Journal of Algebra 352 (2012) 430-450

Contents lists available at SciVerse ScienceDirect

JOURNAL OF

Journal of Algebra

www.elsevier.com/locate/jalgebra

An effective version of the Lazard correspondence

Serena Cicalo®!, Willem A. de Graaf®*, Michael Vaughan-Lee 2

2 Dipartimento di Matematica e Informatica, Universita di Cagliari, Italy
b Dipartimento di Matematica, Universita di Trento, Italy
¢ Christ Church, Oxford, United Kingdom

ARTICLE INFO ABSTRACT
Article history: The Lazard correspondence establishes an equivalence of categories
Received 6 May 2011 between p-groups of nilpotency class less than p and nilpotent

Available online 22 December 2011

. : Lie rings of the same class and order. The main tools used
Communicated by Eamonn O’Brien

to achieve this are the Baker-Campbell-Hausdorff formula and
its inverse formulae. Here we describe methods to compute

Keywords: . .

p-Groups the inverse Baker-Campbell-Hausdorff formulae. Using these we
Lie rings get an algorithm to compute the Lie ring structure of a p-group
Lazard correspondence of class < p. Furthermore, the Baker-Campbell-Hausdorff formula
Effective methods yields an algorithm to construct a p-group from a nilpotent Lie

ring of order p™ and class less than p. At the end of the paper
we discuss some applications of, and practical experiences with,
the algorithms.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

It has been known since the 1950s that the Baker—Campbell-Hausdorff formula gives an iso-
morphism between the category of nilpotent Lie rings with order p™ and nilpotency class ¢ and
the category of finite p-groups with order p™ and nilpotency class c, provided p > c. This is known as
the Lazard correspondence [5, p. 91]. It also gives an isomorphism between the category of nilpotent
Lie algebras over the rationals Q and the category of torsion free radicable nilpotent groups. This is
known as the Mal'cev correspondence [18]. For an in-depth account of these matters we refer to [15,
Chapters 9 and 10].

* Corresponding author.
E-mail addresses: cicalo@science.unitn.it (S. Cicald), degraaf@science.unitn.it (W.A. de Graaf),
michael.vaughan-lee@chch.ox.ac.uk (M. Vaughan-Lee).
1 Serena Cicalo thanks the Department of Mathematics of the University of Trento for its hospitality in 2011. She gratefully
acknowledges the support of the programme “Master & Back”, PR-MAB-A2009-837.
2 Michael Vaughan-Lee thanks the CIRM Trento for its hospitality during four weeks in January/February 2011.

0021-8693/$ - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2011.11.031

http://dx.doi.org/10.1016/j.jalgebra.2011.11.031
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
mailto:cicalo@science.unitn.it
mailto:degraaf@science.unitn.it
mailto:michael.vaughan-lee@chch.ox.ac.uk
http://dx.doi.org/10.1016/j.jalgebra.2011.11.031

S. Cicald et al. / Journal of Algebra 352 (2012) 430-450 431

Using the Lazard correspondence we can transform questions on p-groups (of class < p) to ques-
tions on Lie rings. This was exploited in the classification of groups of order p® and p’ for p > 5 (see
[20,23]). Underlying the group classifications are classifications of the nilpotent Lie rings of order p®
and p’. The Baker-Campbell-Hausdorff formula was used to turn Lie ring presentations into group
presentations.

A related application of the Lazard correspondence was given by Evseev in [9], where he proves
Higman’s PORC conjecture for a certain class of p-groups, by translating it to a question on Lie rings,
and then solving it in that setting.

The Mal'cev correspondence was exploited in [2] to provide a fast method of multiplication in
infinite polycyclic groups.

In the next section we will describe the Baker-Campbell-Hausdorff formula (or BCH-formula for
short).

In this paper we describe computational methods to perform the Lazard correspondence in prac-
tice. That is, methods to construct the Lie ring corresponding to a given p-group (of class < p), and
vice versa, to find the p-group corresponding to a nilpotent Lie ring of order p" and class < p. For
this we need to explicitly compute various formulae. First there is the BCH-formula itself, for which
we use a method from [21], which we briefly recall in Section 3. Secondly we need the BCH inverse
formulae. The problem of computing these does not seem to have been considered in the literature
before. Methods for computing the inverse formulae are detailed in Sections 4 to 6. In Section 4 we
define some of the notation that we use. Section 5 is devoted to a method for computing the homoge-
neous components of repeated commutators, which can be viewed as BCH-formulae of higher order.
Then in Section 6 it is shown how to use this to compute the inverse BCH formulae. In Section 7 we
then describe how to compute the Lie ring structure of a given p-group of class < p.

The method can also be used to compute a Lie algebra corresponding to a T-group (see Section 7
for the definition), which is the Lie algebra of the radicable hull of the group under the Mal’cev corre-
spondence. Algorithms for this task are also given in [2]. One of these is based on the BCH-formula,
and is similar to, but different from, ours. The implementation of this algorithm (in the GAP package
Guarana [1]) is able to deal with T-groups up to class 9.

In Section 8 we report on practical experiences with our implementation of the algorithms in
MAGMA [4]. Currently our programs are able to deal with p-groups and Lie rings of class up to 14.
Experiments with the algorithms for computing the various formulae (see Section 8) suggest that this
might be extended to class 15 or 16. However, it seems unlikely that we will be able to go beyond
that.

Finally, in the last section we discuss two applications: one is to computing Hall-polynomials,
which give an algorithm for computing products of elements in a p-group (or in a T-group), the
second is to computing faithful representations of nilpotent Lie algebras over Q, using the Mal'cev
correspondence.

The first two authors have written a GAP package, LieRing [8], that contains, among other things,
an implementation of the algorithms outlined in this paper for computing the Lazard correspon-
dence.

In [11] Glauberman extended the construction of Lazard to certain p-groups of class > p. However,
under this construction, it is not clear to which extent the group may be recovered from the Lie ring
(cf. [11, Remark 6.11]). It would be interesting to see whether our methods can be extended to cover
also Glauberman’s construction, and then to investigate this question experimentally.

Throughout the paper, commutators play an important role. We will use the bracket notation [,]
both for the commutator in a group ([g,h]= g~ 'h~!gh) and in a Lie ring. From the context it will be
clear which we mean. Sometimes we add an index (i.e., [,]¢ or [,];) for greater clarity. Also, if a,b
are elements of an associative algebra, then [a, b] = ab — ba. For commutators of weight greater than
two we use the right-normed convention. Thus

[x.x,y]=[x.[x.y]] and [x,y.x,y]=][x[y.[x y1]].

and so on.

432 S. Cicalo et al. / Journal of Algebra 352 (2012) 430-450

2. The Baker-Campbell-Hausdorff formula

Let A be the free associative algebra with unity over the rationals Q which is freely generated by
non-commuting indeterminates x, y. We have that A is spanned by the words in x and y. The weight
of such a word is defined to be the number of occurrences of x and y. We extend A to the ring A of
formal power series consisting of the formal sums

2 un

n=0

where u, is a homogeneous element of weight n in A. If a € A, and if the homogeneous component
of a of weight 0 is 0, then we define
2 (13
el=1+a+ -+ -+
2! 3! ’

in the usual way. The product e*e € A can be expressed in the form 1+ u for some u € A with 0 as
its homogeneous component of weight 0, and

eXey = eZ(x,y),
where
n]un
zZ(x,y) = -1 —.
xy) = (D"
n>1

The Baker-Campbell-Hausdorff formula (see, for example, [14, §V.5]) gives z as a linear combination
of commutators in x and y, with rational coefficients. The first few components are given by

1 1 1 1 1
zZX,y)=x+y+ 5[x, yl+ E[X’X’ yl- E[y,x, ¥l - ﬁ[y,x,x, yl— ﬁ[x, X, XX, ¥y]

1 1 1
=Xy, ¥y, %91+ o=y, %, %, x, y] + ﬁ[y,y,x,x, vl

1
- m[x,y,x, Xyl - 360 360

1 1
+%[}’,y,y,xd’]‘F%[}’,X,X,X,X»Y]‘i‘"'-

It turns out that all the homogeneous components of z are Lie elements of A (that is, elements in
the Lie subalgebra of A generated by x and y with respect to the Lie product [a, b] = ab — ba), cf. [29,
Theorem 2.5.4].

A similar formula holds for commutators:

[ex’ ey] —eWy),
where
1 1 1 1 1
wx, y) =[xyl - z[xxy] - . % y]+ =[x xx y]+ [y, %%, Y]+ <[y, ¥, X, y]
2 2 6 4 6
][xxxx] 1[x X, y1 l[xxx] 1[X, yl
og %X X Y 12 Y, V. XY 12 Y, X, X, X,y 24}’,}’,}’, ,y

1
—[x, X, X, X, X,
+120[yl+

S. Cicald et al. / Journal of Algebra 352 (2012) 430-450 433

(Here [e*,eY] is the group commutator e *e Ye*e¥, and w(x, y) is an infinite sum of Lie elements
in A.)

Under some circumstances we can use these formulae to turn a Lie algebra (or a Lie ring) into a
group: if a and b are two elements in a Lie algebra L, define a group product % on L and the group
commutator [,]¢ by setting

1 1
axb=2z(@,b)=a+b+ -[a,bl+ —[a,a,b] +---,
2 12
1
[a,b]c=W(a,b)=[a,b]—E[a,a,b]+-~~.

Similarly, if G is a group, then we can sometimes invert these formulae. We have that e**V is equal
to e*eY times an infinite product of (group-) commutators in e* and e”, with rational exponents, and
of increasing weight (cf. [15, Lemma 10.7]). More specifically, if we define hi by hi(e*,eY) = e*™
then

19

hi(g,h) = ghlg, h1"2[g, g hl 2 [h, g, h12[g, g, g, h]"%[h, h, g, h1%[g, g, g, g h]~ 7
-lg.h. g, 8, h]’;’0 [g,h,h, g, 11]73770 h,g.8,8, h]% [h,h, g, g, h]’%

3

~[h,h,h,g,h]%[g,g,g,g,g,h] T60 ...

We call this the first BCH inverse formula.

In a similar way (see [15, Lemma 10.7]) we have that e®Y is an infinite product of commutators
in e¥ and e”, with rational exponents (of course, el*¥] = eXY=¥*), We define hy by hy(e*,eY) = el*V1;
then we have

1 1 1 1 1 1
ha(g,h) =1[g,hllg.g. hl2|h, g, h]2(g, g. g. h]3[h, g, g, hl%[h,h, g, h]3[g, g. g. g, h]4
1
: [g5 h? gs gs h]_llz[h’ g’ gv gv h]z[hv h, gs g’h]%[h’ hvh’ gv h]%[g’ ga g5 g5 g» h]% Tt

We call this the second BCH inverse formula.
Now we can define a Lie plus + and a Lie multiplication [,]; on G by setting

g+h:h1(g,h):gh[g,h]*% e
[g.hl. = hy(g, h) =[g. hilg, g h]? - --

Clearly there are several problems with these “formulae”, the main one being that they involve
infinite sums in Lie algebras and infinite products in groups. The simplest way of avoiding this
problem is to insist that the groups and Lie algebras be nilpotent. If the Lie algebra is nilpotent
of class ¢ then we can truncate the formulae for group multiplication and group commutator at the
weight ¢ terms. Similarly, if the group is nilpotent of class ¢ then we can truncate the formulae for
Lie plus and Lie multiplication at the weight ¢ terms. The other major problem is that the formu-
lae involve multiplication of Lie algebra elements by rational scalars, and involve extracting rational
roots of group elements. The simplest way of solving both these problems is to insist that the Lie
algebras be nilpotent Lie algebras over @, and to insist that the groups be torsion free radicable
nilpotent groups. This yields the Mal’cev correspondence mentioned in the introduction. To obtain
the Lazard correspondence for p > ¢ between the category of nilpotent Lie rings with order p" and
nilpotency class ¢ and the category of finite p-groups with order p" and nilpotency class ¢, we ob-
serve that the denominators of the coefficients of weight k terms in the Baker-Campbell-Hausdorff
formula only involve primes that are at most k. This means that if L is a nilpotent Lie ring of or-
der p" and class ¢ < p, then we can evaluate the coefficients in the truncated formulae for group

434 S. Cicalo et al. / Journal of Algebra 352 (2012) 430-450

product and group commutator as integers modulo p". Similar considerations apply to the inverse
formulae defining a Lie plus and a Lie product in a finite p-group of class ¢ < p, see [15, Sec-
tion 10.2].

Note that the right-normed Lie products in x and y are not linearly independent in a Lie algebra,
so there is no fixed way of expressing the BCH-formulae. Similar considerations apply to the inverse
formulae in a group. Furthermore, the inverse formulae in a group are sensitive to the ordering taken
on the right-normed group commutators in x and y.

It is important to realize that with the Lazard correspondence we have a single set which is si-
multaneously a group and a Lie ring. Similarly, with the Mal'cev correspondence we have a single
set, which is both a group and a Lie algebra. The group operations can be defined in terms of the
Lie operations and the Lie operations can be defined in terms of the group operations. Subgroups
are subalgebras, normal subgroups are ideals, the centre is the centre, the lower central series is the
lower central series, the automorphism group is the automorphism group.

3. Coefficients of the BCH-formula

As in the previous section we write eXeY = e?. The subspace TofA spanned by all Lie-commutators
in x and y is called the space of Lie-polynomials. The surprising fact, which is the main content of
the BCH-formula, is that z lies in this space.

At the basis of all our methods lies the BCH-formula. We need an expression for z as a linear
combination of commutators, truncated at a previously fixed weight c. Many methods to obtain this
have been proposed in the literature (for example, [3,7,21,24]). For our purposes the method outlined
in [21], based on results of Goldberg [12], is excellent: it is easy to implement, and produces the
formulae we want efficiently. In this section we briefly review this method. It proceeds in two steps:
first we write z as a linear combination of monomials in A, then we transform that into a linear
combination of commutators.

For the first step we use Goldberg’s method [12] for computing the coefficients of the monomi-
alsin z=2z(x,y). Let m>1 and sq,...,Sy be positive integers. Set 2y = x51y%2...(x v y)n, where
XV y is x (respectively, y) if m is odd (respectively, even). The definition of £2, is the same, start-
ing with y*1. Let cx and cy denote the coefficients of £, and £2, in z. For s > 1 define polynomials

Vs € Q[t] by

o Y1 =1,
o sy = St — sy, for s > 2.

Setn=Y " s, m=[%] m'= L"12;1J. Goldberg proved that

1

cx:(—l)"*lcy:/tm’(t—l)m”ufﬁ e, dt.

0

In practice this has proved to give a very efficient method to compute the coefficients of £2, £,
(cf. [21]).

The second step can be carried out using the Dynkin-Specht-Wever theorem [14, Chapter V, The-
orem 8], as observed in [27]. Here we describe a slight refinement of this procedure. We also write
x1 in place of x and x; in place of y. Let ¢ : A — L be the linear map defined by

[Xiy, ..., Xip] ifim=1,

Xi o Xi —
iy - Xip) {0 ifi, = 2.

Lemma 3.1. Let dy be the number of occurrences of x in x;, - - - X;,,. Then @([X;,, ..., Xi,, 1) = dx[Xi,, . . ., Xi, |-

S. Cicald et al. / Journal of Algebra 352 (2012) 430-450 435

Proof. As in [14, Section V.4], it can be shown that ¢ T — T is a derivation, i.e., ¢(la,b]) =[¢@(a), b]+
[a, ¢(b)]. Also note that the lemma is trivially true if m = 1. For m > 1 we get

O([Xiys - Xiy]) = [0, Xiys oo Xi |+ [Xir @ (Xiys -2 X1)]

If i1 =1, then by induction the second term is (dx — 1)[x;,, ..., X;,]. If i1 = 2 then the first term is
zero. In both cases we get the conclusion of the lemma. O

Now let a € I, written as linear combinations of monomials x;, - - - X;,,. Then we discard the mono-
mials ending in y. The others we transform into [;,, ..., x;,,] and divide by the weight in x. According
to the previous lemma, this way we get an expression for a as linear combination of brackets.

4. Notation

In Section 6 we describe our approach to computing the BCH inverse formulae. It is based on
a method for computing repeated commutators of e* and e”, which is outlined in the next section.
These sections are rather technical. For this reason, in this section we summarize some of the notation
that we use throughout. R

We recall the definition of the algebra A from Section 2. We also write x; in place of x and x; in
place of y. Also, for a € A, by [all; we denote the homogeneous component of weight ¢ of a. For the
homogeneous components of z € A (defined by e*e¥ = e*) we also write z; in place of [z]|.

For n > 2 we set

In={(3,....in) |ir € {1,2} for 3<r <n}.

When n = 2 this set consists of the empty sequence. We denote elements of I, by 7 or by k. We use
the convention that, after introducing such an element, its components are automatically defined, e.g.,
the components of k are denoted ks, ..., k;.

For 7 € I, we set

X; = [Xiy, ..., Xiz, X1, X2]. (1)

Throughout, as already said in Section 1, we use the right-normed convention for bracketed expres-
sions. Also we define the elements y; € Q by the equation

Zn = Z YiXi.

iely
We also write yp in place of y(); so yp = %
Example 4.1. We have
1 1 1 1
Z5 = —%[X,X, X, Xyl — m[& V. x, X% y]— %[X, V. y.x ¥+ ﬁ[y,x,x,x, vl

1 1
—[y, ¥, %X, —y, ¥, ¥, % Yyl
+]20[y y y]+720[y ¥, ¥, %]

Hence

436 S. Cicalo et al. / Journal of Algebra 352 (2012) 430-450

1 1 1
Yain = “750° Yaz2 = “120° Ye.2,1) = ~360°
—_— 1 . j—] . — 1
Ya.1,2) = 360° Ya,2,2) = 120° Y222 = 720"

Now, for a positive integer n we consider the sets J, and S, defined as

]n:{(jlw--’jn)‘jr>1f0r1<r<n},

and
5n={(51,...,sn)|1§51 <"'<5n}-

For the elements of J, and S;, that we denote by j and s respectively, we use the same convention
as for the elements of I,,. Also, for j € J, we define

5= D it
iely
where
&rj= ((_1)]2 _ (_1)]1)(_])i31'3+“'+injn.

Note that (—1)J2 — (=1)J1 is 0 if j; + jo is even, and it is £2 if j; + j» is odd.
Finally let P;, be the set of all ordered partitions (p1, ..., py) of t with length n. For its elements,
that we denote by p, again we use the same convention as for the elements of I.

5. Computing commutators

In this section we describe a formula for computing (the homogeneous components of) a repeated
commutator of e*! and e*2. For q > 2 and k € I; we define W by

ek =[eM, ... M, M e®].

(This is the group commutator, e.g., [e*1, e¥2] = e™*1e™X2e*1e*2) We also write w instead of W), as
in Section 2. _
Let k € Iy, and k' € Igy1 be such that ki =k; for 3 <i<q. Then

eW”(/ — [exkq-H , eW,}]’

which we will use to compute the homogeneous components of Wy, assuming we have those of Wy,
More precisely, we put X; = Xkg i1 and X = Wj. Using the BCH-formula we get expressions for the
homogeneous components of Y1, Y, € A, where e¥1 = e~Xte=X2 and e¥2 = eX1eX2, So we want to
know W = Wy, with the property e =e¥1e¥2, Now in order to obtain an expression for the homo-
geneous components of W we use the BCH-formula again. This then leads to the main theorem of
this section, Theorem 5.3.

The component of weight r of X7 is given by

X], ifT:],
0, otherwise.

[X11r = {

Also [X,]l; =0 for all r <q.

S. Cicald et al. / Journal of Algebra 352 (2012) 430-450 437

We write Z = Y;; so eZ =eX1eX2, We express Z in terms of X; and X3, and we let Z, denote the

homogeneous component of weight n in X1 and X» (e.g., X1 X2X7 is of weight 3). Then Z = Z@] Zn.
For 7 € I, we define

Xlr= Y [0 Dre e X0 Dy Xa X2, .

rp+-4rm=r—1
Lemma 5.1. The homogeneous component of weight r (in x; and xy) of Z, is given by

X1, ifr=1,
[X21;, otherwise,

[z11r = {
and, forn > 1

[Zallr =) vl Xillr.

1€ly
Proof. An expression for Z in terms of Xi, X3 is given by the BCH-formula. So

Z1=X1+X2 = [Z:1], =[X11r + [X21r-

Because X only has monomials of weight at least ¢ > 1 and [X1]l; =0 if r # 1, the first part is clear.
Let n > 1. From the BCH-formula we get

Zn=) viXi = [[zn]]rz[[ZwX;ﬂ =Y ylXde. O

1€ly 1€ly 1€ly
For j € J;, we put
Z;=IZj,,....Zj,].
Let p € Pt and consider the subset of J, defined as
Jo={ienlir<prfor1<r<nand j; > j2}.
For pe Py and j € Jp, we put

0Z0p = [[ZjuDpy> - [Z)iTpy]

Remark 5.2. Notice that [Z;], =0 if n>1 and r >n+q — 1. In fact, the term [X;]]; of least weight
in Zl-e,n ¥;[X;1lr is the one with 1 =(1,...,1) € I, that is

[Xa,...nlr=[X1, ... X1, X1, [X2Dr—nt1]-

But the weight of the homogeneous components of X, is at least q. Hence [X2ll;—nt+1 = O if
r—n+1<gq and this implies that [Z,]lr =0 for all r <n+q — 1. It follows also that, for p € P¢, and
J € Jp, we have [[Z;]l; =0 if there is an s with ps#1 and js > ps —q+1.

438 S. Cicalo et al. / Journal of Algebra 352 (2012) 430-450

Theorem 5.3. The component of weight t (in x1, x2) of W is given by the formula:

t
[WDe=Y (1+ED)Ze+ Y Y > 8512515 (2)

j=1 n=2pePin j€lp
Remark 5.4. Notice that [WT; =0 for all t <q + 1. Also

1 1)]-_{2, if j is even,

0, otherwise.

So, to calculate [W]]; using (2), in the first summand it is sufficient to consider [[Z;]l; for even j.
Moreover, since (—1)#2 — (—=1)J1 =0 if j; + jo is even, in the second summand it is sufficient to deal
with all Z; such that ji + j; is odd.

Proof of Theorem 5.3. Recall that Y1, Y5 € A are defined by e'! = e X1e7%2 e'2 = eX1eX2 Then eV =
[eX1,eX2] = e¥1eY2. By the BCH-formula we have Y; =)";5;(~=1)VZj, for i = 1,2. Again using the
BCH-formula, we get W = Z@] W, where W1 =Y+ Y5 and, forn > 1,

Wn=> Y
1€ly

(Here the definition of Y; is similar to the one of x; in (1).)
We prove that, for n > 1,

Wi= Y 8;Z;. (3)
J€n
J1>]2
For this, we need to show that
Y; = Z 8;,.,*21*. (4)
J€In
J1>1]2
We proceed by induction on n. For n =2 we have
[Y1,Y2] = [> (-1iz;, sz] = Y (D2 —(=1iNiz),. Z;,).

jz1 jz1 J1>j221

So for n =2 we get (4). By induction we get

[Yip,, Yil= [D (=imiiz;, Yl—}

jz1
— _1\in+1i 7. S _ 7.
[Z(iz s,,]z,] > gz
i1 J€In J€Int
J1>1]2 J1>]2

So (4) follows for all n > 2. Furthermore (3) is an immediate consequence of (4).

S. Cicald et al. / Journal of Algebra 352 (2012) 430-450 439

Now
Wi=Yi+Ya=)> (-1Zj+> 2;=> (1+(-1))z;
jz1 jz1 jz1
Therefore
[IW]]t:[I:ZWn:H :[[Z T+=D)Z+) > 85 z]]
n>1 t j>1 n>2 jejn
1>]2
¢
— 3 (14 uz]ut+z[[> a2
Jj=1]Gjp
J1>1]2
t _ t
=Y (1+ED)IZme+) 0 Y0 D451zl O
j=1 n=2pePtnjelp
Example 5.5. We calculate the series W = W), where eV = [eX, eW] = [e¥, e¥, e¥]. We have

1 1 1 1 1
w:[x,y]—E[x,x,y]—i[y,x,y]Jrg[x,x,x,yHZ[y,x,x,yHg[y,y,x,y]
1[xxxx] 1[x X, yl 1[xxx] 1[X, y]+
g XXX, Yy 12 YV, V. XY 12 V. X, X, X,y 24 Vv, ¥y, ¥,%Yy .
Now we put X; =x and X, = w and eZ = e*e". Then we have

(W13 =2[Z211s,

(W1ls =2[Z214 + 82,1 [[[2111, [Z2113].

(W15 = 2([Z215 + [Z4lls) + 82.1) ([[Z111, [Z21la] + [[Z1 112, [Z2113])
+ 821,10 [1Z111. [Z111, [Z213].

Now [Z111 =%, [Z1]ly = w1l for all r > 1, [Z21l; = yolx, [wll;—1] for all r > 3 and [[Z4]l5 = 0. Hence

1 7 1
Way=[xx,y]—[xxx,y] - E[y,x, X, y1+ 5[x,x,x,x, yl+ g[x,y,y,x, y]
1
T XXXyl

6. The BCH inverse formulae

We consider all eV for k € Iq4+1 and 2 < q < g, for a certain g > 2. We say that the length of such
an element is q + 1. For ¢ = 1, we have e"0 = e". We order these elements by increasing length
and, inside each length, in an arbitrary but fixed way. We denote these elements ordered like this

by eV2,...,eV¥, where N=21 =1+ 2321 29-1 (because for every g > 1 we have 29-! elements of
length g + 1). We denote by g; the length of eVs for 2 < s < N. Also we set e¥1 = e? =¢*1e*2 and we
put g1 =1.

440 S. Cicalo et al. / Journal of Algebra 352 (2012) 430-450

From Section 2 we recall that the first BCH inverse formula is given by hy, where hq(e*,e*?) =
e ™2 We have that hq(e¥,e*?) is a product of commutators in e*!, e*?> of increasing weight, with
rational exponents. Such a commutator is equal to an appropriate eVs. So we get h; from the following
equation

eX1tx2 — l_[eolsvs7 (5)

s>1

where o € Q with o1 = 1. In this section we describe a method for finding o for 2 <s < N. The
main point is that we find a formula for the homogeneous components of the right-hand side of (5),
in terms of the homogeneous components of the various V. Since we know the homogeneous com-
ponents of the left-hand side, and we have expressions for the homogeneous components of the V
(from Theorem 5.3), this leads to equations in the as. Moreover, if we proceed by increasing degree,
then these equations turn out to be linear.

Lemma 6.1. We have

e (14 T,

s>1 t2>q;s
where
[t/qs] n
asV _ S
[e=> = > [Vsllp - MVslp, (6)
n=1 """ pi+-+pp=t
P1s-oPn2Gs

Proof. We have

eXitx2 — l_[e%sVs — l_[(1 + Z[Ieasvs]]t>.
s>1 s>1 t>qs
Now
1 ol
RO I A T D ok L

n>1 n>1

Furthermore,

vil.= . [Vslp, - [VsDp,.

pi1t+-+pa=t
P1,--sPn>Gs

because [V]l =0 if t < gs. It follows that we must have t > ngs, or n < t/qs. So we get (6). O

For t,n > 1 consider the subset of P;, defined as

P{n={p€Prn|pr=qrfor1<r<n}

S. Cicald et al. / Journal of Algebra 352 (2012) 430-450 441

Note that Pf, =@ if n>t. For s€ Sy and p € Pf,, we put

[[eaivi]]:_; = [[easl Vs]]Pl . [[easn Vsn]]p" .

We observe that, if g, > p;, then [e%r s]|, = 0. So for fixed p € P}, we have that [[e“ivi]];g is
nonzero for only a finite number of s € S;,.

Theorem 6.2. The exponents oy, in (5), for n > 2, satisfy the equations

ZZ > [[6“5"3 —(X1 +x2)". (7)

n=15eS, peP;,

Proof. The component of weight t of e*'**2 is given by

1
e = 5 +x)"

We prove that it is also given by

[[ex1+xz]]t — Zt: Z Z [[eolEVg]];’

n=15eS, ;‘)ePin

where the [[e%rVs], are given by (6).
Using Lemma 6.1 we have that eX1+*2 = [Ts1(+ g, [e%"s 1)), which is equal to

s Vsy o [Te%sn Vsn

1+ > > e, e,
nz1S1<-<Sn p12qi,...Pn2qn

Hence

[en+]), = |I+Z Z Z [[ea51v51H _,[[eaSHVSH]]pn]]t

n>1S1<<Su p12qi,...pn2qn

DM Y

n=1seS, ﬁeP;n
Then we get the conclusion of the theorem. 0O

Note that (7) is linear in the s where s is such that g; =t. However, proceeding by increasing
weight, we may assume that the «; with gs <t already have been determined. So we get the o by
solving linear equations. We illustrate this procedure by an example.

Example 6.3. We want to calculate all the exponents «s in (5) up to weight 4. We order the commu-
tators in the following way:

442 S. Cicalo et al. / Journal of Algebra 352 (2012) 430-450

Vi=z,
Vo=w,
Vi=Wq, Vi=W,

Vs=Wqa,1, Ve=Wq 1), V7=Wq,2), Vg =W 2.

Since a1 =1, for t =2 we get

1 1 1
5(x+y>2 =Vila+elValle = S&+ =2+ Ez% + az[[wlla.

This is the same as (% + a2)[x, y] =0, whence o = —%. For t = 3 the equation becomes

1 1 1
s+ ¥ =0Vils — SVals +esllVslls + aallValls = S IVA IR IV2 1o,

that is

1 1 1 1 1
E(X +y)>3 =23+ 5(2122 +2221) + EZ? - EIIW]]3 +a3[W)lls + s [Wo)lls — 521 [wla,
and after expanding we find a3 = —1]—2 and o4 = 11—2 Proceeding in the same way, for t =4 we obtain

the equations o5 = —21—4, o +a7=0 and ag = 21—4. So we see that the solution to these equations is
not uniquely determined. We choose ag = a7 = 0. Then the series e¥* becomes

1 1 1 1 1
XtV —efe2We W enWR e mWaneaWes ...

Now we consider the second BCH inverse formula, given by hy(e*, eX2) = el*1:%2] (see Section 2).
Analogously to hy, we get h, from the equality

elx1:x2] — Heﬂsvs’ (8)

s>2

where B; € Q with 8, = 1. Again the goal is to find the 8 for all s > 3. The proof of the next theorem
is the same as the one for Theorem 6.2.

Theorem 6.4. The exponents S in (8), for s > 3, satisfy the equations

1

t t . .
Sy 3 [o | b s
p
0

n=15€Sy pePf, , otherwise.

7. Setting up the correspondence

Let G be a p-group of nilpotency class smaller than p. In this section we show how to compute
the Lie ring structure of G. From Section 2 we recall that this Lie ring structure is defined by g +h =
hi(g,h) and [g, h]; = ha(g, h). Moreover, in the previous sections we have shown how to compute
formulae for h; and hy that enable us to evaluate hi(g, h) and ha(g, h) for all g,h € G.

We assume that G is given by a consistent power-commutator presentation (cf. [26]). This means
that we have generators g1, ..., g, of G together with relations of the form

S. Cicald et al. / Journal of Algebra 352 (2012) 430-450 443

d® @)) .
g =g .g™ where1<i<nand dg.l) <p,

(.J) T
j+1 G.J)

(8), &ilc =84 @i.j)

--ga" wherel1<i<j<nandc¢” <p.

These relations can be used to write every element of G as a normal word gﬁl ... gt where 0 <
ej < p. The presentation is called consistent if G has order p", or equivalently, if different normal
words give different elements of G. In a group given by a consistent power-commutator presentation,
the collection algorithm (cf. [16,26,28]) can be used to compute the normal word representing the
product of two elements.

Now every g € G can also be expressed as a sum Y 1 ;;g;, with o; € Z. Indeed, write g =
g7 -gm". Then g =ejg; + R, with

R=—e1g1+g=g " +g=m(g". g) =g "gS.

where S lies in [G, G]. But [G, G] is contained in the subgroup generated by g3,...,g;. So R lies
in the subgroup generated by g, ..., g,. Hence, by induction, R = Z?:z «;gi, where o; € Z. Setting
o1 =e; we get g = Z';:] o;gi. In particular this implies that G, as a Lie ring, is also generated by
81,---58n-

We note that this argument also yields an algorithm for computing the «;, given the expo-
nents e;.

In order to compute the Lie ring structure we transform the power-commutator relations of G into
relations that hold in the Lie ring. That is, we compute [g;, g;], = h2(gj, &) which is then transformed
to a sum of the form Z?:l «o;gi, with o € Z. Similarly we compute pg; = glp, and transform it to a
sum of the same form. Using these we can compute the Lie commutator of any two elements of G,
and write it as a sum of generators Z?:] Bigi with 0 < 8; < p.

Once we have the Lie ring structure on G, we have two representations of g € G. The first is
as a product g = gi‘ ...gom which we call the product representation. The second is as a sum g =
Z?:1 «;gi, which we call the sum representation. It is important to note that both representations
give the same element. The different representations reflect the different operations that are used to
express the element in terms of the generators.

We can use the BCH-formula to efficiently switch between representations. As in Section 2 we
write gxh = z(g, h) for the result of evaluating the BCH-formula in g and h. This evaluation uses only
the operations of the Lie ring structure on G. By the Lazard correspondence we have that g« h = gh
(i.e., the result of evaluating the BCH-formula in g, h is equal to the product in G of g, h). Let g € G be
given in the product representation, g = gi' --- g;". Then g = g{" x---x g3" = (e181) *- - - (en&n). Since
evaluating the BCH-formula uses Lie ring operations only, the result of this is the sum representation
of g. Conversely, suppose that g is given as g =) | ; «;g. Then we write g = g‘f”P, where P =
(—181) * g. By evaluating the BCH-formula we get P = Y"1 , Bigi, and we continue with P. At the
end we obtain the product representation of g.

We can also perform these operations symbolically, since it is possible to evaluate z(}_;x;gi,
> vigi), where the x; and y; are indeterminates of a polynomial ring over Q. In this way we obtain
polynomials p1,..., pp in the indeterminates x;, y; such that

Z(> g, Zﬁi&) = pi@i,.... 0, B, B gi.
i=1 i=1 i=1

Since the operations of switching between the different representations involve the BCH-formula only,
we can do the same for them. That is, we can obtain polynomials fi,..., fs, t1,...,t; that depend
on n indeterminates, such that

444 S. Cicalo et al. / Journal of Algebra 352 (2012) 430-450
n
> filer, ... engi
i=1

is the sum representation of g --- g;", and

ti(an,....om) ta(@,....0m)

is the product representation of), c;g;.

Remark 7.1. The term T-group is short for a finitely-generated torsion-free nilpotent group (cf. [25,
§3.C]). Let G be a T-group, and we assume that it is given by a consistent power-commutator presen-
tation. This works in the same way as for p-groups, except that there are no power relations. In other
words, we have generators g1, ..., g, and relations
() i
Cit C](]!.J)

(g). 8ilc =847 -~ &n where1<i<j<nandc,(<"])eZ.

In this case every element of the group can be written as a unique normal word g? ...gom where
ej € Z.

A group G is called radicable if for all ge G and n € Z there exists a (necessarily unique) heG
such that h" = g (cf. [25, §6.A]). For a T-group G there exists a unique minimal radicable group G
containing G [25, §6.A]. This is called the radicable hull of G.

For a nilpotent radicable group G we can use the inverse BCH formulae to define a structure of
a Lie algebra over Q on G. This way we get a correspondence between nilpotent radicable groups
and nilpotent Lie algebras over Q. This is called the Mal’cev correspondence (see [15, §10.1]). If we
let G be the radicable hull of G, then the corresponding Lie algebra has dimension n, and is spanned
by g1,...,&. The multiplication table of the Lie algebra can be computed using the commutator
relations above. However, in this case some care is needed. In the formula

1 1
[gv h]L = [ga h]G[g’ g, h](z;[ha 8, h]é)

1

we have g, h € G, whereas, for example, [g, g, h]g € G. But we have no way of expressing that ele-
ment. We note, however, that all those elements lie in the radicable hull of the derived group [G, G].
By recursion we may assume that we have already constructed the Lie algebra corresponding to that
group. This Lie algebra is a subalgebra of the algebra that we are constructing. Therefore, by using
the BCH-formula, we can evaluate the right-hand side of the above expression in the Lie algebra of
the radicable hull of [G, G]. It follows that we can construct the Lie algebra corresponding to G. This
is similar to one of the approaches used in [2] to obtain the Lie algebra of the radicable hull of a
T-group. However, in that paper a different method to compute the brackets [g, h]; is used.

8. Implementation and practical experiences

We have implemented the algorithms described in this paper in the language of the computer
algebra system MAGMA V2.17 [4]. All running times reported in this section have been obtained on a
3.16 GHz processor.

To start we first compute the BCH-formula, and formulae for h1 and h;, up to a previously fixed
weight c. For computing the BCH-formula we use the method outlined in Section 3, whereas for hq
and hy we use the algorithms described in Section 6. We computed the formulae for ¢ =12, 13, 14;
the running times are displayed in Table 1.

From Table 1 we see that the number of terms of the formulae, unsurprisingly, roughly doubles
with each increase of the weight. However, the running times for hy, h, much more than double. So

S. Cicald et al. / Journal of Algebra 352 (2012) 430-450 445

Table 1
Running times (in seconds) for the algorithms to compute the BCH-formula and formulae for hy and h;. For each formula the
number of terms is also given. The first column has the weight ¢ up to which we compute the formulae.

c hy hy BCH
time # terms time # terms time # terms
12 526 1519 433 1517 0.13 985
13 2329 3055 2013 3053 0.47 2521
14 11137 6111 12493 6109 0.92 4056
1
2
/ x
1 _ 1
12 12
AR v N
1
0 — 0 0
S U U S 0 0 —L L
720 360 120 120 360 720

Fig. 1. Tree corresponding to the part of the BCH-formula up to weight 5.

it will be possible to go a bit further, until c = 15, or even ¢ = 16. But we cannot realistically hope to
go much beyond that. It is also seen that the algorithm for computing the BCH-formula is much more
efficient than the algorithms for computing its inverses. For this reason it is possible to compute the
BCH-formula up to a higher weight (like ¢ = 20).

Currently, our programs use the formulae until weight 14, which are stored in a file. This means
that currently our programs are able to cope with groups of classes up to 14.

The main operation of our algorithms is the evaluation of the BCH-formula for given elements x, y
of a nilpotent Lie ring, and the formulae for hy and h; for given elements g, h of a p-group. In order
to do this efficiently, we encode these formulae as labeled binary trees. We describe how the tree
is defined for the BCH-formula, z(x, y) =x+ y + %[x, yl+ ---. The edges of the tree are labeled x
or y. And every node corresponds to a (right-normed) commutator. The root of the tree corresponds
to [x, y]. In order to determine the commutator corresponding to any other node, we take the path to
the root, and record the labels. Suppose that the labels that we encounter are x;,, ..., Xj,, where x;,
is the label of the edge closest to the node we are considering, and x;, is the label of the last edge,
connected to the root. Then the corresponding commutator is

[Xiys .05 X5, X, Y]

Finally, every node has a label, which is the coefficient of the corresponding commutator in the
BCH-formula. Note that this means that some of the nodes have label 0. Fig. 1 displays the tree
corresponding to the BCH-formula up to weight 5.

Let T, denote the tree corresponding to the BCH-formula, containing the terms up to weight c. In
order to evaluate the BCH-formula for given x, y in a Lie ring of nilpotency class < ¢, we traverse T,
“breadth first”. That is, we loop through all the nodes of depth k, and after that through all the nodes
of depth k + 1, and so on. Every node corresponds to an element of the Lie ring, called its value,
which is the corresponding commutator evaluated in x and y. When looping through the nodes of
depth k+ 1 we use the stored values corresponding to the nodes of depth k. So for every new value
we need to perform one multiplication in the Lie ring.

Initially we set zop = x+ y. For every node that we encounter, with label ¢ and value v, we add cv
to zp. Then after having traversed the entire tree we have zp = z(x, y). This approach is very efficient

446 S. Cicalo et al. / Journal of Algebra 352 (2012) 430-450

Table 2

Running times (in seconds) for the algorithm to construct a Lie ring of a p-group via
the Lazard correspondence. The first column displays the prime and the second has
the class. The third and fourth columns have respectively the size of Gg and the time
to construct its Lie ring. The fifth and sixth columns have the same data for H;.

p c IG5 time [Hpl time
17 13 p38 0.2 p37 0.15
211 13 p38 24 p*7 018
17 14 p* 0.4 p*8 0.27
211 14 p* 5.7 p*8 037

for two reasons: every new value comes at the cost of performing one multiplication in the Lie ring,
and if a value turns out to be 0, then we can discard the entire subtree below it.

Remark 8.1. This approach also works for evaluating h; and h,. However, for these two formulae
some care is needed when traversing the tree: we must make sure that the commutators appear in
the same order as in the formulae.

Now in order to test the algorithm for computing the Lie ring corresponding to a p-group (of class
< p) we use the following sample groups. For a prime p let

Gp=(a,b|la,b,b,a,b],[a,a, b], a”’, bP),

and we let G; be the p-quotient of class ¢ of G,. Also, let

Hp=(a,b|[b.a,a,a,b],[b,a,b] aP, bP),

and we let Hj, be the p-quotient of class ¢ of Hp.

We have constructed the Lie rings corresponding to G; and Hf, for c=13,14 and p =17, 211.
The running times that we obtained are shown in Table 2.

We see that it is no problem at all to construct the Lie ring of a p-group of class 13 or 14. The
running times for the construction of the Lie rings of G‘I; and H; are nearly equal for small primes.
However, for large primes the construction of the Lie ring of G; needs markedly more time. We
believe that this is due to the fact that in G}, for large p the collection algorithm, used for multiplying
elements, on the average takes more time than in Hf, for large p.

9. Applications

In this section we briefly discuss two applications of the effective version of the Lazard correspon-
dence.

9.1. Hall polynomials

We observe that the Lazard correspondence can be used to multiply two elements g, h (given in
product representation) in a p-group G. Indeed, for this we first get the sum representations of g
and h, then compute g *h, and return the product representation of that element.

Alternatively, we can compute the polynomials pj, fi, t; defined at the end of Section 7, and
substitute them into each other, in the obvious way, to get polynomials q1, ..., qn, depending on 2n
indeterminates, such that after evaluating

vi=gqier,...,en,d1,...,dn),

S. Cicald et al. / Journal of Algebra 352 (2012) 430-450 447

Table 3

Running times (in seconds) for the algorithms for comput-
ing the Hall-polynomials. The first column has the group, the
second and third, respectively, the running times for comput-
ing the Lazard polynomials using the algorithm based on the
Lazard correspondence, and the Deep-Thought algorithm.

group Lazard DT

Gl 65.5 74.2
Gl4 66.4 715
Hit 69.6 59.2
Hi3, 65.1 59.6

we get that

€1 e dq d Vi v
g] ...gn”.g] ...gn”=g] ...gn”.

In [13], P. Hall showed the existence of such polynomials; for this reason they are called Hall-
polynomials. We conclude that for p-groups of class < p, the effective version of the Lazard corre-
spondence yields an algorithm to compute Hall-polynomials. We have implemented this algorithm in
MAGMA.

The coefficients of the g; lie in Q. Alternatively, if the exponent of G is p¥, then we can coerce
the coefficients into Z/p*Z. If k > 1 then it may happen that some of the v; are greater than p — 1.
In that case some further operations have to be performed to get the exponents of the normal word
representing the product. In our implementation these operations are simply performed by the built-
in MAGMA collector. The extra collections needed are quite simple, and take virtually no time. Also, if
the group has exponent p, then the coefficients of the polynomials can be coerced into Fy. In that
case they directly give the exponents of the normal word.

Leedham-Green and Soicher [17] developed an algorithm, called Deep-Thought, for computing Hall-
polynomials for any finitely-generated nilpotent group. They also showed how the extra operations,
to get all exponents smaller than p, can be performed with polynomials. This algorithm has been
implemented in GAP by Merkwitz [19]. The current version of GAP [10] contains this implementa-
tion (although it does not appear to be documented). We have compared the running times of this
implementation and ours for the groups G; and Hg, for c =14 and p =31, 101. The results are
displayed in Table 3. The two algorithms are implemented in different systems: the Deep-Thought
algorithm in GAP is partly implemented in the kernel, and partly in the GAP language, whereas the
Lazard correspondence is implemented entirely in the MAGMA language. The raw timing figures look
pretty comparable, but it is difficult to draw any conclusions since the two programs are running on
different systems.

Remark 9.1. We have also performed experiments with the Hall-polynomials, using them for do-
ing multiplications in p-groups. For this we have taken a thousand pairs of random elements in
groups G},“ and H}J“, for various p, and compared the running times of the multiplications using the
Hall-polynomials and using the built-in MAGMA collector. It turned out that the time needed for mul-
tiplication using the Hall-polynomials was roughly constant for all primes. This is no surprise, as a
multiplication boils down to evaluating a set of polynomials at a point. However, the built-in MAGMA
collector needs almost no time when the prime is small (e.g., p =31), but when the prime increases
it needs more time. This is to be expected because the average exponents of the random words get
bigger. It turned out that the cross-over point, where the Hall-polynomials start beating the MAaGMA
collector is around primes of the order of magnitude of 150. For example, a thousand random mul-
tiplications in G}& took 95.5 seconds with the Hall-polynomials, and 8.9 seconds with the MAGMA
collector. But in G% the respective timings were 96.0 seconds and 213.9 seconds. We conclude that
for small primes p it is better to use collection for doing multiplications in p-groups. However, when

448 S. Cicalo et al. / Journal of Algebra 352 (2012) 430-450

p gets bigger, the extra effort to compute the Hall-polynomials does pay off. Furthermore, this com-
parison depends also on the efficiency of the implementation of the collection algorithm. The collector
for p-groups in MAGMA is very efficient, and coded in the MAGMA C-kernel, whereas our programs are
written in the MAGMA programming language, which inherently makes them a bit less efficient. Ex-
periments reported in [17] (partly taken from the diploma thesis of Merkwitz [19]) are more positive
for the approach with the Hall-polynomials. We believe that in those experiments the multiplica-
tion with polynomials was tried against a much less optimized collector. Also, we remark that the
polynomials can be used for other purposes as well (see below for an example), not just for doing
multiplication.

9.2. Faithful modules

As a second application we consider the problem of computing a faithful matrix representation.
Let G be a p-group of exponent p and class ¢ < p. Then the corresponding Lie ring is a Lie alge-
bra over Fy. Let p : G — M;(F)) (the set of s x s-matrices over Fp,) be a faithful representation of
G as a Lie algebra. Suppose that p(g)¢ =0 for all g € G. (We note that such a representation can
be computed using the methods of [6].) Then we can define pe : G — M;(Fp) by 0.(g) = exp p(g).
By the BCH-formula, and the Lazard correspondence, this gives a faithful representation of G as a
group.

The same approach works for a T-group. Nickel has given a very efficient method for computing a
faithful representation of such a group in [22]. Briefly, this works as follows. Let G be a T-group, with
polycyclic generators g1, ..., gs. Then G acts on the dual (QG)* by g- f(a) = f(g'a). Now consider
the linear functions t; € (QG)* given by t,-(g‘l31 ... gty = e;. Nickel proved that the G-submodule M of

(QG)* generated by tq, ..., t, is faithful and finite-dimensional. In order to compute a basis of it, note
that there are polynomials g; j € Q[x1, ..., X,] such that
_ q1.j€1,..., en) qn,j(e1,..., en)
grlgt g =gy g 9)
Moreover, R = Q[x1,...,X;] can be viewed as a subspace of (QG)* by identifying a polynomial
h with the linear function that maps g° ---g'" to h(eq,...,e;). With this identification gj-h=
h(q1,j,....qn,j). So R is a G-submodule of (QG)*. Furthermore, the module M defined above is con-

tained in R. Hence a basis of M can be computed by repeatedly substituting the gq; ; into other
polynomials. This makes this method very efficient. It can also be applied to p-groups of exponent
p as in that case the associated Lie ring is in fact a Lie algebra over Fp. It is doubtful whether
a method based on constructing the Lie algebra first, and then constructing a module of that, will
be more efficient. Here we will not investigate that. Instead, we note that it is also possible to use
the inverse route and get an algorithm for computing a faithful module of a nilpotent Lie algebra L
over Q. Indeed, the BCH-formula defines the structure of a radicable nilpotent group on L. Take a
basis g1,...,gn of L such that g;,,..., gy is a basis of the k-th term of the lower central series of L,
and iy <iy <--- <i.. Viewing L as a group, we get commutator relations

SR) o (i)
[gj,gi]G:ng-ngn" where 1 i< j<nandc, " €Q.
Furthermore, using the BCH-formula, we can compute polynomials g; j with (9). Using these, we
compute a basis of the module M, generated by the functions t;. This yields a (group-) representation
p:L— GL(d, Q), where d =dim M. For g € L the matrix p(g) is unipotent. We define p; by p/(g) =
log(p(g)); then g is a faithful (Lie algebra-) representation of L.

In fact, if we construct the basis of L in such a way that it contains a basis of the centre of L, then
it is enough to take the t; that correspond to the basis elements of the centre, as generators of the
module. Indeed, then the centre will act faithfully, and that implies that the whole Lie algebra acts
faithfully. This, in most cases, leads to a smaller dimensional module.

S. Cicald et al. / Journal of Algebra 352 (2012) 430-450 449

Table 4

Running times (in seconds) for the algorithms “Mal’cev” and “Dual” for constructing a faithful representation of a nilpotent Lie
algebra. The first column has the Lie algebra, the second and third columns its dimension and class. The next two columns have
the running time and dimension of the computed module for the algorithm “Mal’cev”. The last two columns have this data for
the algorithm “Dual”.

L dim class Mal'cev Dual

time dim time dim
f13 13 12 1.4 43 7.9 43
f14 14 13 3.0 53 16.0 53
f15 15 14 7.2 64 345 64
Nao 127 9 62.6 269 75.6 214
N3¢ 196 6 76.3 289 170.8 296
N4 s 294 5 314.8 357 366.0 400
Ns 4 205 4 91.2 244 103.7 251

In Table 4 we collect some experimental data regarding this algorithm. The algorithm “Mal’cev” is
the one described above, whereas “Dual” is one of the algorithms considered in [6]. The Lie algebras
fn are described in [6], and Np . is the free nilpotent Lie algebra with m generators, of nilpotency
class c. The algorithm “Mal’cev” is faster on all examples. However, for some inputs “Dual” yields a
module of smaller dimension. On other inputs “Mal’cev” also wins in this respect.

References

[1] Bjérn Assmann, Guarana. A GAP4 package, http://www.gap-system.org/Packages/guarana.html, 2007.
[2] Bjorn Assmann, Stephen Linton, Using the Mal'cev correspondence for collection in polycyclic groups, J. Algebra 316 (2)
(2007) 828-848.
[3] Asok Bose, Dynkin's method of computing the terms of the Baker-Campbell-Hausdorff series, J. Math. Phys. 30 (9) (1989)
2035-2037.
[4] W. Bosma,]. Cannon, C. Playoust, The Magma algebra system. I. The user language, in: Computational Algebra and Number
Theory, London, 1993, J. Symbolic Comput. 24 (3-4) (1997) 235-265.
[5] N. Bourbaki, Groupes et Algebres de Lie, Chapitre II, Hermann, Paris, 1972.
[6] Dietrich Burde, Bettina Eick, Willem de Graaf, Computing faithful representations for nilpotent Lie algebras,]. Alge-
bra 322 (3) (2009) 602-612.
[7] Fernando Casas, Ander Murua, An efficient algorithm for computing the Baker-Campbell-Hausdorff series and some of its
applications, J. Math. Phys. 50 (3) (2009), 033513, 23 pp.
[8] Serena Cicalo, Willem A. de Graaf, LieRing. A GAP package, http://science.unitn.it/~degraaf/liering.html, 2011.
[9] Anton Evseev, Higman’s PORC conjecture for a family of groups, Bull. Lond. Math. Soc. 40 (3) (2008) 415-431.
[10] The GAP Group, GAP - groups, algorithms, and programming, version 4.4, http://www.gap-system.org, 2004.
[11] G. Glauberman, A partial extension of Lazard’s correspondence for finite p-groups, Groups Geom. Dyn. 1 (4) (2007) 421-
468.
[12] Karl Goldberg, The formal power series for loge*e”, Duke Math. J. 23 (1956) 13-21.
[13] P. Hall, Nilpotent Groups: Notes of Lectures Given at the Canadian Mathematical Congress, University of Alberta, 1957.
[14] N. Jacobson, Lie Algebras, Dover, New York, 1979.
[15] E.I. Khukhro, p-Automorphisms of Finite p-Groups, London Math. Soc. Lecture Note Ser., vol. 246, Cambridge University
Press, Cambridge, 1998.
[16] C.R. Leedham-Green, L.H. Soicher, Collection from the left and other strategies, J. Symbolic Comput. 9 (1990) 665-675.
[17] C.R. Leedham-Green, Leonard H. Soicher, Symbolic collection using deep thought, LMS J. Comput. Math. 1 (1998) 9-24
(electronic).
[18] A.L. Mal'cev, On some classes of infinite soluble groups, Mat. Sb. (N.S.) 28 (70) (1951) 567-588.
[19] Wolfgang W. Merkwitz, Symbolische Multiplikation in nilpotenten Gruppen mit Deep-Thought, Master's thesis, RWTH
Aaachen, 1997.
[20] M.F. Newman, E.A. O'Brien, M.R. Vaughan-Lee, Groups and nilpotent Lie rings whose order is the sixth power of a prime,
J. Algebra 278 (1) (2004) 383-401.
[21] Morris Newman, Robert C. Thompson, Numerical values of Goldberg's coefficients in the series for log(e*e¥), Math.
Comp. 48 (177) (1987) 265-271, with microfiche supplement.
[22] Werner Nickel, Matrix representations for torsion-free nilpotent groups by deep thought, J. Algebra 300 (1) (2006) 376-383.
[23] E.A. O'Brien, M.R. Vaughan-Lee, The groups with order p’ for odd prime p, J. Algebra 292 (1) (2005) 243-258.
[24] Matthias W. Reinsch, A simple expression for the terms in the Baker-Campbell-Hausdorff series, J. Math. Phys. 41 (4)
(2000) 2434-2442.
[25] D. Segal, Polycyclic Groups, Cambridge University Press, 1994.
[26] C.C. Sims, Computation with Finitely Presented Groups, Cambridge University Press, Cambridge, 1994.

http://www.gap-system.org/Packages/guarana.html
http://science.unitn.it/~degraaf/liering.html
http://www.gap-system.org

450 S. Cicalo et al. / Journal of Algebra 352 (2012) 430-450

[27] Robert C. Thompson, Cyclic relations and the Goldberg coefficients in the Campbell-Baker-Hausdorff formula, Proc. Amer.
Math. Soc. 86 (1) (1982) 12-14.

[28] M.R. Vaughan-Lee, Collection from the left,]. Symbolic Comput. 9 (1990) 725-733.
[29] Michael Vaughan-Lee, The Restricted Burnside Problem, second ed., London Math. Soc. Monogr. Ser. (N.S.), vol. 8, Clarendon
Press/Oxford University Press, New York, 1993.

	An effective version of the Lazard correspondence
	1 Introduction
	2 The Baker-Campbell-Hausdorff formula
	3 Coefﬁcients of the BCH-formula
	4 Notation
	5 Computing commutators
	6 The BCH inverse formulae
	7 Setting up the correspondence
	8 Implementation and practical experiences
	9 Applications
	9.1 Hall polynomials
	9.2 Faithful modules

	References

