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Abstract—Botnets, i.e., large systems of controlled agents,
have become the most sophisticated and dangerous way of
spreading malware. Their damaging actions can range from
massive dispatching of e-mail spam messages, to denial of service
attacks, to collection of private and sensitive information. Unlike
standard computer viruses or worms, botnets spread silently
without actively operating their damaging activity, and then are
activated in a coordinated way to maximize the “benefit” of
the malware. In this paper we propose two models based on
compartmental differential equations derived from “standard”
models in biological disease spreading. These models offer insight
into the general behavior of botnets, allowing both the optimal
tuning of botnets’ characteristics, and possible countermeasures
to prevent them. We analyze, in closed form, some simple
instances of the models whose parameters have non-ambiguous
interpretation. We conclude the paper by discussing possible
model extensions, which can be used to fine-tune the analysis of
specific epidemic malware in the case that some parameters can
be obtained from actual measurements of the botnet behavior.

I. INTRODUCTION

A botnet is jargon terminology for a collection of infected

end-hosts, called bots, that are under the control of a human

operator known as botmaster. While originally the term was

coined for legitimate purposes, such as the automated man-

agement of IRC channels through distributed scripting, botnets

are now inherently linked to malicious activities. They have

recently been identified as one of the most important threats

to the security of the Internet [6], [18].

Lifecycle of a botnet can be briefly described as fol-

lows [23]. First, the botnet creator sends out a virus, or worm,

that infects unprotected (or under-protected) machines over

the Internet. Several infection strategies exist, mostly borrowed

from other classes of malware (e.g., e-mail viruses). The worm

payload is the bot itself, a malicious application that logs into

a centralized command-and-control server (C&C). Bots may

remain hidden for a long period, waiting for commands from

the C&C. When one of such commands is received, the bot

autonomously perform the malicious actions for which it has

been instructed. Eventually, the bot code may be discovered

and removed, e.g. by an anti-virus software, bringing back the

end-host to a clean state. While installed the bot code can

switch freely between the hidden and the active state.

Example of attacks performed by botnets include sending

of spam and phishing messages [5], click fraud against major

search engines [8], blackmail based on denial-of-service [14],

and identity theft.

To improve their ability to survive, recent botnets have tried

to avoid the centralized point of failure represented by the

C&C in favor of modern peer-to-peer architectures [12]. The

anti-virus community has responded with more sophisticated

mechanisms to detect and disrupt botnets, in an eternal arms

race between good and evil.

We believe that an appropriate modeling of the botnet threat

is a necessary condition to play this “cops and robber” game.

We are interested in modeling two interconnected phases of

the lifecycle of botnet: the creation phase, which include both

the growth and the maintenance of the botnet network, and

the activity phase, when botnets are actually used by their

botmasters for their malicious purposes. We analyze these

phenomena from a theoretical, high-level point of view, and

we simplify the model by considering only the most common

malicious activity: sending spam messages. From now on, the

term ‘spam’ is used as a synonym of maliciousness; in reality,

any malicious actions can fit in this model, from illicitly using

the CPU, to re–distribute illegal material, to scan the local bulk

memory in search of private/sensitive/important information.

Mathematical models have been already proposed to better

understand both the propagation of Internet worms and dis-

semination protocols [2]–[4], [7], [26], [29] and the evaluation

of intervention options in response to the propagation itself

[20], [30]. The aim of this work is to propose the first

mathematical representation of both the botnet growth and the

activity phase, in order to understand what are the conditions

supporting and what are the ones limiting these processes.

In this paper we show that, by changing the proportion

of active bots in the botnet, botmasters are able to build a

botnet also if the worm is not very transmissible, maximize

the amount of damage performed, and generate multiple waves

of malicious activity without the need of creating a new botnet.

From a mathematical point of view, we adopt the classical

differential equation approach used to model biological dis-

eases [1], [9], [27], which allows both closed form theoretical

results and numerical solutions. In fact, biological diseases

and botnets present surprising similarities: both spread using

an infection mechanism based on contact (or communication);

once infected, both may stay inactive for a long period, still

remaining infectious to other members of the population; and

eventually, both can be cured returning to a non-susceptible,

non-infectious, inactive state.

The paper is structured as follows. Section II introduces



the two botnet models discussed in the following. Section III

analyzes the theoretical properties of the two models, and

Section IV provides some insights on the dynamical behavior,

both analytically and experimentally. Section V discusses

related work, while Section VI introduces extensions to these

models that take into account different and more sophisticated

behaviors. Section VII concludes the work.

II. THE MODELS

We take inspiration from years of modeling human dis-

eases and natural epidemic phenomena to build a class of

models that we deem help understanding modern worms

and botnets in particular. We consider two different cases:

the first one assumes that nodes or agents1, after infection

will be recovered, and recovered nodes cannot be infected

anymore, i.e., they are immune forever as if vaccinated. This

scenario corresponds e.g. to a botnet that exploits a single

vulnerability, and this vulnerability is fixed once and for

all. The second one assumes instead that agents can be re-

infected. This latter case is suitable for worms and malware

for which recovery is not definitive. Examples of this behavior

include botnets that mutate during their lifecycle, exploiting

different vulnerabilities at different times (with some attention

in defining the infection rate of different mutations); but it

can be even happen in machines that are re-installed and

become vulnerable again, maybe only for a finite period of

time [24], [25]. Our study is based on compartmental ordinary

differential equations models. Moreover, we assume a finite

population, which can be arbitrarily large, since our models

are scale–invariant with respect to the number of nodes.

A. Botnets Subject to Immunization

We consider four classes of agents.

Class S: susceptible nodes with a positive risk of infection;

Class I: infectious nodes able to infect the susceptibles;

Class V : spamming nodes able to infect the susceptibles and

actively executing their specific malware;

Class R: removed nodes that have been cured (de–infected)

and are immune to the worm.

We call these botnets I-Botnets since the nodes are immunized

against the worm after recovery.

The epidemic flow among these classes is graphically

represented in Figure 1 with the notation we use after the

normalization with respect to the parameter µ and N (see

Table I for the parameters synopsis). It can be described as

follows.

A susceptible can become an infectious node of the botnet

I at the rate b I+V
N

, where b is the transmission rate of the

worm (b > 0) and N is the total population (N > 0).

1 We use the terms “node” and “agent” interchangeably, indicating anything
that may be subject to the infection and become part of the botnet. For instance
an agent can be a PC or a single virtual machine. We instead reserve the
terms ‘bot’ and ‘bot code’ to the actual infectious malware when we discuss
examples.

TABLE I
Model variables and parameters

Notation Description

N total population (nodes in the system)
µ switching rate between hidden and active

s, S proportion/number of at–risk–of–infection nodes
i, I proportion/number of (hidden) infectious nodes
v, V proportion/number of infectious and spamming nodes
R number of definitely recovered nodes
β, b normalized, absolute worm transmission rate
γ, g normalized, absolute (definitive) recovery rate
p apportioning coefficient of infected hidden nodes
ρ rate of temporary recovery

Infectious nodes can start or stop spamming. Since worms

building botnets are normally entirely quiescent, and conse-

quently very hard to detect, if they do not spam, we assume

that only spamming nodes can be detected and removed.

An infectious node can become a spamming node V with

rate µ/(1 − p), where µ > 0 is the speed of the interchange

between classes V and I; a spamming node stops spamming

and go back to the infectious status I with rate µ/p or can be

removed at rate g > 0; p (0¡p¡1) is an apportioning parameter

describing the aggressiveness of the botnet (smaller p means

more aggressive botnets that tend to spam continuously as

p → 0), p is also the fraction of infected nodes in class I .
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γ

1/p1/(1−p)

Fig. 1. Normalized epidemic flow among agents classes for non re-infecting
botnets

The model described above can be formalized with the

following system of differential equations:






















Ṡ(τ) = −b I(τ)+V (τ)
N

S(τ)

İ(τ) = b I(τ)+V (τ)
N

S(τ) − µ
1−p

I(τ) + µ
p
V (τ)

V̇ (τ) = µ
1−p

I(τ) −
(

µ
p
+ g
)

V (τ)

Ṙ(τ) = gV (τ)

(1)

a) Normalization: Since we consider a closed population

the relation N = S(τ)+I(τ)+V (τ)+R(τ) ∀τ holds. Thus we

can consider only three differential equations. Moreover, we

can rewrite Equation (1) in an adimensional form, by defining

t := µτ , s := S/N , i := I/N , v := V/N , β := b/µ and

γ := g/µ. Therefore, we have:











ṡ(t) = −β [i(t) + v(t)] s(t)

i̇(t) = β [i(t) + v(t)] s(t)− 1
1−p

i(t) + 1
p
v(t)

v̇(t) = 1
1−p

i(t)−
(

1
p
+ γ
)

v(t)

(2)
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as graphically described in Figure 1. For a complete definition

of Equation (2) we have to assign the initial conditions. Here

we assume the following initial conditions:

• s(0) = s0, where 0 < s0 ≤ 1; note that s0 = 0 means

that the population cannot be infected by the worms and

epidemics cannot occur, while s0 = 1 means that the

population is completely susceptible to the worm;

• v(0) = 0, meaning that there are no active spamming

node at the beginning;

• i(0) = ǫ0, where ǫ0 is typically of the order of 10−N ,

and it is anyway included in the range ]0, 1[; note that

i(0) = 0 and v(0) = 0 means that are no infectious agents

in the population; therefore epidemics cannot occur.

b) Remark: Let us note that, if p → 1 or p → 0,

Equation (2) tends to a classical “SI” model, as the one

analyzed in [20], [29]. Moreover we used µ as normalization

factor because the actual rate of transition between i and

v states does not influence the system, since it is only the

proportion time spent in v that makes the botnet ‘apparent’ and

generate spamming. Finally, notice that using an apportioning

coefficient (p) controlling the transition rates between i and v
ensures that the sum of agent in I and V states remains equal

to the total number of infected nodes, which is coherent with

the fact that switching between spam and no–spam states is

controlled by the botnet itself.

B. Botnets with Re-Infection

In some cases the vaccination of nodes is not feasible, either

because there is no known anti–worm footprint or simply

because infected nodes must be re–installed from scratch

from a CD-ROM and then upgraded to be vaccinated: the

on-line time between installation and vaccination leave them

susceptible [24], [25]. These are R-Botnets since a node can

be Re-infected after recovery.

Indeed, if re-infection is introduced, many interesting addi-

tional parameters can be considered based on the re-infection

model, even without changing the classes of agents. The

simplest model is when agents in class v can either be removed

with rate γ or return susceptible with rate ρ as shown in

Figure 2 only considering the solid transition rates.

A straightforward extension is considering also the possi-

bility of a preventive cure, which would introduce a direct

transition from class s to class r as indicated by the dashed

arrow in Figure 2. Additionally, if one wants to consider worms

which can mutate to make complete recovery more difficult,

one can introduce different infectious rates parameterized on

the class as indicated by the parameter βc in the dashed box in

Figure 2. However, to maintain discussion simple, we will only

consider the fundamental case (without considering dashed

lines ‘extensions’).

Using the same normalization approach we used in Sec-

tion II-A, the model in Figure 2, considering only the solid-

line transitions and and not mutations is formalized by the

s

v

i

rγ

ρ

1/p1/(1−p)

β
βc

Fig. 2. Normalized epidemic flow among agents classes for re-infecting
botnets

following set of normalized differential equations:











ṡ(t) = −β [i(t) + v(t)] s(t) + ρv(t)

i̇(t) = β [i(t) + v(t)] s(t)− 1
1−p

i(t) + 1
p
v(t)

v̇(t) = 1
1−p

i(t)−
(

1
p
+ ρ+ γ

)

v(t)

(3)

notice that the special case ρ = 0 is the model we discussed

in Section II-A.

C. Plausible Ranges for Transmission and Recovery Rates

Before proceeding with the analysis of the models, we

would like to restrict the meaningful range of the β and γ
parameters. Let us start with the recovery rate. We normalized

the system with respect to µ, which describes the transition

rate of botnets agents between the spamming and the non-

spamming states. With the assumption that agents in state i
cannot be detected, we must have γ < 1. In the following we

will always use γ = 0.25, but any other values < 1 can be

used and the fundamental properties of the system will not

change.

Figure 3 reports the maximum fraction of nodes which are

simultaneously infected during the epidemic (plot (A)), and

the fraction of nodes r∞ that have contracted the worm and

recovered at the end of the epidemic itself (plot (B)) as a

function of the ratio β/γ. A quick inspection of the behavior

shows that for β/γ > 10, the fraction of infected nodes tends

to 1 and, for small p, also the fraction of nodes infected at

the same time tends to one. This is a behavior that, to the

best of our knowledge, has not yet been observed in botnets.

Indeed, this also seems to be an unlikely case in modern

Internet, where the diversity of hardware, operating systems

and versions thereof make it difficult to imagine a single

worm that can infect the entire population, even if no known

countermeasures are yet available when it appears. Thus in the

following we will restrict the analysis to values β/γ < 16.

In the following sections we discuss the key theoretical

properties of our models, that will be used to show how a

botnet can be efficiently built and exploited, and, at the same

time, how countermeasures can be taken against botnets, even

in face of very aggressive behaviors.
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Fig. 3. I–Botnets. Plot (A): Maximum value of i(t) + v(t) as a function of
the fraction β/γ for a fixed value of γ = 0.25. The value of p is reported
in the figure. The initial condition is s(0) = 0.99999, i(0) = 0.00001,
v(0) = r(0) = 0. Plot (B): Proportion of recovered agents r(t) at the
end of the epidemic as a function of the fraction β/γ for a fixed value of
γ = 0.25. In both a and b the value of p are reported in the figure and the
initial condition is s(0) = 0.99999, i(0) = 0.00001, v(0) = r(0) = 0.

III. THEORETICAL PROPERTIES

In order to understand the dynamics of Equations (2)–(3)

the key parameters are the basic and the effective reproductive

numbers.

In mathematical models for the epidemiology of infectious

diseases (included computer worms, as the cases of system

defined by Equations (2)–(3)), the basic reproductive number

R0 is defined as the threshold parameter which determines if

the introduction of an infected agent can lead to an epidemic

(R0 > 1) or not (R0 < 1). Therefore, if R0 < 1, the

introduction of infectious individuals in the population can not

lead to a major epidemic but only to small clusters of cases;

whereas, if R0 > 1, an epidemic can start with a positive

probability.

The basic reproductive number R0 can essentially be in-

terpreted as the number of new infections generated by an

infectious agent during its entire infectivity period, assuming a

completely susceptible population [1]. Similarly, the effective

reproductive number Re(t) can be defined as the number of

new infections generated by an infectious agent at time t, and

hence defines the sustainability of the infection after time t.
Considering botnets, if R0 < 1, then we can assume that

the spam generated is very limited and the game is not worth

the effort, thus a worm whose parameters leads to R0 < 1

can be considered non dangerous. Similarly, when Re(t) < 1,

even if R0 > 1, the epidemic is in decreasing phase, i.e.,

(i̇(t) + v̇(t)) < 0, or in other words, the nodes in the botnet

are decreasing, and the worm is being eliminated from the

system.

To compute the reproductive numbers we adopt the next–

generation matrix technique introduced by Diekmann and

Heesterbeek in [9]. In particular, we exploit the same method

described in [19], which is a specific adaptation for models

with multiple infectivity classes with mutual interchanges.

A. Threshold Condition for I-Botnets

Note that Equation (2) admits a continuum of equilib-

ria (called disease–free equilibrium) given by (s⋆, 0, 0) (see

Appendix A). Therefore, let us consider the Jacobian J of

Equation (2) restricted to the infectious classes i and v,

computed at the disease–free equilibrium. It can be written

as

J = T +Σ−D ,

where

T = s⋆
(

β β
0 0

)

is a matrix whose elements are all real non–negative numbers,

and they correspond to the transmission rates;

Σ =

(

− 1
1−p

1
p

1
1−p

− 1
p

)

is a real matrix with positive off–diagonal elements corre-

sponding to transition between the infectivity classes;

D =

(

0 0
0 γ

)

is a real non-negative diagonal matrix whose strictly positive

element represents the recovery rate.

Since Σ−D is invertible we can compute

−(Σ−D)−1 =
1− p

γ

( 1
p
+ γ 1

p
1

1−p
1

1−p

)

and, noticing that all its elements are real and positive, it is

possible to estimate R0 as the dominant eigenvalue of the

next–generation matrix K defined as

K = −T (Σ−D)−1

= s⋆
1− p

γ

(

β
(

1
p
+ γ + 1

1−p

)

β
(

1
p
+ 1

1−p

)

0 0

)

.

Since det(K) = 0, it follows that the dominant eigenvalue of

K (namely R0) is

R0 =
β

γ

1 + γp(1− p)

p
s⋆ (4)

R0 represents the main parameter of the system, in fact if

R0 > 1 epidemic will occur. Otherwise if R0 < 1 epidemic

can not occur.
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Using similar arguments we obtain a formula for the effec-

tive reproductive number:

Re(t) =
β

γ

1 + γp(1− p)

p
s(t) . (5)

B. Threshold Condition for R-Botnets

Using the same approach, not repeated here for the sake

of brevity, we compute the basic and effective reproductive

number of Equation (3) for R-Botnets:

R0 =
β

γ + ρ

1 + (γ + ρ)p(1− p)

p
s⋆ (6)

and

Re(t) =
β

γ + ρ

1 + (γ + ρ)p(1− p)

p
s(t) . (7)

IV. SYSTEM DYNAMICS

I–Botnets (Equation (2)) show the classical threshold be-

havior, with the threshold parameter given in Equation (4).

If R0 > 1, the shape of the epidemic is the classical one:

susceptibles (s) and removed (r) tend to some real positive

value, while the two infectious classes (i, v) tend to zero (see

Appendix A).

On the other hand, the transition phase strongly depends

on p. In particular, by increasing the value of p, class i
is favored and the epidemic peak increases in height and

width (see Fig. 4 (A)). The dynamics of v is instead more

complicated. As shown in Figure 4(B), intermediate values

of p favor the proliferation of v. This means that being

excessively aggressive or not sufficiently aggressive are both

bad strategies.

R–Botnets show the same qualitative behavior of I–Botnets,

but quantitative results are different. Not surprisingly, by fixing

the vale of γ + ρ in Equation (3) at the same value of γ in

Equation (2), the dynamics of both i and v in R–Botnets are

higher than the corresponding for I–Botnets (see Fig. 4).

A. Building the Botnet

I–Botnets can always be built, even if the worms are not

much transmissible (i.e. if β is small). As stated before, an

epidemic occurs (i.e., a botnet can be built) only if R0 > 1.

From Equation (4) we can deduce the conditions under which

R0 > 1 holds:

C1: β
γ
s⋆ > 1;

or

C2: β
γ
s⋆ < 1 and

p <
1

2



1−
1

βs⋆
+

√

(

1−
1

βs⋆

)2

+
4

γ



 . (8)

Therefore, by varying p in (0, 1), Equation 8 can always

be verified and thus the threshold condition can always be

satisfied. In conclusion, independently for the countermeasures

(represented by γ), the botnet can always be built simply by

acting on the aggressivity p of the botnet itself.

In the same way, we can derive the conditions for having

R0 > 1 for R-botnets:

C1: β
γ+ρ

s⋆ > 1;

or

C2:
β

γ+ρ
s⋆ < 1 and

p <
1

2



1−
1

βs⋆
+

√

(

1−
1

βs⋆

)2

+
4

γ + ρ



 .

Differently from I–Botnets, for each value of p it is possible

to find a value of ρ which is able to interrupt the creation of

a botnet. Therefore, creation of R–Botnets can be interrupted

by a sufficiently large rate of temporary countermeasures ρ,

a results apparently contraddictory. Fig. 5 shows quantitative

estimation on the value of ρ needed to bring the state of the

system in an under-threshold condition.

B. Maximizing the Damage of Botnets

For both I–Botnets and R–Botnets, the total number of spam

sent by the botnet can be defined as

v∞ := k

∫

∞

0

v(t)dt

for any k > 0 representing the number of spam sent by a bot

in the unit of time. Obviously, v∞ increases as v increases

(because 0 ≤ v(t) < 1 ∀t); therefore, the aim of the botmaster

is to maximize v∞.

The value of v∞ can be controlled by varying p, as sug-

gested by Figure 4(B),(D). Given the difficulty in analytically

obtaining the dependence between v∞ and p, a numerical

evaluation on d
dp
v∞has been performed.

Given γ, I–Botnets have the potential to reach a maximum

amount of damage vmax. Figure 6 shows how, in order to

reach vmax a value of p can always be found, for each

(reasonable) transmission rate β. Surprisingly, β does not

influence the potential damage a botnet can do, which is

instead controlled only by the countermeasures rate γ, which

turns out to be the only parameter that controls the overall

time (integral value on the botnet existence) that agents spend

in states infective of susceptible. On the ohter hand, not

surprisingly, the higher is the transmission potential of the

worm (β), the larger is the set of p such that the damage is

maximum. In particular, Figure 6 shows that optimal values

of p are around 0.1, corresponding to not very aggressive

botnets; i.e. hidden botnets are much more dangerous than very

aggressive ones. Acting in an extremely covert way (p ≈ 0)

is however not efficient as well.

For R–Botnets, the behavior is slightly more complex than

for I–Botnets. The chance of reaching the maximum damage

vmax depends on the temporary recovery rate (ρ) (as shown

in Figure 7). This proves that the temporary countermeasures

have positive effects on limiting the damage of the botnets.

Obviously, the higher the transmission rate, the less effective

are the countermeasures. Interestingly from Figure 7 we can
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Fig. 4. I–Botnets: Temporal evolution of class i (A) and v (B). Parameter choices: β = 0.5, γ = 0.25; p = 0.1 (black line), p = 0.2 (dashed black line),
p = 0.3 (pointed black line), p = 0.4 (grey line), p = 0.5 (dashed grey line), p = 0.6 (pointed grey line). The initial condition for the entire figure is
s(0) = 0.999, i(0) = 0.001, v(0) = r(0) = 0. R–Botnets: Temporal evolution of class i (C) and v (D). Parameter choices and initial condition are the
same of figure (A) and (B) but for γ = 0.125 and ρ = 0.125.
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Fig. 5. R–Botnets. Black lines represent the parameters subsets where R0 =
1. In the areas below each line R0 > 1. Parameter choices are: s⋆ = 1,
γ = 0.25; the value of β is reported in the figure.

deduce that very aggressive botnets are not much efficient, as

observed for the case of I–Botnets.

The maximum value of v∞ that can be produced by the

models depends on γ as suggested by Figure 8. This happens

because γ is related to the time that the agents can potentially

spend in the infectivity classes (v and i) as we already noted.

Moreover, Figure 8 shows how vmax depends on γ and not

on the sum γ+ρ. This proves that temporary countermeasures

have measurable effects on the reduction of the optimal set

of p and can reduce the actual damage done by the botnet as

discussed in Figure 7, but only permanent countermeasures (γ)

p

v
∞

0 0.2 0.4 0.6 0.8 1

0

vmax

0.125 0.25 0.5 1 2 4

Fig. 6. I–Botnets. Value of v∞ as a function of p. Parameter choices are:
γ = 0.25; the value of β is reported in the figure.

are able to considerably reduce the maximum potential damage

of the botnet. Once more, we note that the transmittability β
of the worm does not influence at all the maximum potential

damage of the botnet, but only the range of parameters that

can achieve this maximum.

C. Multiple Waves of Spam Messages

Since the parameter p can be remotely changed by the

botmaster controlling the botnet, we want to investigate the

temporal evolution of I–Botnets under the hypothesis of a non–

constant value of p. In this context, an interesting behavior is
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Fig. 7. R–Botnets. Value of v∞ as a function of p. Parameter choices are: γ = 0.25, ρ = 0.125 in (A), ρ = 0.25 in (B), ρ = 0.5 in (C), ρ = 1 in (D);
the value of β is reported in the figure.
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γ = 0.125, ρ = 0.125 for dark grey dots; γ = 0.05, ρ = 0.2 for light grey dots; β = 2 in (A), β = 1 in (B), β = 0.5 in (C), β = 0.25 in (D).
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the possibility of having multiple waves of spam messages.

As stated in Sec. III, the number of new infections over

time depends on the value of Re(t): in particular if Re(t) > 1
the number of new infections increases, while if Re(t) < 1 it

decreases. Equation (5) shows the dependence of Re(t) on p.

Using the same argument of Section IV-A, it follows that, for

every value of s(t), it is possible to choose p in such a way

to have Re(t) > 1. Therefore, at any time the botmaster could

increase p for generating a new wave of messages, without the

need of increasing the transmission rate. In general, increasing

the transmission rate β is very hard, because it depends on the

structure of the population where the worm is spreading and

on the infecting capability of the worm. Therefore, to generate

a new wave of spam in botnets, it is an attractive option to

vary the aggressivity parameter (e.g., by using remote controls)

instead of varying the transmissibility parameter.

Here we show an example of a possible alternative definition

of p which implies a multiple waves pattern of i and v.

We assume that p can be defined by the following piecewise

function:

p :=

{

p1 if v(t) ≤ v̄
p2 otherwise

. (9)

Evaluating the number of nodes in a botnet is very simple,

if the botnet is controlled by a C&C centralized server. But

even modern peer-to-peer botnet can easily estimate the size

of an overlay network [13].

In Fig. 9 the temporal evolution of i and v show a multiple

waves pattern. Even if, in general, the botmaster could increase

p at any time for generating a new wave of messages, by using

Equation (9) to define p this is not true. In fact, it can be proved

that v(t) → 0 repeating the same reasoning of Appendix A

by taking into account that the solutions of Equation (2) are

continuous even if p is defined as in Equation (9).

The same arguments hold also for R–Botnets, not reported

here for the sake of brevity.

V. RELATED WORK

The idea that mathematical epidemiology could be adapted

to computer viruses is 20-year old [21]; few years later, the

first serious attempt in this sense was published [15]. Since

then, the number of papers on this subject has grown steadily,

presenting a large collection of analytical models to better

understand the propagation of Internet worms [4], [26], [29]

and the evaluation of intervention options in response to the

propagation itself [20], [30].

The idea of viruses and worms that adapt their behavior

in order to improve their possibility of staying stealthy is not

new. Self-stopping worms [17], for example, may reduce the

infection pace after having detected a substantial saturation of

the system, becoming quiescent “sleeper agents”. This reduce

the possibility of detection, as it is the prodigious infection

activity that is typically used to identify compromised nodes.

Varying Scan Rate (VSR) worms deliberately vary their

scan rate to avoid being effectively detected by existing worm

detection techniques. Yu et al. [28] provide an epidemiological
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(B)
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0

.0
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0
.0

4
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8

Fig. 9. I–Botnets. Temporal evolution of i (A) and v (B) obtained by
considering p evolving according to Equation (9). In light grey colored areas
p = p1, while in dark grey colored areas p = p2. Parameter choices for
both are: β = 0.5, γ = 0.25, p1 = 0.1, p2 = 0.9, v̄ = 0.005. The initial
condition is s(0) = 0.99999, i(0) = 0.00001, v(0) = r(0) = 0.

model of such worms, and discuss a new detection scheme

capable to act as a countermeasure; however, their work does

not consider the effects of VSR on the malicious activity,

however.

While self-stopping worms and VSR worms are techniques

explicitly designed to improve the probability of being un-

detected, variations in the activity of viruses and worms can

be caused by the diurnal variations in the number of active

machines. Dagon et al. [7] have analytically modeled such

periodic behavior, and consider the existence of distinct time

zones using a differential equation approach similar to the

one we use. As the previous paper, their work is limited to

the propagation phase, without considering the actual damage

caused by malicious activities.

The importance of staying inactive for some time after

a period of activity (called dormancy) is well–known in

biological models. E.g., thanks to this dormancy phenomena,

Mycobacterium tuberculosis are able to survive inside human

hosts for years and be responsible for latent tuberculosis [22].

Finally we note how compartmental differential equations

are closely related to stochastic Markovian models used with

success to model dynamic Internet protocols [10], [11], [16].
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VI. EXTENDING THE MODEL

So far we have only considered the simplest possible models

that capture the property of modern botnet agents of swapping

between active and dormient states without the need of a

centralized control and with apparently random behavior of

single agents.

The technique of compartimental differential equations can

be used of model many other aspects and facets of the botnets

and malware behaviors. We briefly comment on some possible

extensions here.

 /(1−q)σ

 /(1−q)σ

 /qσ

 /qσ

s

v

i

rγ

ρ

1/(1−p)

sd id

β

 /(1−q)

 /q

σ

σ

1/p

vd

Fig. 10. A model for nodes that switch on and off with rate σ

For instance a model like the one represented in Fig. 10 can

represent a system where nodes are not always on line (only

susceptibles and infected dormient are meaningful with this

respect), but they switch on and off with a rate σ and are

on-line with proportion q. Nodes that are switched off while

actually spamming will go into the infective but not spamming

status when switched on again, thus potentially giving an

illusion of problem solution. We set the on-off ratio and rate

equal for all states, but this can be easily modifyied, for

instance to represent users behavior that aggressively switch

node off if they recognize some malicious behavior.

VII. CONCLUSIONS

This work introduced the use of compartmental differential

equations to model the spreading of botnets-creating worms,

as well as, for the first time to the best of our knowledge,

to model the amount of damage (e.g., the number of spam

messages) the botnet can cause during its lifetime.

Results underline how a botnet can be easily built using

worms that are not very transmissible, and how a botnet can

have a great impact in terms of spamming. Moreover, it proves

how a botnet built by a single worm can cause multiple waves

of spamming just by changing the probability with which

single agents swap between active and dormient states.

Thus, this study highlights the necessity to identify all the

infected agents in order to limit the proliferation of the botnets.

In fact, it is not sufficient to recognize only the spamming

agents and removing only them, independently of how well it

is done (namely the value of the recovery rate).

The models we analyzed are on purpose the simplest ones,

that are prone to non-ambiguous interpretation even in the

absence of quantitative data to tune the parameters. Many other

models can be derived form these ones, and one has been

shortly introduced at the end of the paper as example.

Indeed, many other hypotheses should be checked and

other containment/mitigation strategies, more sophisticated

than temporary or definitive recovery, can be introduced. For

instance these models only capture the pool of susceptible

computers, while it might be interesting to model the entire

population, including nodes that are protected by antivirus

software before being infected. All these control options could

be quite easily tested by adapting this mathematical model in

order to take them into account.

Further work includes considering non-homogeneous sys-

tems, for instance considering differences in terms of band-

width among agents. Being this work a purely theoretical

study, it will be interesting to extend this paper by testing

its results on real data set.
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APPENDIX

In this appendix we prove the basic properties of Equa-

tion (2).

A. Proof of the Stability of Disease Free Equilibrium

Equation (2) admits a continuum of equilibria given by

(s⋆, 0, 0), for all 0 < s⋆ ≤ 12. This continuum of equilibria,

commonly called disease free equilibrium (DFE), is unstable

if R0s
⋆ > 1; therefore in this case an epidemic occurs. Other-

wise, if R0s
⋆ < 1, the DFE is stable, but not asymptotically

stable, and major epidemics can not occur.

Now, let us prove that the DFE is unstable if R0s
⋆ > 1.

First of all, we compute the Jacobian matrix computed at the

DFE:

Jdfe =





0 −βs⋆ −βs⋆

0 βs⋆ − 1
1−p

βs⋆ + 1
p

0 1
1−p

− 1
p
− γ



 .

2If s⋆ = 0, trivially, no epidemic can occur.

The eigenvalues are the roots of the characteristic polynomial

−λ

[

λ2 − λ

(

βs⋆ −
1

1− p
−

1

p
− γ

)

−

(

βs⋆
(

1

p
+

1

1− p
+ γ

)

−
γ

1− p

)]

.

If R0s
⋆ > 1 it follows that βs⋆

(

1
p
+ 1

1−p
+ γ
)

− γ
1−p

> 0

and it proves that the equilibrium is unstable.

B. Proof of the asymptotic behaviour

In this section we will show that the solution of Equation (2)

asymptotically tends to (s∞, 0, 0, r∞), where 0 < s∞ < 1 and

0 < r∞ < 1.

For simplicity we add the equation related to the removed

class to Equation (2). Therefore we have:


















ṡ(t) = −β [i(t) + v(t)] s(t)

i̇(t) = β [i(t) + v(t)] s(t)− 1
1−p

i(t) + 1
p
v(t)

v̇(t) = 1
1−p

i(t)−
(

1
p
+ γ
)

v(t)

ṙ(t) = γv(t)

(10)

From the first equation of (10) we have that ṡ(t) < 0 for all

t ≥ 0, therefore s is always (strictly) decreasing. Moreover,

s is bounded (0 < s ≤ 1). Thus, limt→∞ s(t) = s∞ and

0 < s∞ < 1. From the fourth equation of (10) we have

r(t) = γ

∫ t

0

v(σ)dσ + r(0)

Moreover, for all t, r(t) = γ
∫ t

0
v(σ)dσ + r(0) < 1 because

s(t) + i(t) + v(t) + r(t) = 1. Thus,
∫

∞

0

v(σ)dσ <
1

γ
−

r(0)

γ
< ∞

Integrating the third equation of (10) we obtain

v(t) =
1

1− p

∫ t

0

i(σ)dσ − (
1

p
+ γ)

∫ t

0

v(σ)dσ < 1 ∀t

Therefore,
∫

∞

0

i(σ)dσ < (1− p) + (1− p)

(

1

p
+ γ

)∫ t

0

v(σ)dσ

< ∞

Since 1 = s+ i+ v + r, it follows that

lim
t→∞

i(t) + lim
t→∞

v(t) = 1− s∞ − γ

∫

∞

0

v(σ)dσ

< ∞

In conclusion, limt→∞ i(t) = 0 and limt→∞ v(t) = 0.
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