
On the Rejection-based Algorithm for Simulation and Analysis of
Large-Scale Reaction Networks

Vo Hong Thanh,1 Roberto Zunino,2 and Corrado Priami3
1)The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Piazza Manifattura 1,
Rovereto 38068, Italy.a)

2)Department of Mathematics, University of Trento, Italy.b)

3)Department of Mathematics, University of Trento, Italy and
The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Piazza Manifattura 1,
Rovereto 38068, Italy.c)

(Dated: 6 June 2015)

Stochastic simulation forin-silico studies of large biochemical networks requires a great amount of computational time.
We recently proposed a new exact simulation algorithm, called the rejection-based stochastic simulation algorithm
(RSSA) [J. Chem. Phys. 141(13):134116 (2014)], to improve simulation performance by postponing and collapsing
as much as possible the propensity updates. In this paper, weanalyze the performance of this algorithm in detail,
and improve it for simulating large-scale biochemical reaction networks. We also present a new algorithm, called
simultaneous RSSA (SRSSA), which generates many independent trajectories simultaneously for the analysis of the
biochemical behavior. SRSSA improves simulation performance by utilizing a single data structure across simulations
to select reaction firings and forming trajectories. The memory requirement for building and storing the data structureis
thus independent of the number of trajectories. The updating of the data structure when needed is performed collectively
in a single operation across the simulations. The trajectories generated by SRSSA are exact and independent of each
other by exploiting the rejection-based mechanism. We testour new improvement on real biological systems with a
wide range of reaction networks to demonstrate its applicability and efficiency.

Keywords: Computational biology, Stochastic simulation,Rejection-based stochastic simulation algorithm.

I. INTRODUCTION

Stochastic modelling of biochemical reaction models the
system state as a vector of species populations. A reaction be-
tween species is a random event with probability proportional
to apropensitydependent on the reaction kinetics. The tem-
poral evolution of biochemical networks can be realized by
an exact simulation procedure called the stochastic simulation
algorithm (SSA)1,2, also known as the Direct Method (DM).
Each SSA simulation step selects a reaction to fire with a prob-
ability proportional to its propensity, according to whichthe
system jumps to a new state. Then, reaction propensities are
updated to reflect the changes in the system state.

There are two main factors affecting performance of SSA:
1) searching for next reaction events, and 2) updating propen-
sities of reactions. Furthermore, due to the inherent random-
ness in the simulation, many simulation runs should be done to
have a reasonable statistical estimation that further increases
the total simulation time. Many formulations have been in-
troduced to accelerate the stochastic simulation. The Next
Reaction Method (NRM)3 exploits a special indexed struc-
ture, i.e., a binary heap, to store and extract smallest (abso-
lute) putative times. Extracting the smallest time from the
heap requires constant time, while updating requires loga-
rithmic time. Furthermore, NRM uses a dependency graph,
which points out which propensities need to be updated after

a)Electronic mail: vo@cosbi.eu
b)Electronic mail: roberto.zunino@unitn.it
c)Electronic mail: priami@cosbi.eu

a reaction firing, to reduce the number of propensity updates.
The Optimized Direct Method (ODM)4 and the Sorting Direct
Method (SDM)5 accelerate the search for next reaction of SSA
by sorting reactions in descending order of propensities. The
search for next reaction can further be improved by dividing
reactions into groups6,7 and performing two steps: 1) select-
ing the group, then 2) locating the reaction within that group.
If groups are split into subgroups recursively until a group
contains only two reactions, we obtain a tree structure with
reactions on the leaves. Then, the search for the next reaction
is done by traversing the tree8–11. The SSA with Composi-
tion Rejection algorithm (SSA-CR)7,12 exploits the reaction
grouping strategy and rejection-based mechanism to improve
the search for next reaction. SSA-CR groups reactions with
propensities betweenbi−1 and bi (whereb is a chosen base
e.g.,b = 2) into a groupi. The search for the next reaction in
groupi is done through a rejection test with the hat function
bi. The search for next reaction firings by SSA-CR is thus
propositional to the number of groups, depending on the ra-
tio between the highest and lowest propensities. Thus, if the
number of groups is bound by a small constant, the asymptotic
time complexity of the search for the next reaction in SSA-CR
is constant time. After a reaction firing, the propensities of af-
fected reactions are updated and moved to appropriate groups.
If the number of affected reactions is large and their propen-
sities vary significantly, SSA-CR has to frequently update
propensities and its underlying data structure, hence decreas-
ing its overall performance6. Typically, the cost of propensity
updates done by SSA contributes around65% to 85%, and
in some peculiar cases even up to99%, of the entire simula-
tion cost. Reducing propensity updates then provides an im-
provement for the simulation performance. An attempt to re-



2

duces propensity update cost is the Partial-propensity Direct
Method (PDM)13–15 where propensities are factoring out by
common reactants. Propensities of reactions with the shared
reactant will be updated in one operation. However, due to a
special form of the partial propensities, the reactant grouping
approach is limited to class of reactions involving at most two
reactants and their propensities must be in a form which can be
factorized (e.g., mass-action)14. Although non-elementary re-
actions could be decomposed into elementary reactions, wet-
lab experiments can more easily measure the propensity of the
non-elementary reaction than the propensities of the interme-
diate elementary reactions that are involved in. When only
the non-elementary reactions are measured, then simulation
can only be performed using a complex propensity function.
The Michaelis-Menten kinetics16, for example, is widely used
to model enzymatic reactions in biological systems.

We have recently proposed a new exact stochastic al-
gorithm called Rejection-based Stochastic Simulation Algo-
rithm (RSSA)17,18 to accelerate the stochastic simulation.
Our approach aims to reduce the propensity updates but is
not relying on any specific form of reactions in the sys-
tem. RSSA is thus able to simulate any types of reaction
(e.g., non-elementary reactions). RSSA is specifically tailored
for reaction networks in which propensity computations are
time-consuming (e.g., complex propensity such as Michaelis-
Menten rate function). During the simulation of RSSA,
many propensity updates are completely avoided. Specifi-
cally, RSSA abstracts the propensity of a reaction with an in-
terval including all possible concrete propensity values.The
propensity bounds of reactions are derived by specifying an
arbitrary bound on the population of each species (the choice
of which affects the performance, but not the exactness of the
results). RSSA uses these propensity bounds to select the next
reaction firing in two steps. First, a candidate reaction is ran-
domly chosen proportionally to its propensity upper bound.
The selected candidate is then inspected through a rejection
test to ensure that it fires with the same probability determined
by SSA. The validation step postpones the evaluation of the
exact propensity of the candidate reaction by exploiting its
propensity lower bound. The exact propensity will be evalu-
ated only if needed. The candidate reaction is either fired or
(with low probability) rejected. If it is accepted to fire, only
the state is updated, without recomputing the propensity ex-
cept in uncommon cases. New propensity bounds are recom-
puted only when the population of a species exits the chosen
bound. In case of rejection, a new candidate reaction is se-
lected.

In this paper, we analyze the computational cost of RSSA
and introduce efficient formulations to improve its perfor-
mance for simulating large-scale biochemical reaction net-
works. We study how the search procedure applied to select
candidates affects the simulation performance. We also focus
on controlling the bounds of population of species which in-
directly affect the propensity bounds and the acceptance prob-
ability of a candidate reaction to adaptively optimize itself.

The second contribution of this paper is a new algorithm,
called simultaneous rejection-based stochastic simulation al-
gorithm (SRSSA), that exploits the rejection-based principle

to efficiently generate multiple independent trajectoriessi-
multaneously in one simulation run. SRSSA uses the same
propensity bounds across simulations to select the next re-
action firings instead of each one for separated simulation
runs. The simulation performance is improved by reducing
and lumping up together the computing of propensity bounds
into one operation. The generated trajectories by SRSSA are
still exact and independent of each other.

This paper is organized as follows. The next section re-
views the standard approaches for stochastic simulation of
biochemical reaction systems, and recalls the basic ideas be-
hind the RSSA algorithm. Section III analyzes the perfor-
mance of RSSA and its proposed improvements. Section IV
presents our new SRSSA algorithm. Section V presents the
experimental results of our improvements on concrete models
in a range of problem sizes and complexities to demonstrate
its applicability and efficiency. The concluding remarks are in
section VI.

II. STOCHASTIC SIMULATION BACKGROUND

We consider a well-mixed volume containingn species de-
noted asS1 . . . Sn. The state of the system is represented by
a population vectorX(t) = (X1(t), ..., Xn(t)) whereXi(t)
denotes the population of speciesSi at a timet. Species
can interact throughm reactionsR1 . . . Rm. The probabil-
ity that a reactionRj fires in the next infinitesimal timet+ dt
is aj(X(t))dt whereaj(X(t)) is called the reaction propen-
sity1. The propensityaj(X(t)) is roughly proportional to the
number of possible combinations of reactants involved inRj

and its kinetics information. Hereafter, we useaj instead of
aj(X(t)) for a shorthand.

If a particular reactionRµ is selected to fire, the state
changes according to the state change vectorvµ, which ex-
presses the changes in population of species involved inRµ.
The state transition of the system is therefore modeled as a
(continuous-time) jump Markov process. The probability dis-
tribution of the system is completely described by the chemi-
cal master equation (CME)19; however, an analytic solution of
CME is hard to find, unless the system is rather simple. Sim-
ulation is often the choice to construct possible realizations of
CME. The stochastic simulation algorithm (SSA), in particu-
lar, is an exact method to sample temporal behavior encoded
in CME.

SSA1,2 realizes the next state by simulating the joint prob-
ability density function (pdf)p(τ, µ) with p(τ, µ)dτ being the
probability that a reactionRµ fires in the next infinitesimal
time t + τ + dτ , given the stateX(t) at timet. Eq. 1 gives a
closed form ofp(τ, µ):

p(τ, µ) = aµexp(−a0τ) (1)

wherea0 =
∑m

j=1
aj . Note that the reactionRµ fires with

corresponding discrete probabilityaµ/a0 and the firing time
τ is exponentially distributed with parametera0.

SSA samples the pdfp(τ, µ) and constructs a simulation
trajectory as follows. It computesm propensitiesaj for j =
1 . . .m at beginning. Then, for each simulation step the next



3

reaction firingRµ and its firing timeτ are realized from Eq. 1
by:

τ =
1

a0
ln

(

1

r1

)

(2)

µ = smallest reaction index such that:
µ
∑

j=1

aj > r2a0 (3)

wherer1 andr2 are two random numbers generated from a
uniform distributionU(0, 1). The state is updated according
to the selected reactionRµ and moves to a new stateX(t +
τ) = X(t) + vµ. The propensities are updated to reflect the
changes in the system state. A reaction dependency graph is
often used to decide which propensities need to be updated
after a reaction firing.

A. Rejection-based Stochastic Simulation Algorithm

RSSA is an exact simulation algorithm which generates tra-
jectories with the same statistical distribution as SSA. Infact,
RSSA exactly samples the pdfp(τ, µ) in Eq. 1, a reactionRµ

is selected with probabilityaµ/a0 and its firing time is expo-
nentially distributed with parametera0. A complete proof for
the exactness of RSSA is in Thanhet al.17. RSSA acceler-
ates the simulation by reducing the number of propensity up-
dates. In most of the simulation steps, RSSA does not require
to update propensities, hence reducing the average number of
propensity updates. RSSA is summarized in Algorithm. 1.

RSSA computes for each reaction a propensity lower bound
aj and an upper boundaj for j = 1 . . .m and uses these
propensity bounds to select the next reaction firing. These
propensity bounds are derived by imposing a bound on the
population of each species in the state. For speciesSi, a
lower boundXi and an upper boundXi is defined around
its current populationXi(t). The population bounds for each
speciesSi could be chosen arbitrarily around its population
without affecting the correctness of the algorithm. The state
therefore satisfiesX ≤ X(t) ≤ X for each species. The
population interval[X,X] is called thefluctuation interval
or abstract state. The invariantaj ≤ aj ≤ aj holds for all
reactionRj with j = 1 . . .m whenX(t) ∈ [X,X]. The
propensity lower/upper bounds are chosen to be the mini-
mum/maximum of the propensity functionaj over the fluctu-
ation interval[X,X]. If the propensityaj increases whenever
the species population increases, its minimum and maximum
values correspond to the evaluation ofaj at the lower extreme
and upper extreme of the species population interval, respec-
tively. For example, ifaj follows the mass action kinetics or
the Michaelis-Menten kinetics where the monotonicity holds,
we simply letaj = aj(X) andaj = aj(X). If aj is a com-
plex function, one can apply numerical techniques, e.g., inter-
val analysis20, to compute the bounds for propensity. The ex-
act minimum and maximum, however, are not really needed.
A reasonable tight bound for the propensity over the fluctua-
tion interval is enough for the simulation, but the next reaction
firing is always selected with the right probability.

Algorithm 1: Rejection-based SSA (RSSA)

procedure:rssa
output: a trajectory of the reaction network

1: initialize timet = 0 and stateX = x0

2: while (t < Tmax) do
3: define fluctuation interval[X,X] of stateX
4: compute propensity upper boundaj and lower boundaj for

each reactionRj for j = 1 . . .m
5: compute the total propensity upper bounda0 =

∑m

j=1
aj

6: repeat
7: setu = 1
8: setaccepted = false
9: repeat

10: generate three random numbersr1, r2, r3 ∼ U(0, 1)
11: select minimum indexµ satisfied

∑µ

j=1
aj > r1a0

12: if r2 ≤ (aµ/aµ) then
13: accepted = true
14: else
15: evaluateaµ with stateX
16: if r2 ≤ (aµ/aµ) then
17: setaccepted = true
18: end if
19: end if
20: setu = u · r3
21: until accepted
22: compute firing timeτ = (−1/a0) ln(u)
23: update timet = t+ τ and stateX = X + vµ
24: until (X /∈ [X,X])
25: end while

Having propensity bounds, a candidate reactionRµ is
selected with probabilityaµ/a0 where a0 =

∑m
j=1

aj .
RSSA realizes the candidate reaction by linearly accumulat-
ing propensity upper bounds until it finds the smallest reaction
indexµ satisfying the inequality:

∑µ
j=1

aj > r1 ·a0 wherer1
is a random number inU(0, 1).

The candidate reactionRµ then enters a rejection test for
validation with success probabilityaµ/aµ. In other words, we
toss a (biased) coin with success probabilityaµ/aµ. If the toss
succeeds, we accept the candidateRµ to fire, otherwise we
reject it. The efficient simulation of this coin toss, however, is
tricky since we do not know the exact value of the propensity
aµ in advance, and we want to avoid computing it as much
as possible. To achieve that, we draw a random numberr2 ∼
U(0, 1). We then check whetherr2 ≤ aµ/aµ, which does
not require us to computeaµ. If the check succeeds, then
we know thatr2 ≤ aµ/aµ ≤ aµ/aµ, hence we can accept
Rµ. Only when this test fails we indeed computeaµ, and then
testr2 againstaµ/aµ. The computation ofaµ is infrequently
performed whenaµ/aµ is close to1, which is often the case
in practice. IfRµ is accepted, its firing time is then computed.
Otherwise, a new candidate reaction is selected.

The firing timeτ of the accepted reactionRµ is generated
following an Erlang distribution. This distribution is cho-
sen to be faithful with SSA. The key idea is that each candi-
date selection step corresponds to a stochastic transitionwith
total ratea0. Such transition can cause the stateX(t) to ei-



4

ther move to the new stateX(t + τ) = X(t) + vµ if candi-
dateRµ is accepted or perform a self-loop in the current state
X(t + τ) = X(t) if candidateRµ is rejected. Hence, if we
performk trials before we accept (i.e., we rejectedk − 1 can-
didates), we need to advance the time according to the sum
of k independent stochastic transitions of ratea0, which is an
Erlang distribution. TheErlang-distributed firing timeτ is
sampled as:

τ =

k
∑

i=1

(−1/a0) ln(ui) = (−1/a0) ln(

k
∏

i=1

ui) (4)

whereui is a random number fromU(0, 1). RSSA imple-
ments this sampling technique by multiplying the variableu
in every validation steps by a uniform random quantityr3 un-
til a trial succeeds.

Knowing the reaction and its firing time, the state is up-
dated accordingly. RSSA postpones recomputing propensity
bounds if the state is confined in its fluctuation interval. Thus,
it checks whether the conditionX(t) ∈ [X,X] holds after
the state is updated. If the condition is true, which is often
the case, the next simulation step is performed. In the un-
common case in which the state is outside the current fluctu-
ation interval, i.e.X(t) /∈ [X,X], a new fluctuation interval
is defined. At that time, new propensity bounds for reactions
are derived as well. We can reduce the number of reactions
having to recompute their propensity bounds by applying a
Species-Reaction (SR) dependency graph17. The SR depen-
dency graph shows which reactions should recompute their
propensity bounds when a species exits its fluctuation inter-
val. Thus, only a subset of reactions requires to recompute
propensity bounds.

III. PERFORMANCE ANALYSIS AND IMPROVEMENTS
FOR RSSA

This section analyzes the performance of RSSA in gener-
ating a simulation trajectory. We discuss the factors affect-
ing the simulation performance and study formulations to im-
prove its efficiency. We measure the computation cost in terms
of the average CPU time. In our discussion we use theO-
notation to express the time complexity.

A. Computational cost of RSSA

Let T search
RSSA be the average search time for a candidate re-

action andTupdate
RSSA be the average update time after a reaction

fires. The average simulation step timeTRSSA is expressed
as:

TRSSA = αT search
RSSA + Tupdate

RSSA /β +O(1) (5)

whereα is the average number of times the search conducted
until the candidate reaction is accepted and, respectively, β is
the average number of skipped updates during the simulation.
α is equal to the reciprocal average acceptance probability of

a candidate reaction i.e.,α = a0/a0. β is the average fre-
quency ofX(t) ∈ [X,X]. The additional constant costO(1)
in Eq. 5 denotes the CPU time for after-simulation data han-
dling. Although this processing time may contribute a large
portion to the simulation time, especially for simulating small
models, it depends on the operating system and is the same for
all algorithms so that we can still assume it to be a constant.

We can improve the overall performance of RSSA by re-
ducing the search timeT search

RSSA that depends on the search
procedures applied to realize a candidate reaction. The search
strategy used in the basic RSSA is equivalent to a linear
search. Its main advantage is that it does not require to build
any complex data structure in advance. Indeed, in an imple-
mentation we only need an array of sizem to store propensity
upper boundsaj for j = 1 . . .m. However, the time com-
plexity of the search is linear w.r.t. the number of reactions,
i.e., T search

RSSA = O(m). The search performance can be im-
proved by sorting the propensity upper bounds in decreasing
order; however, the worst case complexity still remains linear.
We discuss options for implementing fast search procedures
that are different in speed and code simplicity in the following
section. We also study the impact of their running times to be
able to tune the performance for each specific problem.

An update step of RSSA is composed of defining a new
fluctuation interval and recomputing propensity bounds of re-
actions. Defining new fluctuation intervals for each species
whose population moves out of its current population bounds
after a reaction firing is a constant because only a small
number of species are involved in that reaction. Reactions
that need recomputing propensity bounds when an involved
species moves out of their population bounds are retrieved
from the SR dependency graph. Letk be the average number
of reactions in the SR dependency graph that needs recomput-
ing propensity bounds, the complexity of update of propensity
bounds in RSSA is thereforeTupdate

RSSA = O(k). We remark that
the propensity updates in RSSA are performed infrequently
and controlled by tuning the fluctuation interval[X,X]. Gen-
erally, the narrower the interval[X,X] we use, the more fre-
quently the propensity updates perform resulting in increasing
the updating time and the acceptance probability. If the fluc-
tuation interval degenerates into the stateX = X = X(t),
thenα = β = 1 which means a candidate reaction is al-
ways accepted and reactions have to update their propensi-
ties after every reaction firing as in SSA. On the other hand,
if we increase the fluctuation interval, we reduce the num-
ber of updates for propensity bounds. We are even able to
define a fluctuation interval so that no update occurs in the
whole simulation (β = ∞). The update cost is thus zero,
Tupdate
RSSA /β = 0, and has no effect on the simulation.TRSSA

will depend only the search cost; however, in this situation
becauseaj andaj are very loose approximations of the exact
propensitiesaj , the acceptance probability decreases signifi-
cantly. Consequently, it increasesα since the candidate reac-
tion is rejected frequently. This indirectly affects the search
for the next reaction firing, which in turn negatively impacts
the simulation performance. We discuss mechanisms to con-
trol the fluctuation interval in the next section.



5

B. Search for a candidate reaction

An efficient search algorithm can be applied to reduce the
time complexity of RSSA in simulating large models. Typ-
ically, a fast search algorithm with fast asymptotic speed re-
quires to build complex underlying data structures (trees,hash
tables) before the actual search can be conducted. The choice
for the search algorithm thus depends on the problem size and
on the complexity of the data structures it needs to build.

Tree-based search.By applying the tree-based search, we
reduce complexity of the search from linear to logarithmic
time. This search method is based on a (binary) tree structure
in which the leaf nodes will store the propensity upper bounds
aj and the inner nodes store the sums of values of their child
nodes. The tree root therefore holds the sum of all values
stored in the leaves i.e.,a0. In a implementation, an array is
used to represent the tree; however, the array requiresO(m)
more elements than linear search array wherem is the num-
ber of reactions. This is because we have to store also partial
sums of propensity upper bounds in internal nodes, as well
as the pointers to parent/children pairs. The search will tra-
verse the tree to find a candidate reactionRµ given the search
valuer1 · a0. Starting at the tree root, that we mark as the
current node, the search recursively selects the next branch
by comparing on the search value with the value stored in the
left child node. The left branch is selected if the search value
is less than the value stored in left child of the current node.
The right branch is chosen otherwise. If the right branch is
selected, the search value is subtracted by the value storedin
current node. The search stops when it reaches a leaf. The
reaction in this leaf is chosen as the candidate for the rejec-
tion test. Since the search complexity is linked to the depthof
the tree, we use a Huffman tree10,11,21to optimize the average
search length. The key idea of the Huffman tree is to have
the leaves storing large values (hence more likely) close tothe
root than leaves with small values. The time complexity for
the (complete) tree-based search isT search

RSSA = O(logm) and
the update time is alsoTupdate

RSSA = O(k logm). This logarith-
mic time complexity may provide a substantial improvement
for simulating large models.

Table lookup search.The search for a candidate reaction
can be reduced to constant time complexity by applying a ta-
ble lookup method at the cost of an expensive pre-processing
to build the lookup tables22,23. Although the table lookup
search can be applied to standard SSA for selecting next re-
action firings, the changes in propensities after each reaction
firing require the lookup tables to be updated and makes the
application of lookup search to SSA no more efficient than
linear search. The downside of the lookup search is alle-
viated by RSSA where propensity bounds are used to se-
lect next reaction firings. RSSA updates the lookup tables
infrequently, thus improving its amortized cost. We imple-
mented and experimented a well-known lookup search, called
the Alias method24. The theoretical foundation underlying the
Alias method is a theorem stating that any discrete probability
distribution overm probability values can be expressed as an
equi-probable mixture ofm two-point distributions. Them
probabilities used in this case areaj/a0 for j = 1 . . .m. The

set-up of the Alias method requires to build two tables, eachof
sizem, in which the first table, called cut-off table, stores the
probability of the first values of the two-point mixtures and
the second table, called alias table, contains the alias to the
second parts of the mixtures25. The random numberr1 is first
used to lookup the position of the equi-probable mixture. Itis
rescaled to select which part of the two-point mixture. These
steps require only one comparison to choose the part of the
two-point mixture and (at most) two table accesses to select
the candidate reaction. The time complexity of the search is
thus constantT search

RSSA = O(1). The generation of tables for
the Alias method has complexity proportional to the number
of reactionsm, i.e.,Tupdate

RSSA = O(m)26.

C. Fluctuation interval control

A rejection test is applied on the selected candidate to en-
sure it fires with a correct probability. The acceptance of the
candidate depends on the propensity bounds which can be ad-
justed indirectly through the fluctuation interval[X,X]. We
should emphasize that the width of the fluctuation interval
does not affect the correctness of the algorithm, but only af-
fects the simulation performance.

We can define the fluctuation interval by a fluctuation pa-
rameterδ which could be a scalar value or a vector. If
δ is a scalar value, we call ituniform fluctuationsince all
species uses the same parameter to the compute their fluc-
tuation interval. By using the uniform fluctuation rate, the
fluctuation interval will be defined (using vector notation)as
[X,X] = [(1 − δ)X(t), (1 + δ)X(t)]. This approach has
both advantages and disadvantages. On the positive side, the
calculation of fluctuation interval is fast, requiring onlyvec-
tor computation. However, it does not allow a fine control for
each species. Ifδ is a vector where each componentδi de-
fines the population bound for each single species in the state
we call it nonuniform fluctuation. The population bound for
speciesSi is then defined as[(1− δi)Xi(t), (1+ δi)Xi(t)]. In
an implementation, a lookup table is used to store and retrieve
the fluctuation parameters of species.

In some models, the population of some species may vary
significantly during the simulation. The fluctuation parame-
ters for such species should be changed adaptively to optimize
the acceptance probability of the involved reactions. We call
this approachadaptive fluctuation. For example, an absolute
interval size (instead of a%) can be preferred in case the pop-
ulation of a species is low (say e.g., less than25). In order to
exploit the adaptive interval control we set a threshold value
λ on the population of species. During the simulation, if the
population of a speciesSi gets lower than the threshold value
i.e.,Xi(t) < λ, we will apply a fixed (absolute) fluctuation in-
terval∆. The populationXi(t) of speciesSi then is bound to
the interval[Xi(t)−∆, Xi(t)+∆]. Otherwise, we will apply a
fluctuation rateδi to define the population bound of speciesSi.
Thus, ifXi(t) ≥ λ, the interval[(1− δi)Xi(t), (1+ δi)Xi(t)]
is applied to bound the population of speciesSi. Following
this simple scenario, we extend the idea of adaptive fluctua-
tion control to the models having many phases. A speciesSi



6

is in phasek if its population is less than an upper threshold
λk
i and greater than a lower thresholdλk−1

i . Thus, if species
Si is bound to phasek, a fluctuation rateδki will be applied
to derive the population bound for that species. This strategy
allows the simulation to automatically adjust the fluctuation
interval depending on the phase of the system.

IV. SIMULTANEOUS REJECTION-BASED ALGORITHM
FOR SIMULATION ANALYSIS

A. Simulation analysis

The stateX at a given timet is a random variable. Thus
to have a reasonable estimation by simulation, we have to
repeatedly perform independent simulations to generate real-
izations ofX(t). Let K be the number of simulations and
respectively, letXr with r = 1 . . . K be the realizations of
X obtained by repeatedly performingK independent runs of
an exact simulation algorithm under the same simulation con-
ditions. The statistical properties (e.g., mean, and variance)
can be derived from the ensemble ofK trajectories and these
properties are ensured to approach the exact solution of CME
asK approaches infinity.

Let<X> be the sample mean ands2 be the (unbiased) sam-
ple variance of stateX at timet based on an ensemble ofK
independent simulations. We can compute these values by:

<X> =

∑K
r=1

Xr

K
(6)

and

s2 =

∑K
r=1

(Xr − <X>)2

K − 1
(7)

By the law of large numbers, the sample mean and variance
will asymptotically approach the true meanE[X] and variance
Var[X] of the random variableX whenK tends to infinity:

E[X] = lim
K→∞

<X> (8)

Var[X] = lim
K→∞

s2 (9)

However, since the number of simulationsK is limited, the
convergence of the estimation is measured by the size of the
confidence interval

d =
zs
√
K

(10)

wherez is a confidence level. If we fix the confidence level
z, the probability that the true meanE[X] lies in the interval
[<X> − d,<X> + d] is 2Φ(z) − 1 with Φ is the cdf of the
standard normal distributionN(0, 1). For instance, with the
confidence levelz = 1.96, the probability that the true mean
falls in [<X>−1.96s/

√
K,<X>+1.96s/

√
K] is 95%. Thus,

to reduce the confidence interval size given a fixed confidence
level we have to increase the number of trajectoriesK.

Moreover, given an ensemble ofK trajectories, we can in-
fer the empirical distribution function (edf) (or histogram) of

the species population. This is done by partitioning the pop-
ulation of species into bins and compute the occurring fre-
quency of species in each bin. The edf of species will ap-
proach its pdf for largeK. We can measure the statistical
fluctuation introduced by stochastic simulation from edf. For
instance, a statistical measurement is developed by Cao and
Petzold27 based on the distance between two empirical dis-
tributions to compare the accuracy of simulation algorithms.
More specifically, given a fixedK, two algorithms have the
same accuracy if the distance between two empirical distri-
butions computed from two sets of independent realizations
by these simulation algorithms is less than the so calledself
distance27. The self distance is the distance between the edfs
computed from two sets of independent realizations derived
from the same simulation algorithm. It is a random variable
bounded by

√

4B/(Kπ), whereB is the number of bins.

B. Simultaneous Rejection-based Simulation Algorithm

In this section we present our new algorithm, called si-
multaneous rejection-based stochastic simulation algorithm
(SRSSA), for generating multiple independent trajectories.
The advantage of SRSSA is that the trajectories are generated
simultaneously in a simulation run instead of many simula-
tion runs. The independent trajectories generated by SRSSA
are exact by exploiting the propensity bounds to select next
reaction firings as in RSSA. For independent runs of RSSA
the propensity bounds have to be replicated and separated for
each simulation run. The propensity bounds in SRSSA, how-
ever, are only computed once and shared across the simula-
tions. Since SRSSA uses the same propensity bounds across
the realizations, it reduces the memory requirement to store
the propensity bounds and improves its cache-friendliness.
The recomputing of the propensity bounds in SRSSA when
needed will be performed collectively in a single operation
which further reduces the total number of propensity updates
and improves the simulation time.

Let K be the number of trajectories andXr be the system
state of ther-th realization withr = 1 . . . K. Let arj be the
propensity of reactionRj in ther-th realization. The key point
of SRSSA is that it computes a lower boundaj and an upper
boundaj for each reactionRj such thataj ≤ arj ≤ aj for all
r = 1 . . . K, and then uses these propensity bounds to select
reaction firings for allK realizations. Thus, we only need to
storem propensity bounds ofm reactions independently of
the number of realizationsK. This feature is useful when we
need to generate a large number of realizations for an online
analysis of large reaction networks.

The propensity boundsaj andaj are derived by first defin-

ing aglobalfluctuation interval[X,X] which bounds all pos-
sible populations of each species in allK statesXr with
r = 1 . . . K. The algorithm then minimizes/maximizes
the propensity functionaj on such a global fluctuation in-
terval [X,X]. We define the global population bound for
a speciesSi by the following procedure. LetXmin

i =
min(X1

i , . . . , X
K
i ) and Xmax

i = max(X1

i , . . . , X
K
i ), re-



7

spectively, be the minimum and maximum population of
speciesSi in all K states. The chosen population interval
[Xi, Xi] = [(1−δi)X

min
i , (1+δi)X

max
i ] will bound all pop-

ulations of speciesSi in K states, whereδi is the fluctuation
rate of this species. Repeating this procedure for all species in
the state vector, we are forming a global fluctuation interval
[X,X] for theseK states.

Knowing the lower boundsaj and upper boundsaj , SRSSA
selects reaction firings and updates the stateXr for the corre-
spondingr-th realization withr = 1 . . . K by applying the the
rejection-based selection. The SRSSA algorithm is outlined in
Algorithm 2.

SRSSA initializes the timetr and initial stateXr for each
r = 1 . . . K. It then derives the global fluctuation inter-
val [X,X] for all theseK states and computes the propen-
sity lower boundaj and upper boundaj for all reactions
Rj . SRSSA maintains a set of species that should up-
date their population bounds which is represented by the set
UpdateSpeciesSet, initialized to an empty set. SRSSA also
uses the Species-Reaction (SR) graph to retrieve which reac-
tions should update propensity bounds when a species exits its
population bound.

Inside the main simulation loop, the rejection-based selec-
tion will be continuously applied to select reaction firingsand
form trajectories. For ther-th realization, a candidate reac-
tion Rµ is randomly selected with probabilityaµ/a0. Then,
the propensityaµr is evaluated on the corresponding stateXr

and used to validate this candidate reaction with acceptance
probabilityaµr/aµ. Note that the propensity lower boundaµ
is still applied to avoid computingaµr as much as possible.
The selection of the reaction firing in ther-th realization is
exact and independent of other realizations. If the reaction is
accepted, the timetr and stateXr are updated. This selection
step is then repeated until a species population exits the global
population interval (see line 8 - 28, Algorithm 2). LetSi be
the species whose populationXr

i /∈ [Xi, Xi] in ther-th real-
ization. SRSSA adds this speciesSi to the UpdateSpeciesSet.
It then stops the currentr-th realization and moves to the next
realization.

Only when allK trajectories are stopped, new global popu-
lation interval[Xi, Xi] for all speciesSi ∈ UpdateSpeciesSet
are redefined. This is the key difference between SRSSA and
RSSA. RSSA has to redefine a new population bound as soon
as a species exits its current population bound, while this step
in SRSSA is postponed and performed once when allK sim-
ulationa are stopped. Then, SRSSA retrieves reactions for
which propensity bounds have to be recomputed because they
have reagent species that exit their population bounds (see
line 33 - 39, Algorithm 2). This set of reactions affected by
speciesSi is extracted from the SR dependency graph and
denoted by the set ReactionsAffectedBy(Si). Thus, for each
Rj ∈ ReactionsAffectedBy(Si), its new lower boundaj and
upper boundaj is recomputed.

Algorithm 2: Simultaneous RSSA (SRSSA)

procedure:srssa
output:K independent trajectories of the reaction network

1: for each trajectoryr = 1 . . .K, set initial timetr = 0 and initial
stateXr = x0

2: build the species-reaction (SR) dependency graphG
3: for each speciesSi with i = 1 . . . n define a bound[Xi, Xi]

such thatXi ≤ X1

i . . . XK
i ≤ Xi

4: compute propensity boundsaj andaj for each reactionRj with
j = 1 . . .m

5: compute total upper bound propensitya0 =
∑m

j=1
aj

6: repeat
7: set UpdateSpeciesSet= ∅
8: for (each trajectoryr = 1 → K) do
9: repeat

10: setu = 1
11: setaccepted = false
12: repeat
13: generate random numbers:r1, r2, r3 ∼ U(0, 1)
14: select minimum indexµ satisfied

∑µ

j=1
aj > r1a0

15: if (r2 ≤ (aµ/aµ)) then
16: setaccepted = true
17: else
18: evaluatear

µ with stateXr

19: if (r2 ≤ (ar
µ/aµ)) then

20: setaccepted = true
21: end if
22: end if
23: setu = u · r3
24: until accepted
25: compute firing timeτr = (−1/a0) ln(u)
26: set timetr = tr + τr

27: update stateXr = Xr + vµ
28: until (existsXr

i /∈ [Xi, Xi]) or (tr ≥ Tmax)
29: for all (speciesSi whereXr

i /∈ [Xi, Xi]) do
30: setUpdateSpeciesSet = UpdateSpeciesSet ∪ {Si}
31: end for
32: end for
33: for all (speciesSi ∈ UpdateSpeciesSet)do
34: define a new[Xi, Xi] such thatXi ≤ X1

i . . . XK
i ≤ Xi

35: for all (Rj ∈ ReactionsAffectedBy(Si)) do
36: compute propensity boundsaj andaj

37: update total upper bound suma0

38: end for
39: end for
40: until (tr ≥ Tmax for all trajectoriesr = 1 . . .K)

V. NUMERICAL EXAMPLES

In this section we first report the performance of our effi-
cient RSSA formulations in simulating large models. Then,
we present the performance improvement of our new algo-
rithm SRSSA. The models we considered in the performance
comparisons are real biological processes. All the algorithms
were implemented in Java and run on a Intel i5-540M pro-
cessor. The implementation of the algorithms as well as the
benchmark models are freely available athttp://www.
cosbi.eu/research/prototypes/rssa.



8

A. RSSA formulations performance on large models

Table I summarizes the models that we used for the bench-
mark. The models are chosen with varying network sizes and
average number of propensity updates per reaction firing to
observe the effects of both the search and update on the simu-
lation performance. The number of reactions of models in the
Table I spans from a few reactions as in the gene expression
model (8 reactions) to an order of ten thousands reactions asin
the B cell receptor signaling (24388 reactions). The average
number of propensity updates after a firing of a reaction of the
corresponding networks also increases from3.5 to 546.66. A
brief description of these models is in the following.

TABLE I: Summary of reaction models

Model #Species#Reactions
#Propensity

Updates per Firing
Gene expression 5 8 3.5
Folate cycle 7 13 5
MAPK cascade 106 296 11.70
FcǫRI signaling 380 3862 115.80
B cell receptor signaling 1122 24388 546.66

The gene expression model is a type of regulatory pathway
which plays a key role in the understanding of gene regulation
mechanisms and functionality28. The result of gene expres-
sion is a collection of proteins encoded by the corresponding
gene. Proteins are produced by two main consecutive pro-
cesses: the transcription and then the translation. Duringthe
transcription process, the gene is copied to intermediate form
called messenger RNA (mRNA). mRNA then binds to ribo-
somes to translate into the corresponding protein. We imple-
ment this model with5 species and8 reactions.

The folate cycle is a metabolic pathway which has a vital
role in cell metabolism29. The result of this metabolism is the
transfer of one-carbon units for methylation to produce me-
thionine and synthesis of pyrimidines and purines. In the fo-
late cycle, the tetrahydrofolate (THF) is catalysed to produce
5,10-methylene-THF which is subsequently either converted
to 5-methyl-THF or 10-formyl-THF. The folate cycle com-
pletes when 5-methyl-THF is demethylated to produce me-
thionine and THF. This model is composed of7 species and
13 enzymatic reactions where their rates are modelled by the
Michaelis-Menten kinetics30,31.

The mitogen-activated protein (MAP) kinase (MAPK) cas-
cade pathway describes a chain of proteins that cascade a sig-
nal from the cell receptor to its nucleus. It is stimulated when
ligands, e.g., growth factors, bind to the receptor on the cell
surface. The pathway is controlled through three main pro-
teins kinases: MAPKKK, MAPKK and MAPK. First, the lig-
and activates MAPKKK. The activated MAPKKK phospho-
rylates MAPKK and subsequently activates MAPK through
further phosphorylation. Finally, a cellular response e.g., cell
growth is exhibited. We implement the MAPK model with
106 species and296 reactions32.

The FcǫRI signaling is used to model early events in high-
affinity IgE receptor33. The signaling is initiated by ligand-

induced receptor aggregation and results in a response from
the immune system (e.g., allergic responses). This signaling
is extensively studied in the literature34. We use the FcǫRI
signaling model developed by Liuet al.35 which contains380
species and3862 reactions.

The B cell receptor signaling model proposed in Baruaet
al.36 studies the effect of protein Lyn and Fyn redundancy.
This model was implemented with a rule-based modeling ap-
proach by including the site-specific details of protein-protein
interactions. The reaction network generated from the model
contains1122 species and24388 reactions.

Figure 1 compares performance of RSSA formulations with
the Direct Method (DM), the Next Reaction Method (NRM)
and the Partial-propensity Direct Method (PDM) and its vari-
ants including Sorting PDM (SPDM) and PDM with Com-
position Rejection (PSSA-CR) on the benchmark models. In
order to run the partial-propensity approach (PDM, SPDM
and PSSA-CR) with the folate cycle, we used a simplified
version of the Michaelis-Menten rate and modified the rate
computation. For RSSA, three variants of the search used for
selecting the candidate reaction are considered: 1) the basic
RSSA where linear search is applied, 2) RSSA with tree-based
search (RSSA-Binary) and 3) RSSA with Alias lookup search
(RSSA-Lookup). We also adaptively adjust the fluctuation in-
terval of a species depending on its population. If the popu-
lation of a species is less than25, the absolute interval size
∆ = 4 is applied. Otherwise, the fluctuation rateδ = 10%
is applied. The performance of algorithms is averaged from
100 simulation runs. For each simulation run, the results are
collected after107 steps.

A conclusion from Fig. 1 is that our RSSA formulations
achieve better performance than all other algorithms in all
test cases, and outperform especially in large models. For
instance, the speed-up gain by RSSA in comparison with
DM, NRM, PDM, SPDM in simulating the FcǫRI signal-
ing is 9, 8.6, 1.8 and 2, respectively. Furthermore, RSSA
with an efficient search achieves a significant performance im-
provement when simulating large models. In simulating the
FcǫRI signaling, RSSA-Binary and RSSA-Lookup is roughly
3 and2.3 times faster than RSSA. In this benchmark, our ef-
ficient RSSA formulations perform better than PSSA-CR. In
the FcǫRI signaling, the speed up gain of RSSA-Binary and
RSSA-Lookup in comparison with PSSA-CR is4.3 and3.1,
respectively. The detailed performance analysis is given be-
low.

As shown in Fig. 1, DM and NRM is comparable for small
models (i.e., the gene expression, the folate cycle) and is of-
ten faster than DM if the number of propensity updates is
small. The speed-up gain by NRM is achieved by using a pri-
ority queue for selecting the next reaction firings and saving
random numbers. The advantage of NRM becomes negative
when the number of update propensities is large because of
updating and maintaining the priority queue. For example,
the percentage of update of NRM for the FcǫRI signaling is
94%, while in DM it is around87%, thus NRM is only7%
faster than DM. For the B cell receptor signaling where the
number of propensity updates after a reaction firing is very
large, the update cost of NRM is at maximum and contributes



9

FIG. 1: Performance of RSSA formulations, DM, NRM and partial-propensity variants including PDM, SPDM and PSSA-CR. In order to be
able to simulate the folate cycle with Partial propensity algorithms (PDM, SPDM and PSSA-CR) we used a simplified version of the

Michaelis-Menten rate for this model and modified the rate computation procedure.

up to99.5% of its total simulation time. In this case, NRM is
2.1 times slower than DM.

By reducing the update cost, PDM and RSSA efficiently
accelerates the simulation. For the gene expression, the up-
date cost of DM and NRM contributes61% and75% of its
simulation time, respectively. By grouping common reactant
and updating propensities in single operations, PDM reduces
the update cost to nearly45%. The update cost by RSSA
is further reduced to only10% of its total simulation time.
Although this advantage of RSSA is limited by the rejection
of candidate reaction where the acceptance probability of a
candidate is around90%. The result is that RSSA is20%

faster than DM and NRM. In simulating the gene expres-
sion model, RSSA and PDM have a comparable performance.
For the folate cycle where Michaelis-Menten kinetics are ap-
plied, the performance gain by RSSA is significant because
it efficiently handled the time-consuming Michaelis-Menten
propensity. The rates of reactions with Michaelis-Menten ki-
netics are not constant but depend explicitly on their reactants,
thus these rates have to be recomputed as soon as the state
changes. RSSA only performs around200 updates while other
algorithms have to perform all107 updates. The percentage
of propensity update cost by DM and NRM thus contributes
73% and85% of their simulation time, respectively. PDM re-



10

duces percentage of the update cost to33% by grouping reac-
tants. The update cost by RSSA is the best which contributes
only 20% of the its simulation time. Thus, RSSA is around
2.5 times faster than DM, NRM and roughly20% faster than
PDM in simulating the folate cycle, even if this model is rather
small. In simulating the large models by RSSA, a significant
speed-up is also achieved. More specifically, the speed up
gain by RSSA varies from2 to 10 in comparison with DM,
NRM and about1.2 to 1.8 with PDM, SPDM.

A fast search procedure will make RSSA become more ef-
ficient in simulating large models. This is shown in the Fig. 1
where RSSA-Binary and RSSA-Lookup outperform all other
algorithms for large models. For example, RSSA-Binary and
RSSA-Lookup are3.8 and2.6 times, respectively, faster than
the basic RSSA in simulating the B cell receptor signaling.
For the B cell receptor signaling, PDM performance is com-
parable with RSSA; however, by applying a fast search al-
gorithm a sharp improvement is achieved for RSSA. For in-
stance, RSSA-Binary and RSSA-Lookup is, respectively,3.7
and2.3 times faster than PDM in simulating this model. Al-
though the advantage of the composition-rejection of PSSA-
CR makes it2 times faster than PDM, the performance of
PSSA-CR is still less significant in comparison with our ef-
ficient RSSA formulations. For example, RSSA-Binary is
around1.9 times faster than PSSA-CR. A similar speed up
gain for RSSA-Binary, RSSA-Lookup is also obtained for
simulating the MAPK cascade and the FcǫRI signaling. We
note that the performance of PSSA-CR for all other models
is very slow. An efficient search procedure, however, requires
to build complex data structures that negate its efficiency for
small models. For example, the basic RSSA is slightly faster
than RSSA-Binary and RSSA-Lookup in simulating the gene
expression.

We further compare performance of our efficient RSSA for-
mulations with NFSim37 on the B cell receptor signaling. NF-
Sim is a network-free simulation algorithm. It keeps track of
individual species in the model instead of species population.
Figure 2 shows the performances of these algorithms applied
to the B cell receptor signaling. For this model, we adjust the
initial population of species by multiplying a scale factor(sf),
which takes values from1 to 1000, with a base value300.
The stopping timeTmax = 100 is used in this performance
comparison.

We have remarks from the Fig. 2. First, the memory re-
quirement and simulation time of NFSim are increasing when
increasingsf = 1 to 1000. In fact, the memory requirement
for NFSim is growing linearly with the number of species
in the system since it keeps track of each individual species.
Thus, in casesf = 1000, the NFSim simulation has crashed
due to lack of memory to keep track of all molecular species.
We note that in the original model36 the population of species
is obtained by settingsf = 1000. In contrast, our RSSA for-
mulations are still be able to simulate the system with a rea-
sonable simulation time. Second, RSSA-Binary is faster than
NFSim for all values of sf. For example, in casesf = 100,
RSSA-Binary is roughly2 times faster than NFSim. The
speed up gain comes from the fast search and the low cost
of update. For example, the search cost and update cost con-

FIG. 2: Performance of efficient RSSA formulations and NFSim on
B Cell Receptor Signaling model. NFSim crashes in case

sf = 1000 due to lack of memory to keep track of all individual
molecular species.

tributing to the simulation time of RSSA-Binary in the case
sf = 100 are roughly20% and 14%, respectively. Third,
although the search time of Alias lookup is faster than tree-
based search, the update of the supporting tables are rather
expensive. Note that in RSSA-Lookup, the SR dependency
graph is inapplicable because we have to rebuild the entire
supporting tables when a species exits its population bounds.
The update of RSSA-Lookup contributes up to92% of its sim-
ulation time in casesf = 100, while the search contributes
less than4%. The result is that RSSA-Lookup has a lowest
performance in this case.

B. SRSSA performance

In this section we focus on the performance of SRSSA with
respect to RSSA and DM. We do not consider here NRM and
PDM because we already showed that RSSA always performs
better. We compare the simulation time while removing all
the initialization and output writing.

The first experiment compares the simulation time of the
algorithms on the gene expression. The simulation stopping
time for all simulations is set toTmax = 100. SRSSA uses
the same fluctuation parameters to define the fluctuation inter-
val as RSSA. We compare the simulation time of algorithms
to generate a totalK independent trajectories. For RSSA and
DM, we have to performK independent runs of these algo-
rithms. But with SRSSA, we will set to generateK indepen-
dent trajectories simultaneously in one simulation runs. We
vary the total number of trajectoriesK from 10 to 1000 to
observe its effects on the performance of the algorithms. The
performance is plotted in the Fig. 3.

The speed up gain of SRSSA with respect to RSSA and
DM is about16% and 33%, respectively, for all values of
K. An explanation for this speed up gain follows. Starting
with a small number of trajectoriesK = 10, we observe that
there are1.44x107 reaction firings in simulating the gene ex-
pression model. Thus, DM has to perform1.44x107 updates.
RSSA reduces the number of updates to2.59x106 and its up-



11

FIG. 3: Performance of SRSSA, RSSA and DM on Gene
Expression model for generatingK trajectories.

date cost is about25% of its total simulation time. By post-
poning and lumping together propensity updates into single
operations, SRSSA further reduces the total number of up-
dates to400. The update cost of SRSSA contributes less than
1% of its total simulation time. This huge gain in the update
cost compensates for the higher search time. This is because
the acceptance probability of a candidate reaction in SRSSAis
only around78% which is lower than93% of RSSA. For DM
and RSSA, both the search and update costs will grow linearly
with K since we have performed independent runs. How-
ever, with SRSSA where trajectories use the same propensity
bounds for selecting the next reaction firings, only the search
time increases withK while the update is nearly constant.
The total number of updates in SRSSA is kept around400
with the acceptance probability remaining at78%. The result
is that the same speed up gain is achieved by SRSSA even
usingK = 1000.

Figure 4 compares the performance of the algorithms on the
Folate cycle with the simulation stopping timeTmax = 0.05
and total number of trajectoriesK to be generated vary from
10 to 1000. As shown in the figure, SRSSA is better than
RSSA and DM for all values ofK. More specifically, the per-
formance of SRSSA is roughly30% faster than RSSA. The
high speed up gain is because of further reducing the number
of updates of the time-consuming Michaelis-Menten propen-
sity. We observed that the update cost of RSSA is around28%
of its simulation time, while this percentage in SRSSA is less
than1%.

For the last experiment, we compare the performance of
the algorithms with an Oscillator model. The Oscillator38 is
an artificial model which is a noise-induced system. It is used
to observe the effect of large number of trajectories generated
simultaneously on the performance SRSSA. This model has
three reactions which are listed in Table II. The initial popula-
tions of species are:#A = 900, #B = 500 and#C = 200.

For simulating the Oscillator model, we fix a total ofK =
1000 trajectories to be generated for each algorithm. How-

FIG. 4: Performance of SRSSA, RSSA and DM on Folate cycle for
generatingK trajectories.

ever, we set up for SRSSA to generate these trajectories in
three different scenarios: 1) performing100 runs of SRSSA
with N = 10 trajectories generated simultaneously per run,
2) performing10 runs of SRSSA withN = 100 trajectories
generated simultaneously per run and 3) performing1 run of
SRSSA withN = 1000 generated simultaneously. The fig-
ure 5 shows performance of SRSSA with these three different
settings in comparing with RSSA and DM.

Figure 5 shows that SRSSA is increasingly slow when in-
creasing the number of trajectories generated simultaneously
per run. For example, the performance of SRSSA in gener-
ating ofN = 1000 trajectories simultaneously is nearly1.9
times slower than RSSA. The reason for a poor performance
of SRSSA in this setting is that the Oscillator model is noisy.
The fluctuation in population of species is very large. In fact,
the maximum signal-to-noise ratio in population of species,
which is equal to the ratio of the mean over the standard de-
viation, is around65%. SRSSA has to define a large interval
to include all possible values of states of all trajectories. Even
though the update cost is very low, the search becomes very
costly due to a lot of rejections. Specifically, the acceptance
probability of SRSSA reduces from60% in caseN = 10 to
roughly20% in caseN = 1000. The search cost of SRSSA in
caseN = 1000 is thus7 times slower than RSSA. This high
cost negates the advantage of low update cost of SRSSA. In
this model, a small number of simultaneous trajectories gen-
erated in a simulation run of SRSSA should be chosen. For
example, in caseN = 10 SRSSA is still7% and26%, respec-
tively, faster than RSSA and DM.

VI. CONCLUSIONS

We studied efficient formulations to improve the search and
update of the basic RSSA algorithm to efficiently simulate



12

TABLE II: Artificial Oscillator model

Reactions Rate

R1: A + B → 2B c1 = 1

R2: B + C→ 2C c2 = 1

R3: C + A → 2A c3 = 1

FIG. 5: Performance of SRSSA, RSSA and DM on Oscillator
model for generating a total ofK = 1000 trajectories. SRSSA

generates these trajectories by 1) performing100 runs withN = 10
trajectories generated simultaneously per run, 2) performing10 runs
with N = 100 trajectories generated simultaneously per run and 3)

1 run withN = 1000 trajectories generated simultaneously.

large scale biochemical reaction systems. We discussed differ-
ent search procedures for selecting a candidate reaction. We
proposed different mechanisms to control the fluctuation in-
terval of the state. The proposed mechanism allows to control
the fluctuation interval of each species and adaptively main-
tain it depending on the species population. We have imple-
mented and experimented with these strategies. The choice
of a suitable strategy for search and update of reactions in
RSSA ultimately depends on the size and complexity of the
underlying data structures. A simple search method (e.g., lin-
ear search) does not require any complex data structure, while
having a low search performance; instead, some search pro-
cedures (e.g., binary search, Alias method) can have a fast
speed, but require a complex data structure which is expensive
to maintain. According to our experiments, complex meth-
ods should be applied on large models. In simulating large
models, although the search of the Alias method is a constant,
it requires to build the lookup tables, which cost is propor-
tional to the number of reactions and negates the overall sim-
ulation performance. A possible approach for the future work
to improve the cost of building lookup tables is to exploit the
composition-rejection strategy. To integrate the composition-
rejection strategy with RSSA, we group reactions into groups
by their propensity upper bounds. A reaction in a group is se-

lected by applying the composition-rejection search and then
the rejection-based test to validate the selection. Each time a
species whose population moves out of its fluctuation interval,
we only need to update propensity bounds of affected reac-
tions and move these reactions to their corresponding groups.

In this work we also proposed a new algorithm called si-
multaneous RSSA (SRSSA) for generating multiple indepen-
dent trajectories to support the analysis of biochemical reac-
tion systems. The advantage of SRSSA is that trajectories are
generated simultaneously by one simulation run, instead of
performing many simulation runs. SRSSA uses only a sin-
gle set of propensity bounds across simulations to select re-
action firings. The memory needed to compute and store the
propensity bounds is thus independent of the number of tra-
jectories. The selection of reactions to form trajectoriesof
SRSSA, however, is exact by exploiting the rejection-based
mechanism. The update of the propensities is lumped up to-
gether in one operation. For typical systems we can choose a
large number of simultaneous trajectories to be generated in
a simulation run of SRSSA; however, for noise-induced sys-
tems a small number of simultaneous trajectories for SRSSA,
e.g.,10, should be chosen for a better performance.

1Daniel Gillespie. A general method for numerically simulatingthe
stochastic time evolution of coupled chemical reactions.J. Comp. Phys.,
22(4):403–434, 1976.

2Daniel Gillespie. Exact stochastic simulation of coupled chemical reac-
tions. J. Phys. Chem., 81(25):2340–2361, 1977.

3Michael Gibson and Jehoshua Bruck. Efficient exact stochastic simulation
of chemical systems with many species and many channels.J. Phys. Chem.
A, 104(9):1876–1889, 2000.

4Yang Cao, Hong Li, and Linda Petzold. Efficient formulation ofthe
stochastic simulation algorithm for chemically reacting systems. J. Chem.
Phys., 121(9):4059, 2004.

5James McCollum andet al. The sorting direct method for stochastic sim-
ulation of biochemical systems with varying reaction execution behavior.
Comp. Bio. Chem., 30(1):39–49, 2006.

6S. Mauch and M. Stalzer. Efficient formulations for exact stochastic simu-
lation of chemical systems.IEEE/ACM Trans. on Computational Biology
and Bioinformatics, 8(1):27–35, 2011.

7Tim Schulze. Efficient kinetic monte carlo simulation.J. Comp. Phys.,
227(4):2455–2462, 2008.

8James Blue, Isabel Beichl, and Francis Sullivan. Faster montecarlo simu-
lations.Phys. Rev. E, 51(2):867–868, 1995.

9Hong Li and Linda Petzold. Logarithmic direct method for discrete stochas-
tic simulation of chemically reacting systems. Technical Report http:
//engineering.ucsb.edu/cse/Files/ldm0513.pdf, 2006.

10Vo H. Thanh and Roberto Zunino. Tree-based search for stochastic simula-
tion algorithm. InProc. of ACM-SAC, 2012.

11Vo H. Thanh and Roberto Zunino. Adaptive tree-based search for stochas-
tic simulation algorithm.Int. J. Computational Biology and Drug Design,
7(4):341–357, 2014.

12Alexander Slepoy, Aidan P. Thompson, and Steven J. Plimpton. Aconstant-
time kinetic monte carlo algorithm for simulation of large biochemical re-
action networks.J. Chem. Phys., 128(20):205101, 2008.

13Sagar Indurkhya and Jacob Beal. Reaction factoring and bipartite update
graphs accelerate the gillespie algorithm for large-scalebiochemical sys-
tems.PLoS ONE, 5(1):8125, 2010.

14Rajesh Ramaswamy, Nlido Gonzlez-Segredo, and Ivo F. Sbalzarini. A new
class of highly efficient exact stochastic simulation algorithms for chemical
reaction networks.J. Chem. Phys., 130(24):244104, 2009.

15Rajesh Ramaswamy and Ivo F. Sbalzarini. A partial-propensityvariant of
the composition-rejection stochastic simulation algorithmfor chemical re-
action networks.J. Chem. Phys., 132(4):044102, 2010.

16E. Crampina, S. Schnella, and P. McSharry. Mathematical and compu-



13

tational techniques to deduce complex biochemical reaction mechanisms.
Progress in Biophysics and Molecular Biology, 86(1):77–112, 2004.

17Vo H. Thanh, Corrado Priami, and Roberto Zunino. Efficient rejection-
based simulation of biochemical reactions with stochastic noise and delays.
J. Chem. Phys., 141(13), 2014.

18Vo H. Thanh. On Efficient Algorithms for Stochastic Simulation of Bio-
chemical Reaction Systems. PhD thesis, University of Trento, Italy.http:
//eprints-phd.biblio.unitn.it/1070/, 2013.

19Daniel Gillespie. A rigorous derivation of the chemical master equation.
Physica A, 188(1-3):404–425, 2007.

20Ramon E. Moore, R. Baker Kearfott, and Michael J. Cloud.Introduction to
Interval Analysis. SIAM, 2009.

21David Huffman. A method for the construction of minimum-redundancy
codes. InProc. of the IRE, volume 40, pages 1098–1101, 1952.

22Luc Devroye.Non-Uniform Random Variate Generation. Springer-Verlag,
1986.

23Wolfgang Hormann, Josef Leydold, and Gerhard Derflinger.Automatic
Nonuniform Random Variate Generation. Springer-Verlag, 2004.

24Alastair J. Walker. An efficient method for generating discrete random vari-
ables with general distributions.ACM Trans. on Mathematical Software
(TOMS), 3(3):253–256, 1977.

25Richard A. Kronmal and Arthur V. Peterson. On the Alias method for gen-
erating random variables from a discrete distribution.The American Statis-
tician, 33(4):214–218, 1979.

26Michael D. Vose. A linear algorithm for generating random numbers with
a given distribution.IEEE Trans. on Software Engineering, 17(9):972–974,
1991.

27Yang Cao and Linda Petzold. Accuracy limitations and the measurement of
errors in the stochastic simulation of chemically reacting systems.J. Comp.
Phys., 212(1):6–24, 2006.

28Darren J. Wilkinson.Stochastic Modelling for Systems Biology. CRC Press,
2006.

29Lynn B. Bailey. Folate in Health and Disease, 2nd Edition. CRC Press,
2009.

30Michael C. Reed, Rachel L. Thomas, Jovana Pavisic, S Jill. James, Cor-
nelia M. Ulrich, and H. Frederik Nijhout. A mathematical model of glu-
tathione metabolism.Theoretical Biology and Medical Modelling, 5(8),
2008.

31Marco Scotti, Lorenzo Stella, Emily J. Shearer, and Patrick J. Stover. Mod-
eling cellular compartmentation in one-carbon metabolism.WIREs Syst
Biol Med, 5(3):343–365, 2013.

32Walter Kolch. Meaningful relationships: the regulation ofthe
ras/raf/mek/erk pathway by protein interactions.Biochem. J., 351(2):289–
305, 2000.

33James R. Faeder andet al. Investigation of early events in fceri-mediated
signaling using a detailed mathematical model.J Immunol, 170:3769–3781,
2003.

34Lily A. Chylek, David A. Holowka, Barbara A. Baird, and William S.
Hlavacek. An interaction library for the fc?ri signaling network. Front.
Immunol., 5(172):1664–3224, 2014.

35Yanli Liu and et al. Single-cell measurements of ige-mediated fceri sig-
naling using an integrated microfluidic platform.PLoS ONE, 8(3):60159,
2013.

36Dipak Barua, William S. Hlavacek, and Tomasz Lipniacki. A computa-
tional model for early events in b cell antigen receptor signaling: Analysis
of the roles of lyn and fyn.J. Immunol., 189:646–658, 2012.

37Michael W. Sneddon, James R. Faeder, and Thierry Emonet. Efficient mod-
eling, simulation and coarse-graining of biological complexity with nfsim.
Nature Methods, 8(2):177–83, 2011.

38Anne Condon, David Harel, Joost N. Kok, Arto Salomaa, and ErikWinfree.
Algorithmic Bioprocesses. Springer, 2009.


