IMAGING OF SEPARATE SCATTERERS BY MEANS OF A MULTISCALING MULTIREGION INEXACT-NEWTON APPROACH

G. Oliveri¹, A. Randazzo², M. Pastorino², and A. Massa^{1, *}

¹ELEDIA Research Center, Department of Information Engineering and Computer Science, University of Trento, Via Sommarive 14, Trento 38050, Italy

²Department of Biophysical and Electronic Engineering, University of Genova, Via Opera Pia 11 A, Genov 16145, Italy

Abstract—The integration of the Iterative Multi-Scaling Multi-Region (IMSMR) procedure and the Inexact-Newton method (INM) is proposed within the contrast-field formulation of the inverse scattering problem. Thanks to its features, such an implementation is expected to effectively deal with the reconstruction of separated objects. A selected set of numerical results is presented to assess the potentialities of the *IMSMR-INM* method also in comparison with previous *INM*-based inversions.

1. INTRODUCTION AND MOTIVATION

Non-invasive and non-destructive testing applications [1, 2] including biomedical imaging [3-5], subsurface prospecting [6], and material characterization [7] require fast and reliable microwave imaging techniques [8-10]. The development of inverse scattering methodologies comply-ing with these requirements is a challenging task because of (I) the ill-posedness/ill-conditioning and (II) the non-linearity of the associated inverse problems [11]. As for the "local minima" issue, which is due to the *non-linear* nature of the inverse problem and the limited amount of information coming from the scattering data [21], the use of global optimization techniques [12-15], alternative problem formulations (e.g., *Contrast Source, Born*, or *Rytov* formulations [16-18]), and multi-resolution strategies [19, 20] has been proposed. On

Received 14 May 2011, Accepted 10 June 2011, Scheduled 15 June 2011

^{*} Corresponding author: Andrea Massa (andrea.massa@ing.unitn.it).

the other hand, several direct and indirect regularization approaches have been developed to mitigate the *ill-posedness/ill-conditioning* of the inversion [22, 23].

A promising approach to simultaneously address the theoretical difficulties (I) and (II) has been recently introduced by integrating a regularization technique with a local-minima-mitigation approach [24, 25]. Indeed, the so-called Iterative Multi-Scaling Inexact-Newton method (*IMSINM*) approach exploits, on the one hand, the regularization features of the *INM* [23] and, on the other, the effectiveness of the multi-focusing scheme to achieve high resolutions while reducing or avoiding local minima [19, 20]. The reliability and the numerical efficiency of the arising methodology has been preliminary assessed in [24, 25]. Despite these good performances, only a single "focusing" region has been considered during the inversion [24, 25] and reduced performances are expected when dealing with separated scatterers.

The aim of this work is to extend the method in [24, 25] to effectively retrieve multiple non-connected objects. Towards this end, the approach in [20] is nested within the *INM* and, unlike [25], separated regions-of-interest are dealt with to yield an Iterative Multi-Scaling Multi-Region Inexact Newton method (*IMSMR-INM*, Section 2). Representative numerical results are then presented in Section 3 to point out the improvements achievable over the singleregion implementation [24, 25].

2. OUTLINE OF THE IMSMR-INM

With reference to a two-dimensional *TM*-illuminated scenario, the following integral equations relate the scattered $[E_v^{scatt}(\mathbf{r}) \triangleq E_v^{tot}(\mathbf{r}) - E_v^{inc}(\mathbf{r})]$, the total $[E_v^{tot}(\mathbf{r})]$, and the incident $[E_v^{inc}(\mathbf{r})]$ fields to the dielectric properties of a set of unknown scatterers described by the contrast function distribution $\tau(\mathbf{r}) = \varepsilon_r(\mathbf{r}) - 1$ [19] $[\varepsilon_r(\mathbf{r})$ being the relative dielectric permittivity] and embedded in a free-space background, ε_0 and μ_0 being its permittivity and permeability, respectively,

$$E^{scatt}(\mathbf{r}_m^v) = -k_0^2 \int_{\Omega} \tau(\mathbf{r}') E_v^{tot}(\mathbf{r}') G(\mathbf{r}_m^v/\mathbf{r}') d\mathbf{r}', \quad \mathbf{r}_m^v \in C$$
(1)

$$E_v^{inc}(\mathbf{r}) = E_v^{tot}(\mathbf{r}) + k^2 \int_{\Omega} \tau(\mathbf{r}') E_v^{tot}(\mathbf{r}') G(\mathbf{r}/\mathbf{r}') d\mathbf{r}', \mathbf{r} \in \Omega \quad (2)$$

where $k_0 = \sqrt{\varepsilon_0 \mu_0}$, *C* is the measurement curve external to the investigation domain Ω and where *M* measurement points \mathbf{r}_m^v , $m = 1, \ldots, M$, are located. Moreover, $G_{2D}(\mathbf{r}/\mathbf{r}')$ is the 2*D* Green's

Progress In Electromagnetics Research M, Vol. 18, 2011

function [19] and the superscript v(v = 1, ..., V) identifies the *v*th direction of incidence of the probing monochromatic wave whose time-dependence $\exp(j2\pi ft)$ is assumed and omitted hereinafter. The objective of the reconstruction procedure is that of inverting (1) and (2) to find the unknown distributions of $\tau(\mathbf{r})$ and $E_v^{tot}(\mathbf{r})$ in Ω starting from the knowledge of $E_v^{inc}(\mathbf{r})$, $\mathbf{r}_{\in}\Omega$, and $E_v^{scatt}(\mathbf{r}_m)$, $\mathbf{r}_m^v \in C$.

To image effectively multiple objects, a generalization of the approach in [24] able to identify and zoom on different sub-regions of the domain is needed. Towards this end, Equations (1) and (2) are firstly rewritten in a more compact form as $\mathbf{F}\{\mathbf{u}\} = \mathbf{d}$, where $\mathbf{u} \triangleq [\tau(\mathbf{r}); E_v^{tot}(\mathbf{r}), v = 1, \ldots, V]^T$, $\mathbf{d} \triangleq [E_v^{scatt}(\mathbf{r}_m^v), v = 1, \ldots, V, m = 1, \ldots, M; E_v^{inc}(\mathbf{r}_n), v = 1, \ldots, V]^T$, and \mathbf{F} is the Lipmann-Schwinger nonlinear scattering operator in (1) and (2) [24]. By partitioning at each step $(s = 1, \ldots, S, s$ being the step index) of the multiscaling process the investigation domain into N (N being the number of degrees of freedom of the scattered field [21]) cells centered at $\mathbf{r}_n^{(s)}(n = 1, \ldots, N)$ [26], the following algebraic nonlinear equation is then obtained

$$\mathbf{P}^{(s)}\left\{\mathbf{u}^{(s)}\right\} = \mathbf{F}^{(s)}\left\{\mathbf{u}^{(S)}\right\} - \mathbf{d}^{(s)} = 0$$
(3)

where $\mathbf{d}(s) \triangleq \begin{bmatrix} E_v^{scatt}(\mathbf{r}_m^v), v = 1, \dots, V, m = 1, \dots, M; E_v^{inc}(\mathbf{r}^{(s)_n}), \\ v = 1, \dots, V, n = 1, \dots, N \end{bmatrix}^T, \mathbf{u}^{(s)} \triangleq \begin{bmatrix} \tau(r_n^{(s)}), n = 1, \dots, N; E_v^{tot} \mathbf{r}_n^{(s)}, \\ v = 1, \dots, V, n = 1, \dots, N \end{bmatrix}^T, \mathbf{F}^{(s)}$ being the discretized version of \mathbf{F} .

To solve (3) also taking into account the multi-region distribution of the unknown scatterers, the following operations are repeated:

- Clustering It is aimed at computing the number $Q^{(s)}$ and the locations/sizes of the regions-of-interest (*RoIs*) where the scatterers have been estimated to lie and where the synthetic zoom will take place. Such a task is carried out by firstly binarizing the pixel representation of the estimated contrast profile by means of a thresholding procedure based on the "image" histogramconcavity analysis [20] and then applying a noise filtering. Finally, a "labeling" is performed to estimate the membership of each pixel either to the background or to one of the *RoIs* [20];
- Retrieval It is devoted to retrieve the dielectric profiles in each of the $Q^{(s)}$ RoIs. Towards this end, the following nested phases are iteratively performed by solving (3) in a regularized sense (according to the IN method) until the retrieved profile $\mathbf{u}_{I}^{(s)}$ is found ("outer IN loop", i = 1, ..., I):

-Linearization. A Taylor expansion of $\mathbf{P}^{(s)}\{\mathbf{u}^{(s)}\}\$ around to $\mathbf{u}_{i}^{(s)}(\mathbf{u}_{0}^{(s)} = \mathbf{u}_{I}^{(s-1)})$ is computed and then truncated at the first

order to determine the linear approximation $\mathbf{L}_{i}^{(s)} \{\mathbf{u}^{(s)}\}$ [24]; -*Update.* The guess solution is updated $(\mathbf{u}_{i+1}^{(s)} \triangleq \mathbf{u}_{i}^{(s)} + \mathbf{h}_{i}^{(s)})$ by determining \mathbf{h}_{i} . Towards this end, the equation $\mathbf{L}_{i}^{(s)} \{\mathbf{u}_{i}^{(s)} + \mathbf{h}_{i}^{(s)} = 0$ is iteratively solved through K steps of a truncated Landweber procedure [27] ("inner IN loop");

• Termination — It is aimed at assessing whether a "stationary" reconstruction is yielded in each region. More specifically, the multistep process is terminated $(s = S_{opt})$ when (a) the number, the dimensions, and the locations of the *RoIs* are stationary [20] and (b) the qualitative reconstructions of the unknowns $\mathbf{u}_{I}^{(s)}$ is accurate [23].

3. NUMERICAL RESULTS

The potentialities and limitations of the *IMSMR-INM* are assessed against synthetically-generated data. More specifically, the so-called "*E-L*" has been taken into account. It is com-posed by two homogeneous dielectric objects [Fig. 1(a)] belonging to a square investigation domain of side $\ell = 24\lambda$ illuminated by V = 2.4 *TM* plane waves impinging from the angular directions $\vartheta_v = 2\pi(v-1)/V$, $v = 1, \ldots, V$. The scattered field has been synthetically computed through the Richmond method [26] at M = 360 positions uniformly distributed on the circular measurement region *C* of radius $\rho = 18\lambda$. The *Bare-INM*, the *IMS-INM*, and the *IMSMR-INM* inversions have been carried out by setting K = I = 60 and choosing the maximum number of multi-focusing steps equal to S = 5.

By considering weak scatterers ($\tau = 0.5$) and noiseless data, the results from the different *INM*-based approaches are shown in Figs. 1(b)–1(d). Although both the *Bare-INM* and the *IMS-INM* allow one to identify the presence and the positions of two different objects, the reconstruction accuracy as well as the capability to avoid artifacts of the *IMSMR-INM* turn out to be significantly enhanced. This is quantitatively confirmed by the values of the error figures in

Table 1 and defined as
$$\xi_{\alpha} = \frac{1}{N_{\alpha}} \sum_{n=1}^{N_{\alpha}} |\tilde{\tau}(\mathbf{r}_n) - \tau(\mathbf{r}_n)| / |\tau(\mathbf{r}_n) + 1| (\alpha = tot, ext, int)$$
 where N_{α} is the number of discretization domain of the

whole investigation domain ($\alpha = tot$), within the scatterer ($\alpha = int$) or in the background region ($\alpha = ext$). Moreover, $\tilde{\tau}$ and τ stand for the retrieved contrast and the actual one, respectively. As it can be noticed (Table 1), the *IMSMR-INM* yields a total error of about 47% of that from the *Bare-INM* and approximately 69% of that

Figure 1. $[\tau = 0.5]$ -Actual distribution (a) Reconstructed profile with (b)(e) the *Bare-INM*, (c)(f) the *IMS-INM*, and (d)(g) the *IMSMR-INM* in correspondence with (b)(c)(d) noiseless data and (e)(f)(g) noisy data (SNR = 6 dB).

Table 1. $[\tau = 0.5]$ -Error and computational indexes.

	Noiseless				SNR = 6 dB			
Method	ξ _{tot}	ξ _{int}	ξ _{ext}	Δt [s]	ξtot	ξ _{int}	ξ _{ext}	Δt [s]
Bare	6.34×10 ⁻²	1.63×10^{-1}	5.44 × 10 ⁻²	5.40 × 10 ³	6.90×10^{-2}	1.64 × 10 ⁻¹	6.04×10^{-2}	5.03 × 10 ³
IMS-INM	4.33×10 ⁻²	1.28×10^{-1}	3.57 × 10 ⁻²	1.38 ×103	5.65×10^{-2}	1.38 × 10 ⁻¹	4.88 × 10 ⁻²	1.33 × 10 ³
IMSMR-INM	3.01 × 10 ⁻²	1.00×10^{-1}	2.37 × 10 ⁻²	1.28×10^{3}	4.66×10^{-2}	1.31 × 10 ⁻¹	3.89 × 10 ⁻²	1.30 × 103

with the *IMS-INM* (i.e., $\xi_{tot}^{Bare} = 6.34 \times 10^{-2}$, $\xi_{tot}^{IMS} = 4.33 \times 10^{-2}$, $\xi_{tot}^{IMSMR} = 3.01 \times 10^{-2}$). Similar conclusions hold true for the internal $(\frac{\xi_{int}^{IMSMR}}{\xi_{int}^{IMSMR}} = 0.61, \frac{\xi_{int}^{IMSMR}}{\xi_{int}^{IMS}} = 0.78)$ and the external $(\frac{\xi_{ext}^{IMSMR}}{\xi_{ext}^{Ext}} = 0.43, \frac{\xi_{ext}^{IMSMR}}{\xi_{ext}^{IMS}} = 0.92)$ indexes, as well. For completeness, Fig. 2 and Table 2 give the evolution of the reconstructions and of the error metrics at different steps of the multi-resolution implementations of the *INM*, respectively.

As far as the robustness to the data noise is concerned, inversions of blurred data have been successively analyzed. The noise, which

Figure 2. $[\tau = 0.5]$, Noiseless data]-Evolution of the reconstruction at different steps [(a)(b) s = 1, (c)(d) s = 2, (e)(f) $s = S_{opt} = 3$] of the multi-resolution implementations of the *INM*: (a)(c)(e) *IMS-INM* and (b)(d)(f) *IMSMR-INM*.

		IMS- INM		IMSMR - INM			
s	ξtot	ξint	ξ ext	ξ _{tot}	ξ _{int}	ξ _{ext}	
1	4.71×10^{-2}	1.82 × 10 ⁻¹	3.48×10^{-2}	$4.34\ \times 10^{-2}$	1.02 × 10 ⁻¹	3.80 × 10 ⁻²	
2	4.68×10^{-2}	1.42 × 10 ⁻¹	3.82×10^{-2}	3.45 × 10 ⁻²	0.98 × 10 ⁻¹	2.94×10^{-2}	
3	4.33×10^{-2}	1.28×10^{-1}	3.57×10^{-2}	3.01×10^{-2}	1.00×10^{-1}	2.37×10^{-2}	

Table 2. [$\tau = 0.5$, Noiseless Data]-Error indexes at different steps of the multi-focusing procedures.

Figure 3. $[\tau = 0.5]$ -Behavior of the error figures vs. *SNR*: (a) ξ_{tot} , (b) ξ_{int} , and (c) ξ_{ext} .

is characterized by a signal-to-noise ratio value, SNR, has been modeled by adding to the scattered field samples in C [i.e., $E_v^{scatt}(\mathbf{r}_m^v)$] randomly distributed values get from a Gaussian distribution. The plots of ξ_{tot} tot as a function of SNR [Fig. 3(a)] show that the accuracy of the *IMSMR-INM* degrades more significantly than that of the *INM* and the *IMS-INM* mainly for the worsening of the "external error" [Fig. 3(c)–Table 1]. This latter suggests that, as expected, some difficulties arise in estimating the extensions of the different and separate *RoIs* when heavy noisy conditions verify. On the other hand, it cannot be neglected that the performances of the *MR* approach still overcome those from the other *INM* implementations as pictorially show in Figs. 1(e)–1(g) (SNR = 6 dB) even though the inversion improvement ($\varsigma_o^{A-B} \triangleq (\xi_{tot}^A]_o - \xi_{tot}^B]_o)/\xi_{tot}^B]_o$) reduces from $\varsigma_{SNR=\infty}^{IMSMR-IMS} = 50\% (\varsigma_{SNR=\infty}^{IMSMR-Bare} = 116\%)$ down to $\varsigma_{SNR=26}^{IMSMR-IMS} = 34.6\% (\varsigma_{SNR=26}^{IMSMR-Bare} = 95.5\%)$ and $\varsigma_{SNR=6}^{IMSMR-IMS} = 20.5\% (\varsigma_{SNR=6}^{IMSMR-Bare} = 47.9\%)$.

With reference to the computational costs, the inversion time $\Delta t^{(1)}$ of the MR technique is close to that of the IMS-INM ($\Delta t^{IMSMR} / \Delta t^{IMS} \approx 0.95$ -Table 1), while it is significantly shorter than that of the INM ($\Delta t^{IMSMR} / \Delta t^{Bare} \approx 0.24$ -Table 1). As a matter of fact, a problem of the same size of the IMS-INM is solved at each step since the discretizations N_{IMS} and N_{IMSMR} only depend on the information available in the scattering data [21], while N_{INM} turns out to be larger because of the required fine resolution in Ω equal to that reached by the multiresolution procedures in the RoIs at S_{opt} .

To provide some more insights on the potentialities of the MR implementation, an analysis of the inversion accuracy versus the

Figure 4. [SNR = 26 dB] (a) Behavior of ξ_{tot} vs. τ . Reconstructions with (a) the *Bare-INM*, (b) the *IMS-INM*, and (c) the *IMSMR-INM* when $\tau = 1.1$.

Progress In Electromagnetics Research M, Vol. 18, 2011

dielectric properties of the scatterers has been carried out, as well. The actual contrast τ has been varied within the range $\tau \in [0.2, 1.4]$ and the scattered data have been blurred with a noise of SNR = 26 dB. The plots of the total reconstruction error as a function of the scatterers' contrast [Fig. 4(a)] indicate that: (a) the accuracy decreases for increasing contrasts whatever the *INM*-based method, (b) similar performances are yielded for low contrasts (e.g., $\varsigma_{\tau=0.2}^{IMSMR-IMS} =$ 91.4%), while (c) stronger scatterers are more carefully retrieved with the *IMSMR-INM* (e.g., $\varsigma_{\tau=1.1}^{IMSMR-IMS} =$ 71.6%) as also visually confirmed by the reconstructions in Figs. 4(b)–4(d) ($\tau = 1.1$).

4. CONCLUSION AND REMARKS

The retrieval of multiple separate scatterers in free space has been performed through an innovative version of the *IMS-INM*. Selected numerical results have been presented to assess the features, the potentialities, and limitations of the *IMSMR-INM* also in comparison with previous *INM* implementations. Future works will be aimed at further assessing the reliability of such an approach also against experimental data. An extension to three-dimensional problems is at present under investigation, as well.

REFERENCES

- Giakos, G. C., et al., "Noninvasive imaging for the new century," *IEEE Instrum. Meas. Mag.*, Vol. 2, 32–35, Jun. 1999.
- 2. Zoughi, R., *Microwave Nondestructive Testing and Evaluation*, Kluwer Academic, Amsterdam, The Netherlands, 2000.
- Caorsi, S., A. Massa, and M. Pastorino, "Numerical assessment concerning a focused microwave diagnostic method for medical applications," *IEEE Trans. Antennas Propag.*, Vol. 48, No. 11, 1815–1830, Nov. 2000.
- Caorsi, S., A. Massa, M. Pastorino, and A. Rosani, "Microwave medical imaging: potentialities and limitations of a stochastic optimization technique," *IEEE Trans. Microwave Theory Tech.*, Vol. 52, No. 8, 1909–1916, Aug. 2004.
- Zhou, H., T. Takenaka, J. Johnson, and T. Tanaka, "A breast imaging model using microwaves and a time domain three dimensional reconstruction method," *Progress In Electromagnetics Re*search, Vol. 93, 57–70, 2009.
- 6. Chen, C.-C., J. T. Johnson, M. Sato, and A. G. Yarovoy, "Special

issue on subsurface sensing using ground-penetrating radar," *IEEE Trans. Geosci. Remote Sens.*, Vol. 45, No. 8, Aug. 2007.

- Lesselier, D. and J. Bowler, "Special issue on electromagnetic and ultrasonic nondestructive evaluation," *Inverse Problems*, Vol. 18, No. 6, Dec. 2002.
- Harada, H., D. J. N. Wall, T. Takenaka, and T. Tanaka, "Conjugate gradient method applied to inverse scattering problems," *IEEE Trans. Antennas Propag.*, Vol. 43, 784–792, Aug. 1995.
- Ferraye, R., J. Y. Dauvignac, and C. Pichot, "Reconstruction of complex and multiple shape object contours using a level set method," *Journal of Electromagnetic Waves and Applications*, Vol. 17, No. 2, 153–181, 2003.
- 10. Dorn., O. and D. Lesselier, "Level set methods for inverse scattering," *Inverse Probl.*, Vol. 22, No. 4, Aug. 2006.
- 11. Colton, D. and R. Kress, *Inverse Acoustic and Electromagnetic Scattering Theory*, Springer-Verlag, Berlin Heidelberg, 1998.
- Caorsi, S., A. Massa, and M. Pastorino, "A computational technique based on a real-coded genetic algorithm for microwave imaging purposes," *IEEE Trans. Geosci. Remote Sens.*, Vol. 38, No. 4, 1697–1708, Jul. 2000.
- Donelli, M. and A. Massa, "A computational approach based on a particle swarm optimizer for microwave imaging of twodimensional dielectric scatterers," *IEEE Trans. Microwave Theory Tech.*, Vol. 53, No. 5, 1761–1776, May 2005.
- Pastorino, M., "Stochastic optimization methods applied to microwave imaging: A review," *IEEE Trans. Antennas Propag.*, Vol. 55, No. 3, 538–548, Mar. 2007.
- Rocca, P., M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, "Evolutionary optimization as applied to inverse scattering problems," *Inverse Probl.*, Vol. 25, No. 12, 1–41, Dec. 2009.
- Van den Berg, P. M. and A. Abubakar, "Contrast source inversion method: State of the art," *Progress In Electromagnetics Research*, Vol. 34, 189–218, 2001.
- Rocca, P., M. Donelli, G. L. Gragnani, and A. Massa, "Iterative multi-resolution retrieval of non-measurable equivalent currents for imaging purposes," *Inverse Probl.*, Vol. 25, No. 5, 1–25, May 2009.
- 18. Chen, X., "Subspace-based optimization method for solving inverse-scattering problems," *IEEE Trans. Geosci. Remote Sens.*,

Vol. 48, No. 1, 42–49, Jan. 2010.

- Caorsi, S., M. Donelli, D. Franceschini, and A. Massa, "A new methodology based on an iterative multiscaling for microwave imaging," *IEEE Trans. Microwave Theory Tech.*, Vol. 51, No. 4, 1162–1173, Apr. 2003.
- Caorsi, S., M. Donelli, and A. Massa, "Detection, location, and imaging of multiple scatterers by means of the iterative multiscaling method," *IEEE Trans. Microwave Theory Tech.*, Vol. 52, 1217–1228, Apr. 2004.
- Bucci, O. M. and G. Franceschetti, "On the degrees of freedom of scattered fields," *IEEE Trans. Antennas Propag.*, Vol. 37, 918– 926, Jul. 1989.
- 22. Mojabi, P. and J. LoVetri, "Overview and classification of some regularization techniques for the Gauss-Newton inversion method applied to inverse scattering problems," *IEEE Trans. Antennas Propag.*, Vol. 57, No. 9, 2658–2665, Sep. 2009.
- Bozza, G., C. Estatico, A. Massa, M. Pastorino, and A. Randazzo, "Short-range imagebased method for the inspection of strong scatterers using microwaves," *IEEE Trans. Instrum. Meas.*, Vol. 56, No. 4, 1181–1188, Aug. 2007.
- Oliveri, G., G. Bozza, A. Massa, and M. Pastorino, "Iterative multi scaling-enhanced inexact Newton-method for microwave imaging," *Proc. 2010 IEEE Antennas Propag. Soc. Int. Symp.*, 1–4, Toronto (Canada), Jul. 11–17, 2010.
- Bozza, G., L. Lizzi, A. Massa, G. Oliveri, and M. Pastorino, "An iterative multi-scaling scheme for the electromagnetic imaging of separated scatterers by the Inexact-Newton method," Proc. of the 2010 IEEE International Conference on Imaging Systems and Techniques (IST), 85–89, Thessaloniki, Greece, Jul. 1–2, 2010.
- 26. Richmond, J. H., "Scattering by a dielectric cylinder of arbitrary cross shape," *IEEE Trans. Antennas Propag.*, Vol. 13, No. 3, 334–341, May 1965.
- Landweber, L., "An iteration formula for Fredholm integral equations of the first kind," *American Journal of Mathematics*, Vol. 73, No. 3, 615–624, Jul. 1951.