Neurolmage 117 (2015) 103-113

Contents lists available at ScienceDirect

Neurolmage

journal homepage: www.elsevier.com/locate/ynimg

Global features of functional brain networks change with
contextual disorder

@ CrossMark

Michael Andric **, Uri Hasson P

@ Center for Mind/Brain Sciences (CIMeC), The University of Trento, Rovereto, TN, Italy
b Department of Psychology and Cognitive Sciences, The University of Trento, Rovereto, TN, Italy

ARTICLE INFO ABSTRACT

Article history: Itis known that features of stimuli in the environment affect the strength of functional connectivity in the human
Received 7 January 2015 brain. However, investigations to date have not converged in determining whether these also impact functional
Accepted 9 May 2015 networks' global features, such as modularity strength, number of modules, partition structure, or degree distri-

Available online 16 May 2015 butions. We hypothesized that one environmental attribute that may strongly impact global features is the tem-

poral regularity of the environment, as prior work indicates that differences in regularity impact regions involved
in sensory, attentional and memory processes. We examined this with an fMRI study, in which participants pas-
sively listened to tonal series that had identical physical features and differed only in their regularity, as defined
by the strength of transition structure between tones. We found that series-regularity induced systematic chang-
es to global features of functional networks, including modularity strength, number of modules, partition struc-
ture, and degree distributions. In tandem, we used a novel node-level analysis to determine the extent to which
brain regions maintained their within-module connectivity across experimental conditions. This analysis showed
that primary sensory regions and those associated with default-mode processes are most likely to maintain their
within-module connectivity across conditions, whereas prefrontal regions are least likely to do so. Our work doc-
uments a significant capacity for global-level brain network reorganization as a function of context. These find-
ings suggest that modularity and other core, global features, while likely constrained by white-matter

structural brain connections, are not completely determined by them.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

The extent to which functional brain connectivity reorganizes with
context, and whether any such reorganization is systematic or random
is a topic of much recent debate. There is ample work documenting
effects of the external environment on connectivity-strength between
regions. For example, connectivity has been shown to vary depending
on the task performed (e.g., Mennes et al., 2013) and to adjust before
task execution to match task features (Ekman et al., 2012). Connectivity
is affected also by subtle manipulations, such as changes to linguistic
features during listening (e.g., Hasson et al., 2009; Chow et al., 2014).
The content of internally generated (“endogenous”) thoughts, absent ex-
ogenous stimuli, also modifies functional connectivity (e.g., Preminger
et al., 2011; Doucet et al., 2012). Thus, both exogenous tasks and endog-
enous states can produce robust and systematic connectivity changes
among brain systems.

What is less clear is whether functional connectivity networks main-
tain global features across different environments, or conditions. As we
review below, the literature addressing this question is relatively small,
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typically involves extreme contrasts (e.g., task vs. rest or sleep states),
and offers divergent results. In an early MEG investigation of this issue,
Bassett et al. (2006) found that task performance did not significantly
impact networks' global topological parameters, such as path length,
clustering coefficient, and degree distributions, but instead affected
inter-regional connection strength. In another MEG study, Nicol et al.
(2012) also documented changes to local — but not global — connectivity
parameters, in this case during responses to regular and deviant auditory
tones. These studies suggested that connectivity networks could remain
task invariant. However, Kitzbichler et al. (2011) found that some global
network connectivity parameters within particular frequency bands
changed as a function of people's task-related cognitive effort. We note
that these three studies derived networks from MEG sensor time series
(rather than source space); beyond offering limited information about
the brain anatomy underlying these networks, constructing connectivity
networks from MEG sensor space is susceptible to measuring the same
brain sources across different sensors. (Also, if a single source is mea-
sured at 2 remote sensors in one condition but not the other, this may
be interpreted as a change in network structure.)

fMRI studies have also revealed mixed findings. A recent study (Betti
et al., 2013) that combined MEG and fMRI to quantify connectivity
changes during rest vs. movie viewing did not find task-related effects

1053-8119/© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2015.05.025&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.neuroimage.2015.05.025
mailto:andric.michael@gmail.com
http://dx.doi.org/10.1016/j.neuroimage.2015.05.025
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/10538119

104 M. Andric, U. Hasson / Neurolmage 117 (2015) 103-113

on network topography, but did document changes to MEG frequency
power distribution. Uehara et al. (2014) examined functional network
organization during sleep and wakefulness and found no differences
in network modularity or number of modules. Stanley et al. (2014)
found no impact of working memory load on global features related to
modular organization. Moussa et al. (2011) quantified connectivity
during rest, visual, and multisensory stimulation and documented no
task effect on 6 different global features, including modularity and
mean degrees. This study, however, did identify more local effects, evi-
dent by spatial changes in the extent of functional modules' overlap
with auditory and sensory cortices. Similarly, Bray et al. (2014) also
found that large-scale network organization maintained across condi-
tions (rest and task states), though certain regions on the spatial periph-
ery of these large-scale networks switched network arrangement with
task. Finally, two other fMRI studies that did not study whole-brain
(large-scale) connectivity documented condition-related changes in
sub-networks of larger scale ones (e.g., Fornito et al., 2012; Cole et al.,
2013).

Given these mixed prior findings on the context-dependence of
functional connectivity's global features, our over-arching goal in the
current work was to address whether, and under what conditions,
changes in connectivity mark essential changes in the brain's network
topology. First, we aimed to determine if variations in naturalistic con-
texts, absent of executive task demands, are associated with systematic
changes to core global topological features, such as modularity strength,
number of modules, partition structure, and node degree distributions.
As reviewed above, in prior studies these features were studied by
comparisons among different tasks or comparisons of task to rest.
These manipulations direct participants' efforts and attention to specific
stimulus features, and ‘context’ is operationally defined as a stimulus-
response mapping during a block of trials.

Departing from these models, we used a passive listening paradigm.
Our experimental conditions were identical in sensory/physical features
and (lack of) task demands, differing only in long-term statistical rela-
tions (mean regularity; i.e. entropy) of the input conditions. Such
input regularity manipulations have long been known to impact the
tendency to mind-wander during listening (Antrobus, 1968) and to af-
fect the aesthetic appraisal of the input (Vitz, 1966). Thus, manipulating
steady-state regularity is a subtle but potentially powerful implicit
manipulation for inducing large-scale connectivity changes. In fact, con-
nectivity changes in striate and visual cortex have been linked to asso-
ciative learning of cue-target predictability (den Ouden et al., 2009,
2010). Thus, we aimed to understand whether manipulations of input
regularity could result in re-configuration of whole-brain networks in
a way that affects global network features — even when individuals
were not tasked with monitoring the stimuli at all.

Our second goal was to identify particular brain areas whose connec-
tivity remained relatively affected or unaffected, even given changes to
global connectivity. We treated each brain voxel as a node and quanti-
fied the extent to which it maintained its within-module connectivity
between conditions. This allowed us to document specific brain areas
for which the external environment either strongly or weakly impacted
their within-module connectivity cohort.

Prefacing our results, we found that our experimental manipula-
tion had a systematic effect on modularity strength, partition simi-
larity, and networks' degree distributions — all considered global
network features. Further, our node-level analysis showed that the
experimental manipulation particularly affected prefrontal regions,
which maintained only ~20% of their within-module connections be-
tween conditions, whereas regions implicated in sensory and default
processes maintained a much higher proportion, suggesting greater re-
silience to environmental changes. Prefrontal regions also showed a sig-
nificant change in overall connectivity strength as function of condition.
Our findings indicate that implicit, endogenous processing is extremely
potent, effecting changes to global topographic features. Importantly,
however, these changes obscure a heterogeneous, non-uniform pattern

of organizational changes to network module membership across the
brain.

Materials and methods
Participants

Twenty-one right-handed participants (12 men, mean age =
29.9 years, SD = 9.6) from the University of Trento community
took part in the study. None reported any history of neurological or
psychiatric disturbance, hearing impairments, or substance abuse.
One participant's data was excluded from the study because of ex-
cessive movement during the scan. Another participant's data was
excluded due to low structural image quality that prevented gray-
matter segmentation in the preprocessing phase of the analyses.
The Ethical Review Board of the University of Trento approved the
study.

Stimuli

The materials used were auditory tone sequences. Each tone in a
sequence was presented for 250 ms followed by a 50 ms break. We
used pure tones at 262, 294, 330, or 349 Hz, corresponding to middle
“C”, “D”, “E”, and “F” notes on the Western major scale. The tones'
sequence order was determined using a first-order Markov process
applied to four transition matrices with different levels of Markov
entropy (Markov entropy = 0.81, 1.35, 1.56, 2.0; Fig. 1).

These four entropy levels thus marked the four experimental condi-
tions in this study: Highly ordered, Some order, Almost random, and
Random. In the Random condition, each tone was equally likely to ap-
pear at any point, independently of the previous sequence, i.e., there
were no transition constraints. By contrast, in the other three condi-
tions, there were increasing constraints. Note that in all conditions all
tones occurred equally often over the entire series, i.e., marginal

Markov entropy = 0.81 Markov entropy = 1.35
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Fig. 1. Markov processes used to generate the four auditory series. Each node in the tran-
sition matrix corresponded to a pure tone. Line weights represent transition probability.
The entropy of the Markov processes ranged from random (Markov entropy = 2.0) to
highly ordered (Markov entropy = 0.81).
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frequencies were identical and did not differentiate the series. In addi-
tion, the proportion of self-repetitions was equivalent across conditions
and set at 25%. Conditions were presented in 150 s epochs, each follow-
ed by 21 s of silence. The functional run began with 22.5 s of silence. The
order of conditions presented in the run was counterbalanced across
participants.

Procedure

Since instructions to explicitly monitor statistical relations can inter-
fere with implicit learning (e.g., Fletcher et al,, 2005) we used a passive
listening procedure without mentioning any aspect related to the struc-
ture of the series. In the MRI scanner, participants were instructed to
attend to auditory stimuli presented over the headphones, while ob-
serving a fixation cross. To later mitigate the impact of physiological
noise sources in the functional data we used a photoplethysmograph
to collect cardiac data and a respiration belt to collect respiration data.
Prior to the main experiment, a volume calibration procedure was con-
ducted for each participant to set a volume level at which they could
comfortably hear the series over the scanner noise.

Image acquisition

Images were acquired using a 4 T Bruker/Siemens system. Function-
al images were acquired with a single shot echo planar imaging blood
oxygen level dependent (BOLD) sequence: 25 interleaved slices parallel
to the AC/PC, TR = 1500 ms, TE = 33 ms, flip angle = 75°, voxel size =
4 x 4 x 4 mm, matrix = 64 x 64 mm, and slice skip factor = 0.2. We col-
lected 471 EPI scans over a single 706.5 s run. For structural images, we
used a 3D T1-weighted MPRAGE sequence to collect 176 sagittal slices,
with TR = 2700 ms, TE = 4 ms, flip angle = 7°, matrix = 256 x 224, and
isotropic voxel size of 1 mm. To increase the signal-to-noise ratio, for
each participant, we collected two structural scans that were aligned
and averaged.

Data analyses: preprocessing and construction of connectivity matrices

Single-participant preprocessing

To mitigate the impact of nuisance components on the functional
data, we applied the following series of procedures. First, we spliced
functional images from the individual runs to keep only those four
epochs that corresponded to temporal intervals where auditory stimuli
were presented. We then removed the first 10 images (15 s) of each
tone-series presentation. This was done to allow for a stabilization of
the BOLD response when switching from silence to auditory presenta-
tion and because any effects of regularity cannot appear until a certain
number of stimuli have been presented (i.e., in the early stages, the
conditions are less differentiated). This resulted in 4 time series per
participant.

We applied physiological noise correction to the data following the
procedure of Birn et al. (2006). To match the timing of each EPI slice
acquisition, we down-sampled and phase shifted the recorded cardiac
and respiratory signals to the slice-acquisition timing resolution
(i.e., 16 Hz; ~3 times the physiological sampling rate). From these sig-
nals, we created 13 slice-based regressors: 4 for the cardiac series and
its harmonics, 4 for the respiratory series and its harmonics, and 5 for
respiration variation of time and its harmonics, using AFNI's (Cox,
1996) retrots.m pipeline. The variance explained by these regressors
was removed with the RETROICOR procedure (Glover et al., 2000) in
AFNL To attenuate the effect of spurious signal spikes, we also de-
spiked the time series using AFNI's 3dDespike utility. We then spatially
registered each of the 4 time series to a single reference location in
the first run. To increase the temporal signal-to-noise ratio of each
voxel's time series we applied a moderate 6 mm spatial smoothing
given our effective voxel size (4 x 4 x 4.8 mm). Finally, we removed
motion-related signal fluctuations and linear, quadratic and cubic

trends via a regression model. We inspected the estimated head motion
parameters for each participant and condition. Functional volumes with
sudden motion in excess of 1 mm were censored in the subsequent
regression — this accounted for approximately 1.5% of the data.

For each participant, we aligned the structural scan to the reference
functional scan using AFNI's 3dAllineate procedure. Gray matter masks
for each participant were then created using FSL's bet (Smith, 2002)
and first (Patenaude et al., 2011) tools for brain extraction and segmen-
tation. These masks were used to extract functional data from gray mat-
ter voxels.

Construction of connectivity matrices

For each participant, we created a complete cross-correlation matrix
from the time series of all voxels within a participant's gray matter
mask. Across participants, the number of voxels in the mask ranged
from 9044 to 12,940 (M = 10,900, SD = 886 voxels). To maintain the
same number of edges (links) across experimental conditions and
maintain the same proportion of connections across participants, we
binarized connectivity matrices using edge density criteria. The edge
density values were 5%, 12%, 15%, and 8.72%, the latter being the median
edge density corresponding to what would be found if each person's
connectivity matrix were binarized at a Pearson's R threshold of 0.5.
Edge densities below 15% were not used, as those would include links
where covariance was relatively weak. The resulting binary matrix,
per person, formed the basis for all subsequent analyses. We created
these connectivity maps and performed subsequent network analyses
using R code (https://sourceforge.net/p/cnari/code/HEAD/tree/trunk/
projects/bct/) based on the functions in the brain connectivity toolbox
(Rubinov and Sporns, 2010). The Matlab version of the toolbox was
used for creating matched random networks.

Data analyses: modularity

Network modularity and number of modules across conditions

Modularity is a graph-theoretic measure for quantifying the quality
of a partition. Modularity is higher the more partitioned a network is
into modules that are densely connected within rather than between
themselves. In the current study, we applied this measure to single-
participant networks (binarized cross-correlation matrices). We used
a fast-unfolding community detection method (Blondel et al., 2008)
based on modularity optimization to partition individual participants'
connectivity structures. While several prior fMRI studies of modularity
(e.g., Chen et al., 2008; Bassett et al., 2011; Uehara et al,, 2014) operated
on a region-of-interest level of granularity, treating regions as nodes,
voxel-level analyses are arguably more accurate (e.g., Hayasaka and
Laurienti, 2010). For this reason, and because we wanted to draw con-
clusions with good anatomical precision, we considered individual
voxels as nodes and their connections as edges.

The modularity measure (Q) we used is given in Eq. (1).

1 .. k,’k‘
Q= 5> 3 [Aii= 5] )

C €Pi, j ec

The indices i and j run over N nodes in the graph; A is the network's
adjacency matrix; m is the sum total number of edges; the degree of
node iis k = > _;A;; and, the index C iterates over the modules of parti-
tion P. The community detection algorithm aims to maximize Q for a
given network, with the quality of the optimized partition captured by
the value of Q. We applied the algorithm to the binarized connectivity
matrices of the 4 conditions per participant to obtain a representative
Q value per condition. Note that given the non-deterministic nature of
Blondel et al.'s partition-finding algorithm, it is possible to obtain differ-
ent Q values from the exact same binarized connectivity matrix. For this
reason we applied the partitioning algorithm 100 times per condition
per participant and, from the resulting distribution, we chose the
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maximum Q value as representative of that condition per participant
(following, e.g., Stanley et al., 2014). We note that across participants
and conditions these sets of 100 unique solutions returned highly
similar Q values (SD of solutions = .002, which is 2 orders of magni-
tude smaller than the maximum Q value). To examine differences
between conditions we then evaluated the maximum Q values for
the 4 conditions at a group-level, using a non-parametric statistical
test (Friedman's test for repeated measures). Similarly, to quantify
the number of modules in each condition, on the basis of the afore-
mentioned 100 iterations per condition we determined the number
of modules per condition, in the previously identified max-Q parti-
tion (again, defined per participant per condition).

Validation of modularity measures against random networks

Brain networks partition more strongly than random ones (Meunier
etal., 2009; Bassett et al.,2011). Therefore, as a validity check (following
Meunier et al., 2009; Bassett et al., 2011; Bullmore and Bassett, 2011),
we examined whether Q values for the experimental data differed
from those that would be found for yoked, random networks that had
the same number of nodes and equivalent degree distributions but
with connections randomly assigned. For each participant in each con-
dition, we generated 100 randomized networks, set the edge density
value to 5%, and applied the modularity analysis to the resulting
binarized matrices. From the resulting 100 Q values the median repre-
sented the random Q value for a given participant/condition. Across par-
ticipants, this set of Q values was compared against the Q values selected
from the actual data when thresholded at 5% edge density, as defined
above.

Data analyses: additional global and local metrics for between-condition
differences

Partition similarity

Prefacing the findings, we found that modularity (Q) was stronger in
the most random condition than in the highly ordered one. To deter-
mine whether these changes in modularity were accompanied by a
structural change to network partitions we evaluated the similarity of
partitions in these two conditions, using two well-established mea-
sures: the Adjusted Rand Index (Rand, 1971; Hubert and Arabie, 1985)
and Normalized Mutual Information (Kuncheva and Hadjitodorov,
2004; Danon et al., 2005).

Given prior work showing that modularity maximization algorithms
can converge on markedly different partitions for the same network
(Good et al., 2010), we again adjusted for the stochasticity of the algo-
rithm by examining differences between distributions. Using the 100
partitioning solutions obtained per condition, we paired 100 unique
partitioning solutions in the Random and Highly ordered conditions,
obtaining a partition-similarity metric for each pairing. It is this distribu-
tion (rather than a single value) that reflected the similarity of partitions
in these two conditions. In addition, to define an upper bound for parti-
tion similarity across conditions we established a sampling distribution
by determining partition similarity within a single condition. To this end,
from the 100 partitions derived for the Highly ordered condition, we
quantified similarity for every unique combination (n = 4950). This lat-
ter data constituted a reference distribution against which we compared
the cross-condition similarity results.

Single node set consistency (SNSC)

In addition to assessing overall partition similarity, we also quanti-
fied changes in partitioning at a finer scale: the single node level. Here
we focused on the extent to which different brain regions showed
changes to their within-module connectivity cohort: context effects
may be accompanied by either a strong or weak re-arrangement of
within-module connectivity at the single node level, and it is this rela-
tive extent of change that we targeted here.

We focused on the connectivity network obtained at 5% edge densi-
ty. For every node (“voxel”, used interchangeably henceforth) in a mod-
ule in the Random condition, we evaluated two sets of connections:
Specifically, we identified all its within-module connections in the
Random condition (Random_set) and all its within-module connections
in the Highly ordered condition (HighlyOrdered_set). To define a mea-
sure of a voxel's within-module overlap between the two conditions
(i.e., its “set consistency”) we quantified the proportion of overlap
between the Random_set and HighlyOrdered_set (see Eq. (2)). This
captures the proportion of within-module connections in the Random
condition that were also within-module connections in the Highly or-
dered condition. To illustrate, if node i was connected to 100 nodes in
its module in the Random condition and of those 100 nodes, only 20
were within node i's module in the Highly ordered condition, the extent
of overlap would be 20%. In contrast, if node i maintained all its connec-
tions in the Highly ordered condition, the extent of overlap would be
100%. In each of these two conditions, we included modules that com-
prised at least 20 voxels.

We refer to the single-node extent of overlap as single-node set
consistency: SNSG, as given in Eq. (2).

Random _setNHighlyOrdered_set

SNSC = Random _set

We derived an SNSC map for each participant and combined these
into a ‘group-level’ representation in the following way: We used the
partitions with the maximal Q value, as identified for the Highly ordered
and Random condition (see above). We derived SNSC maps from these
partitions on a single participant level. We collapsed these individual-
level SNSC maps into a single group-level map by using each voxel's
median value across participants (Fig. 2).

As in prior analyses, we also derived a null distribution for the SNSC
measure to determine whether the distribution of SNSC values between
the Random and Highly ordered conditions would be lower than ex-
pected by chance. Since SNSC measures individual voxels' module
memberships between conditions, we generated the null distribution
from a single condition. Specifically, we (1) used the 100 partitioning
solutions (described in section Network modularity and number of
modules across conditions); (2) of those, we selected 50 (we were limit-
ed to 50 instead of the full set of 100 by computation time) and combi-
natorially crossed those to obtain 2450 ‘null’ SNSC solutions per
participant; (3) from this set of 2450 permutations we derived a repre-
sentative SNSC map per participant by assigning, for each voxel, the me-
dian value of all 2450 solutions for that voxel (‘participant-median
map’); (4) finally, as we did for the real SNSC maps described above,
we combined the individual participant-null maps into a group level
representation by taking the median of each voxel across participants.
This constituted a group-median null distribution of SNSC values
against which we contrasted SNSC values for the Random vs. Highly
ordered conditions.

Node degree distributions

The number of edges (connections) between a node and other nodes
in the graph (or network) defines the node's degree. We examined
whether the distribution of node degree values differed across condi-
tions (again using the 5% edge density networks). Following previous
studies (Achard et al., 2006; Bassett et al., 2006; Fornito et al., 2010;
Hayasaka and Laurienti, 2010), for each participant in each condition
we fit the degree distribution using an exponentially truncated power

law function, P(k) ~ Ak* 'ek/k_ From these fits, we extracted values
for the power law exponent («), exponential cutoff point (k.), and coef-
ficient (A), and evaluated those parameters at the group level using a
non-parametric Friedman test for repeated measures.
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Computing SNSC for Random vs. Highly Ordered conditions
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Fig. 2. Computing single node set consistency (SNSC) between the Highly ordered and Random conditions. Per participant in each of these two conditions (1a and 1b), we generated 100
modularity partition solutions (2a and 2b), in which every voxel was in a module. For each condition, the partition with the maximal Q was identified. For these two partitions, we
calculated the proportion of within-module voxels that maintained both in Random and Highly ordered, as specified in Eq. (2) (see text) (3). This proportion defined the voxel's SNSC

value. The group-level data were the median value for each voxel, across participants.

Average global (whole-brain) connectivity

In addition to the above-described measures, which focus on
changes in network organization, we also examined voxel-level
changes in connectivity strength. We used a voxel-wise connectiv-
ity measure (whole-brain un-weighted global connectivity; Cole
et al.,, 2010), which was operationalized as the mean functional
connectivity (Pearson's R) between a voxel and all other gray-
matter voxels. For each participant, this measure returned one
value per voxel per condition. These values were Fisher-Z transformed
and analyzed at a group level using two orthogonal contrasts: one
testing for a linear trend (.75, .059, —.179, —.63) and another testing
for a U-shaped trend (.42, —.57, — .41, .56). We used cluster-based
control for family-wise error rate (FWE) to identify significant
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clusters. We set the single voxel threshold at p < .01, with a volume
of at least 1136 mm? to control for FWE of p < .05. We determined
this via AFNI's 3dClustSim, following the algorithm of Forman et al.
(1995).

Results

We first present findings showing the impact of the experimental
conditions on global network features, such as modularity, partition
similarity, and node degree distributions. We then report results charac-
terizing single-node-level (voxel-level) connectivity changes, in terms
of both within-modular consistency and degrees.
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Fig. 3. Modularity in the four experimental conditions. Independent of graph density, modularity values (Q) patterned similarly across conditions (A) as did mean module
number (B). Within each density level, modularity (Q) differed significantly across the 4 conditions. The mean number of modules differed for the 5%, 12%, and 15% edge density
thresholds. Error bars here and in subsequent figures capture within-participant error (Loftus and Masson, 1994).



108 M. Andric, U. Hasson / Neurolmage 117 (2015) 103-113

Modularity and module features

Network modularity across conditions

As a validation analysis, we first verified that brain network modu-
larity derived from the experimental data exceeded that of matched
null networks (following Meunier et al., 2009; Bassett et al., 2011).
We found this was the case for all conditions (for each of the 4 condi-
tions against the matched null network: Wilcoxon signed rank test,
Z = —4.62,p <.00001 with participants as unit of variance).

We found that network modularity (Q) varied significantly across
the 4 experimental conditions, independently of the edge density crite-
rion used to threshold the connectivity matrix. The same relative pat-
tern of Q values for the 4 conditions held across the different edge-
density thresholds (see Fig. 3A). Modularity differed significantly across
conditions for the 5% edge-density threshold (Friedman chi-square =
9.63, df = 3, p <.05), for the 8.7% threshold (Friedman chi-square =
9.13, df = 3, p <.05), for the 12% threshold (Friedman chi-square =
10.39, df = 3, p <.05), and for the 15% (Friedman chi-square = 8.24,
df = 3, p<.05). In all cases, Q was highest for the Random condition
(Fig. 3A). This is important because it showed that the experimental
conditions impacted modularity, in a similar pattern, across a meaning-
ful range of edge densities.

For the number of modules we found the converse pattern: the
number of modules varied by condition and was lowest for the Random
condition (Fig. 3B). The impact of condition on module number was sig-
nificant at the 5% edge density threshold (Friedman chi-square = 14.74,
df = 3, p = .005) and 12% density threshold (Friedman chi-square =
9.61, df = 3, p <.05), marginal at the 15% threshold (Friedman chi-
square = 6.80, df = 3, p = .078), and not significant at the 8.7% thresh-
old (Friedman chi-square = 5.01, df = 3, p = .17). We note that in the
current data, there wasn't a necessary correlation between module
number and modularity strength: from the sets of permutations we
obtained 7600 sets of these two values, and the Pearson's R correlation
between the two was negligible; —0.02.

Given these results for modularity strength and module number, for
computational simplicity and clarity of this report we carried out our
further analyses using the 5% edge density threshold. Across partici-
pants, this 5% density threshold gave medians of 10,880 nodes (1st
quartile: 10,520, 3rd quartile: 11,070, SD = 885) and 2,961,000 edges
(1st quartile: 2,821,000, 3rd quartile: 3,107,000, SD = 487,490).

Given our focus on the two extreme conditions in the subsequent
analyses of module partition similarity and reorganization, we also ex-
amined whether the Highly ordered and Random conditions differed
significantly in modularity. We found that they did (Wilcoxon signed
rank test,Z = —2.21, p <.05).

Partition similarity

The global similarity of partitions between the Random and Highly
ordered conditions was calculated using the Adjusted Rand Index and
Normalized Mutual Information. The non-stationary aspect of the
partition-finding modularity algorithm imposes an upper bound on
similarity, since even the similarity of two partitions derived from the
same connectivity matrix will be below unity. As detailed in the
Methods section, to adjust for this stochasticity network partition simi-
larity was estimated multiple times between the Random and Highly
ordered conditions to yield a distribution of similarity values. We com-
pared the resulting distribution to a sampling distribution that
established an upper-bound limit, consisting of partition similarity
values derived from a single condition's binarized connectivity matrix.

Fig. 4 shows the results of this analysis. First, even when partition
pairs were derived from a single matrix of one condition (establishing
the null distribution), similarity varied greatly, in line with prior indica-
tions of modularity optimization's non-unique solutions (Fortunato and
Barthelemy, 2007; Lancichinetti and Fortunato, 2012; Muller and
Meyer, 2014). Notwithstanding, it was still the case that partition simi-
larity across the Random and Highly ordered conditions was much
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Fig. 4. Partition similarity of functional networks in the Random and Highly ordered
conditions. Due to the stochastic nature of the modularity optimization algorithm, be-
tween-condition partition similarity is presented via a distribution (gray) and compared
to a null distribution constructed from single matrix (black). A: Adjusted Rand Index
values. B: Normalized Mutual Information values. For both measures, the null distribution
differed significantly from that found for the comparison of the two conditions (both
Kolmogorov-Smirnov tests, D = 1, p <.00001).

lower than that seen for the null distribution (Fig. 4A), indicating that
the experimental conditions strongly impacted the modular partition
structure. Specifically, across conditions, Adjusted Rand Index values
centered at ~0.25, whereas within a condition it centered ~0.75, and
these two distributions differed significantly (Kolmogorov-Smirnov
test, D = 1, p <.00001). A very similar result was obtained using
Normalized Mutual Information to quantify partition similarity
(Fig. 4B; Kolmogorov-Smirnov test, D = 1, p <.00001).

Distributions of node degree

Consistent with prior findings (Achard et al., 2006; Bassett et al.,
2006; Fornito et al., 2010; Hayasaka and Laurienti, 2010), an exponen-
tially truncated power law provided a good fit to the degree distribu-
tions. We obtained parameter estimates for the power law exponent
(a) degree cutoff point (k.), and coefficient (A) parameters per partici-
pant per condition and analyzed them at a group-level. Model fits at
the single participant level were good, with most R? values exceeding
0.8. More importantly, these parameters all differed between conditions
(power law exponent «: Friedman chi-square = 12.79,df = 3,p =
.005; degree cut-off point k.: Friedman chi-square = 12.28, df = 3,
p = .006; and power law coefficient A: Friedman chi-square = 12.28,
df = 3, p = .006). While there was no monotonic pattern, Fig. 5 depicts
marked divergence in these parameter values across conditions. Nota-
bly, the Random condition showed the lowest cutoff, indicating relative-
ly fewer nodes with a large number of connections.
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Fig. 5. Parameter estimates and aggregate plots for degree distributions by condition. A. Log-log plot of the cumulative degree distribution by condition for a randomly chosen participant.
Colored lines in each condition depict fit of an exponentially truncated power law to the data. B. Best-fit parameter estimates for an exponentially truncated power law distribution were
estimated per participant per condition and analyzed at the group level. These parameters differed significantly across conditions, and the Random condition had the lowest cutoff point,

representing a degree distribution that held fewer voxels with high numbers of connections.

Single node set consistency

Our analyses to this point showed that the Random and Highly or-
dered conditions were associated with different modularity strength,
number of modules, and with a qualitative change to network structure.
Here we examined the extent to which single nodes maintained their

E Between conditions
Same condition

0.00 025 0.50 0.75 1.00
SNSC

Fig. 6. Single node set consistency (SNSC) across the Random and Highly ordered condi-
tions. SNSC is a node-level measure of the proportion of within-module connections
that maintain across two partitions. Due to the stochastic nature of the modularity optimi-
zation algorithm, between-condition SNSC is presented via a distribution (gray) and com-
pared to a null distribution constructed from single matrix (black). The gray distribution
shows SNSC values when evaluating partitions constructed from the Random and Highly
ordered conditions of the participant group. The black distribution is the null distribution
and is derived from pairs of partitions generated from the same binarized matrix. The dif-
ference between distributions was significant (Kolmogorov-Smirnov test, D = .93,
p <.00001), indicating considerably less stability in node-level connectivity across condi-
tions compared to the within-condition null distribution.

modular grouping in these two conditions, by quantifying for each
node, the proportion of its within-module connections in the Random
condition that were also within-module connections in the Highly or-
dered condition (single node set consistency; SNSC, see Materials and
methods).

Fig. 6 shows the main finding via a density plot of group-level SNSC
values. The median value slightly exceeded 0.2, with very few nodes
reaching values of 0.5, suggesting a strong shift of within-module
connectivity across the two conditions. Given that the modularity
partition-finding algorithm can produce different partitions — even
when applied to the same matrix (and hence SNSC values < 1 by defini-
tion) — we also derived a null distribution of SNSC values by calculating
SNSC values from partitioning pairings drawn from a single condition
(see Materials and methods). As shown in Fig. 6, the modal value of
this null distribution was 0.94, approaching unity. A formal test showed
that the distribution of SNSC values across conditions was significantly
lower than the sampling distribution of SNSC values (Kolmogorov-
Smirnov test, D = .93, p <.00001). Thus, the Random and Highly
ordered conditions were associated with significant change to within-
module connectivity on the single node level.

Fig. 7 plots the median SNSC value of each node across participants.
As shown in the figure, areas with relatively higher SNSC values were
primarily within two networks: (1) the DMN, which includes anterior
and posterior midline regions, as well as the inferior parietal lobule
(IPL) and anterior superior temporal sulcus (STS), and (2) primary
and secondary sensory regions. In contrast, dorso-lateral prefrontal
areas bilaterally showed relatively lower values, suggesting more
context-dependent roles for these areas (e.g., as described by Cole
etal, 2013).

Changes in global connectivity

Using a whole brain analysis (controlled for family-wise error using
cluster-based thresholding; see Materials and methods), we identified
brain areas where voxels' mean global connectivity tracked regularity
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Fig. 7. Group-median single-node set consistency (SNSC) values at the single-node level. Warmer colors (higher SNSC) indicate voxels that maintain stronger module membership across
the Random and Highly ordered conditions. Note that all values were much lower than the upper limit on SNSC values, which approached unity, as seen in Fig. 6. LH: left hemisphere. RH:

right hemisphere.

in a linear or curvilinear pattern. The results are reported in Fig. 8, and
cluster details are given in Table 1. Several regions were identified,
and in all cases these showed lower connectivity in the Random than
Highly ordered condition. The identified regions were mainly frontal
ones, including bilateral middle and superior frontal gyri, as well as su-
perior sections of supplementary motor areas. Linear trends were also
found in the basal ganglia, most prominently in the left putamen, the
left anterior and right pulvinar and medial-dorsal thalamic nuclei. In
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addition, we found two different cerebellar clusters, with extents in
both cerebellar hemispheres.

Autonomic indices

We found no relation between the experimental conditions and
autonomic (cardiac and respiratory) indices recorded during scanning.
The mean heart rate in all conditions was 62-63 BPM (Mean/SD for
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Fig. 8. Areas where average global connectivity decreased as condition disorder increased. A. Significant clusters where average connectivity strength (average functional connectivity of
each voxel to every other voxel; Cole et al., 2010) decreased with input disorder (individual voxel p <.01, FWE p <.05). B. Corresponding graphs for clusters in A. Ho: Highly ordered, So:
Some order, Ar: Almost random, R: Random. SF/PM: superior frontal/premotor, IT/Crb: inferior temporal/cerebellum, BG-Th: basal ganglia-thalamus, S/MFGrh: superior/middle frontal
gyrus right hemisphere, BG/Ins: basal ganglia/insula, PMrh: premotor right hemisphere, Crb: cerebellum (not shown in Panel A), MFGIh: middle frontal gyrus left hemisphere.



M. Andric, U. Hasson / Neurolmage 117 (2015) 103-113 111

Table 1

Details for significant clusters where voxel-level global connectivity varied by condition.
Cluster Volume CMRL CM AP CM IS Mean SEM Max Int Max Int RL Max Int AP Max Int IS
1 829 15.6 —4.8 494 3.2775 0.0125 5.06 10 4 58
2 395 —0.6 71.6 —20.2 3.328 0.0201 5.018 —6 70 —24
3 296 —3.6 15.6 113 3.2375 0.0174 4.325 —20 22 14
4 233 —299 —31.1 394 3.2448 0.0199 4.678 —34 —32 42
5 198 284 7.5 5.9 3.2944 0.0248 4.501 28 16 8
6 198 —323 4.5 54 3.1888 0.0172 4.039 —26 4 60
7 164 33.6 51.5 —32.2 3.5036 0.0413 5.267 32 52 —34
8 154 31.2 —259 331 3.1785 0.0199 4341 36 —32 32

Note. The table provides information about the clusters depicted in Fig. 8. Cluster numbers (leftmost column) correspond to cluster numbers in Fig. 8. CM = center of mass. RL = right/left.
AP = anterior/posterior. IS = inferior/superior. Max Int = Maximum Intensity (T value) for the linear contrast in the cluster. MNI coordinates, order RAL Single voxel volume: 8 pl.

highest to lowest entropy condition: 62.7/9.5; 62.3/8.6; 62.7/10.1;
62.5/92). Heart rate variance (standard deviation of inter beat inter-
vals) was also highly similar across conditions (arbitrary units, all
values within 49-50). The similarity of these profiles across condi-
tions, and removal of the variance associated with them from the
BOLD signal, suggests that functional connectivity differences were
not due to potential confounds between autonomic state and exper-
imental condition.

Discussion

We found that global features of whole-brain network connectivity
changed with simple manipulations of input regularity, in absence of
any task demands. These global features included modularity strength,
number of modules, partition structure, and features of node degree dis-
tributions. In addition, we demonstrated that alongside these large-
scale changes there was considerable heterogeneity in the extent to
which connectivity re-organized at the single node level, with sensory
and default mode regions most resilient to environmental changes. In
what follows we discuss these findings in relation to prior work.

The scope and triggers of contextual impact

The changes we documented to global network features were sys-
tematic across individuals, as indicated by highly statistically significant
trends at the group level. This is a crucial finding because it is completely
plausible that contextual manipulations could strongly impact network
organization at the single-participant level, but in a manner that varied
strongly and inconsistently across individuals, resulting in null group-
level results. Thus, large-scale functional networks not only flexibly
and spontaneously reorganize with context, but they do so in a similarly
patterned manner across individuals.

Our findings expand on prior work by showing that changes to net-
work structure can be triggered without changes to physical features of
stimuli or task. While strong manipulations of experimental state
(e.g., rest vs. movie viewing; Moussa et al., 2011), task demand
(Ekman et al., 2012), or cognitive state (e.g., sleep vs. rest; Uehara
et al., 2013) clearly affect connectivity, our study shows those are not
necessary for achieving such an impact, as our conditions were devoid
of executive demands and required only passive listening.

Itis interesting that our relatively simple experimental manipulation
was sufficient to induce large-scale topographic changes, whereas sev-
eral prior, ostensibly stronger manipulations in the literature indicated
above did not document similar changes. One reason may be that the
manipulation of input-regularity impacts multiple cognitive processes.
Despite maintaining the same sensory/physical features across condi-
tions, this manipulation has been shown to impact people's propensity
to generate task-unrelated thoughts during listening and their affective
appraisal of the stimuli (e.g., Vitz, 1964, 1966; Antrobus, 1968). Thus,
although subtle, this manipulation likely impacts multiple brain

systems, including those related to mind wandering (Mason et al.,
2007), anxiety (Hirsh et al., 2012), or input prediction (Tobia et al.,
2012).

The relation between input regularity and large-scale connectivity

The changes in global connectivity features we observed between
the Highly ordered and Random condition may be due to the fact that
the highly ordered stimulus we used, which contained stationary regu-
larities, licensed prediction and instantiated long-range functional con-
nectivity between frontal and sensory regions (Summerfield et al.,
20064, 2006b). Conversely, the strongest modularity found for the Ran-
dom condition may reflect reduced communication between sensory
and frontal systems, with relatively weaker information exchange.
Such a balance is sensible from the perspective of an organism that
optimizes resources dedicated to top-down processing (when predic-
tions are licensed) vs. bottom-up processing (when inputs are noisy
and anticipatory processes are less effective). Our node-level global con-
nectivity analysis supports this possibility as it identified several regions
where functional connectivity was lowest for the Random condition.
Similar to prior work (Bassett et al., 2006; Fornito et al., 2010;
Hayasaka and Laurienti, 2010), we modeled degree distributions with
a truncated power law, here separately fitting each participant's data
to draw conclusions on the group level. We found that the degree distri-
butions' parameters differed by condition, with the random condition
showing the lowest proportion of nodes with high degrees.

It has been shown that modularity strength provides little informa-
tion about the underlying partition structure as solutions with very
similar modularity values can differ greatly in their partition structure
(Good et al., 2010). To evaluate whether the differences in modularity
strength were accompanied by changes to partition structure we
analyzed the similarity of partitions found for the Random and Highly
ordered conditions. We found that these partitions were significantly
less similar than would be expected by chance.

While several of our analyses focused on the contrast between the
Highly ordered and Random conditions, it was not the case that there
was a monotonic relation between input regularity and network modu-
larity. For the number of modules in each condition, the Random condi-
tion was associated with the smallest number of modules, the Almost
random condition with the largest number, and the other two condi-
tions falling in between (for 5% and 8.7% densities). For the features of
degree distributions, global connectivity, and modularity strength, the
Almost random condition resembled the Highly ordered condition
more than the Random condition. There could be a number of reasons
for this non-monotonic relation. In general, a non-monotonic relation
between any parameter of interest and input entropy can be explained
by a basic tenet of complexity science, which is that both totally ordered
and random inputs are less complex than inputs with mid-levels of
disorder, in the sense that it is quite simple to abstractly represent the
system/machine/generator producing ordered and random inputs but
more difficult to represent the systems producing inputs with mid-
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levels of disorder (see Nastase et al., 2015 for discussion in relation to
neuroimaging data). In this approach, the Highly ordered and Random
condition should resemble each other and diverge from the mid-level
conditions. This pattern, however, was not found for any of the global
features we examined in the current study, or for the whole-brain global
connectivity analysis (but see Nastase, 2015 for such patterns when ex-
amining whole-brain connectivity of ACC and Hippocampus in these
conditions). As mentioned above, the differences documented between
the Random and Highly ordered conditions could reflect different types
of processing associated with these conditions.

The results found for the Almost random condition are more difficult
to interpret. To better understand this condition, we conducted a follow
up analysis that examined the partition structure in this condition in
relation to the other three conditions. This analysis indicated that the
partition structure of the Almost random condition was not more simi-
lar to the Highly ordered condition than to the other two conditions.
Given that this condition was associated with a larger number of mod-
ules and lowest modularity (Fig. 3), a larger number of nodes with
high node degree (Fig. 5b), and also stronger global connectivity than
the Somewhat ordered condition (Fig. 8), we consider that these find-
ings may be due to a particularly taxing cognitive demand that it
poses. First, the minimal amount of redundancy in that condition may
have instantiated a highly demanding learning situation, wherein
participant's “second level” certainty about the degree of uncertainty
was low. In other words, for this condition, not only was input uncer-
tainty high, but the presence of infrequently-occurring short patterns
could have made it difficult to computationally determine whether or
not the input should be treated as random. Second, while this condition
also formally allowed prediction, it lacked a single dominant transition
constraint (and in this sense differed from the Highly ordered and
Somewhat ordered conditions). Thus, even if the transition probabilities
were learned, in order to use them, participants would need to entertain
2 equally probable transitions (each of 37.5%, see Fig. 1) given each
stimulus.

The relation between input regularity and single-node connectivity: SNSC
and global connectivity

One of our assumptions was that global changes in modularity could
obscure a nuanced pattern, where some nodes maintain within-module
connections across conditions and some do not. We derived a node-
level measure (SNSC) that quantified each node's proportion of
within-module connections in the Random condition that maintained
in the Highly ordered condition. Because our nodes had relatively high
spatial resolution, we could characterize variations in connectivity re-
arrangement across the brain with relatively good precision. We
found that areas predominantly in prefrontal, motor, and somatosenso-
ry cortices were least likely to hold consistent modular connectivity. In
contrast, DMN areas, including anterior and posterior medial regions,
as well as the IPL, anterior STS, and primary sensory cortices showed rel-
atively stable intra-modular connectivity between conditions. This pat-
tern of results is highly consistent with those of Mennes et al. (2013).
That study quantified the extent to which different brain regions main-
tained their connectivity profiles across different tasks. It found that
subcortical and limbic regions, as well as motor and primary sensory
cortices showed only moderate similarity in functional network corre-
spondence, whereas DMN regions showed much stronger correspon-
dence in network structure across tasks, suggesting the latter are less
sensitive to specific task features (see also Golland et al., 2007)

A voxel's global connectivity is a measure independent of SNSC. In
analyzing this measure, we found several cortical and subcortical

1 We calculated, on the single participant level, the pairwise similarity of the partition
structure in this condition against each of the other three other conditions, using an NMI
measure. We conducted a group level test on these values, and we found no significant dif-
ferences in similarity (ps > 0.15).

areas where mean connectivity varied with condition so that connectiv-
ity was highest for the Highly ordered condition. The regions implicated
were mainly superior and middle frontal regions bilaterally, with a
noted absence of lateral temporal cortex regions implicated in auditory
processing per se. We also found connectivity changes sub-cortically;
sequencing-related operations in auditory streams has been linked to
the putamen (Geiser et al., 2012; Grahn and Rowe, 2013), SMA, and
lateral thalamus (Janata and Grafton, 2003).

Implications for the function versus structure debate

The functional or effective connectivity of brain network organization
has been argued to adhere to core intrinsic, structural constraints (white-
matter connectivity), as suggested by empirical work (e.g., Hagmann
etal,, 2008; Honey et al., 2009) and supported by computational simula-
tions (e.g., Ghosh et al., 2008; Deco et al., 2009). A relation between
structural and functional connectivity is also supported by work suggest-
ing that brain networks organize with a stable, core topology (Cole et al.,
2014). This topology has been said to reflect an intrinsic organization,
with large-scale network features that maintain throughout active task
and rest states.

An issue of increasing scrutiny, however, is to what extent the
brain's functional organization is flexible. In particular, this issue per-
tains to understanding possible relations between the modularity of
functional networks and structural connections (Sporns, 2013). One
suggestion is that modularity reflects structural constraints that
“promote functional segregation by forming local network communities
that are intrinsically densely connected and strongly coupled” (Sporns,
2013, p. 162). In evaluating this issue, Messe et al. (2014) used simula-
tions and concluded that the structural core forms a ‘backbone’ for func-
tional connectivity. Importantly, however, their findings also indicated
that functional connectivity manifested non-stationary dynamics, for
which structural models did not explain a large portion of variance.
Our results contribute to clarifying this issue, as they are the first to
show that multiple core network features — including modularity —
vary across implicit environments. It is important to point out that we
used a highly conservative permutation-based method to derive repre-
sentative modularity values on the single participant level in order to
draw population-level conclusions. Our results are thus a strong
complement to other work that showed flexible large-scale network
topographies in task contexts (e.g., Wang et al.,, 2012; Bray et al., 2014).

Summary

During natural sensory perception individuals are exposed to multi-
ple types of temporally unfolding environments that vary in regularity.
We show that such environments are associated with changes to core
global features of whole-brain connectivity. Although prior work has
shown that experimental manipulations impact functional connectivity
patterns, prior findings on the impact of external context on modularity
were inconsistent. Our current results strongly suggest that, even in
absence of task demands, temporal features of context can strongly
impact modularity and other global features of whole-brain network
connectivity. Our work also highlights the importance of understanding
global changes in topology in tandem with finer-scale examinations, at
the node and regional level. Finally, our work suggests that the modu-
larity of functional networks, while likely constrained by structural
connections, is not completely determined by the latter, and that the
environment can introduce systematic changes to their configuration.
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