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Stochastic simulation fan-silico studies of large biochemical networks requires a great atraficomputational time.
We recently proposed a new exact simulation algorithm edathe rejection-based stochastic simulation algorithm
(RSSA) [J. Chem. Phys. 141(13):134116 (2014)], to imprareukation performance by postponing and collapsing
as much as possible the propensity updates. In this papeanalgze the performance of this algorithm in detalil,
and improve it for simulating large-scale biochemical teacnetworks. We also present a new algorithm, called
simultaneous RSSA (SRSSA), which generates many indepetrdgectories simultaneously for the analysis of the
biochemical behavior. SRSSA improves simulation perfaroesby utilizing a single data structure across simulations
to select reaction firings and forming trajectories. The mgmequirement for building and storing the data strucisire
thus independent of the number of trajectories. The upgafithe data structure when needed is performed collegtivel
in a single operation across the simulations. The traj@garenerated by SRSSA are exact and independent of each
other by exploiting the rejection-based mechanism. Wedesnhew improvement on real biological systems with a
wide range of reaction networks to demonstrate its appliaand efficiency.

Keywords: Computational biology, Stochastic simulatiBejection-based stochastic simulation algorithm.

I. INTRODUCTION a reaction firing, to reduce the number of propensity updates
The Optimized Direct Method (ODM)and the Sorting Direct
Stochastic modelling of biochemical reaction models théViethod (SDM} accelerate the search for next reaction of SSA
system state as a vector of species populations. A reaagion bPY sorting reactions in descending order of propensitié® T
tween species is a random event with probability propoation S€arch for next reaction can further be improved by dividing
to apropensitydependent on the reaction kinetics. The tem-Téactions into groups' and performing two steps: 1) select-
poral evolution of biochemical networks can be realized byind the group, then 2) locating the reaction within that grou
an exact simulation procedure called the stochastic stionla |f groups are split into subgroups recursively until a group
algorithm (SSA}2, also known as the Direct Method (DM). contains only two reactions, we obtain a tree structure W|t_h
Each SSA simulation step selects a reaction to fire with a-proyéactions on the leaves. Then, the search for the next oeacti
ability proportional to its propensity, according to whigte 1S done by traversing the t&@". The SSA with Composi-
system jumps to a new state. Then, reaction propensities afon Rejection algorithm (SSA-CR}? exploits the reaction
updated to reflect the changes in the system state. grouping strategy and rejection-based mechanism to ineprov
There are two main factors affecting performance of SSA{he search for next reaction. SSA-CR groups reactions with
1) searching for next reaction events, and 2) updating prope Propensities betweebi~" andb’ (whereb is a chosen base
sities of reactions. Furthermore, due to the inherent rando €-9-,b = 2) into a groupi. The search for the next reaction in
ness in the simulation, many simulation runs should be dwne tgroupi is done through a rejection test with the hat function
have a reasonable statistical estimation that furtheeames ‘. The search for next reaction firings by SSA-CR is thus
the total simulation time. Many formulations have been in-Propositional to the number of groups, depending on the ra-
troduced to accelerate the stochastic simulation. The NexXto between the highest and lowest propensities. Thuseif th
Reaction Method (NRM) exploits a special indexed struc- number of groups is bound by a small constant, the asymptotic
ture, i.e., a binary heap, to store and extract smallesb¢abs {ime complexity of the search for the next reaction in SSA-CR
lute) putative times. Extracting the smallest time from thelS constant time. After a reaction firing, the propensitieafe
heap requires constant time, while updating requires logafected reactions are updated and moved to appropriate group
rithmic time. Furthermore, NRM uses a dependency graph',f the number of affected reactions is large and their prepen

which points out which propensities need to be updated aftetities vary significantly, SSA-CR has to frequently update
propensities and its underlying data structure, hencesdser

ing its overall performande Typically, the cost of propensity

updates done by SSA contributes arouid to 85%, and
aElectronic mail: vo@cosbi.eu in some peculiar cases even updts, of the entire simula-
P)Electronic mail: roberto.zunino@unitn.it tion cost. Reducing propensity updates then provides an im-
®Electronic mail: priami@cosbi.eu provement for the simulation performance. An attempt to re-



duces propensity update cost is the Partial-propensitgdDir to efficiently generate multiple independent trajectorsés
Method (PDM}3-15 where propensities are factoring out by multaneously in one simulation run. SRSSA uses the same
common reactants. Propensities of reactions with the dhargropensity bounds across simulations to select the next re-
reactant will be updated in one operation. However, due to action firings instead of each one for separated simulation
special form of the partial propensities, the reactantgimmy  runs. The simulation performance is improved by reducing
approach is limited to class of reactions involving at meg&tt and lumping up together the computing of propensity bounds
reactants and their propensities must be in a form which ean binto one operation. The generated trajectories by SRSSA are
factorized (e.g., mass-actidfi) Although non-elementary re- still exact and independent of each other.

actions could be decomposed into elementary reactions, wet This paper is organized as follows. The next section re-
lab experiments can more easily measure the propensitg of thviews the standard approaches for stochastic simulation of
non-elementary reaction than the propensities of therimger biochemical reaction systems, and recalls the basic ideas b
diate elementary reactions that are involved in. When onlhind the RSSA algorithm. Section lll analyzes the perfor-
the non-elementary reactions are measured, then simulationance of RSSA and its proposed improvements. Section IV
can only be performed using a complex propensity functionpresents our new SRSSA algorithm. Section V presents the
The Michaelis-Menten kinetié§, for example, is widely used experimental results of our improvements on concrete nsodel
to model enzymatic reactions in biological systems. in a range of problem sizes and complexities to demonstrate

We have recently proposed a new exact stochastic alts applicability and efficiency. The concluding remarks ar
gorithm called Rejection-based Stochastic SimulationoAlg section V1.
rithm (RSSA}"18 to accelerate the stochastic simulation.
Our approach aims to reduce the propensity updates but is
not relying on any specific form of reactions in the sys- '
tem. RSSA is thus able to simulate any types of reaction
(e.g., non-elementary reactions). RSSA is specificallgradl We consider a well-mixed volume containingspecies de-
for reaction networks in which propensity computations arenoted asS; ... S,. The state of the system is represented by
time-consuming (e.g., complex propensity such as Mickaeli & population vectoX (t) = (Xi(t), ..., X,(t)) where X;(t)
Menten rate function). During the simulation of RSSA, denotes the population of specids at a timet. Species
many propensity updates are completely avoided. Specifiean interact throughn reactionsR; ... R,,. The probabil-
cally, RSSA abstracts the propensity of a reaction with an inity that a reaction?; fires in the next infinitesimal time+- dt
terval including all possible concrete propensity valu€se is a{-(X(t))dt whereq; (X (t)) is called the reaction propen-
propensity bounds of reactions are derived by specifying asity". The propensity:; (X (t)) is roughly proportional to the
arbitrary bound on the population of each species (the ehoicnumber of possible combinations of reactants involve&jn
of which affects the performance, but not the exactnesseof thand its kinetics information. Hereafter, we usginstead of
results). RSSA uses these propensity bounds to selectthe ne:; (X (t)) for a shorthand.
reaction firing in two steps. First, a candidate reactiorais r If a particular reactionR,, is selected to fire, the state
domly chosen proportionally to its propensity upper boundchanges according to the state change vegtomwhich ex-
The selected candidate is then inspected through a rejecti@resses the changes in population of species involved,in
test to ensure that it fires with the same probability deteenti  The state transition of the system is therefore modeled as a
by SSA. The validation step postpones the evaluation of thécontinuous-time) jump Markov process. The probabilitg-di
exact propensity of the candidate reaction by exploitiisg it tribution of the system is completely described by the chemi
propensity lower bound. The exact propensity will be evalu-cal master equation (CME) however, an analytic solution of
ated only if needed. The candidate reaction is either fired 0EME is hard to find, unless the system is rather simple. Sim-
(with low probability) rejected. If it is accepted to fire, lgn  ulation is often the choice to construct possible realkuetiof
the state is updated, without recomputing the propensity exCME. The stochastic simulation algorithm (SSA), in particu
cept in uncommon cases. New propensity bounds are recorf@r, is an exact method to sample temporal behavior encoded
puted only when the population of a species exits the choseit CME.
bound. In case of rejection, a new candidate reaction is se- SSA"? realizes the next state by simulating the joint prob-
lected. ability density function (pdfp(r, ) with p(r, 1)dr being the

In this paper, we analyze the computational cost of RSSArobability that a reactiork,, fires in the next infinitesimal
and introduce efficient formulations to improve its perfor- ime? + 7 +dr, given the stateX(¢) at timet. Eq. 1 gives a
mance for simulating large-scale biochemical reaction netclosed form ofp(r, .):
works. We study how the search procedure applied to select _ _
candidates affects the simulation performance. We alsasfoc p(7, 1) = aewp(=aoT) @)
on controlling the bounds of population of species which in-whereay, = E;”:l a;. Note that the reactio,, fires with
directly affect the propensity bounds and the acceptarate-pr corresponding discrete probability, /ao and the firing time
ability of a candidate reaction to adaptively optimizelitse T is exponentially distributed with parametey.

The second contribution of this paper is a new algorithm, SSA samples the pdf(r, ) and constructs a simulation
called simultaneous rejection-based stochastic sinamatl- trajectory as follows. It computes. propensities:; for j =
gorithm (SRSSA), that exploits the rejection-based ppleci 1...m at beginning. Then, for each simulation step the next
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reaction firingR,, and its firing timer are realized from Eq. 1

by: Algorithm 1: Rejection-based SSA (RSSA)
1 1
T=—In|— (2) procedure:rssa
@0 ! output: a trajectory of the reaction network

1: initialize timet = 0 and stateX = x¢
[ 2: while (t < Tyas) dO
1 = smallest reaction index such thaE: a; >raa0  (3) 3: define fluctuation intervdlX , X] of stateX
j=1 4: compute propensity upper boumg and lower bound:; for

each reactiol; forj=1...m

wherer; andr, are two random numbers generated from a 5. compute the total propensity upper bourig= """ | @;

uniform distributionU (0, 1). The state is updated according ¢. repeat =

to the selected reactioR,, and moves to a new stafé(t + 7: setu =1

7) = X(t) + v,. The propensities are updated to reflect the s: setaccepted = false

changes in the system state. A reaction dependency graph is: repeat

often used to decide which propensities need to be updatetf: generate three random numbeisra, rs ~ U(0,1)

after a reaction firing. 11 select minimum index satisfiedd "'_, @; > riao
12: if ro < (au/ay) then
13: accepted = true

A. Rejection-based Stochastic Simulation Algorithm 14: else )
15: evaluaten,, with stateX’

. . . . . 16: if ro < (au/ay) then
RSSA is an exact simulation algorithm which generates tra- ;. setaccepted — true

jectories with the same statistical distribution as SSAabt,  1g. end if

RSSA exactly samples the pgfr, 1) in Eq. 1, a reactiorR,, 19: end if

is selected with probability,, /a¢ and its firing time is expo- 20 setu=u-r3

nentially distributed with parameteg. A complete proof for  21: until accepted

the exactness of RSSA is in Thaehall’. RSSA acceler- 22 compute firing timer = (—1/ao) In(u)

ates the simulation by reducing the number of propensity up23: update time = ¢ + 7 and stateX = X + v,

dates. In most of the simulation steps, RSSA does not requirg®  until (X ¢ [X, X])

to update propensities, hence reducing the average nurhber & end while
propensity updates. RSSA is summarized in Algorithm. 1.
RSSA computes for each reaction a propensity lower bound
a; and an upper bound; for j = 1...m and uses these  Having propensity bounds, a candidate reacti@,m is
propen3|ty bounds to select the next reaction firing. Thesgelected with probabilitya, /a; where a; = Z a5
propensity bounds are derived by imposing a bound on thRSSA realizes the candidate reaction by linearly accumulat
population of each species in the state. For speSigsa  ing propensity upper bounds until it finds the smallest ieact
lower boundX; and an upper bound; is defined around index satisfying the mequalltyz7 1@ > 11 -Go Wherer;
its current populatiorX;(¢). The population bounds for each s 5 random number itV (0,1).
speciesS; could be chosen arbitrarily around its population  The candidate reactioR,, then enters a rejection test for
without affecting the correctness of the algorithm. Theesta \zjidation with success probablllt%/au In other words, we
therefore satisfiest < X(t) < X for each species. The tgss a (biased) coin with success probabiitya,,. If the toss
population interval X, X] is called thefluctuation interval  gycceeds. we accept the candid&g to fire, otherwise we
or abstract state The invarianta; < a; < @; holds for all  reject it. The efficient simulation of this coin toss, howeve
reactionR; with j = 1...m whenX(t) € [X,X]|. The tricky since we do not know the exact value of the propensity
propensity lower/upper bounds are chosen to be the miniq, in advance, and we want to avoid computing it as much
mum/maximum of the propensity functian over the fluctu-  as possible. To achieve that, we draw a random number
ation interval X, X]. If the propensity:; increases whenever U(0,1). We then check whether, < a,/a,, which does
the species population increases, its minimum and maximurnot require us to compute,. If the check succeeds, then
values correspond to the evaluatiomgfat the lower extreme we know thatry < a,/a, < a,/a,, hence we can accept
and upper extreme of the species population interval, cespe R,,. Only when this test fails we indeed compuig and then
tively. For example, ifz; follows the mass action kinetics or testr, againsta, /a,. The computation of,, is infrequently
the Michaelis-Menten klnetlcs where the monotonicity lsold performed whem,, /a,, is close tol, WhICh is often the case
we simply leta; = a;(X) anda; = a;(X). If a; isacom- in practice. IfR,, is accepted, its firing time is then computed.
plex function, one can apply numerical techniques, e.tprin  Otherwise, a new candidate reaction is selected.
val analysié®, to compute the bounds for propensity. The ex- The firing timer of the accepted reactioR,, is generated
act minimum and maximum, however, are not really neededfollowing an Erlang distribution. This distribution is cho-
A reasonable tight bound for the propensity over the fluctuasen to be faithful with SSA. The key idea is that each candi-
tion interval is enough for the simulation, but the next teac  date selection step corresponds to a stochastic transittbn
firing is always selected with the right probability. total rateay. Such transition can cause the staié) to ei-
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ther move to the new stat¥(t + 7) = X(t) + v, if candi-  a candidate reaction i.eo; = ag/ag. S is the average fre-
dateR,, is accepted or perform a self-loop in the current statequency ofX (¢) € [X, X|. The additional constant coé(1)
X(t+ 1) = X(¢t) if candidateR,, is rejected. Hence, if we in Eq. 5 denotes the CPU time for after-simulation data han-
performk trials before we accept (i.e., we rejectied- 1 can-  dling. Although this processing time may contribute a large
didates), we need to advance the time according to the suportion to the simulation time, especially for simulatingad

of k£ independent stochastic transitions of ragewhich isan  models, it depends on the operating system and is the same for
Erlang distribution. TheErlang-distributed firing timer is  all algorithms so that we can still assume it to be a constant.

sampled as: .
We can improve the overall performance of RSSA by re-

k k ducing the search tim&3%2<" that depends on the search
T= Z(—l/af)) In(u;) = (—1/ag) 1n(H u;) (4) procedures applied to realize a candidate reaction. Thelsea
i=1 i=1 strategy used in the basic RSSA is equivalent to a linear
search. Its main advantage is that it does not require tal buil
whereu; is a random number fron/(0,1). RSSA imple-  any complex data structure in advance. Indeed, in an imple-
ments this sampling technique by multiplying the variable mentation we only need an array of sizeto store propensity
in every validation steps by a uniform random quantiyn- upper boundsi; for j = 1...m. However, the time com-
til a trial succeeds. plexity of the search is linear w.r.t. the number of reaction
Knowing the reaction and its firing time, the state is up-j.e., 73c97¢h — O(m). The search performance can be im-
dated accordingly. RSSA postpones recomputing propensitiroved by sorting the propensity upper bounds in decreasing
bounds if the state is confined in its ﬂUCtuatign interva|u§',h Order; however, the worst case Comp|exity still remainsdin
it checks whether the conditioX (t) € [X, X] holds after we discuss options for implementing fast search procedures
the state is updated. If the condition is true, which is Oftenthat are different in Speed and code S|mp||c|ty in the fo"wv
the case, the next simulation step is performed. In the unsection. We also study the impact of their running times to be

common case in which the Stjte is outside the current ﬂUCtth|e to tune the performance for each Specific prob|em_
ation interval, i.e X (¢) ¢ [X, X], a new fluctuation interval

is defined. At that time, new propensity bounds for reactions An update step of RSSA is composed of defining a new
are derived as well. We can reduce the number of reactionuctuation interval and recomputing propensity boundseef r
having to recompute their propensity bounds by applying actions. Defining new fluctuation intervals for each species
Species-Reaction (SR) dependency gtadpfhe SR depen- Whose population moves out of its current population bounds
dency graph shows which reactions should recompute thegfter a reaction firing is a constant because only a small
propensity bounds when a species exits its fluctuation-inteiumber of species are involved in that reaction. Reactions
val. Thus, only a subset of reactions requires to recomputthat need recomputing propensity bounds when an involved
propensity bounds. species moves out of their population bounds are retrieved
from the SR dependency graph. Liebe the average number
of reactions in the SR dependency graph that needs recomput-
Ill. PERFORMANCE ANALYSIS AND IMPROVEMENTS ing propensity bounds, the complexity of update of proggnsi
FOR RSSA bounds in RSSA is therefo:%5s* = O(k). We remark that
the propensity updates in RSSA are performed infrequently

This section analyzes the performance of RSSA in generand controlled by tuning the fluctuation interyal, X|. Gen-

ating a simulation trajectory. We discuss the factors &ffec erally, the narrower the intervak’, X'| we use, the more fre-

ing the simulation performance and study formulations to im quently the propensity updates perform resulting in insirea

prove its efficiency. We measure the computation cost ingermthe updating time and the acceptance probability. If the fluc

of the average CPU time. In our discussion we use(he tuation interval degenerates into the stife= X = X(¢),

notation to express the time complexity. thena = S = 1 which means a candidate reaction is al-
ways accepted and reactions have to update their propensi-
ties after every reaction firing as in SSA. On the other hand,

A. Computational cost of RSSA if we increase the fluctuation interval, we reduce the num-
ber of updates for propensity bounds. We are even able to

Let T529r<h pe the average search time for a candidate redefine a fluctuation interval so that no update occurs in the

RSSA . . .
action andl'}244“ be the average update time after a reactionWhOJet simulation § = oc). The update cost is thus zero,
U ate H H
fires. The average simulation step tiffigss 4 is expressed 1 rssa /B = 0, and has no effect on the simulatiofizssa
as: will depend only the search cost; however, in this situation
because.; anda; are very loose approximations of the exact
Trssa = aT5Erh 4 ng@“je /B +0(1) (5) propensities:;, the acceptance probability decreases signifi-

cantly. Consequently, it increasassince the candidate reac-
wherea is the average number of times the search conductetion is rejected frequently. This indirectly affects theusdh
until the candidate reaction is accepted and, respectigdly  for the next reaction firing, which in turn negatively impsct
the average number of skipped updates during the simulatiothe simulation performance. We discuss mechanisms to con-
« is equal to the reciprocal average acceptance probabiflity drol the fluctuation interval in the next section.
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B. Search for a candidate reaction set-up of the Alias method requires to build two tables, edch
sizem, in which the first table, called cut-off table, stores the

An efficient search algorithm can be applied to reduce th@robability of the first values of the two-point mixtures and
time complexity of RSSA in simulating large models. Typ- the second table, cal[ed alias table, contains the ahgbeto t
ically, a fast search algorithm with fast asymptotic speed r Second parts of the mixtur&s The random number is first
quires to build complex underlying data structures (trash ~ US€d to lookup the position of the equi-probable mixturés It
tables) before the actual search can be conducted. Theschoit€Scaled to select which part of the two-point mixture. Ehes
for the search algorithm thus depends on the problem size arii€PS require only one comparison to choose the part of the
on the complexity of the data structures it needs to build. ~ tWo-point mixture and (at most) two table accesses to select

Tree-based searctBy applying the tree-based search, we the candidate reacgon. The time compIeX|_ty of the search is
reduce complexity of the search from linear to logarithmicthus constan’zs3" = O(1). The generation of tables for
time. This search method is based on a (binary) tree steictufe Alias method has gczmplexny proportional to the number
in which the leaf nodes will store the propensity upper baund Of reactionsm, i.e., Ty = O(m)?.

a; and the inner nodes store the sums of values of their child

nodes. The tree root therefore holds the sum of all values

stored in the leaves i.eag. In a implementation, an array is C. Fluctuation interval control

used to represent the tree; however, the array reqaifes)

more elements than linear search array wheris the num- A rejection test is applied on the selected candidate to en-
ber of reactions. This is because we have to store also partigure it fires with a correct probability. The acceptance ef th
sums of propensity upper bounds in internal nodes, as wellandidate depends on the propensity bounds which can be ad-
as the pointers to parent/children pairs. The search vail tr justed indirectly through the fluctuation intervial, X]. We
verse the tree to find a candidate reactingiven the search  should emphasize that the width of the fluctuation interval
valuer; - ap. Starting at the tree root, that we mark as thedoes not affect the correctness of the algorithm, but only af
current node, the search recursively selects the next brangects the simulation performance.

by comparing on the search value with the value stored in the we can define the fluctuation interval by a fluctuation pa-
left child node. The left branch is selected if the searcheal rameterd which could be a scalar value or a vector. |If
is less than the value stored in left child of the current nodes is a scalar value, we call itniform fluctuationsince all
The right branch is chosen otherwise. If the right branch iSSpecieS uses the same parameter to the compute their fluc-
selected, the search value is subtracted by the value storedtyation interval. By using the uniform fluctuation rate, the
current node. The search stops when it reaches a leaf. THRictuation interval will be defined (using vector notatias)
reaction in this leaf is chosen as the candidate for the -rejeqL X] = [(1 = 0)X(¢),(1 + §)X(t)]. This approach has
tion test. Since the search complexity is linked to the depth hoth advantages and disadvantages. On the positive sile, th
the tree, we use a Huffman tfée"*'to optimize the average calculation of fluctuation interval is fast, requiring onigc-
search length. The key idea of the Huffman tree is to havgor computation. However, it does not allow a fine control for
the leaves storing large values (hence more likely) closieeto  each species. If is a vector where each componehtde-

root than leaves with small values. The time complexity forfines the population bound for each single species in the stat
the (complete) tree-based searcljg/s4" = O(logm) and e call it nonuniform fluctuation The population bound for
the update time is alsB%4't* = O(klogm). This logarith-  speciesS; is then defined a1 — &,) X (t), (14 ;) X;(t)]. In

mic time complexity may provide a substantial improvementan implementation, a lookup table is used to store and vetrie
for simulating large models. the fluctuation parameters of species.

Table lookup searchThe search for a candidate reaction In some models, the population of some species may vary
can be reduced to constant time complexity by applying a tasignificantly during the simulation. The fluctuation parame
ble lookup method at the cost of an expensive pre-processingrs for such species should be changed adaptively to ggimi
to build the lookup tabled?3. Although the table lookup the acceptance probability of the involved reactions. We ca
search can be applied to standard SSA for selecting next reéhis approacladaptive fluctuation For example, an absolute
action firings, the changes in propensities after eachiogact interval size (instead of &) can be preferred in case the pop-
firing require the lookup tables to be updated and makes thelation of a species is low (say e.g., less tR&h In order to
application of lookup search to SSA no more efficient thanexploit the adaptive interval control we set a thresholdieal
linear search. The downside of the lookup search is alleA on the population of species. During the simulation, if the
viated by RSSA where propensity bounds are used to seopulation of a specieS; gets lower than the threshold value
lect next reaction firings. RSSA updates the lookup tables.e., X;(t) < A, we will apply a fixed (absolute) fluctuation in-
infrequently, thus improving its amortized cost. We imple-terval A. The populationX;(t¢) of speciesS; then is bound to
mented and experimented a well-known lookup search, callethe interval X;(t)— A, X;(¢)+A]. Otherwise, we will apply a
the Alias methoé*. The theoretical foundation underlying the fluctuation ratey; to define the population bound of spectes
Alias method is a theorem stating that any discrete proiyabil Thus, if X;(¢t) > A, the interval[(1 — §;) X;(¢), (1 + 6;) X;(¢)]
distribution overm probability values can be expressed as aris applied to bound the population of specigs Following
equi-probable mixture ofn two-point distributions. Then  this simple scenario, we extend the idea of adaptive fluctua-
probabilities used in this case afg/a for j = 1...m. The  tion control to the models having many phases. A spegjes
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is in phasek if its population is less than an upper thresholdthe species population. This is done by partitioning the-pop
A% and greater than a lower threshdlb‘l. Thus, if species ulation of species into bins and compute the occurring fre-
S; is bound to phasé, a fluctuation raté* will be applied  quency of species in each bin. The edf of species will ap-
to derive the population bound for that species. This gjsate proach its pdf for large/{. We can measure the statistical
allows the simulation to automatically adjust the fluctaati fluctuation introduced by stochastic simulation from edér F
interval depending on the phase of the system. instance, a statistical measurement is developed by Cao and
Petzold’ based on the distance between two empirical dis-
tributions to compare the accuracy of simulation algorghm

IV.  SIMULTANEOUS REJECTION-BASED ALGORITHM More specifically, given a fixed<, two algorithms have the
FOR SIMULATION ANALYSIS same accuracy if the distance between two empirical distri-

butions computed from two sets of independent realizations
A. Simulation analysis by these simulation algorithms is less than the so caltdfl

distancé’. The self distance is the distance between the edfs

The stateX at a given timet is a random variable. Thus computed from two sets of independent realizations derived
to have a reasonable estimation by simulation, we have tﬁ’om the same simulation algorithm. It is a random variable
repeatedly perform independent simulations to generale re bounded by,/4B /(K ), whereB is the number of bins.
izations of X (¢). Let K be the number of simulations and
respectively, letX™ with » = 1... K be the realizations of
X obtained by repeatedly performirig independent runs of g simuitaneous Rejection-based Simulation Algorithm
an exact simulation algorithm under the same simulation con
ditions. The statistical properties (e.g., mean, and Waga
can be derived from the ensemblefgftrajectories and these
properties are ensured to approach the exact solution of CM
as K approaches infinity.

Let<X> be the sample mean ar@ibe the (unbiased) sam-
ple variance of stat& at timet based on an ensemble Af
independent simulations. We can compute these values by:

In this section we present our new algorithm, called si-

ultaneous rejection-based stochastic simulation dtgari
SRSSA), for generating multiple independent trajectorie
The advantage of SRSSA is that the trajectories are gederate
simultaneously in a simulation run instead of many simula-
tion runs. The independent trajectories generated by SRSSA
are exact by exploiting the propensity bounds to select next

ZK—l Xxr reaction firings as in RSSA. For independent runs of RSSA
<X>= T’T (6)  the propensity bounds have to be replicated and separated fo
each simulation run. The propensity bounds in SRSSA, how-
and ever, are only computed once and shared across the simula-
K ” 9 tions. Since SRSSA uses the same propensity bounds across
$2 = 2opoy (X7~ <X>) (7)  the realizations, it reduces the memory requirement teestor

K-1 the propensity bounds and improves its cache-friendliness

By the law of large numbers, the sample mean and varianche recomputing of the propensity bounds in SRSSA when
will asymptotically approach the true meBfX | and variance needed will be performed collectively in a single operation

Var[X| of the random variablé&l whenK tends to infinity: ~ Which further reduces the total number of propensity upxlate
and improves the simulation time.
E[X] = lim <X> (8) Let K be the number of trajectories adif be the system
o state of ther-th realization withr = 1... K. Leta] be the
VarlX] = lim s ) propensity of reactio; in ther-th realization. The key point

) ) o of SRSSA is that it computes a lower bo@and an upper
However, since the number of simulatiofisis limited, the bounda; for each reactior; such thai; < ar < a; for all

convergence of the estimation is measured by the size of thﬁ: 1... K, and then uses these propensity bounds to select
confidence interval

reaction firings for allK” realizations. Thus, we only need to
(10)  storem propensity bounds o, reactions independently of
VK the number of realization&". This feature is useful when we

. . . . n ner large number of realizations for an onlin
wherez is a confidence level. If we fix the confidence level eed to generate a large number of realizations for an online

z, the probability that the true med&[X] lies in the interval analysis of Iarqe reaction ”e‘Wﬂ"S- . , i
[<X> — d,<X> + d] is 28(z) — 1 with ® is the cdf of the The propensity bounds; anda; are derived by first defin-
standard normal distributioN(0, 1). For instance, with the ing aglobalfluctuation intervalX, X] which bounds all pos-
confidence levet = 1.96, the probability that the true mean sible populations of each species in &ll statesX™ with
fallsin [<X>—1.96s/vVK,<X>+1.96s/vVK]is95%. Thus, r = 1...K. The algorithm then minimizes/maximizes
to reduce the confidence interval size given a fixed confidencthe propensity functiom; on such a global fluctuation in-
level we have to increase the number of trajectoiies terval [X, X]. We define the global population bound for
Moreover, given an ensemble &f trajectories, we can in- a speciesS; by the following procedure. LefX/"" =

fer the empirical distribution function (edf) (or histognpof — min(X},..., XX) and X*** = max(X},..., XX), re-

d= 25



spectively, be the minimum and maximum population of

speciesS; in all K states. The chosen population interval

Algorithm 2: Simultaneous RSSA (SRSSA)

[X,, Xi] = [(1—8;) X", (1+6;) X ] will bound all pop-
ulations of specie$; in K states, wheré; is the fluctuation
rate of this species. Repeating this procedure for all sgeni
the state vector, we are forming a global fluctuation interva 1:

[X, X] for theseK states.
2:

3:
Knowing the lower bounds; and upper bounds;, SRSSA

selects reaction firings and updates the skéftdor the corre- 4
sponding-th realization with- = 1. .. K by applying the the
rejection-based selection. The SRSSA algorithm is oudline
Algorithm 2.

SRSSA initializes the tim¢&” and initial stateX” for each
r = 1...K. It then derives the global fluctuation inter- ;..
val [X, X] for all theseK states and computes the propen- 1.
sity lower bounda; and upper bound:; for all reactions 12
R;. SRSSA maintains a set of species that should upis:
date their population bounds which is represented by the sd#:
UpdateSpeciesSet, initialized to an empty set. SRSSA alstb:
uses the Species-Reaction (SR) graph to retrieve which reaé6:
tions should update propensity bounds when a species exits iL”:
population bound. 18:

e’

19:
. . . . . . 20.
Inside the main simulation loop, the rejection-based selec21:

tion will be continuously applied to select reaction firiraged ~ 22:
form trajectories. For the-th realization, a candidate reac- 23:
tion R, is randomly selected with probabilig, /a;. Then, 24
the propensity:,,” is evaluated on the corresponding state 2%
and used to validate this candidate reaction with acceptancza'

probabilitya,” /a,. Note that the propensity lower boung 28

is still applied to avoid computing,,” as much as possible. .
The selection of the reaction firing in theth realization is 3.
exact and independent of other realizations. If the readtio 31:
accepted, the tim& and stateX” are updated. This selection 32:
step is then repeated until a species population exits timgl 33:
population interval (see line 8 - 28, Algorithm 2). L8t be 34
the species whose populatioff ¢ [X;, X;] in ther-th real- 3%
ization. SRSSA adds this speciéisto the UpdateSpeciesSet. 25
It then stops the curremtth realization and moves to the next 2;:
realization. 39:

40:

procedure:srssa

output: K independent trajectories of the reaction network

for each trajectory = 1. .. K, setinitial timet” = 0 and initial
stateX"” = g

build the species-reaction (SR) dependency g@ph

for each species; with i = 1...n define a boundX;, X;]
suchthat; < X} ... XX <X;

: compute propensity bounds anda; for each reactior; with

j=1l...m
: compute total upper bound propensity = Z;”:laﬁ
repeat
set UpdateSpeciesSet()
for (each trajectory = 1 — K) do
repeat

setuy =1
setaccepted = false
repeat
generate random numbers;, r2, 73 ~ U(0, 1)
select minimum index: satisfiedy >/_, @; > r1ao
if (ra < (au/@x)) then
setaccepted = true
else
evaluateu;, with stateX ™

if (2 < (aj, /a,)) then
setaccepted = true
end if
end if

setu =u-rs
until accepted
compute firing timer™ = (—1/ao) In(u)
settimet” =t¢" + 7"
update stat&” = X" + v,
until (existsX; ¢ [X,, X:]) or (" > Trmax)

for all (speciesS; whereX; ¢ [X;, X;]) do
setUpdateSpeciesSet = UpdateSpeciesSet U {S; }
end for
end for

for all (speciesS; € UpdateSpeciesSedp
define a newX;, X;] such that; < X; ... XF <X;
for all (R; € ReactionsAffectedB{5S;)) do
compute propensity bounds anda;
update total upper bound suim
end for
end for

until (t" > T for all trajectoriess = 1. .. K)

Only when allK trajectories are stopped, new global popu-
lation interval[X;, X;] for all speciesS; € UpdateSpeciesSet
are redefined. This is the key difference between SRSSA and
RSSA. RSSA has to redefine a new population bound as sooh
as a species exits its current population bound, while thjs s

NUMERICAL EXAMPLES

in SRSSA is postponed and performed once wheradim- In this section we first report the performance of our effi-
ulationa are stopped. Then, SRSSA retrieves reactions fafient RSSA formulations in simulating large models. Then,
which propensity bounds have to be recomputed because theye present the performance improvement of our new algo-
have reagent species that exit their population bounds (se&hm SRSSA. The models we considered in the performance
line 33 - 39, Algorithm 2). This set of reactions affected by comparisons are real biological processes. All the algorit
speciesS; is extracted from the SR dependency graph andvere implemented in Java and run on a Intel i5-540M pro-
denoted by the set ReactionsAffectedBy). Thus, for each cessor. The implementation of the algorithms as well as the
R; € ReactionsAffectedBy5S;), its new lower bound;; and  benchmark models are freely available rett p: / / www.
upper boundr; is recomputed. o cosbhi . eu/ resear ch/ pr ot ot ypes/ rssa.
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A. RSSA formulations performance on large models induced receptor aggregation and results in a response from
the immune system (e.g., allergic responses). This sigmali

Table | summarizes the models that we used for the benct{s extensively studied in the literatdfe We use the Rl

mark. The models are chosen with varying network sizes andignaling model developed by Let al.* which contains38o

average number of propensity updates per reaction firing t§Pecies ands62 reactions.

observe the effects of both the search and update on the simu-The B cell receptor signaling model proposed in Bagtia

lation performance. The number of reactions of models in thel.* studies the effect of protein Lyn and Fyn redundancy.

Table | spans from a few reactions as in the gene expressiobhis model was implemented with a rule-based modeling ap-

model (8 reactions) to an order of ten thousands reactiains as proach by including the site-specific details of proteiotpin

the B cell receptor signaling (24388 reactions). The aweraginteractions. The reaction network generated from the mode

number of propensity updates after a firing of a reaction ef th containsl 122 species an@d4388 reactions.

corresponding networks also increases fidito 546.66. A Figure 1 compares performance of RSSA formulations with
brief description of these models is in the following. the Direct Method (DM), the Next Reaction Method (NRM)
and the Partial-propensity Direct Method (PDM) and its vari
TABLE I: Summary of reaction models ants including Sorting PDM (SPDM) and PDM with Com-
position Rejection (PSSA-CR) on the benchmark models. In
. .| #Propensity order to run the partial-propensity approach (PDM, SPDM
Model #SpeciegiReaction "Updates per Firing  and PSSA-CR) with the folate cycle, we used a simplified
Gene expression 5 8 3.5 version of the Michaelis-Menten rate and modified the rate
Folate cycle 7 13 5 computation. For RSSA, three variants of the search used for
MAPK cascade 106 296 11.70 selecting the candidate reaction are considered: 1) thie bas
FceRI signaling 380 3862 115.80 RSSA where linear search is applied, 2) RSSA with tree-based
B cell receptor signaling 1122 24388 546.66  search (RSSA-Binary) and 3) RSSA with Alias lookup search

(RSSA-Lookup). We also adaptively adjust the fluctuation in

The gene expression model is a type of regulatory pathwa}ﬁ‘r.Va| of a species depending on its population. If the popu-
which plays a key role in the understanding of gene reguiatio lation of a species is less thas, the absolute interval size
mechanisms and functional#y The result of gene expres- A = 4 is applied. Otherwise, the fluctuation rate= 10%

sion is a collection of proteins encoded by the correspandiniS applied. The performance of algorithms is averaged from
gene. Proteins are produced by two main consecutive pro-00 simulation runs. For each simulation run, the results are
cesses: the transcription and then the translation. Dunieg collected aftel0” steps.

transcription process, the gene is copied to intermedaate f A conclusion from Fig. 1 is that our RSSA formulations
called messenger RNA (MRNA). mRNA then binds to ribo-achieve better performance than all other algorithms in all
somes to translate into the corresponding protein. We impletest cases, and outperform especially in large models. For
ment this model witt species and reactions. instance, the speed-up gain by RSSA in comparison with

The folate cycle is a metabolic pathway which has a vitalDM, NRM, PDM, SPDM in simulating the k&I signal-
role in cell metabolis#P. The result of this metabolism is the ing is 9, 8.6, 1.8 and 2, respectively. Furthermore, RSSA
transfer of one-carbon units for methylation to produce mewith an efficient search achieves a significant performamee i
thionine and synthesis of pyrimidines and purines. In the fo provement when simulating large models. In simulating the
late cycle, the tetrahydrofolate (THF) is catalysed to pumd ~ FceRI signaling, RSSA-Binary and RSSA-Lookup is roughly
5,10-methylene-THF which is subsequently either conderte 3 and2.3 times faster than RSSA. In this benchmark, our ef-
to 5-methyl-THF or 10-formyl-THF. The folate cycle com- ficient RSSA formulations perform better than PSSA-CR. In
pletes when 5-methyl-THF is demethylated to produce methe FeRI signaling, the speed up gain of RSSA-Binary and
thionine and THF. This model is composed7o$pecies and RSSA-Lookup in comparison with PSSA-CR4s3 and3.1,

13 enzymatic reactions where their rates are modelled by theespectively. The detailed performance analysis is given b
Michaelis-Menten kinetic§-3L low.

The mitogen-activated protein (MAP) kinase (MAPK) cas- As shown in Fig. 1, DM and NRM is comparable for small
cade pathway describes a chain of proteins that cascade a sigodels (i.e., the gene expression, the folate cycle) anét is o
nal from the cell receptor to its nucleus. It is stimulatecewh ten faster than DM if the number of propensity updates is
ligands, e.g., growth factors, bind to the receptor on thke ce small. The speed-up gain by NRM is achieved by using a pri-
surface. The pathway is controlled through three main proerity queue for selecting the next reaction firings and sgvin
teins kinases: MAPKKK, MAPKK and MAPK. First, the lig- random numbers. The advantage of NRM becomes negative
and activates MAPKKK. The activated MAPKKK phospho- when the number of update propensities is large because of
rylates MAPKK and subsequently activates MAPK throughupdating and maintaining the priority queue. For example,
further phosphorylation. Finally, a cellular response,e¢ll  the percentage of update of NRM for theeR¢ signaling is
growth is exhibited. We implement the MAPK model with 94%, while in DM it is around87%, thus NRM is only7%

106 species and96 reactiong?. faster than DM. For the B cell receptor signaling where the

The FeRI signaling is used to model early events in high- number of propensity updates after a reaction firing is very
affinity IgE receptot®. The signaling is initiated by ligand- large, the update cost of NRM is at maximum and contributes
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FIG. 1: Performance of RSSA formulations, DM, NRM and partial-gmgity variants including PDM, SPDM and PSSA-CR. In order to be
able to simulate the folate cycle with Partial propensity algorithms (PDM, SPEMPSSA-CR) we used a simplified version of the
Michaelis-Menten rate for this model and modified the rate computatioregtwe.

up t099.5% of its total simulation time. In this case, NRM is faster than DM and NRM. In simulating the gene expres-
2.1 times slower than DM. sion model, RSSA and PDM have a comparable performance.
. - For the folate cycle where Michaelis-Menten kinetics are ap

By reducing th(_e Update cost, PDM and RSSA _efﬂmently lied, the performance gain by RSSA is significant because

accelerates the simulation. For t_he gene expression, the u efficiently handled the time-consuming Michaelis-Meante

d_ate ICO.St Of DM and NRMI cogtnbuteﬁi_% and75% of its propensity. The rates of reactions with Michaelis-Menten k

simulation time, respectively. By grouping common reattan e are not constant but depend explicitly on their eaast

and updating propensities in single operations, PDM resiucethus these rates have to be recomputed as soon as the state

Fhe update cost to nearts%. The update: cost _by RSSA changes. RSSA only performs aroutti) updates while other

is further reduced to only0% of its total simulation time. algorithms have to perform all0” updates. The percentage

Although this advantage of RSSA is limited by the rejection ¢ propensity update cost by DM and NRM thus contributes

of candidate reaction where the acceptance probability of f their simulation i ivelv. PDM re-
candidate is around0%. The result is that RSSA i80% 7% ands5¢% of their simulation time, respectively. e
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duces percentage of the update cost3% by grouping reac- 800 - o NFSim
tants. The update cost by RSSA is the best which contributes .
only 20% of the its simulation time. Thus, RSSA is around 600 | —™RSSA-Binary i

2.5 times faster than DM, NRM and rough®)% faster than
PDM in simulating the folate cycle, even if this model is th

RSSA-Lookup

Simulation Time(s)

small. In simulating the large models by RSSA, a significant 400 -
speed-up is also achieved. More specifically, the speed up
gain by RSSA varies from2 to 10 in comparison with DM, 200 |

NRM and about .2 to 1.8 with PDM, SPDM.

A fast search procedure will make RSSA become more ef- 0
ficient in simulating large models. This is shown in the Fig. 1
where RSSA-Binary and RSSA-Lookup outperform all other
algorithms for large models. For example, RSSA-Binary and scale factor (sf)

RSSA'I‘.OOkUp ar§.8 _and2.(_3 times, respectively, fast_er th?‘” FIG. 2: Performance of efficient RSSA formulations and NFSim on
the basic RSSA in S|mu_lat|ng the B cell receptor S|g_nal|ng. B Cell Receptor Signaling model. NFSim crashes in case
For the B _ceII receptor signaling, PDM Performance IS COM- 5 ¢ — 1000 due to lack of memory to keep track of all individual
parable with RSSA; however, by applying a fast search al- molecular species.

gorithm a sharp improvement is achieved for RSSA. For in-

stance, RSSA-Binary and RSSA-Lookup is, respectively,

and2.3 times faster than PDM in simulating this model. Al- tributing to the simulation time of RSSA-Binary in the case
though the advantage of the composition-rejection of PSSAz ¢ — 100 are roughly20% and 14%, respectively. Third,

CR makes it2 times faster than PDM, the performance of githough the search time of Alias lookup is faster than tree-
PSSA-CR is still less significant in comparison with our ef- pased search, the update of the supporting tables are rather
ficient RSSA formulations. For example, RSSA'Binary is expensive_ Note that in RSSA_Lookup, the SR dependency
around1.9 times faster than PSSA-CR. A similar speed upgraph is inapplicable because we have to rebuild the entire
gain for RSSA-Binary, RSSA-Lookup is also obtained for sypporting tables when a species exits its population bmund
simulating the MAPK cascade and theeR¢ signaling. We  The update of RSSA-Lookup contributes u@a% of its sim-

note that the performance of PSSA-CR for all other modelg)|ation time in casef = 100, while the search contributes

is very slow. An efficient search procedure, however, re&uir |ess thani%. The result is that RSSA-Lookup has a lowest
to build complex data structures that negate its efficiency f performance in this case.

small models. For example, the basic RSSA is slightly faster

than RSSA-Binary and RSSA-Lookup in simulating the gene

ol T

1 10 100 1000

expression. B. SRSSA performance
We further compare performance of our efficient RSSA for-
mulations with NFSirm’ on the B cell receptor signaling. NF- | this section we focus on the performance of SRSSA with

Sim is a network-free simulation algorithm. It keeps tratk o respect to RSSA and DM. We do not consider here NRM and
individual species in the model instead of species pomrati pPpDM because we already showed that RSSA always performs
Figure 2 shows the performances of these algorithms appliegetter. We compare the simulation time while removing all
to the B cell receptor signaling. For this model, we adjust th the initialization and output writing.
initial population of species by multiplying a scale factsf), The first experiment compares the simulation time of the
which takes values from to 1000, with a base valug00.  algorithms on the gene expression. The simulation stopping
The stopping timel’,,,, = 100 is used in this performance time for all simulations is set t@,.. = 100. SRSSA uses
comparison. the same fluctuation parameters to define the fluctuation inte
We have remarks from the Fig. 2. First, the memory re-val as RSSA. We compare the simulation time of algorithms
qguirement and simulation time of NFSim are increasing wherto generate a totak’ independent trajectories. For RSSA and
increasingsf = 1 to 1000. In fact, the memory requirement DM, we have to perform¥i independent runs of these algo-
for NFSim is growing linearly with the number of species rithms. But with SRSSA, we will set to generak&indepen-
in the system since it keeps track of each individual speciesient trajectories simultaneously in one simulation rune W
Thus, in casef = 1000, the NFSim simulation has crashed vary the total number of trajectorigs from 10 to 1000 to
due to lack of memory to keep track of all molecular speciesobserve its effects on the performance of the algorithmg Th
We note that in the original mod€lthe population of species performance is plotted in the Fig. 3.
is obtained by settingf = 1000. In contrast, our RSSA for- The speed up gain of SRSSA with respect to RSSA and
mulations are still be able to simulate the system with a reabM is about16% and 33%, respectively, for all values of
sonable simulation time. Second, RSSA-Binary is fasten tha K. An explanation for this speed up gain follows. Starting
NFSim for all values of sf. For example, in casg = 100,  with a small number of trajectories” = 10, we observe that
RSSA-Binary is roughly2 times faster than NFSim. The there arel.442107 reaction firings in simulating the gene ex-
speed up gain comes from the fast search and the low coptession model. Thus, DM has to perfoim4x10” updates.
of update. For example, the search cost and update cost coRSSA reduces the number of updateg.&9x10° and its up-
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FIG. 3: Performance of SRSSA, RSSA and DM on Gene 0 -
Expression model for generatirfg trajectories. FIG. 4: Performance of SRSSA, RSSA and DM on Folate cycle for

generatingX trajectories.

date cost is about5% of its total simulation time. By post-

poning and lumping together propensity updates into singleyer, we set up for SRSSA to generate these trajectories in
operations, SRSSA further reduces the tota! number of Upmree different scenarios: 1) performing0 runs of SRSSA
dates tol00. The update cost of SRSSA contributes less tharyith ;' = 10 trajectories generated simultaneously per run,
1% of its total simulation time. This huge gain in the updatez) performing10 runs of SRSSA withV = 100 trajectories
cost compensates for the higher search time. This is beca“@%nerated simultaneously per run and 3) performimgn of

the acceptance probability of a candidate reaction in SRSSA grssa withNV = 1000 generated simultaneously. The fig-
only around78% which is lower thard3% of RSSA. For DM e 5 shows performance of SRSSA with these three different
and RSSA, both the search and update costs will grow Ilnearlg(z_.ttmgS in comparing with RSSA and DM.

with K_since we have perft_)rmec! independent runs. HOW.' Figure 5 shows that SRSSA is increasingly slow when in-
ever, with SRSSA where trajectories use the same propensifyesing the number of trajectories generated simultahgou
bounds for selecting the next reaction firings, only thedear per run. For example, the performance of SRSSA in gener-
time increases withK' while the update is nearly constant. ating of N = 1000 trajectories simultaneously is nearyd

The total number of updates in SRSSA is kept arodfid i o glower than RSSA. The reason for a poor performance
with the acceptance probability remainingrato. The result  r SpgsA in this setting is that the Oscillator model is noisy

is that the same speed up gain is achieved by SRSSA eVefhq fjctuation in population of species is very large. Irt.fac

usingK = 1000. , the maximum signal-to-noise ratio in population of species
Figure 4 compares the performance of the algorithms on thg,ich, s equal to the ratio of the mean over the standard de-

Folate cycle with the simulation stopping tirig... = 0.05  yiation, is around5%. SRSSA has to define a large interval
and total number of trajectorigs to be generated vary from , jnclude all possible values of states of all trajectoregen

10 t0 1000. As shown in the figure, SRSSA is better than y,qgh the update cost is very low, the search becomes very
RSSA and DM for all values ok’ More specifically, the per- ooy due to a lot of rejections. Specifically, the accepgan
formance of SRSSA is roughl§0% faster than RSSA. The robability of SRSSA reduces frof0% in caseN = 10 to

high speed up gain is because of further reducing the n“mb‘?{)ughlyZO% in caseN — 1000. The search cost of SRSSA in

of updates of the time-consuming Michaelis-Menten propengasen — 1000 is thus7 times slower than RSSA. This high
sity. We observed that the update cost of RSSAis ar@8fil ¢ negates the advantage of low update cost of SRSSA. In
of its simulation time, while this percentage in SRSSA isles (s model, a small number of simultaneous trajectories gen

than1%. erated in a simulation run of SRSSA should be chosen. For

For the last experiment, we compare the performance Oéxample, in cas& = 10 SRSSA is still7% and26%, respec-
the algorithms with an Oscillator model. The Oscilldfois tively, faster than RSSA and DM.

an artificial model which is a noise-induced system. It isduse
to observe the effect of large number of trajectories gaadra
simultaneously on the performance SRSSA. This model has
three reactions which are listed in Table Il. The initial pgp =~ V- CONCLUSIONS
tions of species are# A = 900, #B = 500 and#C = 200.
For simulating the Oscillator model, we fix a total &f = We studied efficient formulations to improve the search and
1000 trajectories to be generated for each algorithm. How-update of the basic RSSA algorithm to efficiently simulate



TABLE II: Artificial Oscillator model

Reactions Rate

Ri:A+B —=2B|c;i =1
Ry:B+C—2Clca =1
R3:C+A—2A|cs =1
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FIG. 5: Performance of SRSSA, RSSA and DM on Oscillator

model for generating a total df = 1000 trajectories. SRSSA
generates these trajectories by 1) performifg runs with N = 10
trajectories generated simultaneously per run, 2) perforringins
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lected by applying the composition-rejection search aed th
the rejection-based test to validate the selection. Each &
species whose population moves out of its fluctuation iaterv
we only need to update propensity bounds of affected reac-
tions and move these reactions to their corresponding group

In this work we also proposed a new algorithm called si-
multaneous RSSA (SRSSA) for generating multiple indepen-
dent trajectories to support the analysis of biochemicat+e
tion systems. The advantage of SRSSA is that trajectorees ar
generated simultaneously by one simulation run, instead of
performing many simulation runs. SRSSA uses only a sin-
gle set of propensity bounds across simulations to select re
action firings. The memory needed to compute and store the
propensity bounds is thus independent of the number of tra-
jectories. The selection of reactions to form trajectooés
SRSSA, however, is exact by exploiting the rejection-based
mechanism. The update of the propensities is lumped up to-
gether in one operation. For typical systems we can choose a
large number of simultaneous trajectories to be generated i
a simulation run of SRSSA; however, for noise-induced sys-
tems a small number of simultaneous trajectories for SRSSA,
e.g.,10, should be chosen for a better performance.
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