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Fixed-node diffusion Monte Carlo study of the BCS-BEC crossover
in a bilayer system of fermionic dipoles
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We investigate the BCS-BEC crossover in a bilayer system of fermionic dipoles at zero temperature using
the fixed-node diffusion Monte Carlo technique. The dipoles are confined on two parallel planes separated by
a distance λ and are aligned perpendicular to the planes by an external field. The interlayer pairing, which
is responsible for the superfluid behavior of the system, crosses from a weak- to a strong-coupling regime
by reducing the separation distance λ. For a fixed in-plane density equal in the two layers, we calculate the
ground-state energy, the chemical potential, the pairing gap, and the quasiparticle dispersion as a function of the
interlayer separation. At large λ one recovers the ground-state energy of a single layer of fermions, and at small λ

one recovers that of a single layer of composite bosons with twice the particle mass and the dipole moment. The
superfluid gap varies from the exponentially small BCS result to half of the large two-body binding energy in the
Bose-Einstein condensate (BEC) regime of strong interlayer pairing. Results are compared with the predictions
of the simplest mean-field theory valid in the low-density limit, and deviations are observed both in the BCS
regime, where in-plane repulsions are important, and in the BEC regime, where the mean-field approach fails to
describe the physics of composite dipolar bosons.
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I. INTRODUCTION

Recent progress in experiments with polar molecules and
magnetic atoms opens interesting prospects to study many-
body effects in quantum degenerate gases where the dominant
interactions are provided by anisotropic, long-range dipolar
forces [1,2]. In the case of fermionic particles, the quest for
ultracold polar molecules in their rovibrational ground state
is actively being pursued using mixtures of 40K87Rb [3,4],
23Na40K [5], 23Na6Li [6], and 133Cs6Li [7]. The electric
dipole moment of these heteronuclear molecules ranges from
0.56 D for 40K87Rb to 5.5 D in the case of 133Cs6Li. Another
possibility to realize a dipolar Fermi gas is to bring highly
magnetic atoms, with magnetic moments on the order of ten
Bohr magnetons, to the regime of quantum degeneracy, as it
has been successfully achieved with Dy [8] and Er [9] atoms.

Two-dimensional (2D) geometries, in the form of a single
layer or of a multilayer structure, prove to be very useful for
producing ultracold-gas systems with strong dipolar interac-
tions either because they help suppress unwanted chemical
reactions [10] or, more generally, because they can prevent
the many-body collapse driven by the head-to-tail dipolar
attractive force.

We consider a bilayer system of dipolar fermions where the
particles occupy two parallel planes separated by a distance λ

and the dipole moments are aligned perpendicular to the planes
by a sufficiently strong external field. Tunneling between the
planes is assumed to be negligible, and the motion of the
particles in each plane is assumed to be strictly 2D. Pairing
arises from the attractive component of the interlayer dipolar
interaction: two particles belonging to different layers always
form a bound state for any separation distance λ [11–13],
while many-body systems with equal in-plane densities are
expected to exhibit superfluid behavior at sufficiently low
temperatures [14–16]. A crossover from a Bardeen-Cooper-
Schrieffer (BCS) to a Bose-Einstein condensate (BEC) type of
superfluid state is also expected as a function of the interlayer

distance, depending on whether the two-body binding energy is
smaller or larger than the in-plane Fermi energy. A qualitative
description of this crossover is provided by the BCS theory
applied to 2D Fermi gases [17,18].

The bilayer system of fermionic dipoles considered in the
present article shows a BCS-BEC crossover similar to the
one studied in two-component Fermi gases where contact
interactions are tuned by a magnetic field in the vicinity of
a Fano-Feshbach resonance (for a review, see Refs. [19,20]).
An additional ingredient here is the long-range nature of the
dipolar interaction and the in-plane repulsion felt by the parti-
cles. These latter features also establish strong analogies with
the electron-hole bilayer in semiconductor heterostructures
and graphene, which has attracted a lot of interest in recent
years [21–23].

Previous theoretical studies were performed in the mean-
field approximation [14–16]. Here we report on calculations of
the equation of state and of the superfluid gap at zero temper-
ature using the fixed-node diffusion Monte Carlo (FN-DMC)
technique. The in-plane density corresponds to the weakly
interacting regime of a single-layer Fermi liquid [24,25].
For balanced populations in the two layers we calculate
the ground-state energy of the system, and from the depen-
dence of this energy on a slight population unbalance, we
determine the chemical potential and the pairing gap. By
decreasing the interlayer separation λ the ground-state energy
varies from the value corresponding to a single fermionic layer
[25] to the one of a single layer of composite bosonic dipoles
with twice the mass and twice the dipole moment. In the same
crossover, the pairing gap increases from the exponentially
small BCS result to half of the large two-body binding energy
in the BEC regime of small separation. We compare our results
with the simplest mean-field approach valid in the low-density
limit, and we find important deviations once the contribution
from the two-body physics is subtracted from the energy per
particle and the pairing gap. The role played by in-plane
repulsions is also found to be relevant in the discussion of
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the schematic phase diagram of the system in the interlayer
and intralayer interaction plane, where the BCS and BEC
regimes of the superfluid compete with the Wigner crystal
phase reached at large densities.

The structure of this paper is as follows: in Sec. II
we describe our model Hamiltonian, provide some basic
information about the FN-DMC technique, and discuss the
choice of the trial wave function used in the calculations.
Section III contains a review of the results of the mean-field
approach, which qualitatively describes the crossover in terms
of the two-body binding energy. In Sec. IV we present the
FN-DMC results for the ground-state energy, and we discuss
the phase diagram of the system as a function of interlayer
separation and in-plane interaction strength. In Sec. V the
technique to calculate the chemical potential, the pairing gap,
and the quasiparticle spectrum is explained, and the results are
discussed and compared with mean-field predictions. Finally,
we draw our conclusions.

II. MODEL AND FN-DMC METHOD

We consider a bilayer system of identical fermionic dipoles
where the bottom and top layers contain, respectively, Nb =
N/2 and Nt = N/2 particles, with N being the total number
of fermions. The layers are strictly 2D planes separated
by a distance λ. We assume that all dipoles are aligned
perpendicular to the plane of motion by an external field
and also that tunneling between layers can be neglected. The
Hamiltonian of such a system is written as

H = − �
2

2m

⎛
⎝ Nb∑

i=1

∇2
i +

Nt∑
j=1

∇2
j

⎞
⎠

+
Nb∑
i<i ′

Vb(rii ′) +
Nt∑

j<j ′
Vt (rjj ′) +

Nb,Nt∑
i,j

Vint(rij ). (1)

Here m denotes the mass of the particles, d is the dipole
moment, and rii ′ and rjj ′ denote, respectively, the in-plane
interparticle distance in the bottom layer between the ith and
i ′th particles and in the top layer between the j th and j ′th
particles. The in-plane interaction potential in the bottom (top)
layer Vb(t) is purely repulsive and is given by Vb(t)(r) = d2/r3.
The interlayer potential Vint, however, is given by the formula

Vint(rij ) = d2
(
r2
ij − 2λ2

)
(
r2
ij + λ2

)5/2
, (2)

where rij = |ri − rj| is the in-plane distance between the ith
particle in the bottom layer and the projection onto the bottom
layer of the position of the j th particle in the top layer
(see Fig. 1). The strength of the in-plane and the interlayer
dipolar interactions is described in terms of the dimensionless
parameters kF r0 and kF λ, respectively. Here kF = √

4πnsl

is the Fermi wave vector determined by the density nsl in
each layer, and r0 = md2/�

2 is the characteristic length of the
dipolar potential. It is important to stress that the potential (2),
for any value of the interlayer distance λ, sustains a two-body
bound state with energy Eb [11–13].

As anticipated in the Introduction, we use the FN-DMC
method in order to calculate various ground-state properties of

FIG. 1. (Color online) Schematic view of the bilayer system of
dipolar fermions.

the system [26]. The method is based on the choice of a trial
wave function which, for fermions, must be antisymmetric
with respect to the exchange of identical particles. FN-DMC
simulations provide a rigorous upper bound to the ground-
state energy depending on the choice of the nodal surface
of the trial wave function, i.e., the multidimensional surface
in configuration space where the many-body wave function
vanishes. In principle, if the nodal surface of the trial wave
function is exact, the FN-DMC estimate of the ground-state
energy is also exact.

Simulations are carried out in a box of volume � = L2

with the single-layer density nsl = N
2L2 . Periodic boundary

conditions (PBC) are used in both spatial directions. In order to
account correctly for the long-range character of the interaction
energy we use a numerical procedure equivalent to Ewald’s
summation technique [26], but in our case the sums are
evaluated in real space (see Appendix A).

The trial wave function used to impose the nodal surface
constraint is given by

�T (R) =
Nb∏
i<i ′

f (rii ′)
Nt∏

j<j ′
f (rjj ′)�A(R) , (3)

where R = (r1, . . . ,r2N ) is the multidimensional vector denot-
ing the spatial coordinates of the particles. The function f (r)
is a two-body non-negative Jastrow term describing in-plane
correlations. It is parametrized as f (r) ∝ K0(2

√
r0/r) for r <

R̄ and f (r) ∝ exp(−C/r) for r > R̄, where K0 is the modified
Bessel function, C is a constant determined through the
condition f ′(r = L/2) = 0, and R̄ is a variational parameter
[25]. The term �A(R) is chosen as the antisymmetrized product
of pairwise orbitals φ(rij ):

�A(R) = det

⎡
⎢⎣

φ(r11) · · · φ(r1Nt
)

...
. . .

...
φ(rNb1) · · · φ(rNbNt

)

⎤
⎥⎦. (4)
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The orbitals are taken to be of the general form

φ(r) = Ah(r) + B

kF∑
kα=0

exp[ikα · r], (5)

where kα = (2π/L)(nx
α,n

y
α) are the wave vectors complying

with the PBC in the box of size L and A and B are variational
parameters. The function h(r) is parametrized as

h(r) = e−γ
√

r2/λ2+1 + eγ (
√

r2/λ2+1−2
√

L2/4λ2+1) , (6)

with γ being a variational parameter. At small interlayer
separations λ the functional form of h(r) agrees, for small
distances r , with the lowest two-body bound state of the
potential (2). We also notice that the value of parameters A, B,
and γ present in the many-body wave function (4) modify the
nodal surface and therefore require an optimization procedure
using the FN-DMC algorithm.

The pair orbital (5) provides the correct description of two
important regimes. The first one corresponds to B = 0, in
which case �A describes an antisymmetric state of composite
bosonic dimers. The second regime corresponds to A = 0:
here �A is equal to the product of the plane-wave Slater
determinants for bottom- and top-layer particles �A(R) =
det[eikαri ] det[eikαrj ]. In this case the nodal surface of the
trial wave function coincides with that of an ideal Fermi gas
and, being incompatible with off-diagonal long-range order in
the two-body density matrix [28], properly describes normal
Fermi liquids. This choice of the trial wave function is expected
to be valid in the deep BCS regime, where the effects of pairing
on the ground-state energy are negligible. The parametrization
(5) of the pair orbital allows one to interpolate continuously
between these two regimes [27,28].

III. MEAN-FIELD RESULTS

As known from BCS theory [17,18], in two dimensions the
presence of a two-body bound state in vacuum is a necessary
and sufficient condition for s-wave pairing with an arbitrary
interaction potential. The solution of the BCS equations is
particularly simple in two dimensions, providing the following
analytical results at T = 0:

	 =
√

2εF |Eb| (7)

and

μ = εF + Eb/2 (8)

for the order parameter and the chemical potential, respec-
tively. These results, which only involve the energy Eb of the
two-body bound state and the Fermi energy εF = �

2k2
F /(2m),

can be applied to the bilayer system in the low-density
limit where in-plane interactions and anomalous contributions
to interlayer scattering are both negligible [14,15]. More
sophisticated mean-field approaches have been developed [16]
that incorporate interaction effects beyond the dilute limit, but
they rely on full numerical solutions of the BCS equations.
From the thermodynamic relation μ = dE/dN one gets from
Eq. (8) the following result for the energy per particle in the

ground state:

E

N
= EIFG + Eb/2 , (9)

where EIFG = εF /2 is the energy per particle of a noninter-
acting gas. Quasiparticle excitations above the ground state
are described within the BCS theory by the dispersion relation

εk =
√(

�2k2

2m
− μ

)2

+ 	2 , (10)

and the pairing gap 	gap is defined as 	gap = mink(εk). In
the BCS regime, where μ > 0, the excitation energy εk has
a minimum at k =

√
2mμ/�2, and the pairing gap coincides

with the order parameter: 	gap = 	. In the BEC regime, where
μ < 0, the dispersion relation (10) has its minimum at k = 0,
and in this case

	gap =
√

μ2 + 	2 . (11)

By substituting the chemical potential from Eq. (8) into
Eq. (11) one obtains 	gap = εF + |Eb|/2 for the pairing gap in
this regime. The above mean-field predictions will be used in
the following sections to provide a comparison with the results
of FN-DMC simulations.

IV. GROUND-STATE ENERGY

In this section we discuss the FN-DMC results obtained for
the ground-state energy as a function of the dimensionless
interlayer distance kF λ (see Figs. 2 and 3). The in-plane
interaction strength is taken as kF r0 = 0.5, corresponding, in
the case of a single layer, to a weakly interacting Fermi liquid
[25]. Calculations are performed using two wave functions
both parametrized by Eqs. (3) and (4): the first contains the
pair orbital φ(r) of Eq. (5) with B = 0 and corresponds
to a BCS-type wave function of composite bosonic dimers;
the second contains φ(r) with A = 0 and is equivalent to a
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FIG. 2. (Color online) Ground-state energy as a function of the
interlayer distance kF λ. Symbols refer to FN-DMC calculations using
the trial wave function (3) with B = 0 in Eq. (5) (black circles) and
A = 0 in Eq. (5) (red squares). The lines show the noninteracting
Fermi gas (horizontal black dotted line), mean-field theory [blue
(gray) dotted line], half of the two-body binding energy [green (gray)
solid line], and the single-layer Fermi liquid (horizontal black solid
line).
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FIG. 3. (Color online) Ground-state energy with Eb/2 subtracted
as a function of the interlayer distance kF λ. Symbols refer to FN-DMC
calculations using the trial wave function (3) with B = 0 in Eq. (5)
(black circles) and A = 0 in Eq. (5) (red squares). The lines show the
mean-field theory (blue dotted line), single-layer Fermi liquid (top
black solid line), and single-layer composite bosons [bottom purple
(gray) solid line].

Jastrow-Slater wave function. Finite-size errors are analyzed
following the procedure described in Appendix B, and the
results extrapolated to the thermodynamic limit are shown in
Figs. 2 and 3. The BCS-type wave function (B = 0) is found
to give lower energies for kF λ � 0.5 (see Fig. 3).

We compare our FN-DMC data with the result of the
mean-field theory from Eq. (9) (blue dashed line in Fig. 2).
One can see that if Eb/2 is not subtracted from E/N ,
there appears to be good agreement between mean-field and
FN-DMC results, especially at small values of kF λ, where
the two-body contribution [shown in Fig. 2 as a green (gray)
solid line] dominates over the many-body contribution. For
large interlayer distances, the energy of a single-layer Fermi
liquid, given by E/N = 1.3862(5)EIFG [25], is almost exactly
recovered.

Once the binding energy contribution is subtracted from
E/N (see Fig. 3), deviations are visible compared to Eq. (9)
(shown as a blue dashed line in Fig. 3). At relatively large
values of kF λ it is evident that the energy approaches the value
of the single-layer interacting gas, and this effect is not at all
accounted for by the mean-field result (9). In the opposite
regime of small kF λ, one should compare E/N − Eb/2
with the energy of dipolar composite bosons with mass
2m, dipolar strength 2d, and dipolar length r̃0 = 8r0. At the
effective density nsl r̃

2
0 = 1.27, corresponding to kF r0 = 0.5

for single-layer fermions, these composite bosons have an
energy per particle E/N = 0.8021(3)EIFG (shown in Fig. 3
by the purple solid line on the bottom) [29]. We see that by
reducing kF λ the FN-DMC energies approach this asymptotic
value, showing that, energywise, the system indeed behaves
as a single layer of composite bosons interacting with a much
larger dipolar strength (nsl r̃

2
0 = 64nslr

2
0 ). We notice that in

the region 0.5 � kF λ � 0.6, where the nodal constraint of
the BCS-type wave function becomes energetically favorable
over that of the Jastrow-Slater wave function, one expects that
a more advanced nodal surface, interpolating between the two
limits, may provide a lower bound for the ground-state energy.
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FIG. 4. (Color online) Schematic phase diagram in the plane
spanned by kF λ and kF r0. The blue dotted line indicates in a
qualitative way the separation between the Wigner crystal and the
superfluid phase within the known limits of a single layer of dipolar
fermions (large kF λ) and of a single layer of dipolar composite bosons
(small kF λ). The red solid line separates the BEC from the BCS
region in the superfluid phase, defined as where μsl < |Eb|/2 and
μsl > |Eb|/2, respectively, in terms of the chemical potential μsl

of a single layer of dipolar fermions. The red dashed line shows
the BEC-BCS separation when μsl = εF , which is valid in the
low-density limit.

In Fig. 4 we show a schematic plot of the phase diagram of
the bilayer system as a function of parameters kF r0 and kF λ.
For a large interaction strength kF r0, the system is expected
to enter the Wigner crystal (WC) phase at any value of the
dimensionless inter-layer distance kF λ. In particular, for large
kF λ, the critical density where the fluid-to-solid transition
occurs should coincide with that of a single layer of dipolar
fermions, i.e., kF r0 = 25(3), as has been obtained in Ref. [25].
In Fig. 4 we arbitrarily assume that at kF λ = 2 the transition
point is already close to this critical value. This picture is
supported by the results for the equation of state reported in
Fig. 2, where the ground-state energy of the bilayer and the
single layer of dipolar fermions agree well for kF λ > 1. In
the opposite regime, kF λ � 1, the bilayer system of fermions
behaves as a single layer of dipolar composite bosons with
dipole moment 2d and mass 2m, corresponding to the effective
dipolar length r̃0 = 8r0. The superfluid-to-solid transition of
a single layer of dipolar bosons was investigated in Ref. [30],
and the critical value nsl r̃

2
0 = 290(30) was obtained. This

value converts into kF r0 = 7.5(8), as reported in Fig. 4, where
a straight line connects the two known limits providing a
qualitative picture of the phase diagram. In the same figure, the
superfluid region below the blue dotted line is separated into a
BEC part and a BCS part, which are approximately established
as where the single-layer chemical potential μsl < |Eb|/2
and μsl > |Eb|/2, respectively. The value of μsl is derived
from the results of the ground-state energy Esl obtained in
Ref. [25] for a single layer of dipolar fermions using the
thermodynamic relation μsl = dEsl/dN . In Fig. 4 we also
show the BEC-BCS separation when μsl = εF , extrapolating
from the dilute limit. The large reduction in the BEC region in
the case of the full determination of μsl is mainly due to the
in-plane repulsion, which increases the value of the chemical
potential, in agreement with the findings of Ref. [16].
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V. PAIRING GAP, CHEMICAL POTENTIAL, AND
QUASIPARTICLE EXCITATION SPECTRUM

A. Method

In order to calculate the pairing gap 	gap and the chemical
potential μ using the FN-DMC method we need to consider a
polarized system with Nt > Nb. In this case the antisymmetric
many-body wave function (4) should be generalized to deal
with a number of only Nb pairwise orbitals and the remaining
number M = Nt − Nb of unpaired particles occupying single-
particle states. We use the following form of �A, which has
already been successfully employed in the study of polarized
systems of fermions [31]:

�A(R) = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

φ(r11) · · · φ(r1Nt
)

...
. . .

...
φ(rNb1) · · · φ(rNbNt

)
ϕ1(r1) · · · ϕ1(rNt

)
...

. . .
...

ϕM (r1) · · · ϕM (rNt
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

The pairwise orbitals φ(r) are chosen to be of the form (5),
with the function h(r) given by Eq. (6). A simple choice of
the single-particle states ϕα(r) is provided by the plane waves
complying with PBC in the box of size L. The wave vectors
kα , α = 1, . . . ,M , are chosen such that the nodal surface of
the many-body wave function (12) is that of minimal energy.
We restrict our calculation of 	gap and μ to the values of
kF λ � 0.5, where the choice of B = 0 for the pairwise orbitals
in Eq. (5) gives the lowest energy.

We determine 	gap and μ from the following relation
between the energy of the balanced system and the system
with one extra particle in the top layer:

E

(
N

2
+ 1,

N

2

)
= E

(
N

2
,
N

2

)
+ μ + 	gap . (13)

Here E(N/2,N/2) is the ground-state energy of the system
with N/2 particles in each layer, and E(N/2 + 1,N/2) is
the ground-state energy of the system with N/2 + 1 particles
in the top layer and N/2 particles in the bottom layer. In
order to calculate the energy E(N/2 + 1,N/2) we make use
of the trial function (12) with a single unpaired particle
M = 1. The corresponding orbital ϕ1(r) = cos(k1 · r) can
easily be optimized by choosing k1 among the wave vectors
kα = (2π/L)(nx

α,n
y
α) complying with PBC. Figure 5 shows

the results of the calculation of 	gap and μ at kF λ = 0.5.
Two values of k1 are reported for comparison: k1 = 0 and
k1 = k̃ = 4(2π/L), with the latter giving the lowest energy
E(N/2 + 1,N/2). The energies of the balanced and polarized
systems depend linearly on N , and for both the slope is given
by μ. The pairing gap 	gap is obtained as the vertical distance
between the lines used to fit the energies of the balanced
and polarized systems. In all calculations reported in Fig. 5
the size L of the simulation box is kept fixed and is equal
to L = √

N/2nsl , where N = 98 and nsl is the single-layer
density such that kF r0 = 0.5. We notice that the value of
k̃, which minimizes 	gap in Fig. 5, is the wave vector kα

closer to kF .
The results of Fig. 5 and additional results of μ and 	gap

obtained using Eq. (13) for different values of kF λ are shown
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G

N

Δgap
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Nb = Nt
k1 = 0 
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FIG. 5. (Color online) Dependence of the total energy E on the
number of particles N in the two layers at kF λ = 0.5. Black squares
refer to the balanced case Nb = Nt . Red solid and blue open circles are
the energy for the unbalanced case Nt = Nb + 1 where the unpaired
particle has wave vector k1 = k̃ and k1 = 0, respectively. Lines are
linear fits through the data.

in the next section. At the largest interlayer separations the
optimal k1 remains close to the Fermi wave vector kF , whereas
at small separations k1 = 0 gives the lowest energy. In the latter
regime, the method outlined above to calculate 	gap becomes
less accurate, and we resort to another relation defining the
gap:

E

(
N

2
+ M

2
,
N

2
− M

2

)
= E

(
N

2
,
N

2

)
+ M	gap , (14)

which holds in the limit M � N . In terms of the polariza-
tion P = (Nt − Nb)/(Nt + Nb) = M/N the above equation
becomes

E(P )

N
= E(P = 0)

N
+ 	gapP . (15)
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FIG. 6. (Color online) Dependence of the ground-state energy E

on the polarization P at kF λ = 0.25. The total number of particles is
N = 98.
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FIG. 7. (Color online) Pairing gap as a function of kF λ. Blue
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field theory.

In Fig. 6 we show the results of E(P ) at the separation
distance kF λ = 0.25. Here we calculate the ground-state
energy for M = 0,2,4,6, with a fixed total number of par-
ticles N = 98. As for the calculation reported in Fig. 5,
the size of the simulation box is fixed to L = √

N/2nsl .
The unpaired particles occupy, starting from the first level,
the following set of plane-wave states: ϕ1(r) = 1, ϕ2(r) =
cos(k1 · r), ϕ3(r) = sin(k1 · r), ϕ4(r) = cos(k2 · r), ϕ5(r) =
sin(k2 · r), and ϕ6(r) = cos(k3 · r), where k1 = 2π

L
(1,0), k2 =

2π
L

(0,1), and k3 = 2π
L

(1,1). At the same separation distance,
kF λ = 0.25, we also calculated the gap using Eq. (13) and
found agreement between the two methods within statistical
uncertainty. The advantage of the method based on Eq. (15) is
the higher precision when the value of 	gap is large compared
to the Fermi energy EF . For this reason we make use of Eq. (15)
at interlayer separations kF λ � 0.25, and the corresponding
results are presented in the next section.

We also checked finite-size errors by carrying out calcula-
tions with N = 26,58,98 and found all corresponding values
of 	gap and μ to be in agreement within error bars.

B. Results

In this section we discuss the main results for the pairing
gap, the chemical potential, and the excitation spectrum and
compare them with mean-field predictions.

First, we compare the FN-DMC results for 	gap and μ

with Eqs. (11) and (8), respectively. In Fig. 7 we show the
pairing gap as a function of kF λ, without subtracting |Eb|/2,
and we find good agreement with mean-field theory. However,
once the trivial contribution from the two-body bound state is
subtracted (see Fig. 8), significant deviations become visible,
especially in the BEC regime where the mean-field theory does
not account for effects related to the dimer-dimer interaction.
The results for the chemical potential are shown in Fig. 9 for
the values of kF λ where we employed Eq. (13) to determine
	gap. We notice that at small separations the agreement with
the mean-field result (8) is good, consistent with the findings
for the energy per particle reported in Fig. 2. For the largest
values of kF λ, the mean-field prediction does not account for
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FIG. 8. (Color online) Pairing gap as a function of kF λ with
|Eb|/2 subtracted. Blue squares are the FN-DMC results, while the
line is the result of mean-field theory.

the in-plane repulsion and lies significantly below the FN-
DMC result. Both FN-DMC and mean-field results indicate
that the chemical potential changes sign at kF λ ∼ 0.325
(see also Ref. [16]).

In Figs. 10 and 11 we show the results of the excitation
energies εk as a function of the wave vector k. Such energies
are calculated from the generalization of Eq. (13) to values of
k away from the minimum,

Ek

(
N

2
+ 1,

N

2

)
= E

(
N

2
,
N

2

)
+ μ + εk . (16)

The left-hand side of the above equation is the energy of
the polarized system with Nt = Nb + 1, which contains a
single unpaired particle placed in the plane-wave state with
wave vector k complying with PBC. The definition (16) of the
excitation energy εk coincides with that of the quasiparticle
energy (10) derived from BCS theory.

The result in the BCS regime (kF λ = 0.5) is shown in
Fig. 10, and the result in the BEC regime (kF λ = 0.25) is
shown in Fig. 11. In both cases the calculations are performed
for Nb = 29 and Nt = 30 and εk = Ek(30,29) − E(29,29) −

-6
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-2

 0
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E

IF
G
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EMF
QMC

FIG. 9. (Color online) Chemical potential as a function of kF λ.
Red squares are the FN-DMC results, while the line is the result of
mean-field theory.

053620-6



FIXED-NODE DIFFUSION MONTE CARLO STUDY OF THE . . . PHYSICAL REVIEW A 90, 053620 (2014)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

ε k
 / 

E
IF

G

k / kF

Δgap

FIG. 10. (Color online) The excitation spectrum in the BCS
regime at kF λ = 0.5. The red symbols are the FN-DMC results, the
dotted line is the spectrum (10), and the solid line is the modified
dispersion (17) in which m� is a fitting parameter. In both Eqs. (10)
and (17) we use the FN-DMC values for 	gap and μ.

μ, where μ is the FN-DMC result of the chemical potential
obtained from Eq. (13). From Fig. 10 one can see that the
excitation spectrum has a minimum at k � kF . The blue double
arrow shows the FN-DMC value of 	gap as obtained from
Eq. (13). The dashed line is the expression for the dispersion
relation [Eq. (10)], where for μ and 	 we use the FN-DMC
results. Compared to the FN-DMC excitation energies, the
minimum of (10) is significantly shifted towards a larger value
of k. We interpret this fact as the effect of the intralayer
interactions which renormalize the mass of the quasiparticles.
The solid line in Fig. 10 is the modified dispersion relation

εk =
√(

�2k2

2m�
− μ

)2

+ 	2 , (17)
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FIG. 11. (Color online) The excitation spectrum in the BEC
regime at kF λ = 0.25. The red symbols are the FN-DMC results, and
the dotted line is the spectrum (10), for which we use the FN-DMC
values for 	gap and μ.

where one accounts for the effective mass m� that is treated as
a fitting parameter. Figure 10 shows that the above expression
reproduces the FN-DMC spectrum well. The extracted value
of the effective mass is m�/m = 0.77(3). Figure 11 shows the
results of the excitation energy in the BEC regime. In this
case both the FN-DMC results and the BCS equation (10)
(dotted line) exhibit a minimum at k = 0. Furthermore, good
agreement is found for all wave vectors.

VI. CONCLUSIONS

We investigated the superfluid state of a one-component
gas of dipolar fermions in a bilayer configuration using the
FN-DMC method. We calculated the ground-state energy,
the superfluid gap, the chemical potential, and the excitation
spectrum as a function of the distance between the two layers.
A comparison is made with the results of a simple mean-field
theory valid in the low-density limit where, in particular,
in-plane interactions are completely neglected. We find that
the equation of state and the superfluid gap exhibit a crossover
from a BCS regime to a BEC regime as a function of the
interlayer distance. In contrast to the more standard BCS-BEC
crossover in two-component Fermi gases with resonantly
enhanced contact interactions, here the in-plane repulsion and
the long-range nature of the interaction play an important role,
which for high enough density can lead to the competition
between fermionic superfluidity and crystallization [25].

APPENDIX A: TREATMENT OF THE POTENTIAL
INTERACTION ENERGY

Since the dipole-dipole force is long range, the potential
energy contributions arising from in-plane Vb(t) and interlayer
Vint interactions require careful treatment. The in-plane con-
tribution from the bottom layer is given by

Vb =
Nb∑
i<i ′

d2

|ri − ri ′ |3 + 1

2

Nb∑
i,i ′

∑
R	=0

d2

|ri − ri ′ − R|3 , (A1)

where i and i ′ label particles of the bottom layer in the
simulation cell and the vectors ri ′ + R correspond to the
positions of all images of particle i ′ in the array of replicas
of the simulation cell. The contribution from the top layer Vt

has the same form as Eq. (A1), where the projections of the
positions of top-layer particles onto the bottom layer are taken
and Nb is replaced by Nt . Similarly, the contribution from
interlayer dipolar interactions is given by

Vint =
Nb,Nt∑

i,j

∑
R

d2(|ri − rj − R|2 − 2λ2)

(|ri − rj − R|2 + λ2)5/2
. (A2)

We calculate the mean interaction energy using a procedure
that takes advantage of the fast 1/r3 decay of the dipole-dipole
potential:

〈V 〉 = (Vb)Rc1
+ (Vt )Rc1

+ (Vint)Rc2
+ Eb

tail1 + Et
tail1 + Etail2 .

(A3)

Here (Vb(t))Rc1
and (Vint)Rc2

denote the sums (A1)
and (A2) with the constraints |ri,j − ri ′,j ′ − R| � Rc1

and |ri − rj − R| � Rc2 , respectively. The corresponding
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FIG. 12. (Color online) Finite-size scaling for the case of
the Jastrow-Slater wave function at kF λ = 0.6. Red circles
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to the values of energy corrected with the subtraction of 2α	TN/2,
the black line is the linear fit of the form ET L + β

N
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tail contributions E
b(t)
tail1

= πd2N2
b,t /(Rc1L

2) and Etail2 =
2πd2NbNtR

2
c2
/[L2(λ2 + R2

c2
)3/2] are obtained by assuming a

uniform distribution of particles for distances larger than the
cutoff range.

APPENDIX B: EXTRAPOLATION TO
THE THERMODYNAMIC LIMIT

We are interested in the system properties in the thermo-
dynamic limit; therefore finite-size errors should be taken into

account. In the case of the BCS-type wave function, we find
that the energy scales linearly as a function of 1/N , and
one can readily perform the extrapolation to N → ∞. For
the Jastrow-Slater wave function, instead, the extrapolation
to the thermodynamic limit is made in a way similar to
that in the case of the single-layer Fermi liquid [25]. At
each kF λ we perform simulations for N/2 = 13,21,29,37,49,
all of which correspond to closed-shell configurations for a
two-dimensional Fermi gas. In order to obtain the energy in
the thermodynamic limit ET L the following fitting formula is
used:

EN = ET L + 2α	TN/2 + β

N
, (B1)

where EN is the FN-DMC energy for the system of N

particles and the fitting constants are α and β. Here 	TN/2 =
(N/2)EIFG − TN/2 is the finite-size error in the energy of
the noninteracting gas of N/2 particles, with TN/2 being the
corresponding kinetic energy of N/2 particles. An example of
finite-size dependence at kF λ = 0.6 is shown in Fig. 12. As one
can see, the scattered distribution of energies for N particles is
largely suppressed once the corrections to the kinetic energy
2α	TN/2 are subtracted. The resulting energies (blue squares)
linearly depend on 1/N , allowing for a reliable extrapolation
to the thermodynamic limit.

For a single-layer Fermi liquid the meaning of the coeffi-
cient α is the inverse effective mass of a quasiparticle [25].
At kF r0 = 0.5 its value is m/m� = 1.15(1). For the bilayer
system we recover the same value of α at kF λ = 0.75. This
coefficient changes slightly for smaller distances: α = 1.21(1)
at kF λ = 0.6 and α = 1.3(1) at kF λ = 0.5 (notice that in
the last case the Jastrow-Slater wave function already gives
a higher energy than the BCS-type wave function).
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