and

Sn = {
(s1, . . . , sn)

∣∣ 1 � s1 < · · · < sn
}
.

For the elements of Jn and Sn , that we denote by j̄ and s̄ respectively, we use the same convention
as for the elements of In . Also, for j̄ ∈ Jn we define

δ j̄ =
∑
ı̄∈In

εı̄,j̄ γı̄ ,

where

εı̄,j̄ = (
(−1) j2 − (−1) j1

)
(−1)i3 j3+···+in jn .

Note that (−1) j2 − (−1) j1 is 0 if j1 + j2 is even, and it is ±2 if j1 + j2 is odd.
Finally let Pt,n be the set of all ordered partitions (p1, . . . , pn) of t with length n. For its elements,

that we denote by p̄, again we use the same convention as for the elements of In .

5. Computing commutators

In this section we describe a formula for computing (the homogeneous components of) a repeated
commutator of ex1 and ex2 . For q � 2 and k̄ ∈ Iq we define Wk̄ by

eWk̄ = [
exkq , . . . , exk3 , ex1 , ex2

]
.

(This is the group commutator, e.g., [ex1 , ex2 ] = e−x1 e−x2 ex1 ex2 .) We also write w instead of W ( ) , as
in Section 2.

Let k̄ ∈ Iq , and k̄′ ∈ Iq+1 be such that k′
i = ki for 3 � i � q. Then

eWk̄′ = [
e

xkq+1 , eWk̄
]
,

which we will use to compute the homogeneous components of Wk̄′ , assuming we have those of Wk̄ .
More precisely, we put X1 = xkq+1 and X2 = Wk̄ . Using the BCH-formula we get expressions for the

homogeneous components of Y1, Y2 ∈ Â, where eY1 = e−X1 e−X2 and eY2 = e X1 e X2 . So we want to
know W = Wk̄′ with the property eW = eY1 eY2 . Now in order to obtain an expression for the homo-
geneous components of W we use the BCH-formula again. This then leads to the main theorem of
this section, Theorem 5.3.

The component of weight r of X1 is given by

[[X1]]r =
{

X1, if r = 1,

0, otherwise.

Also [[X2]]r = 0 for all r < q.
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We write Z = Y2; so e Z = e X1 e X2 . We express Z in terms of X1 and X2, and we let Zn denote the
homogeneous component of weight n in X1 and X2 (e.g., X1 X2 X1 is of weight 3). Then Z = ∑

n�1 Zn .
For ı̄ ∈ In , we define

[[X ı̄ ]]r =
∑

r2+···+rn=r−1

[[[Xin ]]rn , . . . , [[Xi3 ]]r3 , X1, [[X2]]r2

]
.

Lemma 5.1. The homogeneous component of weight r (in x1 and x2) of Zn is given by

[[Z1]]r =
{

X1, if r = 1,

[[X2]]r, otherwise,

and, for n > 1

[[Zn]]r =
∑
ı̄∈In

γı̄[[X ı̄ ]]r .

Proof. An expression for Z in terms of X1, X2 is given by the BCH-formula. So

Z1 = X1 + X2 ⇒ [[Z1]]r = [[X1]]r + [[X2]]r .

Because X2 only has monomials of weight at least q > 1 and [[X1]]r = 0 if r 
= 1, the first part is clear.
Let n > 1. From the BCH-formula we get

Zn =
∑
ı̄∈In

γı̄ X ı̄ ⇒ [[Zn]]r =
[[ ∑

ı̄∈In

γı̄ X ı̄

]]
r
=

∑
ı̄∈In

γı̄[[X ı̄ ]]r . �

For j̄ ∈ Jn we put

Z j̄ = [Z jn , . . . , Z j1 ].

Let p̄ ∈ Pt,n and consider the subset of Jn defined as

J p̄ = {j̄ ∈ Jn | jr � pr for 1 � r � n and j1 > j2}.

For p̄ ∈ Pt,n and j̄ ∈ J p̄ , we put

[[Z j̄ ]]p̄ = [[[Z jn ]]pn , . . . , [[Z j1 ]]p1

]
.

Remark 5.2. Notice that [[Zn]]r = 0 if n > 1 and r � n + q − 1. In fact, the term [[X ı̄]]r of least weight
in

∑
ı̄∈In

γı̄ [[X ı̄]]r is the one with ı̄ = (1, . . . ,1) ∈ In , that is

[[X(1,...,1)]]r = [
X1, . . . , X1, X1, [[X2]]r−n+1

]
.

But the weight of the homogeneous components of X2 is at least q. Hence [[X2]]r−n+1 = 0 if
r − n + 1 < q and this implies that [[Zn]]r = 0 for all r < n + q − 1. It follows also that, for p̄ ∈ Pt,n and
j̄ ∈ J p̄ , we have [[Z j̄ ]]p̄ = 0 if there is an s with ps 
= 1 and js > ps − q + 1.
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Theorem 5.3. The component of weight t (in x1 , x2) of W is given by the formula:

[[W ]]t =
∑
j�1

(
1 + (−1) j)[[Z j]]t +

t∑
n=2

∑
p̄∈Pt,n

∑
j̄∈ J p̄

δj̄ [[Z j̄ ]]p̄ . (2)

Remark 5.4. Notice that [[W ]]t = 0 for all t < q + 1. Also

1 + (−1) j =
{

2, if j is even,

0, otherwise.

So, to calculate [[W ]]t using (2), in the first summand it is sufficient to consider [[Z j]]t for even j.
Moreover, since (−1) j2 − (−1) j1 = 0 if j1 + j2 is even, in the second summand it is sufficient to deal
with all Z j̄ such that j1 + j2 is odd.

Proof of Theorem 5.3. Recall that Y1, Y2 ∈ Â are defined by eY1 = e−X1 e−X2 , eY2 = e X1 e X2 . Then eW =
[e X1 , e X2 ] = eY1 eY2 . By the BCH-formula we have Yi = ∑

j�1(−1)i j Z j , for i = 1,2. Again using the
BCH-formula, we get W = ∑

n�1 Wn , where W1 = Y1 + Y2 and, for n > 1,

Wn =
∑
ı̄∈In

γı̄ Y ı̄ .

(Here the definition of Y ı̄ is similar to the one of xı̄ in (1).)
We prove that, for n > 1,

Wn =
∑
j̄∈ Jn
j1> j2

δj̄ Z j̄ . (3)

For this, we need to show that

Y ı̄ =
∑
j̄∈ Jn
j1> j2

εı̄,j̄ Z j̄ . (4)

We proceed by induction on n. For n = 2 we have

[Y1, Y2] =
[ ∑

j�1

(−1) j Z j,
∑
j�1

Z j

]
=

∑
j1> j2�1

(
(−1) j2 − (−1) j1

)[Z j2 , Z j1 ].

So for n = 2 we get (4). By induction we get

[Yin+1 , Y ı̄ ] =
[ ∑

j�1

(−1)in+1 j Z j, Y ı̄

]

=
[ ∑

j�1

(−1)in+1 j Z j,
∑
j̄∈ Jn
j1> j2

εı̄,j̄ Z j̄

]
=

∑
j̄∈ Jn+1
j1> j2

εı̄,j̄ Z j̄ .

So (4) follows for all n � 2. Furthermore (3) is an immediate consequence of (4).
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Now

W1 = Y1 + Y2 =
∑
j�1

(−1) j Z j +
∑
j�1

Z j =
∑
j�1

(
1 + (−1) j)Z j .

Therefore

[[W ]]t =
[[ ∑

n�1

Wn

]]
t
=

[[ ∑
j�1

(
1 + (−1) j)Z j +

∑
n�2

∑
j̄∈ Jn
j1> j2

δj̄ Z j̄

]]
t

=
t∑

j=1

(
1 + (−1) j)[[Z j]]t +

t∑
n=2

[[ ∑
j̄∈ Jn
j1> j2

δj̄ Z j̄

]]
t

=
t∑

j=1

(
1 + (−1) j)[[Z j]]t +

t∑
n=2

∑
p̄∈Pt,n

∑
j̄∈ J p̄

δj̄ [[Z j̄ ]]p̄ . �

Example 5.5. We calculate the series W = W (1) , where eW (1) = [ex, ew ] = [ex, ex, e y]. We have

w = [x, y] − 1

2
[x, x, y] − 1

2
[y, x, y] + 1

6
[x, x, x, y] + 1

4
[y, x, x, y] + 1

6
[y, y, x, y]

− 1

24
[x, x, x, x, y] − 1

12
[x, y, y, x, y] − 1

12
[y, x, x, x, y] − 1

24
[y, y, y, x, y] + · · · .

Now we put X1 = x and X2 = w and e Z = exew . Then we have

[[W ]]3 = 2[[Z2]]3,

[[W ]]4 = 2[[Z2]]4 + δ(2,1)

[[[Z1]]1, [[Z2]]3
]
,

[[W ]]5 = 2
([[Z2]]5 + [[Z4]]5

) + δ(2,1)

([[[Z1]]1, [[Z2]]4
] + [[[Z1]]2, [[Z2]]3

])
+ δ(2,1,1)

[[[Z1]]1, [[Z1]]1, [[Z2]]3
]
.

Now [[Z1]]1 = x, [[Z1]]r = [[w]]r for all r > 1, [[Z2]]r = γ0[x, [[w]]r−1] for all r � 3 and [[Z4]]5 = 0. Hence

W (1) = [x, x, y] − [x, x, x, y] − 1

2
[y, x, x, y] + 7

12
[x, x, x, x, y] + 1

6
[x, y, y, x, y]

+ 1

2
[y, x, x, x, y] + · · · .

6. The BCH inverse formulae

We consider all eWk̄ for k̄ ∈ Iq+1 and 2 � q � q̃, for a certain q̃ � 2. We say that the length of such
an element is q + 1. For q = 1, we have eW ( ) = ew . We order these elements by increasing length
and, inside each length, in an arbitrary but fixed way. We denote these elements ordered like this

by eV 2 , . . . , eV N , where N = 2q̃ = 1 + ∑q̃
q=1 2q−1 (because for every q � 1 we have 2q−1 elements of

length q + 1). We denote by qs the length of eV s for 2 � s � N . Also we set eV 1 = ez = ex1 ex2 and we
put q1 = 1.
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From Section 2 we recall that the first BCH inverse formula is given by h1, where h1(ex1 , ex2) =
ex1+x2 . We have that h1(ex1 , ex2) is a product of commutators in ex1 , ex2 of increasing weight, with
rational exponents. Such a commutator is equal to an appropriate eV s . So we get h1 from the following
equation

ex1+x2 =
∏
s�1

eαs V s , (5)

where αs ∈ Q with α1 = 1. In this section we describe a method for finding αs for 2 � s � N . The
main point is that we find a formula for the homogeneous components of the right-hand side of (5),
in terms of the homogeneous components of the various V s . Since we know the homogeneous com-
ponents of the left-hand side, and we have expressions for the homogeneous components of the V s

(from Theorem 5.3), this leads to equations in the αs . Moreover, if we proceed by increasing degree,
then these equations turn out to be linear.

Lemma 6.1. We have

ex1+x2 =
∏
s�1

(
1 +

∑
t�qs

[[
eαs V s

]]
t

)
,

where

[[
eαs V s

]]
t =

�t/qs�∑
n=1

αn
s

n!
∑

p1+···+pn=t
p1,...,pn�qs

[[V s]]p1 · · · [[V s]]pn . (6)

Proof. We have

ex1+x2 =
∏
s�1

eαs V s =
∏
s�1

(
1 +

∑
t�qs

[[
eαs V s

]]
t

)
.

Now

eαs V s = 1 +
∑
n�1

1

n! (αs V s)
n ⇒ [[

eαs V s
]]

t =
∑
n�1

αn
s

n!
[[

V n
s

]]
t .

Furthermore,

[[
V n

s

]]
t =

∑
p1+···+pn=t
p1,...,pn�qs

[[V s]]p1 · · · [[V s]]pn ,

because [[V s]]t = 0 if t < qs . It follows that we must have t � nqs , or n � t/qs . So we get (6). �
For t,n � 1 consider the subset of Pt,n defined as

P∗
t,n = {p̄ ∈ Pt,n | pr � qr for 1 � r � n}.
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Note that P∗
t,n = ∅ if n > t . For s̄ ∈ Sn and p̄ ∈ P∗

t,n , we put

[[
eαs̄ V s̄

]]∗
p̄ = [[

eαs1 V s1
]]

p1
· · · [[eαsn V sn

]]
pn

.

We observe that, if qr > pr , then [[eαsr V sr ]]pr = 0. So for fixed p̄ ∈ P∗
t,n we have that [[eαs̄ V s̄ ]]∗̄p is

nonzero for only a finite number of s̄ ∈ Sn .

Theorem 6.2. The exponents αn in (5), for n � 2, satisfy the equations

t∑
n=1

∑
s̄∈Sn

∑
p̄∈P∗

t,n

[[
eαs̄ V s̄

]]∗
p̄ = 1

t! (x1 + x2)
t . (7)

Proof. The component of weight t of ex1+x2 is given by

[[
ex1+x2

]]
t = 1

t! (x1 + x2)
t .

We prove that it is also given by

[[
ex1+x2

]]
t =

t∑
n=1

∑
s̄∈Sn

∑
p̄∈P∗

t,n

[[
eαs̄ V s̄

]]∗
p̄,

where the [[eαsr V sr ]]pr are given by (6).
Using Lemma 6.1 we have that ex1+x2 = ∏

s�1(1 + ∑
t�qs

[[eαs V s ]]t), which is equal to

1 +
∑
n�1

∑
s1<···<sn

∑
p1�q1,...,pn�qn

[[
eαs1 V s1

]]
p1

· · · [[eαsn V sn
]]

pn
.

Hence

[[
ex1+x2

]]
t =

[[
1 +

∑
n�1

∑
s1<···<sn

∑
p1�q1,...,pn�qn

[[
eαs1 V s1

]]
p1

· · · [[eαsn V sn
]]

pn

]]
t

=
t∑

n=1

∑
s̄∈Sn

∑
p̄∈P∗

t,n

[[
eαs̄ V s̄

]]
p̄ .

Then we get the conclusion of the theorem. �
Note that (7) is linear in the αs where s is such that qs = t . However, proceeding by increasing

weight, we may assume that the αs with qs < t already have been determined. So we get the αs by
solving linear equations. We illustrate this procedure by an example.

Example 6.3. We want to calculate all the exponents αs in (5) up to weight 4. We order the commu-
tators in the following way:
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V 1 = z,
V 2 = w,

V 3 = W (1), V 4 = W (2),

V 5 = W (1,1), V 6 = W (2,1), V 7 = W (1,2), V 8 = W (2,2).

Since α1 = 1, for t = 2 we get

1

2
(x + y)2 = [[V 1]]2 + α2[[V 2]]2 ⇒ 1

2
(x + y)2 = z2 + 1

2
z2

1 + α2[[w]]2.

This is the same as ( 1
2 + α2)[x, y] = 0, whence α2 = − 1

2 . For t = 3 the equation becomes

1

6
(x + y)3 = [[V 1]]3 − 1

2
[[V 2]]3 + α3[[V 3]]3 + α4[[V 4]]3 − 1

2
[[V 1]]1[[V 2]]2,

that is

1

6
(x + y)3 = z3 + 1

2
(z1z2 + z2z1) + 1

6
z3

1 − 1

2
[[w]]3 + α3[[W (1)]]3 + α4[[W (2)]]3 − 1

2
z1[[w]]2,

and after expanding we find α3 = − 1
12 and α4 = 1

12 . Proceeding in the same way, for t = 4 we obtain
the equations α5 = − 1

24 , α6 + α7 = 0 and α8 = 1
24 . So we see that the solution to these equations is

not uniquely determined. We choose α6 = α7 = 0. Then the series ex+y becomes

ex+y = eze− 1
2 w e− 1

12 W (1)e
1

12 W (2)e− 1
24 W (1,1)e

1
24 W (2,2) · · · .

Now we consider the second BCH inverse formula, given by h2(ex1 , ex2) = e[x1,x2] (see Section 2).
Analogously to h1, we get h2 from the equality

e[x1,x2] =
∏
s�2

eβs V s , (8)

where βs ∈ Q with β2 = 1. Again the goal is to find the βs for all s � 3. The proof of the next theorem
is the same as the one for Theorem 6.2.

Theorem 6.4. The exponents βs in (8), for s � 3, satisfy the equations

t∑
n=1

∑
s̄∈Sn

∑
p̄∈P∗

t,n

[[
eβs̄ V s̄

]]∗
p̄ =

{
1

( t
2 )! [x1, x2] t

2 , if t is even,

0, otherwise.

7. Setting up the correspondence

Let G be a p-group of nilpotency class smaller than p. In this section we show how to compute
the Lie ring structure of G . From Section 2 we recall that this Lie ring structure is defined by g + h =
h1(g,h) and [g,h]L = h2(g,h). Moreover, in the previous sections we have shown how to compute
formulae for h1 and h2 that enable us to evaluate h1(g,h) and h2(g,h) for all g,h ∈ G .

We assume that G is given by a consistent power-commutator presentation (cf. [26]). This means
that we have generators g1, . . . , gn of G together with relations of the form
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g p
i = g

d(i)
i+1

i+1 · · · gd(i)
n

n where 1 � i � n and d(i)
j < p,

[g j, gi]G = g
c(i, j)

j+1
j+1 · · · gc(i, j)

n
n where 1 � i < j � n and c(i, j)

k < p.

These relations can be used to write every element of G as a normal word ge1
1 · · · gen

n where 0 �
ei < p. The presentation is called consistent if G has order pn , or equivalently, if different normal
words give different elements of G . In a group given by a consistent power-commutator presentation,
the collection algorithm (cf. [16,26,28]) can be used to compute the normal word representing the
product of two elements.

Now every g ∈ G can also be expressed as a sum
∑n

i=1 αi gi , with αi ∈ Z. Indeed, write g =
ge1

1 · · · gen
n . Then g = e1 g1 + R , with

R = −e1 g1 + g = g−e1
1 + g = h1

(
g−e1

1 , g
) = g−e1

1 g S,

where S lies in [G, G]. But [G, G] is contained in the subgroup generated by g3, . . . , gn . So R lies
in the subgroup generated by g2, . . . , gn . Hence, by induction, R = ∑n

i=2 αi gi , where αi ∈ Z. Setting
α1 = e1 we get g = ∑n

i=1 αi gi . In particular this implies that G , as a Lie ring, is also generated by
g1, . . . , gn .

We note that this argument also yields an algorithm for computing the αi , given the expo-
nents ei .

In order to compute the Lie ring structure we transform the power-commutator relations of G into
relations that hold in the Lie ring. That is, we compute [g j, gi]L = h2(g j, gi) which is then transformed
to a sum of the form

∑n
i=1 αi gi , with αi ∈ Z. Similarly we compute pgi = g p

i , and transform it to a
sum of the same form. Using these we can compute the Lie commutator of any two elements of G ,
and write it as a sum of generators

∑n
i=1 βi gi with 0 � βi < p.

Once we have the Lie ring structure on G , we have two representations of g ∈ G . The first is
as a product g = ge1

1 · · · gen
n , which we call the product representation. The second is as a sum g =∑n

i=1 αi gi , which we call the sum representation. It is important to note that both representations
give the same element. The different representations reflect the different operations that are used to
express the element in terms of the generators.

We can use the BCH-formula to efficiently switch between representations. As in Section 2 we
write g ∗h = z(g,h) for the result of evaluating the BCH-formula in g and h. This evaluation uses only
the operations of the Lie ring structure on G . By the Lazard correspondence we have that g ∗ h = gh
(i.e., the result of evaluating the BCH-formula in g,h is equal to the product in G of g,h). Let g ∈ G be
given in the product representation, g = ge1

1 · · · gen
n . Then g = ge1

1 ∗ · · ·∗ gen
n = (e1 g1)∗ · · ·∗ (en gn). Since

evaluating the BCH-formula uses Lie ring operations only, the result of this is the sum representation
of g . Conversely, suppose that g is given as g = ∑n

i=1 αi gi . Then we write g = gα1
1 P , where P =

(−α1 g1) ∗ g . By evaluating the BCH-formula we get P = ∑n
i=2 βi gi , and we continue with P . At the

end we obtain the product representation of g .
We can also perform these operations symbolically, since it is possible to evaluate z(

∑
i xi gi,∑

i yi gi), where the xi and yi are indeterminates of a polynomial ring over Q. In this way we obtain
polynomials p1, . . . , pn in the indeterminates xi , yi such that

z

(
n∑

i=1

αi gi,

n∑
i=1

βi gi

)
=

n∑
i=1

pi(α1, . . . ,αn, β1, . . . , βn)gi .

Since the operations of switching between the different representations involve the BCH-formula only,
we can do the same for them. That is, we can obtain polynomials f1, . . . , fn , t1, . . . , tn that depend
on n indeterminates, such that
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n∑
i=1

f i(e1, . . . , en)gi

is the sum representation of ge1
1 · · · gen

n , and

gt1(α1,...,αn)
1 · · · gtn(α1,...,αn)

n

is the product representation of
∑

i αi gi .

Remark 7.1. The term T -group is short for a finitely-generated torsion-free nilpotent group (cf. [25,
§3.C]). Let G be a T -group, and we assume that it is given by a consistent power-commutator presen-
tation. This works in the same way as for p-groups, except that there are no power relations. In other
words, we have generators g1, . . . , gn and relations

[g j, gi]G = g
c(i, j)

j+1
j+1 · · · gc(i, j)

n
n where 1 � i < j � n and c(i, j)

k ∈ Z.

In this case every element of the group can be written as a unique normal word ge1
1 · · · gen

n , where
ei ∈ Z.

A group G̃ is called radicable if for all g̃ ∈ G̃ and n ∈ Z there exists a (necessarily unique) h̃ ∈ G̃
such that h̃n = g (cf. [25, §6.A]). For a T -group G there exists a unique minimal radicable group G̃
containing G [25, §6.A]. This is called the radicable hull of G .

For a nilpotent radicable group G̃ we can use the inverse BCH formulae to define a structure of
a Lie algebra over Q on G̃ . This way we get a correspondence between nilpotent radicable groups
and nilpotent Lie algebras over Q. This is called the Mal’cev correspondence (see [15, §10.1]). If we
let G̃ be the radicable hull of G , then the corresponding Lie algebra has dimension n, and is spanned
by g1, . . . , gn . The multiplication table of the Lie algebra can be computed using the commutator
relations above. However, in this case some care is needed. In the formula

[g,h]L = [g,h]G [g, g,h]
1
2
G [h, g,h]

1
2
G · · · ,

we have g,h ∈ G , whereas, for example, [g, g,h]
1
2
G ∈ G̃ . But we have no way of expressing that ele-

ment. We note, however, that all those elements lie in the radicable hull of the derived group [G, G].
By recursion we may assume that we have already constructed the Lie algebra corresponding to that
group. This Lie algebra is a subalgebra of the algebra that we are constructing. Therefore, by using
the BCH-formula, we can evaluate the right-hand side of the above expression in the Lie algebra of
the radicable hull of [G, G]. It follows that we can construct the Lie algebra corresponding to G̃ . This
is similar to one of the approaches used in [2] to obtain the Lie algebra of the radicable hull of a
T -group. However, in that paper a different method to compute the brackets [g,h]L is used.

8. Implementation and practical experiences

We have implemented the algorithms described in this paper in the language of the computer
algebra system Magma V2.17 [4]. All running times reported in this section have been obtained on a
3.16 GHz processor.

To start we first compute the BCH-formula, and formulae for h1 and h2, up to a previously fixed
weight c. For computing the BCH-formula we use the method outlined in Section 3, whereas for h1
and h2 we use the algorithms described in Section 6. We computed the formulae for c = 12,13,14;
the running times are displayed in Table 1.

From Table 1 we see that the number of terms of the formulae, unsurprisingly, roughly doubles
with each increase of the weight. However, the running times for h1, h2 much more than double. So
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Table 1
Running times (in seconds) for the algorithms to compute the BCH-formula and formulae for h1 and h2. For each formula the
number of terms is also given. The first column has the weight c up to which we compute the formulae.

c h1 h2 BCH

time # terms time # terms time # terms

12 526 1519 433 1517 0.13 985
13 2329 3055 2013 3053 0.47 2521
14 11 137 6111 12 493 6109 0.92 4056

Fig. 1. Tree corresponding to the part of the BCH-formula up to weight 5.

it will be possible to go a bit further, until c = 15, or even c = 16. But we cannot realistically hope to
go much beyond that. It is also seen that the algorithm for computing the BCH-formula is much more
efficient than the algorithms for computing its inverses. For this reason it is possible to compute the
BCH-formula up to a higher weight (like c = 20).

Currently, our programs use the formulae until weight 14, which are stored in a file. This means
that currently our programs are able to cope with groups of classes up to 14.

The main operation of our algorithms is the evaluation of the BCH-formula for given elements x, y
of a nilpotent Lie ring, and the formulae for h1 and h2 for given elements g,h of a p-group. In order
to do this efficiently, we encode these formulae as labeled binary trees. We describe how the tree
is defined for the BCH-formula, z(x, y) = x + y + 1

2 [x, y] + · · · . The edges of the tree are labeled x
or y. And every node corresponds to a (right-normed) commutator. The root of the tree corresponds
to [x, y]. In order to determine the commutator corresponding to any other node, we take the path to
the root, and record the labels. Suppose that the labels that we encounter are xi1 , . . . , xik , where xi1

is the label of the edge closest to the node we are considering, and xik is the label of the last edge,
connected to the root. Then the corresponding commutator is

[xi1 , . . . , xik , x, y].

Finally, every node has a label, which is the coefficient of the corresponding commutator in the
BCH-formula. Note that this means that some of the nodes have label 0. Fig. 1 displays the tree
corresponding to the BCH-formula up to weight 5.

Let Tc denote the tree corresponding to the BCH-formula, containing the terms up to weight c. In
order to evaluate the BCH-formula for given x, y in a Lie ring of nilpotency class � c, we traverse Tc

“breadth first”. That is, we loop through all the nodes of depth k, and after that through all the nodes
of depth k + 1, and so on. Every node corresponds to an element of the Lie ring, called its value,
which is the corresponding commutator evaluated in x and y. When looping through the nodes of
depth k + 1 we use the stored values corresponding to the nodes of depth k. So for every new value
we need to perform one multiplication in the Lie ring.

Initially we set z0 = x + y. For every node that we encounter, with label c and value v , we add cv
to z0. Then after having traversed the entire tree we have z0 = z(x, y). This approach is very efficient
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Table 2
Running times (in seconds) for the algorithm to construct a Lie ring of a p-group via
the Lazard correspondence. The first column displays the prime and the second has
the class. The third and fourth columns have respectively the size of Gc

p and the time
to construct its Lie ring. The fifth and sixth columns have the same data for Hc

p .

p c |Gc
p | time |Hc

p | time

17 13 p38 0.2 p37 0.15
211 13 p38 2.4 p37 0.18

17 14 p49 0.4 p48 0.27
211 14 p49 5.7 p48 0.37

for two reasons: every new value comes at the cost of performing one multiplication in the Lie ring,
and if a value turns out to be 0, then we can discard the entire subtree below it.

Remark 8.1. This approach also works for evaluating h1 and h2. However, for these two formulae
some care is needed when traversing the tree: we must make sure that the commutators appear in
the same order as in the formulae.

Now in order to test the algorithm for computing the Lie ring corresponding to a p-group (of class
< p) we use the following sample groups. For a prime p let

G p = 〈
a,b

∣∣ [a,b,b,a,b], [a,a,b],ap2
,bp 〉

,

and we let Gc
p be the p-quotient of class c of G p . Also, let

H p = 〈
a,b

∣∣ [b,a,a,a,b], [b,a,b],ap,bp 〉
,

and we let Hc
p be the p-quotient of class c of H p .

We have constructed the Lie rings corresponding to Gc
p and Hc

p for c = 13,14 and p = 17,211.
The running times that we obtained are shown in Table 2.

We see that it is no problem at all to construct the Lie ring of a p-group of class 13 or 14. The
running times for the construction of the Lie rings of Gc

p and Hc
p are nearly equal for small primes.

However, for large primes the construction of the Lie ring of Gc
p needs markedly more time. We

believe that this is due to the fact that in Gc
p for large p the collection algorithm, used for multiplying

elements, on the average takes more time than in Hc
p for large p.

9. Applications

In this section we briefly discuss two applications of the effective version of the Lazard correspon-
dence.

9.1. Hall polynomials

We observe that the Lazard correspondence can be used to multiply two elements g,h (given in
product representation) in a p-group G . Indeed, for this we first get the sum representations of g
and h, then compute g ∗ h, and return the product representation of that element.

Alternatively, we can compute the polynomials pi , f i , ti defined at the end of Section 7, and
substitute them into each other, in the obvious way, to get polynomials q1, . . . ,qn , depending on 2n
indeterminates, such that after evaluating

vi = qi(e1, . . . , en,d1, . . . ,dn),
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Table 3
Running times (in seconds) for the algorithms for comput-
ing the Hall-polynomials. The first column has the group, the
second and third, respectively, the running times for comput-
ing the Lazard polynomials using the algorithm based on the
Lazard correspondence, and the Deep-Thought algorithm.

group Lazard DT

G14
31 65.5 74.2

G14
101 66.4 71.5

H14
31 69.6 59.2

H14
101 65.1 59.6

we get that

ge1
1 · · · gen

n · gd1
1 · · · gdn

n = gv1
1 · · · gvn

n .

In [13], P. Hall showed the existence of such polynomials; for this reason they are called Hall-
polynomials. We conclude that for p-groups of class < p, the effective version of the Lazard corre-
spondence yields an algorithm to compute Hall-polynomials. We have implemented this algorithm in
Magma.

The coefficients of the qi lie in Q. Alternatively, if the exponent of G is pk , then we can coerce
the coefficients into Z/pkZ. If k > 1 then it may happen that some of the vi are greater than p − 1.
In that case some further operations have to be performed to get the exponents of the normal word
representing the product. In our implementation these operations are simply performed by the built-
in Magma collector. The extra collections needed are quite simple, and take virtually no time. Also, if
the group has exponent p, then the coefficients of the polynomials can be coerced into Fp . In that
case they directly give the exponents of the normal word.

Leedham-Green and Soicher [17] developed an algorithm, called Deep-Thought, for computing Hall-
polynomials for any finitely-generated nilpotent group. They also showed how the extra operations,
to get all exponents smaller than p, can be performed with polynomials. This algorithm has been
implemented in GAP by Merkwitz [19]. The current version of GAP [10] contains this implementa-
tion (although it does not appear to be documented). We have compared the running times of this
implementation and ours for the groups Gc

p and Hc
p , for c = 14 and p = 31,101. The results are

displayed in Table 3. The two algorithms are implemented in different systems: the Deep-Thought
algorithm in GAP is partly implemented in the kernel, and partly in the GAP language, whereas the
Lazard correspondence is implemented entirely in the Magma language. The raw timing figures look
pretty comparable, but it is difficult to draw any conclusions since the two programs are running on
different systems.

Remark 9.1. We have also performed experiments with the Hall-polynomials, using them for do-
ing multiplications in p-groups. For this we have taken a thousand pairs of random elements in
groups G14

p and H14
p , for various p, and compared the running times of the multiplications using the

Hall-polynomials and using the built-in Magma collector. It turned out that the time needed for mul-
tiplication using the Hall-polynomials was roughly constant for all primes. This is no surprise, as a
multiplication boils down to evaluating a set of polynomials at a point. However, the built-in Magma

collector needs almost no time when the prime is small (e.g., p = 31), but when the prime increases
it needs more time. This is to be expected because the average exponents of the random words get
bigger. It turned out that the cross-over point, where the Hall-polynomials start beating the Magma

collector is around primes of the order of magnitude of 150. For example, a thousand random mul-
tiplications in G14

101 took 95.5 seconds with the Hall-polynomials, and 8.9 seconds with the Magma

collector. But in G14
211 the respective timings were 96.0 seconds and 213.9 seconds. We conclude that

for small primes p it is better to use collection for doing multiplications in p-groups. However, when
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p gets bigger, the extra effort to compute the Hall-polynomials does pay off. Furthermore, this com-
parison depends also on the efficiency of the implementation of the collection algorithm. The collector
for p-groups in Magma is very efficient, and coded in the Magma C-kernel, whereas our programs are
written in the Magma programming language, which inherently makes them a bit less efficient. Ex-
periments reported in [17] (partly taken from the diploma thesis of Merkwitz [19]) are more positive
for the approach with the Hall-polynomials. We believe that in those experiments the multiplica-
tion with polynomials was tried against a much less optimized collector. Also, we remark that the
polynomials can be used for other purposes as well (see below for an example), not just for doing
multiplication.

9.2. Faithful modules

As a second application we consider the problem of computing a faithful matrix representation.
Let G be a p-group of exponent p and class c < p. Then the corresponding Lie ring is a Lie alge-
bra over Fp . Let ρ : G → Ms(Fp) (the set of s × s-matrices over Fp) be a faithful representation of
G as a Lie algebra. Suppose that ρ(g)c = 0 for all g ∈ G . (We note that such a representation can
be computed using the methods of [6].) Then we can define ρe : G → Ms(Fp) by ρe(g) = expρ(g).
By the BCH-formula, and the Lazard correspondence, this gives a faithful representation of G as a
group.

The same approach works for a T -group. Nickel has given a very efficient method for computing a
faithful representation of such a group in [22]. Briefly, this works as follows. Let G be a T -group, with
polycyclic generators g1, . . . , gn . Then G acts on the dual (QG)∗ by g · f (a) = f (g−1a). Now consider
the linear functions ti ∈ (QG)∗ given by ti(ge1

1 · · · gen
n ) = ei . Nickel proved that the G-submodule M of

(QG)∗ generated by t1, . . . , tn is faithful and finite-dimensional. In order to compute a basis of it, note
that there are polynomials qi, j ∈ Q[x1, . . . , xn] such that

g−1
j ge1

1 · · · gen
n = g

q1, j(e1,...,en)

1 · · · g
qn, j(e1,...,en)
n . (9)

Moreover, R = Q[x1, . . . , xn] can be viewed as a subspace of (QG)∗ by identifying a polynomial
h with the linear function that maps ge1 · · · gen

n to h(e1, . . . , en). With this identification g j · h =
h(q1, j, . . . ,qn, j). So R is a G-submodule of (QG)∗ . Furthermore, the module M defined above is con-
tained in R . Hence a basis of M can be computed by repeatedly substituting the qi, j into other
polynomials. This makes this method very efficient. It can also be applied to p-groups of exponent
p as in that case the associated Lie ring is in fact a Lie algebra over Fp . It is doubtful whether
a method based on constructing the Lie algebra first, and then constructing a module of that, will
be more efficient. Here we will not investigate that. Instead, we note that it is also possible to use
the inverse route and get an algorithm for computing a faithful module of a nilpotent Lie algebra L
over Q. Indeed, the BCH-formula defines the structure of a radicable nilpotent group on L. Take a
basis g1, . . . , gn of L such that gik , . . . , gn is a basis of the k-th term of the lower central series of L,
and i1 < i2 < · · · < ic . Viewing L as a group, we get commutator relations

[g j, gi]G = g
c(i, j)

j+1
j+1 · · · gc(i, j)

n
n where 1 � i < j � n and c(i, j)

k ∈ Q.

Furthermore, using the BCH-formula, we can compute polynomials qi, j with (9). Using these, we
compute a basis of the module M , generated by the functions ti . This yields a (group-) representation
ρ : L → GL(d,Q), where d = dim M . For g ∈ L the matrix ρ(g) is unipotent. We define ρl by ρl(g) =
log(ρ(g)); then ρl is a faithful (Lie algebra-) representation of L.

In fact, if we construct the basis of L in such a way that it contains a basis of the centre of L, then
it is enough to take the ti that correspond to the basis elements of the centre, as generators of the
module. Indeed, then the centre will act faithfully, and that implies that the whole Lie algebra acts
faithfully. This, in most cases, leads to a smaller dimensional module.
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Table 4
Running times (in seconds) for the algorithms “Mal’cev” and “Dual” for constructing a faithful representation of a nilpotent Lie
algebra. The first column has the Lie algebra, the second and third columns its dimension and class. The next two columns have
the running time and dimension of the computed module for the algorithm “Mal’cev”. The last two columns have this data for
the algorithm “Dual”.

L dim class Mal’cev Dual

time dim time dim

f13 13 12 1.4 43 7.9 43
f14 14 13 3.0 53 16.0 53
f15 15 14 7.2 64 34.5 64
N2,9 127 9 62.6 269 75.6 214
N3,6 196 6 76.3 289 170.8 296
N4,5 294 5 314.8 357 366.0 400
N5,4 205 4 91.2 244 103.7 251

In Table 4 we collect some experimental data regarding this algorithm. The algorithm “Mal’cev” is
the one described above, whereas “Dual” is one of the algorithms considered in [6]. The Lie algebras
fn are described in [6], and Nm,c is the free nilpotent Lie algebra with m generators, of nilpotency
class c. The algorithm “Mal’cev” is faster on all examples. However, for some inputs “Dual” yields a
module of smaller dimension. On other inputs “Mal’cev” also wins in this respect.
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