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1. INTRODUCTION
Locating and shaping perfect electric conductors (PECs) illu-
minated by known electromagnetic waves [1–4] is a key prob-
lem in many applications such as geophysical prospecting [5],
localization of buried metallic cylinders [6], detection of tun-
nels and pipelines [7], and retrieval of surface profiles [8]. In
such a framework, the development of inversion strategies
specifically devoted to image “sparse”metallic objects (some-
times referred to as thin [9]) embedded in large investigation
domains has recently gathered great attention because of its
complexity [9] as well as occurrence in fault detection of
metallic grids [10], biomedical monitoring [11], far and near
source localization [12,13], nondestructive testing [14,15],
and ground-penetrating radar [16–18]. While several tech-
niques exploit global optimization strategies [19–21] (e.g.,
tabu search [22], genetic algorithms [6,7], differential evolu-
tion [23], and particle swarm optimizers [24]), the use of sin-
gular value decomposition-based methods [4,25] and level set
techniques [26] has been considered, as well. However, only
few methodologies, generally based on approximate formula-
tions (e.g., physical optics), have dealt with sparse scatterers
[9,27]. As a matter of fact, most inversion techniques for PEC
objects model the unknown contour as a function of the polar
angle [6,7,21,24,28,29] and usually require the approximate
knowledge of the object centers [30] or the number of objects
[31,32]. Because of these assumptions, they do not efficiently
apply to the retrieval of multiple sparse scatterers. Alternative
formulations, based on the local shape function (LSF) tech-
nique [30,33–36], seem to be more suitable candidates for such
a purpose. Indeed, the LSF method employs a cell-based dis-
cretization of the investigation domain, enabling the effective
representation of sparse scatterers as the superposition of (a
few) thin metallic wires. On the other hand, the arising inverse
problem turns out to be strongly nonlinear because of the
multiple reflections in the wire model [30,34,35]. Recently,

some countermeasures to this latter issue have been proposed
[37], but they suffer from nonuniqueness because of the
presence of nonradiating currents; then suitable regulariza-
tion techniques (e.g., Tikhonov [37]) are required. Moreover,
the information coming from different illuminations is
a posteriori combined, resulting in a suboptimal exploitation
of the available physical information [37].

In this paper, the new technique proposed for the localiza-
tion of sparse metallic scatterers is aimed at (i) modeling thin
objects through the LSF approach, (ii) regularizing the inverse
problem at hand by means of a sparsity-based constraints, and
(iii) combining in the inversion the information collected at dif-
ferent views. More specifically, the available physical a priori

knowledge [(ii) and (iii)] is managed in a probabilistic fashion
by means of a multitask Bayesian compressive sensing (MT-
BCS) [38] formulation because of the following considerations:

• Compressive sensing (CS) strategies are natural choices
for the solution of ill-posed inverse scattering problems
whenever an a priori knowledge of the sparseness of the
unknowns is available [39];

• CS methodologies are also numerically efficient for high-
dimension problems [40,41];

• Unlike deterministic CS methods directly enforcing
sparseness constraints by adding a sparsity term (e.g., the
weighted l1-norm) in the cost function, BCS techniques do
not require the problem kernel to satisfy specific properties
such as the restricted isometry property [41,42];

• MT-BCS approaches efficiently take into account mutual
relations among correlated informations from different illumi-
nations of the investigation domain [38,43] thanks to the multi-
task formulation;

• The effectiveness and the efficiency of BCS-based tech-
niques have already been proved in several electromagnetic
problems (e.g., inverse problems [42–45] and array synthesis
or diagnostics [46–49]).
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The outline of the paper is as follows. After describing
the LSF framework of sparse inverse scattering problems
(Section 2), the probabilistic formulation of the imaging
strategy is introduced by focusing on the application of
the multitask CS technique (Section 3). Representative
numerical results are then provided to validate the proposed
approach as well as to investigate its features and potential-
ities (Section 4). Some conclusions eventually follow
(Section 5).

2. SPARSE LSF PROBLEM FORMULATION
Let us consider a two-dimensional investigation domain of
extension Ω comprising a set of sparse PECs lying in a (also
nonconnected) region ΩPEC (ΩPEC ⊂ Ω) and illuminated by
V known time-harmonic transverse-magnetic plane waves im-
pinging from the angular directions θv, v � 1;…; V whose as-
sociated incident fields are f v�r�ẑ (for the sake of brevity, the
time-dependency factor exp�−jωt� is implied and omitted
hereinafter), v � 1;…; V , being r � �x; y�, and z is the axis
of the cylindrical geometry.

By applying the LSF method [30], Ω is discretized into a set
of uniform cells of area δ and centered at rn, n � 1;…; N .
Moreover, a binary LSF, γ ≜ fγn; n � 1;…; Ng, is associated
with the cell grid such that γn � 1 if a metallic object occupies
the n th cell and γn � 0 otherwise:

γn �
�
1; rn ∈ ΩPEC

0; rn ∉ ΩPEC
n � 1;…; N: (1)

It is worth noting that this is equivalent to replacing the met-
allic region ΩPEC with S ≜ ‖γ‖l0 thin wires if S ≪ N (i.e., γ
turns out to be a sparse vector).

The scattered electric field, ev�r�ẑ ≜ tv�r�ẑ − f v�r�ẑ, tv�r�
being the total field, at each v th illumination complies with
the data equation expressed in terms of the multipole expan-
sion in cylindrical harmonics [30,34,35],

ev�r� �
XN
n�1

�
H�1�

0

�
2π
λ
jr − rnj

�
avn

�
r ∈ Ωobs (2)

where H�1�
0 �·� is the zeroth-order Hankel function of the

first kind, Ωobs is the observation domain external to Ω
(Ω ∩ Ωobs � ∅), λ is the free-space wavelength, and av ≜
favn; n � 1;…; Ng is the vector of the scattering amplitudes
given by [30,33–35]:

av � �diag�γ� ·Ψ� I�−1 · diag�γ� ·Φ · fv; (3)

I being the N -by-N identity matrix. (In this paper the
classical LSF notation from [30] is adopted in which the
auxiliary matrices Ψ and Φ are known quantities not
depending on γ.) Moreover, the entries of the auxiliary
matrices Ψ≜ fψnp;n�1;…;N ;p�1;…;Ng and Φ≜ fϕnq;n�
1;…;N ;q� −Q;…;Qg are

ψnp �

8><
>:

J0

�
2
���
πδ

p
λ

�
H�1�

0

�
2π
λ jrn−rpj

�
H�1�

0

�
2
���
πδ

p
λ

� n ≠ p

0 n � p

; (4)

ϕnq �
J0

	
2
����
πδ

p
λ




H�1�
0

	
2
����
πδ

p
λ


 J−q

�
2π
λ
jrnj

�
exp

�
iq arctan

�
yn
xn

��
; (5)

respectively, Jq�·� being the q th-order Bessel function of the
first kind; i stands for the imaginary unit. Moreover, fv ≜
ff vq � exp�−iqθv�; q � −Q;…; Qg is the vector whose elements
are the coefficients of the expansion in cylindrical harmonics
of the v th incident wave f v�r�

f v�r� ≜
XQ
q�−Q

�
Jq

�
2π
λ
jrj

�
exp

�
iq arctan

�
y
x

��
f vq

�

Q being the user-defined truncation index [35].
Starting from a set of V scattered vectors,

ev ≜ �ev�rvm�;m � 1;…; M �, v � 1;…; V , being rvm ∈ Ωobs, m �
1;…; M the location of them th measurement point at the v th
view, the inversion is then aimed at estimating the sparsest
vector γ complying with Eqs. (2) and (3). Toward this end,
CS strategies seem to be natural candidate tools thanks to
their effectiveness in dealing with sparse unknowns
[42–45]. However, they cannot be directly applied because
of the nonlinearity of the relationships between the data, ev,
and the unknowns, γ, Eqs. (2) and (3). An alternative
approach is then considered starting from the following
observations.

• Linearity: according to Eq. (2), the amplitude vector av

linearly depends on ev.
• Sparsity: since γn � 0 implies avn � 0, but not vice versa

Eq. (3)., the vector av is always sparser than
γ: ‖av‖l0

≤ ‖γ‖l0 � S.
• Retrieved information: the support of av (i.e., the set

of grid cells of Ω for which avn ≠ 0) provides a good estimate
of the shape of the probed PECs, s since avn ≠ 0 implies
γn � 1, Eq. (3).

Accordingly, the scattering amplitude vectors,
fav; v � 1;…; Vg, are first retrieved starting from the
measured data, fev; v � 1;…; Vg, then a combination and
thresholding step is carried out to yield an estimate of the
LSF, γ̂, from fav; v � 1;…; Vg. Mathematically, the inversion
problem is recast as a two-step one, where the first step
follows.

Scattering-amplitudes retrieval problem: given
ev ∈ CM , v � 1;…; V , find the sparsest vector av ∈ CN ,
v � 1;…; V , such that ev � Hvav, where

Hv ≜
�
Hvcmn �H�1�

0

�
2π
λ
jrvm − rnj

�
;m� 1;…;M;n� 1;…;N

�

is the problem kernel, Eq. (2). Once the V scattering-
amplitude vectors have been estimated, fâv; v � 1;…; Vg,
the binary LSF is derived, γ̂, by addressing the following
second step.

LSF Retrieval Problem: given âv ∈ CN , v � 1;…; V ,
determine the estimate γ̂ by combining the locations of
nonzero amplitude coefficients at the different views
(javnj ≠ 0).
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3. LSF–MT-BCS RECONSTRUCTION
METHOD
In principle, the solution of the scattering-amplitudes retrieval
problem can be yielded through any CS-based technique
[39,40]. However, deterministic implementations based on
the minimization of functionals comprising l1-norm terms
[50] are prevented or are very complex in our framework
because of the computational unfeasibility of verifying the re-
stricted isometry property for the H matrix [39]. Accordingly,
a Bayesian CS [38,41] formulation is adopted hereinafter,
since (i) it does not require the restricted isometry property
of H to be a priori verified and (ii) it easily allows the intro-
duction of the a priori information concerned with the phys-
ics of the problem at hand [43]. Following the BCS guidelines,
the scattering amplitudes are retrieved by solving the maxi-
mum a posteriori probability equation

Âv ≜ arg
�
max
Av

�P�AvjEv��
�
; v � 1;…; V; (6)

where Av ≜ �R�av�; I�av��0 ∈ R2N and Ev ≜ �R�ev�; I�ev��0 ∈
R2M are the real-valued counterparts of the vectors av and
ev (prime being the transpose operator), respectively, and
P�AvjEv� is the posterior probability distribution that encodes
the prior assumptions on Av [38]. More specifically, the latter
is expressed through the Bayes’ theorem

P�AvjEv� � P�EvjAv�P�Av�
P�Ev� (7)

in terms of the prior P�Av� to account for (a) the a priori

knowledge of the sparseness of the scattering amplitudes,
av, v � 1;…; V , and (b) the correlation among the locations
of the non-null entries, avn ≠ 0, of the scattering vectors at dif-
ferent views. Accordingly, the MT-BCS formulation is adopted
by introducing a shared prior:

P�Av� ≜
Z

P�Avjα; σ�P�α�P�σ�dαdσ; (8)

where α ≜ fαn;n � 1;…; 2Ng is the shared prior (i.e., it does
not depend on the illumination index v) hyperparameter
vector.

Following the hierarchical hyperparameter procedure dis-
cussed in [38,43,47], Eq. (8) is substituted into Eq. (7) to yield
the a posteriori model,

P�AvjEv� �
Z

P�AvjEv; α�P�αjEv�dα; (9)

for Eq. (6), and the LSF–MT-BCS solution is obtained accord-
ing to the steps discussed in [38]:

Âv � �diag�α̂� � �Kv�0Kv�−1�Kv�0Ev v � 1;…; V; (10)

where the matrix Kv ∈ R2M×2N is given by Kv ≜ �J v;−Yv;
Yv;J v�, for which

J v ≜
�
J cmn � J0

�
2π
λ
jrvm − rnj

�
;m � 1;…; M; n � 1;…; N

�

and

Yv ≜
�
Ycmn � Y 0

�
2π
λ
jrvm − rnj

�
;m � 1;…; M; n � 1;…; N

�
;

while Y 0�·� is the zeroth-order Bessel function of the second
kind. As for α̂, it is computed by means of the relevance vector
machine technique [38] aimed at minimizing, with respect to α,
the function

I�α� � −
1
2

XV
v�1

flog�jCj� � �2N � 2β1� log��Ev�0CEv � 2β2�g;

(11)

where C ≜ I �Kv diag�α�−1�Kv�0, while β1 and β2 are user
defined control parameters.

Once Âv has been determined through Eq. (10), the scatter-
ing amplitudes (scattering-amplitudes retrieval problem) turn
out to be

âv ≜ fâvn � Âvcn � iÂvcn�N; n � 1;…; Ng v � 1;…; V :

(12)

As far as the LSF retrieval problem is concerned, the infor-
mation on the support of âv could be used since it is directly
linked to the shape of the PEC, Eq. (3). However, such an
approach would be extremely sensitive to small inaccuracies
in the reconstruction, since even a small value of jâvnj would
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Fig. 1. LSF–MT-BCS calibration (multiple scatterers, l � λ∕6,
O � S � 10). Behavior of the average integral error, ξ̄, versus
(a) β1 and β2 when η � ηopt and (b) η when β1 � βopt1 and β2 � βopt2 .
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correspond to a presence of a PEC cell. Therefore, the binary
LSF coefficients, γ̂vn, n � 1;…; N , associated with the v th view
are derived from the distribution of the scattering amplitudes
by thresholding

γ̂vn ≜ H
� jâvnj
maxnfjâvnjg

− η

�
n � 1;…; N; (13)

where H�·� is the Heaviside step function and η is a user-
defined threshold. Finally, the PEC profile (i.e., γ̂vn,
n � 1;…; N) is estimated by means of a majority voting rule,

γ̂n ≜ H
�PV

v�1 γ̂
v
n

V
− 0.5

�
n � 1;…; N: (14)

It is worthing pointing out that the procedure proposed
here for solving the LSF retrieval problem differs from the

combination rule applied in source reconstruction methodol-
ogies [37], since (a) a thresholding mechanism is used to min-
imize artifacts, Eq. (13), (b) a voting rule is exploited, Eq. (14),
instead of a linear summation of the retrieved amplitudes, and
(c) the binary LSF coefficients γ̂n are estimated here instead of
the volumetric currents.

4. NUMERICAL ASSESSMENT
A. Rationale and Figures of Merit
A selected set of numerical experiments is discussed herein-
after to provide suitable guidelines for the choice of the LSF–
MT-BCS control parameters as well as to investigate the
method features and potentialities in terms of accuracy,
speed, and robustness to noise. Comparisons with the
single-task (ST) implementation [42] of the LSF–BCS
approach are reported, as well.

(a) (b)

(c) (d)

(e)

Fig. 2. Illustrative example (multiple scatterers, l � λ∕6, O � S � 10, SNR � 20 dB). (a), (c), (e) Binary function γ and (b), (d) amplitude
coefficients av (v � 1) of (a), (b) the actual PEC profile and the LSF–MT-BCS (c), (d) single-view (v � 1) and (e) multiview (v � 1;…; V)
reconstructions.
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If not otherwise indicated, the numerical assessment refers
to the following benchmark scattering scenario. An L � 3λ0-
sided square investigation domain Ω is discretized in N � 324
cells centered at

rn �
�

L�����
N

p �n − 1�cmod
���
N

p ;
L�����
N

p
��n − 1������

N
p


�
n � 1;…; N (15)

and illuminated by V � 27 incident waves impinging from the
directions

θv �
2π�v − 1�

V
; v � 1;…; V: (16)

The scattering data, ev � �ev�rvm�;m � 1;…; M �, have been
computed (unlike the inversion, a finer grid has been consid-
ered for the forward solver to avoid the inverse crime 51.) at
M � 27 locations,

rvm �
�
ρ cos

�
2π�m − 1�

M

�
; ρ sin

�
2π�m − 1�

M

��
m � 1;…; M;

(17)

of the observations domain, defined over a circle ρ � 3λ0 in
radius, by means of the LSF approach [30], Eqs. (2)–(5),
and assuming Q � 30.

(a)

(b) (c)

(d) (e)

Fig. 3. Numerical assessment (multiple L-shaped scatterers, O � 3, S � 9). (a) Actual and (b)–(e) retrieved binary function γ with (b), (c) the
LSF–MT-BCS and (d), (e) the LSF–ST-BCS when (b), (d) SNR � 30 dB and (c), (e) SNR � 5 dB.
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In addition to the graphical representation of the retrieved
PEC profile, γ̂n, n � 1;…; N , and to provide a qualitative
indication on the reconstruction accuracy, the values of
the integral error
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Fig. 4. Numerical assessment (multiple L-shaped scatterers, O � 3,
S � 9). Behavior of the integral error ξ versus SNR.
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Fig. 5. Numerical assessment (multiple L-shaped scatterers, O � 4,
S � 12, SNR � 5 dB). (a) Actual and retrieved binary function γ with
(b) the LSF−MT−BCS and (c) the LSF−ST−BCS.
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Fig. 6. Numerical assessment (multiple L-shaped scatterers,
SNR ∈ f5; 10; 20g dB). Behavior of the integral error ξ versus S.
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Fig. 7. Numerical assessment (statistical analysis, SNR � 10 dB).
Behavior of the average (points) and maximum and minimum (error
bars) values of the integral error ξ versus S in the presence of
(a) l � λ∕6 and (b) l � λ∕3 scatterers.
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ξ ≜
1
N

P
N
n�1 jγ̂n − γnj2PN

n�1 jγnj2
�

P
N
n�1 jγ̂n − γnj2
N × S

(18)

have been also computed and reported.

B. Control Parameters—Selection Guidelines
A calibration of the control parameters of the proposed inver-
sion is mandatory to provide suitable guidelines to the inter-
ested reader. As a matter of fact, the setup of the control
parameters β1 and β2 in Eq. (11) is known to be a fundamental
step to guarantee the MT-BCS effectiveness and efficiency,

since no physical hints are available for their optimal choice
[43]. Moreover, the value of the threshold η, Eq. (13), must
guarantee a good filtering-accuracy trade-off whatever the
PEC inversion at hand.

Toward this purpose, a set of 100 different scenarios
comprising O � S � 10 randomly displaced square cylinders
λ∕6-sided [e.g., Fig. 2(a)] has been generated, and the LSF–MT-
BCS inversion has been performed by varying the control
parameters within the ranges β1 ∈ �10−2; 103�, β1 ∈ �10−3; 5�,
and η ∈ �0; 0.5�. To provide statistical relevance, a set of differ-
ent signal-to-noise ratios (SNRs) in the range SNR ∈
�5 dB; 30 dB� has been considered, as well.

(a)

(b) (c)

(d) (e)

Fig. 8. Numerical assessment (multiple squares profile, S � 8, l � λ∕6, SNR � 10 dB). (a) Behavior of the integral error ξ versus V when
M � 27. (b)–(e) Reconstructed distributions when (b), (c) V � 5 and (d), (e) V � 15 by applying (b), (d) the LSF–ST-BCS and (c), (e) the
LSF–MT-BCS.
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The behavior of the averaged integral error, ξ̄, as a function
of the hyperparameter control variables [Fig. 1(a)] shows that
the accuracy decreases in the regions β2 ≥ 2.0 and β1 ≤ 10
[e.g., ξ̄ ≈ 2.13 × 10−2 when β1 � 0.1, β2 � 5.0, Fig. 1(a)] or
β1 ≥ 500 and β2 ≤ 10−1 [e.g., ξ̄ ≈ 5.8 × 10−3 when β1 � 500,
β2 � 2.0 × 10−2, Fig. 1(a)], while the minimum ξ̄ [i.e.,
ξ̄opt ≈ 9.2 × 10−4, Fig. 1(a)] occurs in correspondence with the
values βopt1 ≈ 5 × 10−2 and βopt2 ≈ 5 × 10−2. These latter values
will be assumed hereinafter as the optimal trade-off calibra-
tion setting.

As for the behavior of ξ̄ versus η when assuming β1 � βopt1
and β2 � βopt2 , the plot in Fig. 1(b) indicates that a small
threshold value yields a poor reconstruction accuracy (e.g.,
ξ̄cη�2.0×10−2 ≈ 1.13 × 10−1 ≫ ξ̄opt) since âvn ≈ 0 → γ̂n � 1. On
the other hand, larger values of η also tend to filter-out
relevant information (e.g., ξ̄cη�4.7×10−1 ≈ 5.91 × 10−3 ≫ ξ̄opt).
Therefore, the intermediate value ηopt ≈ 0.27, corresponding
to the abscissa of the minimum in Fig. 1(b), has been chosen,
and it will be used in the following.

For completeness, the plot of the scattering amplitudes âv

when v � 1 and SNR � 20 dB for a representative scenario
within the set of the calibration simulations [Fig. 2(d)] indicate

that, although the LSF amplitudes are only roughly retrieved
[Fig. 2(b) versus Fig. 2(d)], their support is very close to the
actual object area. Thus, the thresholded version obtained
through Eq. (13) exhibits only minor inaccuracies [Fig. 2(a)
versus Fig. 2(c)], and the combination of the estimation
outcomes from different views, Eq. (14), gives a perfect
reconstruction of the scenario under test [Fig. 2(e)].

C. Numerical Assessment and Comparisons
The experiments in this section are also aimed at assessing the
features and the performances of the proposed technique
through comparisons with the ST-BCS [42] implementation.
The first test case deals with O � 3 L-shaped cylinders
[S � 9, Fig. 3(a)] under various noisy conditions SNR ∈
�5 dB; 50 dB�. With reference to the case SNR � 30 dB, the
plot of the LSF–MT-BCS reconstruction in Fig. 3(b) shows that
the method perfectly retrieves the scatterer locations and
profiles, still keeping the efficiency proved in Fig. 2 despite
the size increase of the scatterers. Moreover, only minor
errors arise in heavier conditions: ξcSNR�5 dB ≈ 1.5 × 10−3

[Fig. 3(c)], while the ST version becomes worse whatever
the SNR [e.g., ξcSNR�30 dB ≈ 2.77 × 10−2, Fig. 3(d)]. Such an

(a)

(b) (c)

Fig. 9. Numerical assessment (multiple squares profile, S � 8, l � λ∕6, SNR � 10 dB). (a) Behavior of the integral error ξ versus the total
number of measurement points when V � M . Reconstructed distributions when M � V � 15 by applying (b) the LSF–ST-BCS and (c) the
LSF–MT-BCS.

1268 J. Opt. Soc. Am. A / Vol. 30, No. 6 / June 2013 Poli et al.



outcome is actually expected, since the LSF–ST-BCS encodes
a sparsity prior that does not take into account the correla-
tion among the locations of the avn ≠ 0 amplitudes at different
views [42]. Therefore, the estimated vectors âv (v � 1;…; V)
turn out to be mutually independent, and their multiview
combination generally does not improve the reconstruction
with respect to the single-view case. Previous outcomes are
also confirmed by the behavior of ξ versus the SNR for the
two approaches (Fig. 4). The reconstruction error of the
LSF–MT-BCS is always the lowest, and it becomes negligible
(ξ → 0) when SNR ≥ 30 dB.

Similar conclusions hold true also in the presence of a
larger number of scatterers [O � 4—Fig. 5(a)]. As an example
and despite the high noise level [SNR � 5 dB, Fig. 5(b)],
the MT technique still identifies the presence and the positions
of the scatterers, unlike the LSF–ST-BCS technique, whose
prediction is totally unsatisfactory and has several artifacts
[Fig. 5(c)]. This further highlights the importance of exploiting
within the inversion process the correlation among different
views, rather than doing it only a posteriori.

On the other hand, it has also to be observed that a less
sparse distribution of the scatterers affects the method’s
performance whatever the BCS implementation, as shown
by the plots in Fig. 6, and is concerned with the integral

error for different scenarios including from O � 1 (S � 3)
up to O � 4 (S � 12) L-shaped scatterers. Although the
MT-based inversion always overcomes the ST and a smoother
performance degradation arises, there is a reduction of the
fidelity of the LSF–MT-BCS reconstruction when S increases,
as well.

To fully assess the sensitivity of the LSF–BCS-based inver-
sion on the sparsity of the PECs, the successive test case deals
with O ∈ �1; 10� λ∕6-sided objects randomly located within Ω.
For a choice of 30 trial scatterer configurations for each O
value, the statistics (i.e., average, minimum, and maximum
values) of the integral error are reported in Fig. 7(a)
(SNR � 10 dB). As it can be observed, the inversion accuracy
of the LSF–MT-BCS is reduced on average with S (e.g., ξ̄cS�6 ≈
7.71 × 10−4 versus ξ̄cS�10 ≈ 7.87 × 10−3), while the error
range is enlarged when less sparse profiles are at hand
[�ξmax − ξmin�cS�6 ≈ 6.2 × 10−3 versus �ξmax − ξmin�cS�10 ≈ 2.4×
10−2]. This indicates that the reconstruction reliability
improves for lower S values whatever the target positions
as a consequence of the hypotheses on the prior specification,
Eq. (8). To confirm such a deduction, the retrieval of
larger randomly displaced PECs has been then addressed
[l � λ∕3-sided objects—Fig. 7(b)]. As expected, a similar
trend of the average, minimum, and maximum errors can

(a)

(b) (c)

Fig. 10. Numerical assessment (multiple squares profiles, l � λ∕6, S ≈ N∕50, SNR � 10 dB). (a) Behavior of the integral error ξ and the CPU time
versus L ∈ �λ; 5λ�. (b), (c) Reconstructed distributions when L � 5λ by applying (b) the LSF–ST-BCS and (c) the LSF–MT-BCS.
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be noticed [e.g., ξ̄cl�λ∕6
S�8 ≈ 3.53 × 10−3, Fig. 7(a), versus

ξ̄cl�λ∕3
S�8 ≈ 2.63 × 10−3, Fig. 7(b)]. Throughout the analysis,

the figures of merit of the ST approach are also reported to
further assess the improvements of the MT-BCS over the
ST-BCS inversion [Figs. 7(a) and 7(b)].

The next set of experiments is devoted to analyzing the
dependence of the methods’ performances on the number
of scattering data when different (i.e., smaller) from the opti-
mal bound discussed in [51] and previously adopted. Indeed,
CS-based methodologies are known to effectively deal with
few data [38–41], as well. Toward this end, the inversion of
O � S � 8 λ∕6-sided objects [red squares, Fig. 8(b)], randomly
distributed within Ω, has been carried out by successively
probing the scenario with a different number of views from
V � 1 up to V � 27, Eq. (16), but always collecting the scat-
tered field samples at theM � 27measurement points located
as in Eq. (17). The LSF–MT-BCS estimated profiles in Fig. 8
(SNR � 10 dB) turn out to be similar to the actual one starting
from only V � 5 illuminations [ξ ≈ 1.85 × 10−2, Fig. 8(c)], that
is, considering 80% fewer data than those suggested by the
criterion [51] (i.e., VNyquist � 27). Moreover, just V � 15 views
(V∕VNyquist ≈ 55%) are required in order to yield a high-quality
reconstruction [ξ ≈ 3.08 × 10−3, Fig. 8(e)]. These results point
to LSF–MT-BCS as an enabling tool for nontrivial savings of
acquisition time and complexity with respect to traditional in-
version strategies. In contrast, ST reconstructions are gener-
ally unsatisfactory [Figs. 8(b) and 8(d)], as is confirmed by the
corresponding integral errors [Fig. 8(a)], as well. Let us now
analyze the method performance versus the number of both
measurement points and illuminations (Fig. 9). By assuming
M � V ∈ �1; 27� [SNR � 10 dB, Fig. 9(a)], it turns out that
an ξ value of the same order of that in Fig. 8(c) [i.e.,
ξ ≈ 1.85 × 10−2, Fig. 9(c)] is obtained when processing at least
M × V � 225 samples (i.e., M � V � 15). Such an amount of
scattering data is greater than that used for Fig. 8(c) (i.e.,
M × V � 135). This suggests that a contemporary reduction
of measurement points and illuminations, when scattering
data are uniformly collected within Ωobs, can be less effective
than only the reduction of V .

The final set of numerical experiments is aimed at asse-
ssing the dependence of the inversion accuracy on the
size of the investigation domain Ω. Accordingly, L has been
varied within the range L ∈ �λ; 5λ� by setting N , M , and V
according to the criterion in [51]. Moreover, S ≈ N∕50 λ∕6-
sided scatterers have been randomly displaced to keep the
same degree of sparsity whatever the Ω extension. The plot
of ξ̄ in Fig. 10(a) (SNR � 10 dB) shows that the LSF–
MT-BCS accuracy slightly deteriorates when L is larger
(e.g., ξcL�2λ � 1.47 × 10−3 versus ξcL�5λ � 4.54 × 10−3), but it
still remains acceptable when the largest L is reached
[L � 5λ, Fig. 10(c)]. In contrast, the ST-based approach is
totally unreliable in the same case [i.e., ξcSTL�5λ � 1.92 × 10−2,
Fig. 10(b)].

As for the computational issues, the behavior of the inver-
sion time, Δt, on a single-core laptop PC running at 2.66 GHz
indicates that the MT procedure is also more efficient
whatever the L value [e.g., ΔtcSTL�4λ ≈ 1.21 × 102 s versus
ΔtcMT

L�4λ ≈ 6.60 × 101, Fig. 10(a)]. Moreover, LSF–MT-BCS
also needs less than 90 s for inversion completion [i.e.,
ΔtcMT

L�5λ ≈ 8.71 × 101 s, Fig. 10(a)] when dealing with high-
dimensional spaces (e.g., NcL�5λ � 1024).

5. CONCLUSIONS
In this paper, the localization of sparse metallic targets has
been addressed by means of a new technique that models thin
targets through the LSF approach and solves the inversion
problem in a BCS sense, also combining the information from
different illuminations within the reconstruction process.
More in detail, sparse PECs inversion has been recast as a
two-step procedure, where the first step is aimed at retrieving
the so-called LSF scattering amplitudes through a MT-BCS
technique, Eq. (12), while the second is concerned with a
thresholding and voting operation, Eqs. (13) and (14). A set
of numerical experiments has been discussed to assess the
LSF–MT-BCS technique as well as to analyze its potential
and limitations.

As for the main methodological novelties, the paper pro-
poses: (a) an inversion technique for sparse PEC targets
based on a two-step LSF-based approach that includes a
probabilistic sparsity regularizer and (b) a suitable and inno-
vative (unlike its previous dielectric-oriented applications
[42,44,45]) exploitation of the BCS to image metallic profiles.

The numerical analysis has pointed out the following is-
sues. (i) It is possible to configure the LSF–MT-BCS control
parameters so that reliable inversions can be carried out
for a large set of scattering scenarios, noise levels, and meas-
urement setups. (ii) The method yields satisfactory recon-
structions when dealing with multiple targets occupying
several pixels and low SNRs, as well, although the resulting
accuracy depends on the scatterer sparsity. Indeed, owing
to the sparsity assumption and the LSF formulation, the
retrieval of objects consisting of a very large number of cells
is prevented. (iii) Thanks to the BCS framework, the approach
also provides satisfactory performance when the number of
illuminations or measurements is significantly below the op-
timal one [51]. (iv) The LSF–MT-BCS technique is computa-
tionally more efficient and much more effective than the
ST implementation.

Future developments, out of the scope of this paper, will be
devoted to investigate the optimal field–probe arrangement
(i.e., rvm, m � 1;…; M , v � 1;…; V) to further simplify the
LSF–MT-BCS imaging setup while guaranteeing faithful and
reliable reconstruction. Extension to 3D problems is also
currently under investigation.
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