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Variational Monte Carlo study of soliton excitations in hard-sphere Bose gases
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By using a full many-body approach, we calculate the excitation energy, the effective mass, and the density
profile of soliton states in a three-dimensional Bose gas of hard spheres at zero temperature. The many-body wave
function used to describe the soliton contains a one-body term, derived from the solution of the Gross-Pitaevskii
equation, and a two-body Jastrow term, which accounts for the repulsive correlations between atoms. We
optimize the parameters in the many-body wave function via a variational Monte Carlo procedure, calculating
the grand-canonical energy and the canonical momentum of the system in a moving reference frame where the
soliton is stationary. As the density of the gas is increased, significant deviations from the mean-field predictions
are found for the excitation energy and the density profile of both dark and gray solitons. In particular, the soliton
effective mass m∗ and the mass m�N of missing particles in the region of the density depression are smaller
than the result from the Gross-Pitaevskii equation, their ratio, however, being well reproduced by this theory up
to large values of the gas parameter. We also calculate the profile of the condensate density around the soliton
notch, finding good agreement with the prediction of the local-density approximation.
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I. INTRODUCTION

Solitons are nonlinear collective excitations that appear in a
wide range of physical systems, from classical fluids to optical
fibers: They are characterized as localized wave forms that
travel in a uniform medium at a constant velocity without
spreading. Ultracold atomic gases are well-controlled quantum
systems that are particularly suitable for the investigation
of solitons. Dark and gray solitons (i.e., localized density
depressions in a homogeneous background) can indeed be
produced in repulsive Bose-Einstein condensates (BECs) by
imprinting a phase jump on the atomic cloud [1–4], by density
engineering [5,6], or by merging two coherent BECs initially
prepared in a double-well potential [7]. Furthermore, other
kinds of solitons (e.g., bright solitons, gap solitons, and
dark-bright solitons) have also been created and detected in
bosonic quantum gases [4,8–10].

From the theoretical point of view, soliton excitations in
superfluids are studied mostly within mean-field approaches
based on the description of the system in terms of a complex
order parameter that evolves in space and time according
to a nonlinear equation. In the case of Bose superfluids
the paradigmatic theory is provided by the Gross-Pitaevskii
(GP) equation where soliton solutions have been widely
investigated [11]. A conceptually similar, although technically
more involved, mean-field approach exists also for Fermi
superfluids and is based on the time-dependent Bogoliubov–de
Gennes equations [12–15]. We point out that mean-field
solitons are stable excitations in one dimension, where the
phase of the order parameter changes sign at a single point.
In higher dimensions they can be stabilized by a sufficiently
strong confinement that reduces the soliton nodal surface, but
otherwise undergo a snake instability towards the formation of
vortices or vortex rings [3,16,17].

An important issue is to understand how the properties
of soliton excitations change when interparticle interactions

and/or correlations increase and the mean-field picture in terms
of the order parameter eventually fails. Using time-dependent
Bogoliubov theory [18–20] as well as more sophisticated nu-
merical techniques [21–25] to treat the many-body dynamics
of one-dimensional bosons at zero temperature, it has been
shown that beyond-mean-field effects tend to deplete the
condensate and to fill the soliton notch making dark solitons
unstable. Here, however, we study theoretically the role of
many-body correlations in determining relevant properties of
gray solitons in a three-dimensional (3D) Bose gas, such as
their excitation energy, density profile, and effective mass.
In particular, the problem of the value of the effective mass
beyond the limits of mean-field theory became prominent
in the interpretation of the recent experiment [26], where
localized excitations obtained by phase imprinting in an
ultracold Fermi gas of 6Li were observed to move much
more slowly than predicted by mean-field theory. These
defects were initially ascribed as solitons, but recently a more
precise imaging technique revealed that the moving defects
were solitonic vortices, thus explaining the puzzle of their
greater inertia [27]. Nevertheless, the dependence of the soliton
effective mass on the strength of interactions as the gas gets
less dilute remains an open question worth considering.

In this paper we perform full many-body simulations of
soliton excitations in a 3D Bose gas at zero temperature.
We calculate the energetic and structural properties of gray
and dark solitons, in both the very dilute and the strongly
interacting regimes, and we determine their effective mass
from the excitation energy vs speed dependence. The results
are systematically compared with the predictions of the GP
equation and important deviations are found as the density
is increased. Remarkably, the ratio m∗

m�N
between the soliton

effective mass and the mass of missing particles in the density
dip, which is the crucial parameter in the dynamics of solitons
as macroscopic localized defects, is found to remain close to
the mean-field value up to very high densities.
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The paper is organized as follows. In Sec. II we introduce
the variational approach used in the numerical determination
of the properties of the soliton: We discuss the form of the
many-body wave function and the energy functional in terms
of which the soliton state can be defined. In Sec. III we present
the results obtained within this many-body approach and we
discuss the appearance of corrections beyond the mean-field
description of solitons. We summarize in Sec. IV.

II. NUMERICAL METHOD

The system of N interacting identical bosons of mass m

is described by the Hamiltonian of the quantum degenerate
hard-sphere (HS) model, that is,

H = − �
2

2m

N∑
i=1

∇2
i +

∑
i<j

V (rij ), (1)

where rij is the distance between the ith and j th particles
and the central potential V is modeled by the hard-sphere
interaction

V (r) =
{∞, r � a

0, r > a
(2)

in terms of the s-wave scattering length a. This model has
been widely used to describe quantum many-body systems
with short-range repulsive interaction, in both the weakly and
the strongly interacting regimes. Indeed, it is able not only
to capture the essential properties of dilute systems such as
ultracold gases with positive scattering length, for which the
details of the interatomic potential are irrelevant, but also to
characterize semiquantitatively the static properties of strongly
interacting systems such as superfluid 4He [28–30]. Moreover,
the choice of the HS model is particularly convenient as it
allows one to parametrize the strength of the interactions by
just varying the value of the dimensionless gas parameter na3,
where n = N/V is the density of the gas.

To describe soliton excitations, we consider states of the
gas described by the many-body wave function

�S(r1, . . . ,rN ; t) = AS

N∏
i=1

φ(zi − vt)
∏
i<j

f (rij ), (3)

where AS is a normalization factor. The product of two-body
Jastrow terms accounts for interparticle correlations: We
model them using the positive function f (r) = sin[k(r−a)]

r
in

the interval a < r < RM , which is the exact solution of the
scattering problem for a hard-sphere potential. For r > RM ,
we match f (r) with the constant sin[k(RM−a)]

RM
. This function

satisfies the boundary condition f (r) = 0 at r < a and the
wave vector k is determined from the condition f ′(r = RM ) =
0 of the first derivative f ′ at the matching point RM . The value
of RM is used as a variational parameter and is optimized
to minimize the excitation energy of the dark soliton. The
complex one-body term φ is given by

φ(z) =
√

1 − α2 tanh

(
z

γ ξ

√
1 − α2

)
+ iα (4)

and describes a perturbation in the density profile propagating
along the z axis with velocity v. Here ξ = 1/

√
8πna is the

healing length of the gas at the background density n, while
α and γ are two variational parameters. The functional form
of φ is dictated from the solution

√
nφ(z − vt) of the GP

equation describing dark and gray solitons [11]: In this case,
the values of the parameters are γ = √

2 and α = v/c0, with
c0 = �√

2mξ
the speed of sound within the GP theory. The phase

of φ undergoes the finite change �S = 2 arccos(α) as z varies
from +∞ to −∞, whereas the density perturbation is localized
around the origin of the z axis on a length scale fixed by
γ ξ/

√
1 − α2. The wave function (3) is translationally invariant

in the xy plane and its global phase is the sum of single-particle
contributions, each of which changes sign at the zi − vt = 0
plane.

Since we assumed that the time t enters the many-body
wave function only through the linear combination zi − vt , it
is convenient to describe the problem in a moving reference
frame, where the soliton is stationary. In analogy with the GP
equation, we define soliton states as stationary points of the
functional

	[�S] = E[�S] − vPC[�S], (5)

where E is the grand-canonical energy of the many-body
system

E[�S] =
∫

dR̃ �∗
S (R̃)(H − μ)�S(R̃) (6)

and PC is the canonical momentum

PC[�S] = �nLxLy(�S − π )

− i�

2

∫
dR̃

[
�∗

S (R̃)
N∑

i=1

d

dz̃i

�S(R̃)

− �S(R̃)
N∑

i=1

d

dz̃i

�∗
S (R̃)

]
. (7)

The set of particle coordinates R̃ = (r̃1, . . . ,r̃N ) refers to the
moving reference frame r̃i = (xi,yi,z̃i), where z̃i = zi − vt .
Furthermore, Lx and Ly indicate the length of the system in
the x and y directions, respectively. In Eq. (6), μ is the chemical
potential of the homogeneous gas enforcing the boundary
condition that the soliton state reaches the asymptotic density
n when z̃i = ±∞ for all the particles. The first term in
Eq. (7) arises instead from the boundary condition that the
many-body wave function �S has a phase jump N�S across
the soliton and it is necessary to account for the motion of the
background density in the moving reference frame [11,14,31].
The functional 	 can be derived from the principle of minimal
action applied to the quantity

A =
∫

dt

∫
dR �∗

S (R,t)(−i�∂t + H − μ)�S(R,t), (8)

where �S is a state of the form (3) complying with the
boundary conditions explained above [32].

The simulations for a given value of the gas parameter
na3 are carried out using the variational Monte Carlo (VMC)
technique. As a first step, we calculate the properties of the
uniform ground state by performing VMC simulations of NU

particles in a box of volume V = NU/n with periodic bound-
ary conditions. We use the function �U (R) = AU

∏
i<j f (rij )
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to describe the normalized ground state and we determine the
corresponding energy E0 and chemical potential μ = ( dE0

dN
)V .

The soliton state is simulated in the same box of volume
V = LxLyLz, using a number NS < NU of particles chosen so
as to comply with the boundary condition of the density profile
reaching the uniform value n far away from the soliton plane.
The volume of the simulation box is chosen large enough to
prevent finite-size effects: Typical values are Lz � 20ξ and
Lx = Ly � 8ξ . Moreover, the value RM of the matching point
in the Jastrow factor is kept the same for the calculation of
the �U and �S states. For each value of the velocity v of
the soliton (given as an input parameter), we calculate 	 as
a function of the variational parameters and we look for the
stationary points to determine the optimal values of α and γ .
In analogy with the GP equation, the soliton state corresponds
to a saddle point of 	, i.e., a minimum as a function of γ and
a maximum as a function of α.

III. RESULTS

We start the discussion of the structural properties by
considering the limit of vanishing velocity v/c0 → 0, where
the optimal value of α approaches zero and the wave function
�S describes a dark soliton with a phase jump �S = π .
The density profiles n(z) of these stationary excitations are
shown in Fig. 1 for different values of the gas parameter and
compared with the profile obtained within the GP approach. A
systematic analysis of the effects of many-body interactions on
the condensate wave function in time-dependent problems has
been performed in Ref. [33]. In that work it was shown that the
relevant parameter for the deviations from the solution of the
GP equation is the square root of the quantum depletion, which
scales as (na3)1/4. In Fig. 1 we can see that the VMC results
are in excellent agreement with mean-field predictions at the
lowest density na3 = 10−6. As the gas parameter increases, we
notice some deviations from the solution of the GP equation,
although they become significative only at na3 > 10−3. At
these higher densities the width of the soliton, in units of the
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FIG. 1. (Color online) Density profile of a dark soliton for differ-
ent values of the gas parameter (lines are a guide for the eyes). The
solution of the GP equation is also shown for comparison.
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FIG. 2. (Color online) Density profile of the soliton at the density
na3 = 10−2 for different velocities in the reference frame where the
soliton is at rest. The mean-field curves are also shown.

healing length, decreases and some oscillations appear in the
density profile. These oscillations are more pronounced at the
largest densities and get damped in regions far from the soliton.
Similar oscillations appear in the density profile of liquid 4He
around a vortex [34] and their appearance can be interpreted
as the tendency of the system to organize itself in shells of
atoms around the defect. We notice that, for all values of the
gas parameter, the density vanishes on the z = 0 soliton plane,
in agreement with the GP prediction for dark solitons. This is
a consequence of the choice (4) of the one-body term, which,
as α → 0, generates for each particle a phase discontinuity at
the z = 0 plane.

In Fig. 2 we show the density profile of gray solitons moving
with different velocities v in a gas of background density
na3 = 10−2, which corresponds to a regime of relatively strong
interactions among the particles. One observes clear deviations
from the GP profile in the region of the wings of the soliton,
similar to the v = 0 case (see Fig. 1). The discrepancies
between the two profiles are less pronounced in the central
region of the soliton where the VMC results at all velocities
are only slightly above the GP predictions.

Another important quantity accessible in our microscopic
approach is the condensate profile n0(z) around the defect.
This can be obtained from the long-distance behavior of the
one-body density matrix in the xy plane at a fixed value of the
z coordinate:

n0(z) = lim
|r′

1−r1|→∞

∫
dRN−1|�S |2 �S(r′

1,r2, . . . ,rN )

�S(r1,r2, . . . ,rN )
, (9)

with r′
1 = (x ′

1,y
′
1,z), r1 = (x1,y1,z), and RN−1 = {r2, . . . ,rN }.

In Fig. 3 we show the condensate profile of a dark soliton (v =
0) at the density na3 = 10−2. Far away from the soliton plane
at z = 0, the condensate density reaches the bulk value n0 �
0.8n, in agreement with the result for a homogeneous gas [35].
When approaching the soliton plane, we find that n0(z) is in
closer agreement with the GP profile than the total density n(z).
Remarkably, the condensate profile is well reproduced by the
local-density approximation (LDA), where we determine n0(z)
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FIG. 3. (Color online) Condensate density profile n0(z) of a dark
soliton at na3 = 10−2. The results of both the GP equation and
LDA are also shown. The inset shows the local condensate fraction
n0(z)/n(z) compared with the LDA result.

from the results of the quantum depletion in a homogeneous
gas [36,37] at the local density n(z). Only in the region very
close to the soliton plane, the LDA result shows deviations on
the order of 5% with respect to the local condensate fraction
n0(z)/n(z) obtained from VMC calculations (see the inset of
Fig. 3).

The energetics of solitons is reported in Fig. 4, where we
show the excitation energy �E of the soliton as a function of
v2 and for different values of the gas parameter. This value
is obtained from the difference �E = E[�S] − E[�U ] of the
grand-canonical energy (6) between the states with and without
the soliton. At the smallest value of the gas parameter (na3 =
10−6), we find good agreement between the VMC result and
the GP prediction

�EGP = LxLy

4

3
�c0n

(
1 − v2

c2
0

)3/2

. (10)
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FIG. 4. (Color online) Excitation energy �E of the soliton as
a function of (v/c0)2. The solid line corresponds to the GP result.
Statistical errors are smaller than the symbol size.
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FIG. 5. (Color online) Ratio of the VMC to the GP effective mass
m∗ and mass of missing particles in the soliton dip m�N as a function
of the gas parameter. The inset shows the ratio m∗

m�N
as a function

of na3.

Significantly larger excitation energies are obtained at higher
densities, showing that beyond-mean-field effects result in a
more pronounced enhancement of the soliton energy E[�S]
compared to the increase of the ground-state energy E[�U ]
of the background homogeneous gas [35]. From the slope of
�E with respect to v2 we extract the effective mass m∗ of the
soliton shown in Fig. 5 as a function of na3. Despite the fact that
the excitation energy becomes larger as the density increases,
the effective mass per surface unit remains always close to the
mean-field prediction m∗

GP = −4 �n
c0

with a reduction of only
∼10% at the largest density. We would like to point out that
values of m∗ consistent with the ones reported in Fig. 5
are obtained from the linear dependence of the canonical
momentum PC in Eq. (7) on the velocity v of the soliton.

In Fig. 5 we also show the mass m�N of missing particles
in the notch of a dark soliton per unit surface, obtained from the
formula �N = (NS − NU )/LxLy . We find that up to densities
na3 � 10−3, the suppression of �N with respect to the GP
value �NGP = −2 �n

mc0
is small and approximately equal to the

reduction of the effective mass. At higher densities, the ratio
�N/�NGP drops down, following the filling of the soliton dip
as shown in Fig. 1. Due to the qualitatively similar behavior
of m∗ and m�N , their ratio remains surprisingly close to the
mean-field prediction m∗

GP
m�NGP

= 2 up to large values of the gas

parameter (na3 � 10−2). Only at the largest density na3 =
10−1 this ratio shoots up because of the large suppression
in �N (see inset of Fig. 5). It is worth stressing that the
ratio m∗/m�N is an important parameter characterizing the
dynamics of solitons as localized objects, being in particular
related to the frequency of their oscillation in a harmonic
confinement [14].

IV. CONCLUSION

We have investigated the structural and energetics proper-
ties of soliton excitations in three dimensions using a fully
microscopic many-body approach and carefully comparing
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our results with the standard GP theory. We provide quantita-
tive predictions for the effective mass and the mass of missing
particles as a function of the gas parameter, showing that their
ratio (which is the key parameter in the dynamics of the solitons
in a harmonic confinement) is in good agreement with mean-
field prediction even for regimes where the time-dependent
Gross-Pitaevskii equation usually fails.

In particular, the results at high density can be relevant for
future experiments on the dynamics of solitons in strongly
interacting composite bosons realized on the BEC side of a
Feshbach resonance in a two-component Fermi gas. At the
moment, the main hindrance to the experimental determination
of m∗/m �N is the fast decay of the solitons, which limits

the possibility of measuring the period of oscillation of these
defects in harmonically trapped gases [38]. By applying a
stronger radial confinement to cigar-shaped configurations, it
might be possible to increase the lifetime of solitons and thus
to study their dynamics in regimes where the gas parameter
is large.
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