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Abstract In this paper we construct a family of new (topologically distinct) solutions
to the Einstein constraint equations by performing the generalized connected sum (or fiber
sum) of two known compact m-dimensional constant mean curvature solutions (M1, g1,!1)

and (M2, g2,!2) along a common isometrically embedded k-dimensional sub-manifold
(K , gK ). Away from the gluing locus the metric and the second fundamental form of the
new solutions can be chosen as close as desired to the ones of the original solutions. The
proof is essentially based on the conformal method and the geometric construction produces
a polyneck between M1 and M2 whose metric is modeled fiber-wise (i. e. along the slices
of the normal fiber bundle of K ) around a Schwarzschild metric; for these reasons the codi-
mension n := m − k of K in M1 and M2 is required to be ≥ 3. In this sense our result is a
generalization of the Isenberg–Mazzeo–Pollack gluing, which works for connected sum at
points and in dimension 3. The solutions we obtain for the Einstein constraint equations can
be used to produce new short time vacuum solutions of the Einstein system on a Lorentzian
(m + 1)-dimensional manifold, as guaranteed by a well known result of Choquet-Bruhat.

Mathematics Subject Classification (2000) 53C21 · 58J60 · 83C05 · 53A30 · 57R65

1 Introduction and statement of the result

1.1 CMC solutions and conformal method

It is well known [4] that short time vacuum solutions for the Einstein hyperbolic system
on a Lorentzian (m + 1)-dimensional manifold (Z , γ ) may be obtained from solutions of
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454 L. Mazzieri

the Einstein constraint equations on a m-dimensional space-like Riemannian submanifold
(M, g) of Z . In fact the solutions to the constraints form a suitable set of vacuum initial data
for the hyperbolic Cauchy problem (for further details see [2]). More precisely, when we are
talking about a solution of the constraints we refer to a triple (M, g,!), where M is a smooth
manifold and g and ! are symmetric (2, 0) tensors (respectively the induced Riemannian
metric and the second fundamental form), verifying the relationships

divg ! − d
(
trg !

)
= 0 (1)

Rg − |!|2g +
(
trg !

)2 = 0, (2)

where divg and trg are respectively the divergence operator and the trace operator computed
with respect to the metric g and Rg is the scalar curvature of the metric g.

In the case we are looking for constant mean curvature (CMC) solutions of the constraints
(i.e. when τ := trg ! is a constant) the system above becomes equivalent to an uncoupled
system by means of the so called conformal method. Following [4], [11] and [10], one can
split the second fundamental form ! into trace free and pure trace parts

! = µ + τ

m
g, (3)

where µ is a symmetric 2-tensor such that trgµ = 0.
Then it is convenient to consider the double conformal change

g = u
4

m−2 ḡ (4)

µ = u−2 µ̄, (5)

where the conformal factor u is a positive smooth function on M .
It is now straightforward to see that g and ! verify the Einstein constraint equations (1)

and (2) if and only if the following holds for ḡ, µ̄ and u

trḡ µ̄ = 0 (6)

divḡ µ̄ = 0 (7)

Licḡ(u) = 0, (8)

where Lic is the semi-linear elliptic operator given by

Licḡ(u) = $ḡ u + cm Rḡ u − cm |µ̄ |2ḡ u− 3m−2
m−2 + cm

m − 1
m

τ 2 u
m+2
m−2 (9)

with cm = −(m − 2)/[4 (m − 1)] (also notice that our Laplacian is negative definite).
Therefore, if we start with a metric ḡ and a real number τ , in order to produce a τ -CMC

solution for the Einstein constraints it is sufficient to provide a symmetric ḡ-transverse (7)
ḡ-traceless (6) tensor (briefly TT-tensor) and the right conformal factor, it is to say a solution
of the Lichnerowicz equation (8).

In this context and because of their physical meaning [2], we will refer in the following
to the Eq. (1) [or equivalently to the Eq. (7)] as the momentum constraint and to the Eq. (2)
[or equivalently to the Eq. (8)] as the Hamiltonian or energy constraint.

1.2 Strategy of the gluing and statement of the main result

In the spirit of [10] suppose now that we start with two Cauchy data sets, namely two
solutions (Mi , gi , µi , ui , τ ), i = 1, 2 to Eqs. (6)–(8) (notice that this corresponds, modulo
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Generalized gluing for Einstein constraint equations 455

the conformal changes g̃i = u4/(m−2)
i gi and µ̃i = u−2

i µi , to considering two sets of τ -CMC
solutions (Mi , g̃i , !̃i = µ̃i + (τ/m)g̃i ), i = 1, 2 to Eqs. (1), and (2), and suppose that
we construct the generalized connected sum of the compact m-dimensional manifolds M1
and M2 along a common isometrically embedded k-dimensional Riemannian submanifold
(K , gK ). This construction consists in excising a small ε-tubular neighborhood (i.e. a tubular
neighborhood of size ε ∈ (0, 1)) of K in both the starting manifolds and in identifying the
differentiable structures along the leftover boundaries as explained in [19] and summarized
in section 2. The purpose is then to endow—in correspondence to each value of ε—the new
manifold Mε = M1 &K ,ε M2 with a Riemannian structure gε and a symmetric TT-tensor µε

such that a solution uε to Eq. (8) can be found, with the same τ as the starting Cauchy data
sets.

As is typical of the gluing results, the new solution has to preserve the information about the
starting solutions insofar as is possible. In our case the metric gε will coincide by construction
with the metrics g1 and g2 away from the gluing locus. Moreover, as the geometric parameter
ε tends to zero, the metric gε tends to the metric gi and the TT-tensor µε tends to µi on the
compact sets of Mi \ K , with respect to the C2 topology, for i = 1, 2. In addition, we can
make the conformal factor uε as close to the constant one as we want, by choosing ε to be
small. In this sense, we are allowed to look at the metric gε and at the TT-tensor µε as an
approximate solution of the system (1)–(2), which can be made exact by means of a small
conformal perturbation uε $ 1

g̃ε = u
4

m−2
ε gε, (10)

!̃ε = u−2
ε µε + τ

m
u

4
m−2
ε gε. (11)

As already explained, the real advantage in considering CMC solutions is that one has
an uncoupled system (6)–(8) to solve instead of the system (1)–(5). In particular, once an
approximate solution metric gε is available, the natural way to proceed is to solve first the
equations (6) and (7), and then to put the solution µε in the Eq. (8) and solve this one for
uε. Since the latter equation is nonlinear and we wish to solve it by means of a perturbation
argument which allows us to obtain a new solution which is as close as we want to the starting
ones when ε tends to zero (notice that this corresponds to uε → 1 as ε → 0), we are led
to linearize the Lichnerowicz operator around the constant one and to consider the leftover
terms as error terms. Among these error terms, the squared norm of µε plays a significant
role.

As a consequence of this special role of µε , it is crucial to get an ε-uniform bound for
solutions of the Eq. (7). In this form the momentum constraint is a linear system of partial
differential equations and there is a standard two step procedure to produce trace free solutions
of it [21]. In our case we will proceed as follows. Starting with µ1 and µ2 and using suitable
cut-off functions, we produce a gε-trace free symmetric 2-tensor µ, which in general is not
a solution to (7) (notice that µ actually depends on ε as long as it has to be trace free with
respect to the metric gε). The second step consists then in finding a correction term σε which
repairs the momentum constraint (i.e., divgε (µ + σε) = 0). Since the system is largely
underdetermined, we may force the solution to have a special shape. In particular we look for
a solution of the form σε = Dgε X , where X is a vector field on M and Dgε is the so called
conformal Killing operator for the metric gε . The conformal Killing operator acts in general
as a map from vector fields to symmetric trace free 2-tensors and for an arbitrary metric g is
defined as
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456 L. Mazzieri

Dg X = 1
2

LX g − 1
m

(
divg X

)
· g, (12)

where L is the Lie derivative. This operator enjoys a nice algebraic property: it is the negative
of the formal adjoint of the divergence applied to symmetric trace free 2-tensors. More
precisely

Dg = −
(
& divg

)∗
. (13)

As a consequence, when we perform the repair of the momentum constraint, we are
induced to consider the elliptic self-adjoint operator Lg := −& divg ◦ Dg = D∗

g ◦ Dg ,
known as the vector Laplacian, and to solve the equation

Lg X = & divg µ (14)

with respect to each gε metric, therefore providing the solutions with an a priori ε-uniform
bound.

The vector fields in the kernel of Dg are called conformal Killing vector fields. In fact
their flow leaves the metric invariant up to conformal changes; in other words they preserve
the conformal class of the metric. For technical reasons, in order to deduce the ε-uniform
estimate, we have to require a non-degeneracy assumption about the conformal Killing vector
fields of the starting manifolds. The hypothesis we need is the following:

Non-degeneracy condition. There are no nontrivial conformal Killing vector fields on
either (M1, g1) or (M2, g2).

Notice that because of the different geometric construction this assumption is slightly
different from the non-degeneracy condition required in [10]. In fact the IMP gluing works
under the assumption that there are no nontrivial conformal Killing vector fields on (M1, g1)

and (M2, g2) wich vanish at the excised points.
In analogy with [10] we also need the assumption that both !̃1 and !̃2 are non iden-

tically zero. This guarantees, via the maximum principle, the injectivity of the linearized
Lichnerowicz operators of the metrics gi around the constant one, namely

$gi − |µi |2gi
− τ 2/m, i = 1, 2. (15)

Notice that in the case where !̃1 ≡ 0 ≡ !̃2 the Einstein constraint equations reduces
to Rg1 = 0 and Rg2 = 0. In this situation the starting Cauchy data sets are said to be time
symmetric and our problem reduces to constructing a scalar flat metric on the generalized
connected sum of two scalar flat Riemannian manifolds. This can be done if both (M1, g1)

and (M2, g2) are non Ricci flat, as shown in [18].
Following the strategy summarized above, we can prove the following result

Theorem 1 Let (M1, g̃1, !̃1) and (M2, g̃2, !̃2) be two compact m-dimensional CMC
solutions to the Einstein constraint equations (1)-(2) having the same constant mean curva-
ture τ and verifying the non-degeneracy condition. Moreover suppose that both !̃1 and !̃2
are non identically zero and let (K , g̃K ) be a common isometrically embedded k-dimensional
sub-manifold with codimension n := m − k ≥ 3 such that the normal bundles of K in M1
and in M2 are diffeomorphic. Then there exists a real value ε0 ∈ (0, 1) such that for every
ε ∈ (0, ε0) it is possible to endow the ε-generalized connected sum Mε = M1 &K , ε M2 of
M1 and M2 along K with a metric g̃ε and a second fundamental form !̃ε such that the triple
(Mε, g̃ε, !̃ε) is still a τ -CMC solution to the Einstein constraint equations.
Moreover the new metric g̃ε and the new symmetric TT-tensor µ̃ε tend to the starting metric
g̃i and to the starting symmetric TT-tensor µ̃i respectively in the C2 topology on the compact
sets of Mi\K , for i = 1, 2, as the geometric parameter ε tends to zero.
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Generalized gluing for Einstein constraint equations 457

2 The geometric construction

The aim of this section is to give a precise description of the generalized connected sum
and to present a way to construct a family of approximate solution metrics (gε)ε∈(0,1); these
are metrics which, when ε varies in a sufficiently small range, can be perturbed to the final
metric g̃ε by means of a small (i.e. close to one) conformal factor uε, this one being a solution
to the Lichnerowicz equation with respect to the metric gε , the constant mean curvature τ

and a suitable TT-tensor µε. At the end of this section we also present the construction of
a symmetric gε-trace free tensor µ = µ(ε) by means of a warped cut-off method (then,
repairing this µ by means of a suitable symmetric tensor σε, we will find the TT-tensor
µε := µ + σε mentioned above).

The construction we present here is the same as [19]. Nevertheless, in order to make
the exposition self contained and to fix the notation, we recall it here. The reason why this
construction yields a good ansatz relies on the fact that the hamiltonian constraint is very
similar to the Yamabe equation treated in [19], and since we want to produce analogous
results (i.e. a conformal factor very close to one), we choose to solve our equation using the
analytical tools and the geometric construction which have been successful with the Yamabe
problem of [19].

Let (K , gK ) be a k-dimensional Riemannian manifold isometrically embedded in both
the m-dimensional Riemannian manifolds (M1, g1) and (M2, g2), we label the embedding
maps as follows

ιi : K ↪→ Mi .

We assume that the isometric map ι−1
1 ◦ ι2 : ι1(K ) → ι2(K ) extends to a diffeomorphism

between the normal bundles of ιi (K ) in (Mi , gi ), i = 1, 2. To simplify the notations and the
computations, here and in the following the injectivity radius of K in both the manifolds is
supposed to be greater than one, so that we are allowed to manipulate the differential and
the metric structure on a fixed tubular neighborhood of K in M1 and M2 of size one (gluing
locus). This construction can obviously be modified in order to make the gluing locus as
small as desired, and in particular smaller than the injectivity radii. For a fixed ε ∈ (0, 1),
we describe the construction of the generalized connected sum (or fiber sum) of M1 and M2
along K and the definition of the metric gε in local coordinates. The fact that this construction
yields a globally defined metric will follow at once.

Let U k be an open set of Rk
z , Bn the n-dimensional open ball of radius one in Rn

x , where
n := m − k ≥ 3 is the codimension of K . For i = 1, 2, Fi : U k × Bn → Wi ⊂ Mi given by

Fi (z, x) := expMi
(z,0)(x), (16)

defines local Fermi coordinates near the coordinate patches Fi (·, 0) (U ) ⊂ ιi (K ) ⊂ Mi . In
these coordinates, the metric gi can be decomposed as

g(i)(z, x) = g(i)
jl dz j ⊗ dzl + g(i)

αβdxα ⊗ dxβ + g(i)
jαdz j ⊗ dxα, (17)

and it is well known that in this coordinate system

g(i)
αβ = δαβ + O

(
|x |2

)
and g(i)

jα = O (|x |) .

In order to perform the identification between W1 and W2 and in order to glue the metrics
together and define gε, we partially change the coordinate system, by setting x = ε e−t θ on
F−1

1 (W1) and x = ε etθ on F−1
2 (W2), for ε ∈ (0, 1), log ε < t < − log ε, θ ∈ Sm−k−1.
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Actually, we will modify the starting metrics only on the hollow domain U k × An (ε2, 1)

(where An (r, s) is the n-dimensional annulus {r < |x | < s}).
Using the changes of coordinates just described the expressions of the two metrics g1 and

g2 on the hollow domain become respectively

g1(z, t, θ) = g(1)
i j dzi ⊗ dz j +u(1)

ε

4
n−2

[(
dt ⊗ dt+g(1)

λµdθλ ⊗ dθµ
)
+g(1)

tθ dt ! dθ
]

+ g(1)
i t dzi ⊗ dt + g(1)

iλ dzi ⊗ dθλ (18)

and

g2(z, t, θ) = g(2)
i j dzi ⊗ dz j + u(2)

ε

4
n−2

[(
dt ⊗ dt + g(2)

λµdθλ ⊗ dθµ
)

+ g(2)
tθ dt ! dθ

]

+ g(2)
i t dzi ⊗ dt + g(2)

iλ dzi ⊗ dθλ, (19)

where by the compact notation dt ! dθ we indicate the general component of the normal
metric tensor (i.e., it involves dt ⊗ dt , dθλ ⊗ dθµ and dt ⊗ dθλ components), whereas the
coefficients gtθ multiplied by u(i)

ε
4

n−2 , i = 1, 2 represent the correction to the Euclidean
metric u(i)

ε
4

n−2

[(
dt ⊗ dt + g(i)

λµdθλ ⊗ dθµ
)]

, i = 1, 2 in our coordinate system.

Remark that for j = 1, 2 we have

g( j)
λµ = O (1) g( j)

tθ = O
(
|x |2

)

g( j)
i t = O

(
|x |2

)
g( j)

iλ = O
(
|x |2

)

and

u(1)
ε (t) = ε

n−2
2 e− n−2

2 t and u(2)
ε (t) = ε

n−2
2 e

n−2
2 t .

We choose a cut-off function χ : (log ε,− log ε) → [0, 1] to be a non increasing smooth
function which is identically equal to 1 in (log ε,−1] and 0 in [1,− log ε) and we choose
another cut-off function η : (log ε,− log ε) → [0, 1] to be a non increasing smooth function
which is identically equal to 1 in (log ε,− log ε − 1] and which satisfies limt→− log ε η = 0.
Using these two cut-off functions, we can define a new normal conformal factor uε by

uε(t) := η(t) u(1)
ε (t) + η(−t) u(2)

ε (t), (20)

and the metric gε by

gε(z, t, θ) :=
(
χg(1)

i j + (1 − χ)g(2)
i j

)
dzi ⊗ dz j

+ u
4

n−2
ε

[
dt ⊗ dt +

(
χg(1)

λµ + (1 − χ)g(2)
λµ

)
dθλ ⊗ dθµ

+
(
χg(1)

tθ + (1 − χ)g(2)
tθ

)
dt ! dθ

]
(21)

+
(
χg(1)

i t + (1 − χ)g(2)
i t

)
dzi ⊗ dt

+
(
χg(1)

iλ + (1 − χ)g(2)
iλ

)
dzi ⊗ dθλ.

Closer inspection of this expression shows that the only objects that are not a priori globally
defined on the identification of the tubular neighborhoods (poly-neck) of ι1(K ) in M1 and
ι2(K ) in M2 are the functions χ and uε (since the cut-off η is involved in the definition).
However, observe that both cut-off functions can easily be expressed as functions of the
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Generalized gluing for Einstein constraint equations 459

Riemannian distance to K in the respective manifolds. Hence they are globally defined and
the metric gε—whose definition can be obviously completed by setting gε ≡ g1 and gε ≡ g2
out of the polyneck—is a Riemannian metric which is globally defined on the manifold Mε.

We conclude this section with the definition of the proto-TT-tensor µ = µ(ε), which is
the symmetric gε-trace free tensor which will be corrected to a symmetric gε-TT-tensor by
adding an ε-uniformly bounded term σε. In order to do that we describe a warped cut off
procedure on the side of the polyneck coming from M1. The same manipulation on the other
side provides us with the complete definition of µ.

Let a g1-trace-free symmetric tensor µ1 be given on M1. In local coordinates this reads

g(1)
i j µ

i j
1 + 2 g(1)

iα µiα
1 + g(1)

αβ µ
αβ
1 = 0. (22)

We are looking for a symmetric tensor µ which is trace free with respect to the metric gε . To
do that we set

µi j = a(t) · µ
i j
1

µiα = a(t) · µiα
1 (23)

µαβ = b(t) · µ
αβ
1 ,

where a and b are smooth radial cut-off functions which are equal to one on M1 and which
vanish for t > c log ε + 1, where 0 < c < 1 is a constant that will be determined in Sect. 4.
The definitions of a and b are made more precise below; however we remark that the warped
cut-off still guarantees the symmetry of µ. Taking into account (22) and the definition of the
metric gε on the region where µ is not identically zero, the condition trgε µ = 0 is equivalent
to

0 = a g(1)
i j µ

i j
1 + 2 a g(1)

iα µiα
1 + b φ2 g(1)

αβ µ
αβ
1

=
[
b φ2 − a

]
· g(1)

αβ µ
αβ
1 ,

where the normal conformal factor φ2 is by definition

φ2 :=
[
1 + η(−t) · (u(2)

ε /u(1)
ε )

] 4
n−2

.

It is now straightforward to verify that one can always choose two smooth cut-off functions
satisfying the conditions above and such that a = φ2 b. In particular we will choose b ≡ 1, for
log ε < t < c log ε. As a consequence, a = b+O

(
e(n−2)t) on this interval and µ converges to

µ1 on the compact sets of M1\K with respect to the C2-topology. Notice that since φ depends
on ε, a and b do as well, but they admit an ε-uniform bound, as do their derivatives. Finally,
let us observe that, for every k ≥ 0,

∣∣∇k divgε µ
∣∣
gε

(t) →
∣∣∇k divg1 µ1

∣∣
g1

(log ε) = 0, as t

tends to log ε. Moreover
∣∣divgε µ

∣∣
gε

and
∣∣∇ divgε µ

∣∣
gε

are O
(
εn−2) near the boundary of the

polyneck and ε-uniformly bounded in the interior.

3 The momentum constraint

3.1 The vector Laplacian Lgε

As explained in the introduction, the next task is now to repair the momentum constraint. We
start from µ defined in the previous section, which is symmetric and trace free, but in general
does not satisfy the equation divgε µ = 0. We want to replace it by a symmetric divergence
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460 L. Mazzieri

free tensor µε whose ε-trace is still zero. The way to do that is to find a symmetric trace-free
correction term σε whose norm |σε|2gε

admits a suitable bound. This way we are allowed to
choose µε := µ + σε to be a TT-tensor and to put the term |µε|2gε

in the nonlinear equation
Licgε u = 0. Then the uniform bound enables us to get an appropriate estimate for the error
term of the latter equation and then solve it by means of a perturbation argument.

As discussed above, a good way to proceed is to seek a correction term of the form
σε = Dgε X , where Dgε is the conformal deformation operator with respect to the metric gε.
This automatically guarantees that σε is symmetric and trace free, as it is easy to see from
the local expression of this operator

(
Dgε

)
jk = 1

2

[
(∇ j X)k + (∇k X) j

]
− 1

m
(∇l X)l · g(ε)

jk , (24)

where ∇ is the Levi-Civita connection of the metric gε, and the indices has been lowered by
means of the metric gε, where needed.

The problem we are led to consider is then the vector equation

Lgε X = & divgε µ, (25)

where the operator involved—the so called vector Laplacian—is defined as Lgε := (Dgε )
∗ ·

Dgε = − & divgε · Dgε . As it is easy to verify, Lgε is a linear elliptic second order partial
differential operator with smooth coefficients and it is formally self-adjoint. We can think of
the vector Laplacian as acting between the spaces of sections with Hölder regularity

Lgε : C2,α(Mε, T Mε) −→ C0,α(Mε, T Mε). (26)

In Sect. 3.2, in order to produce an ε-uniform a priori bound for solutions to (25), we
introduce a more sophisticated functional setting (i.e., weighted Hölder spaces of sections of
fiber bundles); but now the following definitions are sufficient. For a general tensor field T
we define the Ck norm of T with respect to a Riemmannian metric g as

g‖T ‖Ck :=
k∑

j=0

sup
M

∣∣∣∇ j T
∣∣∣
g
, (27)

where ∇ is the Levi-Civita connection of g; we define the Hölder seminorm of the k-th
derivative with exponent α ∈ (0, 1) as

g
[
∇k T

]

α
:= sup

p .=q

∣∣∇k T (p) − ∇k T (q)
∣∣
g

dg(p, q)α
, (28)

where the distance dg(p, q) is supposed to be smaller than the injectivity radius and with
abuse of notation the term ∇k T (q) is interpreted as its parallel transport from q to p along
the unique geodesic joining p and q (in order to give sense to the subtraction which appears
in the numerator above). The definition of the Ck,α-Hölder norm follows obviously.
The general theory of elliptic operators between vector bundles and in particular the Fredholm
alternative guarantees the existence of a solution to the equation Lgε X = W , provided that
the right hand term W is orthogonal to Ker L∗

gε
. In our case we have to check the vanishing
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Generalized gluing for Einstein constraint equations 461

of the L2-product

−〈& divgε µ, Y 〉 := −
∫

Mε

gε(& divgε µ, Y ) dvolgε

=
∫

Mε

gε(µ, Dgε Y ) dvolgε ,

where Y is an element of Ker L∗
gε

= Ker Lgε , by self-adjointness. Since for each fixed
ε ∈ (0, 1) the generalized connected sum Mε is a compact manifold, the integration by parts
yields

0 = 〈Lgε Y, Y 〉 = ε‖Dgε Y‖2
L2 ,

and the orthogonality is then proved. Hence, for each ε ∈ (0, 1) we can get a vector field Xε

satisfying the equation (25).

3.2 A priori uniform bound for solutions of Lgε X = & divgε µ

This section is devoted to providing the existence of solutions Xε of the equations
Lgε X = & divgε µ with an a priori bound which is uniform in ε ∈ (0, 1). As noted ear-
lier, a more sophisticated functional setting is needed. In particular the weighted Hölder
spaces turn out to be the crucial tools needed to get the estimate we want. Using the
definition of t from Sect. 2, we define the distance function ρε to be ρε := ε cosh t for
(log ε) + 1 < t < −(log ε) − 1 (i.e., in the middle of the polyneck), to be ρε ≡ 1 out of
the radius one tubular neighborhoods of K in M1 and in M2 and to be a monotone radial
smooth interpolation in between these regions. Having introduced a radial distance function,
we can define, for k ∈ N and α ∈ (0, 1), the weighted Ck-norms and the weighted Hölder
α-seminorms for a general tensor field T on Mε with respect to the metric gε . The definition
of the weighted Ck,α-Hölder norm follows at once. For a general weight γ ∈ R let us set

ε‖T ‖Ck
γ

:=
k∑

j=0

sup
Mε

{
ρ−γ+ j

ε ·
∣∣∣∇ j T

∣∣∣
gε

}
(29)

ε
[
∇k T

]

α,γ
:= sup

p .=q

{

|ρε(p) ∧ ρε(q)|−γ+k ·
∣∣∇k T (p) − ∇k T (q)

∣∣
gε

dgε (p, q)α

}

, (30)

where ∇ indicates the Levi-Civita connection of gε , |ρε(p) ∧ ρε(q)| is the minimum bet-
ween ρε(p) and ρε(q), and the conventions used in (28) are still valid for (30). In the
following we indicate by ρ

γ
ε ·Ck,α(Mε, T Mε) the space of tensor fields X such that the norm

ε‖X‖Ck,α
γ

:= ε‖X‖Ck
γ

+ ε
[
∇k X

]
α,γ

is well defined and finite. In this context it is convenient
to think of Lgε as acting between the spaces

Lgε : ρδ
ε · C2,α(Mε, T Mε) −→ ρδ−2

ε · C0,α(Mε, T Mε), (31)

for a suitable weight δ ∈ R. Notice that, for fixed ε, the functional setting of (31) is strictly
equivalent to the one of (26). In particular, the existence result of the previous section still
holds. The reason for introducing weighted spaces is that uniform estimates are not available
in the old context, since the geometry of our construction becomes singular when the para-
meter ε tends to zero. Having introduced these new analytical devices, we can now state the
following:
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Proposition 2 Let X ∈ ρδ
ε · C2,α(Mε, T Mε) and W ∈ ρδ−2

ε · C0,α(Mε, T Mε) be vec-
tor fields satisfying the equation Lgε X = W . Moreover suppose that W is of the form
W = & divgε µ, for some symmetric 2-tensor µ. Then, if the weight δ is chosen to be in
(2 − n, (2 − n)/2), there exists a constant C > 0 independent of ε ∈ (0, 1) such that

ε‖X‖C1
δ

≤ C · ε‖W‖C0,α
δ−2

. (32)

(Remember that n is the codimension of K in Mi , i = 1, 2 and it is supposed to be greater
than 3).

The proof is by contradiction. If such a constant C does not exist, we can find out for every
j ∈ N a triple (ε j , X j , W j ) such that

1. ε j → 0 as j → +∞
2. Lε j X j = W j for every j ∈ N
3. ε j ‖X j‖C1

δ
= 1 for every j ∈ N

4. ε j ‖W j‖C0,α
δ−2

→ 0 as j → +∞

For technical reasons we prefer to replace condition 3. with the following

3.bis supM j

{
ρ−δ

j ·
∣∣X j

∣∣
ε j

+ ρ−δ+1
j ·

∣∣∇ X j
∣∣
ε j

}
= 1, for every j ∈ N.

Notice that this can be done because condition 3.bis is nothing but an equivalent way to
define the norm ε j ‖X j‖C1

δ
. Since each M j is compact we can look now at the points p j ’s

where this maximum is achieved, so that
{
ρ−δ

j ·
∣∣X j

∣∣
ε j

+ ρ−δ+1
j · |∇ X |ε j

}
(p j ) = 1 (33)

To carry out the proof we are going to take the limit of the expression 2. It is then clear that
the issue reduces to investigating whether the homogeneous limit problem admits nontrivial
solutions with prescribed decay, where the non triviality strictly depends on the behavior at
the limit of the p j ’s and the decay is prescribed by the weight. This leads us to distinguish
three different limit situations, depending on how the geometric structure degenerates near
the p j ’s, as j → +∞.

Case 1. The p j ’s converge, up to a subsequence, to a point p∞ which lies in M1\K
(or analogously in M2\K ), as j → +∞. In this case, as we discuss below, we are
induced to look for nontrivial solutions of the homogeneous problem






Lg1 X = 0 on M1 \ K

|X |g1 ≤ A · r δ

|∇ X |g1 ≤ A · r δ−1

(34)

where r := dg1(·, K ), and A > 0 is a positive constant.
Case 2. The p j ’s converge, up to a subsequence, to a point p∞ which lies in K with the same

speed as the radius of the excised tubular neighborhood: dg1(p j , K ) = O
(
ε j

)
,

as j → +∞ (notice that, up to a subsequence, we can suppose without loss
of generality that all the p j ’s lie in the side coming from M1). In this case, by
means of a blow-up method, we are induced to look for nontrivial solutions of the
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homogeneous problem





LRk×Sn X = 0 on Rk
z × Sn

t,θ

|X |Rk×Sn ≤ B · (cosh t)δ

|∇ X |Rk×Sn ≤ B · (cosh t)δ−1

(35)

where B > 0 is a positive constant and Sn denotes the n-dimensional Schwarzschild
space. Moreover, by the expressions LRk×Sn and | · |Rk×Sn , we indicate respectively
the vector Laplacian and the norm of the product metric gRk + gSn .

Case 3. The p j ’s converge, up to a subsequence, to a point p∞ which lies in K with a lower
speed than the radius of the excised tubular neighborhood: dg1(p j , K ) / ε j → +∞,
as j → +∞ (notice that, up to a subsequence, we can suppose without loss of
generality that all the p j ’s lie in the side coming from M1). In this case, refining
the blow-up method of the previous case, we are induced to look for nontrivial
solutions of the homogeneous problem






LRk×Rn X = 0 on Rk
z ×

(
Rn

x \ {0}
)

|X |Rk×Rn ≤ C · |x |δ

|∇ X |Rk×Rn ≤ C · |x |δ−1

(36)

where C > 0 is a positive constant.

The choice of the weight δ in the right interval (2 − n, (2 − n)/2) leads us to a contradiction
in all of the three cases. In other words the homogeneous problems with prescribed decay
(34)–(36) only admit trivial solutions. In the following we analyze one by one the three cases
presented above.

3.2.1 Case 1: the equation Lg1 X = 0 and the non-degeneracy condition

In this first case we assume that (up to a subsequence) the p j ’s tend to a point p∞ ∈ M1 \ K .
As it is easy to check from the expression (21), we have that the metrics gε j ’s converge to
the metric g1 with respect to to the C2-topology on the compact sets of M1 \ K . Hence on a
fixed compact set Q ⊂ M1 \ K the weighted gε j norms are all equivalent to the standard g1
norm. More precisely, there exist two positive constants A(Q), B(Q) > 0 such that

A(Q) · ε j ‖X‖C1
δ (Q) ≤ g1‖X‖C1(Q) ≤ B(Q) · ε j ‖X‖C1

δ (Q) (37)

In particular, if p∞ ∈ Q, we have that for every sufficiently large j ∈ N

A(Q) ≤ g1‖X j‖C1(Q) ≤ B(Q). (38)

Our task is now to show that the vector fields X j converge to a nontrivial vector field X with
respect to the C1(Q) topology. Thanks to the Ascoli-Arzelá Theorem and to the estimate
(38), our goal is achieved if we can produce a j-uniform bound for g1‖X j‖C1,α(Q). In order
to do that we invoke the following result from [6], which is a Schauder interior estimate for
second order linear elliptic systems in divergence form.
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Proposition 3 Let X ∈ W 1,2
loc (3) be a solution to

∇σ

(
Aστ

i j ∇τ X j
)

= −∇σ Fσ
i

with Aστ
i j ∈ C0,α(3), for 1 ≤ i, j ≤ m and 1 ≤ σ, τ ≤ 2, satisfying the Legendre-Hadamard

condition

Aστ
i j ξσ ξτ η

iη j ≥ λ |ξ |2|η|2 ,∀ ξ ∈ R2, ∀ η ∈ Rn .

If Fi
σ ∈ C0,α(3), then we have ∇ X ∈ C0,α(3), α ∈ (0, 1). Moreover, for every compact set

K ⊂ 3

‖∇ X‖C0,α(K ) ≤ C ·
{
‖∇ X‖L2(3) + ‖F‖C0,α(3)

}
, (39)

with C depending on K , the ellipticity constant λ and the Hölder norm of the coefficients
Aστ

i j .

Since Q is compact we can cover it with finitely many small balls, and then we can cover
each of these balls with another ball with a little larger radius. Using Proposition 3, we can
easily get the desired j-uniform C1,α bound on each small ball. In fact, since the metrics gε j ’s
converge to g1, the coefficients of the operators Lgε j

too will converge to the coefficients of
Lg1 . In particular the ellipticity constant can be chosen to be the same and consequently also
the constant in the estimate (39) can be chosen to be the same. Up to taking the maximum
of the finitely many constants obtained as a new constant, we have that there exists a real
number C > 0 depending only on the compact set Q and on the ellipticity constant of the
operator Lg1 on Q, such that

g1‖X j‖C1,α(Q) ≤ C ·
{g1‖X j‖C0(Q′) + g1‖W j‖C0,α(Q′)

}
(40)

where Q′ is another compact set of M1 \ K including Q and the larger small balls. Hence,
taking into account the hypothesis of the argument by contradiction and the inequality (38),
there must exists a constant C ′ > 0 depending on C and Q such that

g1‖X j‖C1,α(Q) ≤ C ′. (41)

Hence we can conclude that there exists a vector field X defined on M1 \ K such that, up
to a subsequence, X j → X with respect to the C1-topology on the compact sets of M1 \ K .
Therefore X must satisfy the homogeneous problem (34). Moreover, the inequality (38)
guarantees that X is non identically zero.

As it is easy to verify, the condition 2 − n < δ guarantees that X verifies the equation
Lg1 X = 0 on the whole M1 in the sense of distributions, and by elliptic regularity we deduce
that X is smooth. Since M1 is compact, we can integrate by parts obtaining

0 = 〈 Lg1 X, X 〉 = g1‖Dg1 X‖2
L2 .

Hence X is a nontrivial conformal Killing vector field on M1, which is excluded by the
non-degeneracy condition.

3.2.2 Case 2: the equation LRk×Sn X = 0 and the blow-up method

In this case we suppose that up to a subsequence the p j ’s tend to a point p∞ ∈ K lying
on the side of M1 with the higher velocity allowed (i.e. dg1(p j , p∞) = O

(
ε j

)
). Since as

ε → 0 the geometry of our construction becomes singular we are induced to perform a
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blow-up around the point p∞ in order to investigate the analytic behavior of the objects we
are considering. Let us fix then a local system of Fermi coordinates centered at p∞, so that
z(p∞) = 0 = x(p∞) and let us focus on the region Bk(1) × An(ε, 1), where Bk(1) and
An(ε, 1) are respectively the k-dimensional unit ball and the n-dimensional annulus centered
at p∞. We introduce now a family of diffeomorphisms (φε)ε∈(0,1), defined as

φε : Bk(1/ε) × An(1, 1/ε) −→ Bk(1) × An(ε, 1) (42)

(z, x) 6−→ (εz, εx).

Using the φε’s, we define on the new domains the blow-up metrics
◦

gε by setting

◦
gε := 1

ε2 ·
[
φ∗

ε gε

]
. (43)

In the limit for ε → 0 the domain of definition of the φε’s becomes Rk × (Rn \ Bn(1)) and
the blow-up metrics

◦
gε tend to gRk + gSn on the compact sets of Rk × (Rn \ Bn(1)) in the

C2 topology. In fact the local expression for
◦

gε reads

◦
gε (z, x) = 1

ε2 ·
{

gK
i j (εz) + O (ε|x |)

}
· d(εzi ) ⊗ d(εz j )

+ 1
ε2 · O (ε|x |) · d(εzi ) ⊗ d(εxα)

+ 1
ε2 ·

(
|x | n−2

2 + |x |− n−2
2

) 4
n−2 ·

{
|x |−2δαβ + O

(
ε2)} · d(εxα) ⊗ d(εxβ)

=
{
δi j + O (ε|x |) + O

(
ε2|z|2

)}
· dzi ⊗ dz j

+ O (ε|x |) · dzi ⊗ dxα

+
{

gSn

αβ(x) + O
(
ε2)

}
· dxα ⊗ dxβ .

(Notice that the blow-up construction described here obviously applies to both the sides of
the polyneck in order to get the whole Schwarzschild space as limit manifold and to the
operator LRk×Sn as limit operator. The description of the blow-up procedure in terms of
(z, x) coordinates makes clearer the analogies and the differences between this blow-up and
the one we use in treating the third case. Nevertheless it is possible to give the description of
the same procedure in terms of (z, t, θ) coordinates. In this case it is sufficient to remember
that for the metric gε we have at hand the expression

gε(z, t, θ) :=
{
δi j + O (ε cosh t) O

(
|z|2

)}
· dzi ⊗ dz j

+
[
ε

n−2
2 cosh

(
n − 2

2
t
)] 4

n−2 {
dt2 + dθ2 + O

(
ε2 cosh2 t

)
dt ! dθ

}

+ O
(
ε2 cosh2 t

)
· dzi ⊗ dt

+ O
(
ε2 cosh2 t

)
· dzi ⊗ dθλ,

where dθ2 is the round metric on Sn−1. Then using the blow-up diffeomorphisms

ψε : Bk(1/ε) × (log ε,− log ε) × Sn−1 −→ Bk(1) × (log ε,− log ε) × Sn−1

(z, t, θ) 6−→ (εz, t, θ)
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and defining the blow-up metrics as

◦
gε := 1

ε2 ·
[
ψ∗

ε gε

]
,

one can easily obtain the same results). Hence the coefficients of the operators L ◦
gε

tend to
the coefficients of the operator LRk×Sn . Moreover, if we consider for every j ∈ N the vector
fields

◦
X j := ε−δ+1

j φ∗
ε j

· X j (44)
◦

W j := ε−δ+1
j φ∗

ε j
· W j , (45)

we have that the triples (ε j ,
◦

X j ,
◦

W j ) verify the properties 1. - 4. with respect to the blow-up

metrics
◦

gε j and the distance function(s)

◦
ρε j (t) := cosh t. (46)

Using the same argument as in the previous section it is easy to show that the vector fields
◦

X j converge on the compact sets to a vector field X with respect to the C1-topology of the
metric gRK + gSn and the sequence of problems

◦
L j

◦
X j =

◦
W j (47)

converges to the homogeneous problem (35).
Moreover, since dg1(p j , K ) = O

(
ε j

)
, we have that the sequence of points q j := φ−1

ε j
(p j )

lies in a compact region of Rk × (Rn \ Bn(1)) and converges, up to a subsequence, to a point
q∞, so that the solution of the limit problem X must be non identically zero.

Our task is now to show that the homogeneous problem (35) for the operator LRk×Sn with
prescribed decay does not admit nontrivial solutions. In order to do that we write down the
explicit expression of our equation, using the fact that we are dealing with the product metric
gRk + gSn . If we set X (z, x) = U (z, x) + V (z, x) with U (z, x) ∈ Rk and V (z, x) ∈ Tx Sn ,
the vector Laplacian decomposes as follows

[
LRk×Sn X

]Rk
= LRk U −

(
m − k
m · k

)
· gradRk ◦ divRk U (48)

− 1
2

· $Sn U −
(

m − 2
m · 2

)
· gradRk ◦ divSn V

[
LRk×Sn X

]T Sn
= LSn V −

(
m − n
m · n

)
· gradSn ◦ divSn V (49)

− 1
2

· $Rk V −
(

m − 2
m · 2

)
· gradSn ◦ divRk U,

where in general we indicate by $g W the (negative definite) Laplace-Beltrami operator of
a Riemannian metric g applied to the components of the vector field W .

The idea we mean to use to carry out the analysis of this operator is to perform a Fourier
transform along the Rk components. Then we will use the decay conditions along the Sn

factor to deduce the injectivity of our operator via an integration by parts.
In order to fix a suitable functional setting, we define for β ∈ R and l ∈ N the weighted

Sobolev space Hl
β

(
Sn, Rk⊗T Sn)

as the space of the sections Y of the bundle Rk⊗T Sn → Sn
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such that the following expression

‖Y‖2
Hl

β

:=
l∑

j=0

∫

Sn

∣∣∣∇ j Y
∣∣∣
2

Rk×Sn
· (cosh t)−2β+2 j dvolSn

is well defined and finite.
Notice that if X verifies the decay conditions prescribed in (35), then, for every z ∈ Rk

and every weight γ > δ, X (z) ∈ H1
γ+n/2(S

n, Rk ⊗ T Sn). Moreover the H1
γ+n/2-norms of

X (z) are uniformly bounded with respect to z ∈ Rk , i.e.,

sup
z∈Rk

∣∣∣ ‖X (z)‖H1
γ+n/2

∣∣∣ < +∞.

Rephrasing this, we can say that

X ∈ L∞(
Rk, H1

γ+n/2
(
Sn, Rk ⊗ T Sn))

,

for every γ > δ.
To proceed, we define the Schwartz space S

(
Rk, Hl

β

(
Sn, Rk ⊗ T Sn))

as the space of the
vector fields W such that the seminorms

|W |l,βr,s := sup
z∈Rk

∣∣∣ zr · ∂s
z ‖W (z)‖Hl

β

∣∣∣

are well defined and finite for every couple of multi-indices r, s ∈ Nk .
Having at hand these definitions, we observe that our solution X defines, for every γ > δ, a

continuous linear functional on the space S
(
Rk, H1

−γ−n/2

(
Sn, Rk ⊗ T Sn))

via the following
natural assignment

Y 6→ 〈 X, Y 〉 :=
∫

Rk

∫

Sn

gRk×Sn ( X, Y ) dvolSn dvolRk , (50)

In other words, we can think of X as a tempered distribution, namely

X ∈ S ′ ( Rk, H1
γ+n/2

(
Sn, Rk ⊗ T Sn))

,

and 〈 ·, ·· 〉 is nothing but the natural pairing on S ′ ( Rk, H1
γ+n/2

)
×S

(
Rk, H1

−γ−n/2

)
, where

here and in the following we indicate the space Hl
β

(
Sn, Rk ⊗T Sn )

simply by Hl
β , for l ∈ N

and β ∈ R.
Now it is quite natural to define the formal adjoint L∗

Rk×Sn of our operator as

L∗
Rk×Sn : S

(
Rk, H1

−γ−n/2+2
)

→ S
(

Rk, H1
−γ−n/2

)
, (51)

where L∗
Rk×Sn W = Y if and only if

∫

Rk

∫

Sn

(
DRk×Sn W, DRk×Sn Z

)
dvolSn dvolRk =

∫

Rk

∫

Sn

( Y, Z ) dvolSn dvolRk ,

for every Z ∈ S
(

Rk, H1
γ+n/2

)
.

With this interpretation, the fact that LRk×Sn X = 0 amounts to say that

〈 X, L∗
Rk×Sn W 〉 = 0, (52)

for every W ∈ S
(

Rk, H1
−γ−n/2+2

)
.
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Hence, if we prove that L∗
Rk×Sn is surjective, then X = 0 and we get the contradiction.

Therefore our task is to show that the equation

L∗
Rk×Sn W = Y (53)

admits a solution W ∈ S
(

Rk, H1
−γ−n/2+2

)
for every Y ∈ S

(
Rk, H1

−γ−n/2

)
.

To prove that, we perform a Fourier transform along the Rk components. More precisely,
using the orthogonal split Y (z, x) = 7(z, x) + 8(z, x), with 7(z, x) = 7 j (z, x) · e j ∈ Rk

and 8(z, x) = 8α(z, x) · ∂xα ∈ Tx Sn , then the partial Fourier transform of Y is given by

Ŷ (ζ, x) = 7̂ j (ζ, x) · e j + 8̂α(ζ, x) · ∂xα , (54)

where

7̂ j (ζ, x) := (2π)−k/2
∫

Rk

7 j (z, x) · e−i 〈ζ,z〉 dz, (55)

7̂α(ζ, x) := (2π)−k/2
∫

Rk

8α(z, x) · e−i 〈ζ,z〉 dz. (56)

By means of this procedure, we can reduce the study of (53) to prove that the operators

L̂∗
Rk×Sn (ζ ) : H1

−γ−n/2+2 → H1
−γ−n/2 (57)

are surjective for every ζ ∈ Rk . Notice that in this expression we use the notation Hl
β to

indicate the space Hl
β

(
Sn, Ck ⊗ T CSn )

, for l ∈ N and β ∈ R, since the partial Fourier
transform leads us to consider the complexified tangent bundle Ck ⊗ T CSn → Sn instead of
Rk ⊗ T Sn → Sn . In particular, if we write Ŵ (ζ, ·) ∈ H1

−γ−n/2+2 as Ŵ (ζ, ·) = U + V , with
U ∈ H1

−γ−n/2+2

(
Sn, Ck )

and V ∈ H1
−γ−n/2+2

(
Sn, T CSn )

, then the action of L̂∗
Rk×Sn (ζ )

is explicitly given by
[

L̂∗
Rk×Sn (ζ ) · Ŵ

]Ck

= − 1
2

$Sn U +
(

m − 2
2 m

)
· 〈ζ, U 〉 · ζ

+ 1
2

· |ζ |2 U − i
(

m − 2
2 m

)
· divSn V · ζ (58)

[
L̂∗

Rk×Sn (ζ ) · Ŵ
]T CSn

= LSn V −
(

m − n
m · n

)
· gradSn ◦ divSn V

+ 1
2

|ζ |2 · V − i
(

m − 2
2 m

)
· gradSn 〈ζ, U 〉 (59)

For every ζ ∈ Rk we associate to each L∗
Rk×Sn (ζ ) the adjoint operator

L̂Rk×Sn (ζ ) : H1
γ+n/2 → H1

γ+n/2−2 (60)

It follows from the general theory of the elliptic operators acting between weighted spaces
(see [13]) that L̂∗

Rk×Sn (ζ ) is surjective if and only if L̂Rk×Sn (ζ ) is injective, ζ ∈ Rk .

Let now Y ∈ H1
γ+n/2 be a vector field such that L̂Rk×Sn (ζ ) Y = 0. Since δ ∈ (2 − n,

(2 − n)/2), we can always choose γ ∈ ( δ, (2 − n)/2 ). For γ in this interval
H1

γ+n/2 ⊂ H1
−γ−n/2+2 and we can integrate by parts the expression

0 =
(

L̂Rk×Sn (ζ ) Y, Y
)

L2 . (61)
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Writing Y ∈ H1
γ+n/2 as Y = 7+8, with the decay prescriptions 7 ∈ H1

γ+n/2

(
Sn, Ck )

and
8 ∈ H1

γ+n/2

(
Sn, T CSn )

, we find

0 = 1
2

∫

Sn

k∑

j=1

∣∣∣gradSn 7 j
∣∣∣
2

dvolSn +
(

m − 2
2m

) ∫

Sn

|〈ζ,7〉|2 dvolSn

+ |ζ |2
2

∫

Sn

|7|2 dvolSn + |ζ |2
2

∫

Sn

|8|2 dvolSn

+
∫

Sn

|DSn 8|2 dvolSn +
(

m − n
m · n

) ∫

Sn

|divSn 8|2 dvolSn .

Therefore, when ζ .= 0, we deduce at once that ‖7‖2
L2 = 0 = ‖8‖2

L2 , hence Y = 0. When
ζ = 0 we have that ‖gradSn 7 j‖2

L2 = 0 for every j = 1, . . . , k, hence each component of
7 is a constant function and the decay prescription forces 7 to be zero. Concerning 8, we
obtain the condition ‖DSn 8‖2

L2 = 0. This means that 8 is a conformal Killing vector field
on Sn , but it is well known that on an asymptotically Euclidean manifold there are no non
trivial conformal Killing vector fields which decay at infinity [3], [10]. Hence 8 = 0 and
Y = 0 as well.

The injectivity of L̂Rk×Sn (ζ ) for every ζ ∈ Rk implies that the operator L∗
Sn×Rk is sur-

jective. As a consequence, a solution X to problem (35) must be identically zero, which is a
contradiction.

3.2.3 Case 3: the equation LRk×Rn X = 0 and the refined blow-up

The analysis of the third case is very similar to the analysis of the second one, with the only
substantial difference of the blow-up construction. Roughly speaking the slower velocity of
the p j ’s in tending to p∞ forces us to refine the blow-up procedure used in the previous
section. In particular, if we want to control the behavior of the p j ’s (which we need to do
in order to carry out the argument by contradiction, since it guarantees the non-triviality of
the solution), we need to choose their rate of approach to p∞ as rate of the blow-up of the
other objects involved. If we set ω j := dg1(p j , p∞), for j ∈ N, we have that in this case
ε j/ω j → 0 as j → 0. Now, with the notation introduced in the previous section, it is quite
natural to define a new family of diffeomorphisms (φω j ) j∈N via

φω j : Bk(1/ω j ) × An(ε j/ω j , 1/ω j ) −→ Bk(1) × An(ε j , 1) (62)

(z, x) 6−→ (ω j z, ω j x),

and consequently define a family of new metrics
◦

gω j as follows:

◦
gω j := 1

ω2
j

·
[
φ∗

ω j
gε j

]
. (63)

In the limit j → +∞, the domain of definition of the φω j ’s becomes Rk × (Rn \ {0}) and

the blow-up metrics
◦

gω j tend to gRk × gRn on the compact sets of Rk × (Rn \ {0}) in the C2
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topology. In fact the local expression for the
◦

gω j reads

◦
gω j (z, x) =

{
δil + O

(
ω j |x |

)
+ O

(
ω2

j |z|2
)}

· dzi ⊗ dzl

+ O
(
ω j |x |

)
· dzi ⊗ dxα

+
[
|x | n−2

2 +
( ε j

ω j

)n−2
|x |− n−2

2

] 4
n−2 ·

{
|x |−2δαβ + O

(
ω2

j

)}
· dxα ⊗ dxβ .

Proceeding as in the previous case we are led to the problem (36). In particular, we notice that
the p j ’s lie in a compact region of Rk × Sn−1. Hence, up to a subsequence, they converge to a
point p∞. The rest of the analysis is very similar to the second case, since, mutatis mutandis,
the decay conditions at infinity prescribed in (36) are the same as in (35). Rephrasing the
argument of the previous subsection, we obtain that a solution to problem (36) must be
identically zero, which is a contradiction.

This completes the proof of Proposition 2. As a consequence we immediately get an
ε-uniform bound for the correction term σε, and then for the TT-tensor µε = µ + σε, which
solves the equations

trgε µε = 0, (64)

divgε µε = 0. (65)

In the next section, we put µε in the Lichnerowicz equation (for the metric gε and the
constant mean curvature τ ), and we use the ε-uniform bound of Proposition 2 to carry out
a perturbation argument. By this method we will produce a solution uε to the Lichnerowicz
such that the closer ε is to zero, the closer uε is to one. As explained in the Introduction,
this means that the new solution of the constraint approaches the starting ones, as ε tends to
zero.

4 The energy constraint

The aim of this section is to produce a solution to the ε-parameterized equation

$gε u + cm Rgε u − cm |µε |2gε
u− 3m−2

m−2 + cm
m − 1

m
τ 2 u

m+2
m−2 = 0, (66)

where µε is the TT-tensor obtained in the Section 3. As claimed above, we also provide the
solution with suitable estimates so that we have a control of the new Cauchy data set in terms
of the old ones, as ε tends to zero.

Our goal is achieved by means of a perturbation argument analogous to the one developed
in [19]. Since the equation we are interested in is nonlinear, the first step consists in linearizing
the Lichnerowicz operator around the constant one, this is reasonable since we want the
solution to be as close as possible to the starting ones, as ε approaches to zero. What we
obtain is the linear operator

Lgε = $gε − χ1 ·
(
|µ1|2g1

+ τ 2/m
)

− χ2 ·
(
|µ2|2g2

+ τ 2/m
)

, (67)

where χ1 and χ2 are the smooth cut-off functions defined in Section 2, and the error term

Fε(v) := cm (Rg1 − Rgε )χ1 − cm (|µ1|2g1
− |µε|2gε

)χ1

+ cm (Rg2 − Rgε )χ2 − cm (|µ2|2g2
− |µε|2gε

)χ2
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+ cm (Rg1 − Rgε )χ1 v + bm (|µ1|2g1
− |µε|2gε

)χ1 v (68)

+ cm (Rg2 − Rgε )χ2 v + bm (|µ2|2g2
− |µε|2gε

)χ2 v

+ cm |µε|2gε
h(v) − cm

m − 1
m

τ 2 f (v),

where cm = − (m − 2)/[4(m − 1)], bm = cm · (3m − 2)/(m − 2) and

h(v) =
[
(1 + v)−

3m−2
m−2 − 1 +

(
3m − 2
m − 2

)
v

]

f (v) =
[
(1 + v)

m+2
m−2 − 1 −

(
m + 2
m − 2

)
v

]
.

Hence both h and f are O
(
|v|2

)
.

The second step amounts to produce ε-uniform a priori estimate for solutions of the linear
equation

Lgε v = w. (69)

Notice that since gε tends to the metric gi in the C2-topology on the compact sets of Mi \ K ,
for i = 1, 2, then the coefficient of Lgε tend to the coefficients of the operators Lgi defined
in (15) on the compact sets of Mi \ K , i = 1, 2. Once this is done we seek a suitable estimate
for the error term Fε(v). Having the a priori estimate and the estimate of the error term we
can solve the equation

Lgε v = Fε(v) (70)

by means of a fixed point argument.
As noted above, since the equation we want to solve is very similar to the Yamabe equation

and since the linearized Lichnerowicz operators for the starting initial data set are injective
(15), it is sufficient to adapt the argument used in [19] to our case. Let us focus, for instance,
on the part of the error term Fε(v) which is supported on M1 (the same is true for the other
part of the error term). In order to apply successfully the Schauder fixed point theorem as in
[19], it suffices that the “zero order" term in Fε(v) satisfies the estimate

(
Rg1 − Rgε

)
−

(
|µ1|2g1

− |µε|2gε

)
≤ C · εn−2 ρ1−n

ε , (71)

for some positive constant C > 0. Concerning the piece Rg1 − Rgε this is exactly the estimate
of the scalar curvature obtained in [19]. Since µε = µ + σε, the other piece is dominated by
|σε|2gε

+ |µ−µ1|2gε
. Since |µ−µ1|2gε

is zero outside the boundary of the polyneck and since
it is clearly bounded in the middle, we can concentrate on the squared norm of σε = Dgε X ,
where Lgε X = & divgεµ.

It follows from proposition (2) that there exists a constant C0 > 0 independent of ε such
that

|Dgε X |gε ≤ C0 · ε‖divgεµ‖C1
δ−2

· ρδ−1
ε . (72)

Since our aim is to get the bound |Dgε X |2 ≤ C · εn−2 ρ1−n
ε , it is sufficient to prove that

ε‖divgεµ‖C1
δ−2

≤ C1 · ε
n−2

2 ρ
3−n

2 −δ
ε , (73)
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for some positive constant C1 > 0. Since 2 − n < δ < (2 − n)/2, this reduces to proving
that






|divgεµ|gε ≤ C2 · ε
1
2 −δ · ρδ−2

ε

|∇ divgεµε|gε ≤ C3 · ε
1
2 −δ · ρδ−3

ε

(74)

for some positive constants C2, C3 > 0. If we choose the constant 0 < c < 1 which appears
in the construction of µ in Section 2 to be c = 3/(4 − 2δ), then both these conditions are
satisfied and we get the desired bound for |Dgε X |2gε

.
What remains to prove is the a priori estimate for solutions to the linearized problem

Lgεv = w. Following [19], we want to prove that for every γ ∈ (2 − n, 0) there exists a
positive constant Cn,γ > 0 and a real number ε0 ∈ (0, 1) such that for every ε ∈ (0, ε0), if
v,w ∈ C0(Mε) are functions satisfying Lgεv = w, then

ε‖v‖C0
γ (Mε) ≤ C · ε‖w‖C0

γ−2(Mε)
. (75)

As shown in [19], this result can be achieved as a consequence of an analogous local a priori
estimate. More precisely it is sufficient to prove that for every γ ∈ (2 − n, 0) there exist a
real number α = α(n, γ ) > 0 and a positive constant Cn,γ such that for all ε ∈ (0, e−α), if
v,w ∈ C0(Mε) are functions verifying Lgεv = w, then

ε‖v‖C0
γ (T ε

α ) ≤ Cn,γ · ε‖w‖C0
γ−2(T ε

α ) + ε‖v‖C0
γ (∂T ε

α ), (76)

where T ε
α is the portion of the poly-neck where α + log ε ≤ t ≤ −α − log ε. Since in [19] an

analog of the estimate (76) is obtained for solutions to the equation $gεv = w, it is sufficient
to adapt it to our case. Since for α large enough and ε sufficiently small we have that

sup
T ε
α

∣∣∣ρ−γ+2
ε |µ1|2g1

v
∣∣∣ ≤ 1

4
sup
T ε
α

∣∣ρ−γ
ε v

∣∣ (77)

sup
T ε
α

∣∣ρ−γ+2
ε

(
τ 2/m

)
v
∣∣ ≤ 1

4
sup
T ε
α

∣∣ρ−γ
ε v

∣∣ , (78)

this implies (76). Having obtained all the estimates required, it is now possible to apply the
Schauder fixed point theorem as in [19], provided that max{−1, (2 − n)/2} < γ < 0. Hence
we find a solution vε to the equation (70). Moreover we have that ‖vε‖L∞(M) = O

(
ε−γ

)

and this completes the proof of Theorem 1.

5 Conclusions and further directions

The result provided in Theorem 1 allows one to build a new zoo of solutions to the vacuum
Einstein equation, hence it provides a good instrument to investigate the structure of the
space-time. Notice that in the case of the classical (3+1)-dimensional space-time, our result
reduces to the IMP gluing, because of the hypothesis on the codimension of K . However
people who study string theory, might find our result of some interest on the physical point
of view.

Following [10] our result can be extended to the case of Asymptotically Euclidean (AE)
and Asymptotically Hyperbolic (AH) initial data set without difficulty. In fact to adapt the
proof, it is sufficient to slightly modify the functional setting, in order to guarantee the
existence of an inverse for the vector Laplacian and for the linearized Lichnerowicz operator.
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Another possible improvement of our result consists in localizing the construction in order
to produce a new initial data set which is exactly like the starting ones out of the polyneck,
as it has already been done for the IMP gluing [5].

Finally (ongoing work) the structure of the polyneck should be further investigated. In
particular we expect that in certain cases it is possible to find an apparent horizon in the
middle of the polyneck, hence the space-time development of such initial data sets is forced
to contain multidimensional black holes with possibly non trivial topology.
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5. Chruściel, P.T., Isenberg, J., Pollack, D.: Initial data engineering. Comm. Math. Phys. 257, 29–42 (2005)
6. Giaquinta, M., Martinazzi, L.: An introduction to the regularity thoery for elliptic systems, harmonic

maps and minimal graphs. Edizioni della Normale (2005)
7. Gilbarg, D., Trudinger N.: Elliptic partial differential equation of second order. Springer, Heidelberg

(1983)
8. Gromov, M., Lawson, H.B.: The classification of simply connected manifolds of positive scalar curva-

ture. Ann. Math. (2) 111(3), 423–434 (1980)
9. Joyce, D.: Constant scalar curvature metrics on connected sums. Int. J. Math. Math. Sci. 7, 405–450 (2003)

10. Isenberg, J., Mazzeo, R., Pollack, D.: Gluing and wormholes for the Einstein constraint equations. Comm.
Math. Phys. 231, 529–568 (2002)

11. Isenberg, J., Maxwell, D., Pollack, D.: A gluing construction for non vacuum solutions of the Einstein
constraint equations. Adv. Theor. Phys. 9, 129–172 (2005)

12. Lee, J.M., Parker, T.H.: The Yamabe Problem. Bull. AMS. 17, 37–91 (1987)
13. Mazzeo, R.: Elliptic theory of differential edge operators. Commun. Partial Differ. Equ. 16, 1615–1664

(1991)
14. Mazzeo, R., Pollack, D., Uhlenbeck, K.: Connected sums constructions for constant scalar curvature

metrics. Topol. Method Nonlinear Anal. 6, 207–233 (1995)
15. Mazzeo, R., Pacard, F.: Constant scalar curvature metrics with isolated singularities. Duke Math. J. 99(3),

353–418 (1999)
16. Mazzeo, R., Pacard, F.: Constant mean curvature surfaces with Delaunay ends. Comm. Anal. Geom. 9(1),

169–237 (2001)
17. Mazzeo, R., Pacard, F., Pollack, D.: Connected sums of constant mean curvature surfaces in Euclidean 3

space. J. Reine Angew. Math. 536, 115–165 (2001)
18. Mazzieri, L.: Generalized connected sum construction for scalar flat metrics. arXiv:math.DG/0611778

(2006)
19. Mazzieri, L.: Generalized connected sum construction for nonzero constant scalar curvature metrics. Com-

mun. Partial Differ. Equ. 33, 1–17 (2008)
20. Schoen, R., Yau, S.T.: On the structure of manifolds with positive scalar curvature. Manuscripta Math.

28(1–3), 159–183 (1979)
21. Taylor, M.: Partial differential equations III: nonlinear equations. Appl. Math. Sci. 117, Springer,

New York (1996)

123


	Generalized gluing for Einstein constraint equations
	Abstract
	1 Introduction and statement of the result
	1.1 CMC solutions and conformal method
	1.2 Strategy of the gluing and statement of the main result

	2 The geometric construction
	3 The momentum constraint
	3.1 The vector Laplacian Lg
	3.2 A priori uniform bound for solutions of Lg  X =  divg  

	4 The energy constraint
	5 Conclusions and further directions
	Acknowledgments

