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Abstract—The integration of the Iterative Multi-Scaling Multi-
Region (IMSMR) procedure and the Inexact-Newton method (INM) is
proposed within the contrast-field formulation of the inverse scattering
problem. Thanks to its features, such an implementation is expected
to effectively deal with the reconstruction of separated objects. A
selected set of numerical results is presented to assess the potentialities
of the IMSMR-INM method also in comparison with previous INM-
based inversions.

1. INTRODUCTION AND MOTIVATION

Non-invasive and non-destructive testing applications [1, 2] including
biomedical imaging [3–5], subsurface prospecting [6], and material
characterization [7] require fast and reliable microwave imaging tech-
niques [8–10]. The development of inverse scattering methodologies
comply-ing with these requirements is a challenging task because of
(I) the ill-posedness/ill-conditioning and (II ) the non-linearity of the
associated inverse problems [11]. As for the “local minima” issue,
which is due to the non-linear nature of the inverse problem and the
limited amount of information coming from the scattering data [21],
the use of global optimization techniques [12–15], alternative problem
formulations (e.g., Contrast Source, Born, or Rytov formulations [16–
18]), and multi-resolution strategies [19, 20] has been proposed. On
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the other hand, several direct and indirect regularization approaches
have been developed to mitigate the ill-posedness/ill-conditioning of
the inversion [22, 23].

A promising approach to simultaneously address the theoreti-
cal difficulties (I) and (II ) has been recently introduced by inte-
grating a regularization technique with a local-minima-mitigation ap-
proach [24, 25]. Indeed, the so-called Iterative Multi-Scaling Inexact-
Newton method (IMSINM) approach exploits, on the one hand, the
regularization features of the INM [23] and, on the other, the effec-
tiveness of the multi-focusing scheme to achieve high resolutions while
reducing or avoiding local minima [19, 20]. The reliability and the
numerical efficiency of the arising methodology has been preliminary
assessed in [24, 25]. Despite these good performances, only a single
“focusing” region has been considered during the inversion [24, 25] and
reduced performances are expected when dealing with separated scat-
terers.

The aim of this work is to extend the method in [24, 25] to
effectively retrieve multiple non-connected objects. Towards this end,
the approach in [20] is nested within the INM and, unlike [25],
separated regions-of-interest are dealt with to yield an Iterative
Multi-Scaling Multi-Region Inexact Newton method (IMSMR-INM,
Section 2). Representative numerical results are then presented in
Section 3 to point out the improvements achievable over the single-
region implementation [24, 25].

2. OUTLINE OF THE IMSMR-INM

With reference to a two-dimensional TM-illuminated scenario, the
following integral equations relate the scattered [Escatt

v (r) , Etot
v (r)−

Einc
v (r)], the total [Etot

v (r)], and the incident [Einc
v (r)] fields to

the dielectric properties of a set of unknown scatterers described
by the contrast function distribution τ(r) = εr(r) − 1 [19] [εr(r)
being the relative dielectric permittivity] and embedded in a free-
space background, ε0 and µ0 being its permittivity and permeability,
respectively,

Escatt(rv
m) = −k2

0

∫

Ω
τ(r′)Etot

v (r′)G(rv
m/r′)dr′, rv

m ∈ C (1)

Einc
v (r) = Etot

v (r) + k2

∫

Ω
τ(r′)Etot

v (r′)G(r/r′)dr′, r ∈ Ω (2)

where k0 =
√

ε0µ0, C is the measurement curve external to the
investigation domain Ω and where M measurement points rv

m, m =
1, . . . , M , are located. Moreover, G2D(r/r′) is the 2D Green’s
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function [19] and the superscript v(v = 1, . . . , V ) identifies the v-
th direction of incidence of the probing monochromatic wave whose
time-dependence exp(j2πft) is assumed and omitted hereinafter. The
objective of the reconstruction procedure is that of inverting (1) and (2)
to find the unknown distributions of τ(r) and Etot

v (r) in Ω starting from
the knowledge of Einc

v (r), r∈Ω, and Escatt
v (rm), rv

m ∈ C.
To image effectively multiple objects, a generalization of the

approach in [24] able to identify and zoom on different sub-regions
of the domain is needed. Towards this end, Equations (1) and (2) are
firstly rewritten in a more compact form as F{u} = d, where u , [τ(r);
Etot

v (r), v = 1, . . . , V ]T , d , [Escatt
v (rv

m), v = 1, . . . , V , m = 1, . . . , M ;
Einc

v (rn), v = 1, . . . , V ]T , and F is the Lipmann-Schwinger nonlinear
scattering operator in (1) and (2) [24]. By partitioning at each step
(s = 1, . . . , S, s being the step index) of the multiscaling process the
investigation domain into N (N being the number of degrees of freedom
of the scattered field [21]) cells centered at r(s)

n (n = 1, . . . , N) [26], the
following algebraic nonlinear equation is then obtained

P(s)
{
u(s)

}
= F(s)

{
u(S)

}
− d(s) = 0 (3)

where d(s) ,
[
Escatt

v (rv
m) , v = 1, . . . , V , m = 1, . . . ,M ; Einc

v (r(s)n),

v = 1, . . . , V, n = 1, . . . , N ]T , u(s) ,
[
τ(r(s)

n ) , n = 1, . . . , N ; Etot
v r(s)

n ,

v = 1, . . . , V , n = 1, . . . , N ]T , F(s) being the discretized version of F.
To solve (3) also taking into account the multi-region distribution

of the unknown scatterers, the following operations are repeated:

• Clustering — It is aimed at computing the number Q(s) and
the locations/sizes of the regions-of-interest (RoIs) where the
scatterers have been estimated to lie and where the synthetic zoom
will take place. Such a task is carried out by firstly binarizing the
pixel representation of the estimated contrast profile by means
of a thresholding procedure based on the “image” histogram-
concavity analysis [20] and then applying a noise filtering. Finally,
a “labeling” is performed to estimate the membership of each pixel
either to the background or to one of the RoIs [20];

• Retrieval — It is devoted to retrieve the dielectric profiles in each
of the Q(s) RoIs. Towards this end, the following nested phases
are iteratively performed by solving (3) in a regularized sense
(according to the IN method) until the retrieved profile u(s)

I is
found (“outer IN loop”, i = 1, . . . , I):
-Linearization. A Taylor expansion of P(s){u(s)} around to
u(s)

i (u(s)
0 = u(s−1)

I ) is computed and then truncated at the first
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order to determine the linear approximation L(s)
i {u(s)} [24];

-Update. The guess solution is updated (u(s)
i+1 , u(s)

i + h(s)
i ) by

determining hi. Towards this end, the equation L(s)
i {u(s)

i +h(s)
i =

0 is iteratively solved through K steps of a truncated Landweber
procedure [27] (“inner IN loop”);

• Termination — It is aimed at assessing whether a “stationary”
reconstruction is yielded in each region. More specifically, the
multistep process is terminated (s = Sopt) when (a) the number,
the dimensions, and the locations of the RoIs are stationary [20]
and (b) the qualitative reconstructions of the unknowns u(s)

I is
accurate [23].

3. NUMERICAL RESULTS

The potentialities and limitations of the IMSMR-INM are assessed
against synthetically-generated data. More specifically, the so-called
“E-L” has been taken into account. It is com-posed by two
homogeneous dielectric objects [Fig. 1(a)] belonging to a square
investigation domain of side ` = 24λ illuminated by V = 2.4 TM
plane waves impinging from the angular directions ϑv = 2π(v − 1)/V ,
v = 1, . . . , V . The scattered field has been synthetically computed
through the Richmond method [26] at M = 360 positions uniformly
distributed on the circular measurement region C of radius ρ = 18λ.
The Bare-INM, the IMS-INM, and the IMSMR-INM inversions have
been carried out by setting K = I = 60 and choosing the maximum
number of multi-focusing steps equal to S = 5.

By considering weak scatterers (τ = 0.5) and noiseless data,
the results from the different INM-based approaches are shown in
Figs. 1(b)–1(d). Although both the Bare-INM and the IMS-INM
allow one to identify the presence and the positions of two different
objects, the reconstruction accuracy as well as the capability to avoid
artifacts of the IMSMR-INM turn out to be significantly enhanced.
This is quantitatively confirmed by the values of the error figures in

Table 1 and defined as ξα = 1
Nα

Nα∑
n=1

|τ̃(rn) − τ(rn)|/|τ(rn) + 1|(α =

tot, ext, int) where Nα is the number of discretization domain of the
whole investigation domain (α = tot), within the scatterer (α = int)
or in the background region (α = ext). Moreover, τ̃ and τ stand
for the retrieved contrast and the actual one, respectively. As it
can be noticed (Table 1), the IMSMR-INM yields a total error of
about 47% of that from the Bare-INM and approximately 69% of that
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Figure 1. [τ = 0.5]-Actual distribution (a) Reconstructed profile with
(b)(e) the Bare-INM, (c)(f) the IMS-INM, and (d)(g) the IMSMR-INM
in correspondence with (b)(c)(d) noiseless data and (e)(f)(g) noisy data
(SNR = 6 dB).

Table 1. [τ = 0.5]-Error and computational indexes.

Noiseless SNR = 6 dB

Method  to t  i nt  ext  t [s]  to t  i nt  ext  t [s]

Bare 6 34 10 2 1 63  10 1 5 44  10 2 5 40  103 6 90  10 2 1 64  10 1 6 04  10 2 5 03  10 3

IMS  INM 4 33 10 2 1 28  10 1 3 57  10 2 1 38  103 5 65 10 2 1 38  10 1 4 88  10 2 1 33  10 3

IMSMR  INM 3 01 10 2 1 00  10 1 2 37  10 2 1 28  103 4 66  10 2 1 31  10 1 3 89  10 2 1 30  10 3
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with the IMS-INM (i.e., ξBare
tot = 6.34 × 10−2, ξIMS

tot = 4.33 × 10−2,
ξIMSMR
tot = 3.01× 10−2). Similar conclusions hold true for the internal

( ξIMSMR
int

ξBare
int

= 0.61, ξIMSMR
int

ξIMS
int

= 0.78) and the external ( ξIMSMR
ext

ξBare
ext

= 0.43,
ξIMSMR
ext

ξIMS
ext

= 0.92) indexes, as well. For completeness, Fig. 2 and Table 2
give the evolution of the reconstructions and of the error metrics at
different steps of the multi-resolution implementations of the INM,
respectively.

As far as the robustness to the data noise is concerned, inversions
of blurred data have been successively analyzed. The noise, which
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Figure 2. [τ = 0.5, Noiseless data]-Evolution of the reconstruction at
different steps [(a)(b) s = 1, (c)(d) s = 2, (e)(f) s = Sopt = 3] of the
multi-resolution implementations of the INM: (a)(c)(e) IMS-INM and
(b)(d)(f) IMSMR-INM.
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Table 2. [τ = 0.5, Noiseless Data]-Error indexes at different steps of
the multi-focusing procedures.
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Figure 3. [τ = 0.5]-Behavior of the error figures vs. SNR: (a) ξtot,
(b) ξint, and (c) ξext.

is characterized by a signal-to-noise ratio value, SNR, has been
modeled by adding to the scattered field samples in C [i.e., Escatt

v (rv
m)]

randomly distributed values get from a Gaussian distribution. The
plots of ξtot tot as a function of SNR [Fig. 3(a)] show that the
accuracy of the IMSMR-INM degrades more significantly than that
of the INM and the IMS-INM mainly for the worsening of the
“external error” [Fig. 3(c)–Table 1]. This latter suggests that,
as expected, some difficulties arise in estimating the extensions of
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the different and separate RoIs when heavy noisy conditions verify.
On the other hand, it cannot be neglected that the performances
of the MR approach still overcome those from the other INM
implementations as pictorially show in Figs. 1(e)–1(g) (SNR = 6dB)
even though the inversion improvement (ςA−B

o , (ξA
totco−ξB

totco)/ξB
totco)

reduces from ςIMSMR−IMS
SNR=∞ = 50%(ςIMSMR−Bare

SNR=∞ = 116%) down to
ςIMSMR−IMS
SNR=26 = 34.6%(ςIMSMR−Bare

SNR=26 = 95.5%) and ςIMSMR−IMS
SNR=6 =

20.5%(ςIMSMR−Bare
SNR=6 =47.9%).

With reference to the computational costs, the inversion time
∆t(1) of the MR technique is close to that of the IMS-INM
(∆tIMSMR/∆tIMS ≈ 0.95-Table 1), while it is significantly shorter
than that of the INM (∆tIMSMR/∆tBare ≈ 0.24-Table 1). As a matter
of fact, a problem of the same size of the IMS-INM is solved at each
step since the discretizations NIMS and NIMSMR only depend on the
information available in the scattering data [21], while NINM turns out
to be larger because of the required fine resolution in Ω equal to that
reached by the multiresolution procedures in the RoIs at Sopt.

To provide some more insights on the potentialities of the MR
implementation, an analysis of the inversion accuracy versus the
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dielectric properties of the scatterers has been carried out, as well.
The actual contrast τ has been varied within the range τ ∈ [0.2, 1.4]
and the scattered data have been blurred with a noise of SNR =
26dB. The plots of the total reconstruction error as a function of the
scatterers’ contrast [Fig. 4(a)] indicate that: (a) the accuracy decreases
for increasing contrasts whatever the INM-based method, (b) similar
performances are yielded for low contrasts (e.g., ςIMSMR−IMS

τ=0.2 =
91.4%), while (c) stronger scatterers are more carefully retrieved
with the IMSMR-INM (e.g., ςIMSMR−IMS

τ=1.1 = 71.6%) as also visually
confirmed by the reconstructions in Figs. 4(b)–4(d) (τ = 1.1).

4. CONCLUSION AND REMARKS

The retrieval of multiple separate scatterers in free space has been
performed through an innovative version of the IMS-INM. Selected
numerical results have been presented to assess the features, the
potentialities, and limitations of the IMSMR-INM also in comparison
with previous INM implementations. Future works will be aimed
at further assessing the reliability of such an approach also against
experimental data. An extension to three-dimensional problems is at
present under investigation, as well.
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