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We address the problem of simulating biochemical reaction networks with time-dependent rates
and propose a new algorithm based on our rejection-based stochastic simulation algorithm (RSSA)
[Thanh et al., J. Chem. Phys. 141(13), 134116 (2014)]. The computation for selecting next
reaction firings by our time-dependent RSSA (tRSSA) is computationally efficient. Furthermore,
the generated trajectory is exact by exploiting the rejection-based mechanism. We benchmark
tRSSA on different biological systems with varying forms of reaction rates to demonstrate its
applicability and efficiency. We reveal that for nontrivial cases, the selection of reaction firings
in existing algorithms introduces approximations because the integration of reaction rates is very
computationally demanding and simplifying assumptions are introduced. The selection of the next
reaction firing by our approach is easier while preserving the exactness. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4927916]

I. INTRODUCTION

The stochastic nature of biochemical systems at the molec-
ular level arises from the randomness in reactions between
molecular species. The fluctuation in population of species
may result in significant effects to the genetic regulation,
stochastic decision, and ultimately the genetic variation.1–7

Stochastic chemical kinetics is thus an indispensable frame-
work for a quantitative study of stochastic noise in biochemical
systems. For well-mixed environment, the biochemical system
is modeled by reactions between species. The system state
is modeled by a vector of population of each species. The
probability that a reaction fires and moves the system to a new
state is characterized by a propensity function. The reaction
propensity is parametrized by the system state and a reaction
rate determined from the system being modelled. The temporal
dynamics of reactions and the distribution of system state
are derived by applying the Gillespie stochastic simulation
algorithm (SSA).8,9 There are two different formulations, but
mathematically equivalent, of SSA: the direct method (DM)8,9

and the first reaction method (FRM).8 DM selects a reaction
to fire proportionally to its propensity. The firing time of the
selected reaction is then generated following an exponential
distribution. FRM generates the putative waiting time to the
firing of each reaction and selects the reaction having the
smallest waiting time to be the next reaction firing. Many
improvements have been introduced to accelerate both of these
algorithms including the next reaction method (NRM),10 the
optimized direct method (ODM),11 the sorting direct method
(SDM),12 the composition-rejection SSA (CR-SSA),13,14 the
tree-based search SSA,15–18 the partial-propensity SSA,19,20

a)Electronic mail: vo@cosbi.eu
b)Electronic mail: priami@cosbi.eu

the rejection-based SSA (RSSA),21–23 and other improvements
including approximate and parallel algorithms.24–30

SSA assumes reaction rates to be constant. However,
changes in the cell like volume size or temperature may alter
the rate of a reaction and this must be modelled explicitly
as a time-dependent function.31–34 For example, Lu et al.31

generalize DM to take the cell growth and division into account
in the simulation. The computation, however, is complex,
time-consuming, and limited to special forms of reaction
rates (i.e., exponential forms). Anderson34 recently introduced
the modified NRM (MNRM) that mitigates the computa-
tion by explicitly modelling reactions as independent time-
inhomogeneous Poisson processes. The number of times that
an individual reaction fires in a time interval is modeled as
a Poisson process with parameter equal to the integration
of its propensity. Thus, to compute the waiting time to the
firing of each reaction, MNRM integrates the reaction rate
and then solves the corresponding inverse problem of the
waiting time. The next reaction firing will be the one having the
smallest waiting time. The generation of the waiting time of
each reaction in MNRM is relying on the tractable calculation
of the integration of the reaction rates and the solution of
the inverse problem. The selection of next reaction firings,
otherwise, introduces approximation errors if the integration
of the reaction rates is difficult to derive.

In this paper, we study the problem of simulating biochem-
ical reactions where the reaction rates are expressed explicitly
in a time-dependent form. We present a novel formulation by
extending the RSSA.21 Our time-dependent RSSA (tRSSA)
exploits the rejection-based mechanism to select next reaction
firings. tRSSA uses propensity bounds of reactions to select
a candidate reaction and then validates the candidate with a
rejection-based test by its exact propensity value. The propen-
sity of the candidate reaction with its time-dependent rate is

0021-9606/2015/143(5)/054104/11/$30.00 143, 054104-1 © 2015 AIP Publishing LLC
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evaluated exactly at the current time. Therefore, the selection
of the next reaction firing does not require to integrate reac-
tion rates over time. The propensity bounds of a reaction are
defined by specifying arbitrary bounds on both the population
of species and the reaction rate. The bound on the reaction rate
is computed by discretizing simulation time into intervals. The
time discretization is chosen to ensure that the ratio of the lower
bound reaction rate over the upper bound reaction rate in the
time interval is bound by a constant, so that the acceptance
probability of a candidate reaction is also bound. We remark
that the selection of propensity bounds does not affect the
exactness of tRSSA. The next reaction firing is always selected
with a correct probability; hence, the trajectories generated by
tRSSA are exact.

The paper is organized as follows. Section II reviews
the stochastic simulation algorithms for biochemical reactions
and their extensions for time-dependent reaction rates. Sec-
tion III reviews the theoretical background and presents our
new tRSSA. We describe in detail how tRSSA selects the next
reaction firing with time-dependent reaction rates. Section IV
presents the experimental results in applying our approach
to concrete models acting as benchmarks. The concluding
remarks are in Section V.

II. STOCHASTIC REACTION KINETICS

We consider a well-mixed reactor volume consisting of n
molecular species denoted by Si for i = 1 . . . n. At time t, the
n-vector X(t) = (X1(t), . . . ,Xn(t)) represents the system state
in which Xi(t) denotes the number of molecules of species
Si in the system at that time. Species can interact through
m reactions. A reaction Rj for j = 1 . . . m models a possible
combination of species in a unidirectional reaction to produce
other species,

Rj : v1 jS1 + · · · + vn jSn
c j
→ v ′1 jS1 + · · · + v ′n jSn, (1)

where cj is called the (stochastic) reaction rate. The species
on the left side of the arrow are called reactants, while the
ones on the right side are called products. A species that
appears in both sides of a reaction is called a catalyst. The non-
negative integers vi j and v ′i j, called stoichiometric coefficients,
denote the number of molecules of a reactant consumed and
the number of a product produced by firing Rj, respectively.
Thus, the n-vector v j, called state change vector, where ith
element is v ′i j − vi j denotes the change caused by reaction Rj.

The stochastic chemical kinetics framework models the
biochemical reaction system as a (continuous time) jump Mar-
kov process. Given state X(t), the system may jump to one of
the m possible states X(t + τ) = X(t) + v j by firing a reaction
Rj at time t + τ. The probability of a reaction Rj firing in
the next infinitesimal time dt is proportional to a j(X(t))dt,
where propensity a j is a function of state X and the reaction
rate cj. If the reaction rate cj is a constant, such a propensity
is called time-homogeneous and is written as a j(X(t)). The
time-homogeneous propensity a j(X(t)) changes only when the
state changes. In case the reaction rate cj is a time-dependent
function, the propensity of a reaction Rj is denoted explicitly
as a j(X(t), t), and it is called time-inhomogeneous because it

depends not only on the state but also on the time. In the
following, we first consider the time-homogeneous case and
return to the time-inhomogeneous case in Secs. II A–IV.

For time-homogeneous propensity, a j(X(t)) is defined as

a j(X(t)) = cjh j(X(t)), (2)

in which h j(X(t)) counts the possible combinations of reac-
tants involved in Rj, given the state X(t) at time t. For standard
mass action models, the propensity has a concrete form

a j(X(t)) = cj


i

(
Xi(t)
vi j

)
= cj


i

Xi(t)!
vi j!(Xi(t) − vi j)! . (3)

We remark that for the synthesis reaction, whose products are
produced from external sources, we set a j(X(t)) = cj.

The probability distribution of the system state is com-
pletely described by the chemical master equation (CME).35

CME is a collection of differential equations which shows the
probability of all possible states in the system. The solution
of CME thus gives the distribution of the state X(t) at any
time t; however, an analytic solution of CME is hard to find
in general due to the high dimensional state space. Recent
work36–38 numerically solves CME by constraining the state
space exploration with a small tolerant error.

Instead of solving CME, the exact SSA gives possible
realizations of CME by sampling the joint next reaction prob-
ability density function (pdf) p(τ, j |x, t), which denotes the
probability that reaction Rj fires in the next time interval [t + τ,
t + τ + dτ] given X(t) = x. The pdf p(τ, j |x, t) is given by

p(τ, j |x, t) = a j(x)exp(−a0(x)τ), (4)

where

a0(x) =
m
j=1

a j(x). (5)

The pdf p(τ, j |x, t) shows that the next reaction Rj fires
with a discrete probability a j/a0 and its firing time τ follows an
exponential distribution Exp(a0). The DM samples p(τ, j |x, t)
by directly applying the inverse transformation which yields

τ =
1

a0(x) ln
(

1
r1

)
, (6)

and

j = the smallest index j s.t.
j

k=1

ak(x) > r2 a0(x), (7)

where r1 and r2 are two random numbers drawn from a uniform
distribution U(0,1).

The FRM also samples the same p(τ, j |x, t) to generate an
exact simulation trajectory, but in a different way. It generates
the putative time τj to the firing of a reaction Rj by inverse
transforming the exponential distribution with rate a j (i.e.,
τj = ln(1/r j)/a j(x)) and selects the reaction to fire with the
smallest putative time τ = minm

j=1{τj}. FRM is less efficient
than DM when the number of reactions m is large because
it requires m random numbers for each selection of the next
reaction firing. The NRM10 and its modified version34 improve
FRM by recycling the random numbers and updating the wait-
ing times of only those reactions that are affected by the current
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firing. Thus, after the initialization, NRM consumes only one
random number for each simulation step. Moreover, NRM
speeds up the extraction of the smallest waiting time by storing
waiting times of reactions in a priority queue (i.e., a binary
heap).

A. Stochastic simulation for reactions
with time-dependent rates

To model time-dependent changes due to, e.g., tempera-
ture or size of the cell, reaction rates are modelled as depending
on the time t explicitly. Let cj(t) be the time-dependent rate
of a reaction Rj. The formula for the time-inhomogeneous
propensity a j(X(t), t) of reaction Rj is represented as

a j(X(t), t) = cj(t)h j(X(t)). (8)

Finding the firing time τ of time-dependent reaction rates
by a generalization of the DM representation (see Eqs. (6) and
(7)) requires to solve the equation

m
j=1

 t+τ

t

a j(X(s), s)ds = ln
(

1
r

)
, (9)

where r is a uniformly distributed random number. Solving
Eq. (9) requires to integrate and sum m propensities at the same
time. The computational cost of the solution is thus increasing
with the number of reactions m. Therefore, the simulation of
biochemical reactions with time-dependent reaction rates by
this representation is extremely difficult and time-consuming,
especially in case of complex reaction rates.

Instead of solving Eq. (9), the MNRM solves simpler
equations by explicitly representing the number of times a
reaction occurs up to time t by an independent, time-
inhomogeneous Poisson process.39 More specifically, let Pj be
an unit-rate Poisson process associated with reaction Rj with
rate a j. Thus, Pj(

 t

0 a j(X(s), s)ds) will count the number of
times the reaction Rj occurs up to time t.

Let Tj (called the internal time) be the clock that deter-
mines the starting time for the next occurrence of Rj in the
time frame of Pj. At time t, we have Tj =

 t

0 a j(X(s), s)ds. Let
Sj > Tj be the first firing time of Rj in the time frame of Pj.
The waiting time τj to the first firing of reaction Rj in this time
frame will be the solution of Eq. (10), t+τ j

t

a j(X(s), s)ds = Sj − Tj . (10)

By substituting the definition of a j(X(t), t) from Eq. (8)
into Eq. (10) and noting that the state X(t) does not change in
the time interval [t, t + τj], we derive that t+τ j

t

cj(s)ds =
Sj − Tj

h j(X(t)) . (11)

The waiting time τj to the next firing of reaction Rj is there-
fore obtained by solving the inverse problem in Eq. (11). A
numerical method must be applied to solve this equation if an
analytical solution for τj does not exist.

To simulate biochemical reactions with time-dependent
rates, MNRM integrates the reaction rate of each individual
reaction, then solves Eq. (11) to have its waiting time τj.

ALGORITHM I. Modified next reaction method (MNRM).

procedure: mnrm
output: a trajectory of the reaction network

1. initialize time t = 0 with state X = x

2. set T j = 0 for j = 1 . . .m
3. generate m random numbers r j ∼U (0,1) and
4. set S j = ln(1/r j) for j = 1 . . .m ‘
5. while(t < tmax)do
6. compute waiting time τ j for j = 1 . . .m by solving t+τ j

t a j(X (s), s)ds = S j−T j

7. select reaction R j having τ =minm
j=1{τ j}

8. set T j =T j+
 t+τ
t a j(X (s), s)ds for all j = 1 . . .m

9. update time t = t +τ

10. update state X = X + v j

11. generate a random number r ∼U (0,1)
12. set time of the reaction firing S j = S j+ ln(1/r )
13. end while

Knowing the waiting times of all reactions, the next reaction
firing is selected to be the reaction Rj having smallest wait-
ing time τ = minm

j=1{τj}. Furthermore, during the simulation,
MNRM requires only one random number for each simulation
step because it tracks both Tj and Sj. We outline the MNRM
algorithm in Algorithm I to conclude this section.

III. REJECTION-BASED SIMULATION
FOR REACTIONS WITH TIME-DEPENDENT RATES

As discussed in Sec. II A, finding the next reaction firing
where reaction rates are time-dependent is relying on a trac-
table calculation of integration of reaction rates and solving
the inverse problem to obtain the waiting times of reactions.
In some cases (e.g., the sigmoidal reaction rates where such
a calculation is difficult), the simulation has to approximate
the reaction rates, hence introducing approximation errors in
the generated trajectories. In this section, we briefly review
the theoretical background of the RSSA. Then, we present our
new tRSSA for simulating biochemical reactions with time-
dependent rates. The advantage of tRSSA is that it does not
require to integrate reaction rates. Thus, it allows exact simu-
lation also in the cases in which the calculation of integration
of reaction rates is difficult.

A. Theoretical background of RSSA

RSSA is an exact and computationally efficient simulation
algorithm. RSSA accelerates the simulation by reducing the
average number of propensity calculations. The theoretical
framework for the selection of reaction firings in RSSA is
a rejection-based sampling technique. By exploiting such a
rejection-based mechanism, RSSA exactly simulates the pdf
p(τ, j |x, t) in Eq. (4). In other words, RSSA selects reaction Rj

to fire with probability a j/a0 and its firing time τ is drawn from
an exponential distribution Exp(a0) (see the work of Thanh
et al.21 for a formal proof of the exactness of RSSA).

RSSA uses propensity bounds [a j,a j], encompassing
the exact value of the propensity a j(X(t)), to select the next

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

193.205.215.142 On: Wed, 05 Aug 2015 08:06:56



054104-4 V. H. Thanh and C. Priami J. Chem. Phys. 143, 054104 (2015)

reaction firing. The propensity bounds are derived by bounding
the state X(t) to an interval [X ,X]. Having propensity bounds,
RSSA selects the next reaction firing in two steps as follows.
First, a candidate reaction Rj is selected proportional to its
propensity upper bound a j. RSSA samples the candidate reac-
tion Rj by linearly accumulating propensity upper bounds until
it finds the smallest reaction index j satisfying the inequality: j

k=1 ak > r1 · a0, where a0 =
m

j=1 a j and r1 is a random
number in U(0,1). For large reaction networks, an efficient
search can be applied to improve performance of this step.22

Then, RSSA validates the candidate Rj through a rejection
test with success probability a j(X(t))/a j. To do that, RSSA
generates a random number r2 ∼ U(0,1) and checks whether r2
≤ a j(X(t))/a j. If the check returns true, Rj is accepted to fire.
In the other case, a new candidate is selected to test. The rejec-
tion test postpones computing the exact propensity a j(X(t)) by
noting that if r2 ≤ a j/a j, then r2 ≤ a j/a j ≤ a j(X(t))/a j and
RSSA will accept Rj without evaluating a j(X(t)).

The firing time τ of the accepted candidate Rj is generated
following an Erlang(k,a0) distribution in which parameter k
is the number of consecutive trials with k − 1 rejections and
Rj is accepted at the kth trial, and rate parameter a0 =

m
j=1 a j.

The firing time τ of an accepted candidate is in fact the sum
of k independent exponentially distributed numbers with the
same rate a0. This fact will be used to decompose the selection
process in tRSSA for time-dependent reaction rates.

B. RSSA for time-dependent reaction rates

The tRSSA uses the propensity lower bound a j and upper
bound a j of reaction Rj for j = 1 . . . m to select the next
reaction firing. The derivation of the propensity bounds of the
time-dependent propensity a j(X(t), t) has to consider both the
state X(t) and reaction rate cj(t). tRSSA defines the propensity
bounds for a reaction Rj by bounding both the state and its
reaction rate.

To derive the bound for the state, we bound the population
of species in the state X(t). For species Si, we set an arbi-
trary lower bound X i and upper bound X i around its current
population Xi(t) (for typical models, ±10% to ±20% of its
current population Xi(t) give better performance as shown in
Section IV). The state X(t) therefore is bound by the fluctu-
ation interval [X ,X] such that the inequality X ≤ X(t) ≤ X
holds for each species.

To bound the reaction rate cj(t), we can use its global min-
imum and maximum values over the whole simulation time in-
terval [0, tmax]. However, the ratio of the global minimum over
maximum could be very small, resulting in a low acceptance
probability of the candidate reaction, hence decreasing simu-
lation performance. Therefore, our strategy is to discretize the
simulation time [0, tmax] into k time points 0 < t1 < · · · < tk
= tmax. The time discretization is decided so that the lower
bound rate cj and upper bound rate cj of the reaction rate
cj in a time interval [ti; ti+1] satisfy the condition cj/cj ≥ σ,
where σ is a predefined constant between 65% ≤ σ ≤ 90%.
We remark that both the fluctuation interval [X ,X] and the
time discretization scheme can be chosen arbitrarily without
affecting the simulation result, but only the simulation perfor-
mance.

We derive the propensity bounds a j and a j for reaction

Rj as follows. Let h j and h j be the minimum and maximum

of h j over the fluctuation interval [X ,X], respectively. For
mass action kinetics, we can compute these extreme values
easily by h j = h j(X) and h j = h j(X) since h j is a monotonic
function. Let cj and cj be the minimum and maximum of the
rate function cj(t) over the time interval [ti, ti+1]. By using the
definition of a j in Eq. (8) and applying interval arithmetic,40

we can compute the propensity bounds as

[a j,a j] = [h j,h j] · [cj,cj]
= [h jcj,h jcj]. (12)

Our tRSSA selects a candidate reaction Rj with proba-
bility a j/a0 and validates its acceptance for firing with success
probability a j(X(t), t)/a j. The rejection test requires to eval-
uate a j(X(t), t). However, tRSSA is still able to quickly accept
Rj and avoid computing a j(X(t), t) by using the lower bound
propensity a j. The selection of reaction firing Rj in tRSSA is
exact because this reaction is selected with probability propor-
tional to its exact propensity a j(X(t), t) at the current time t.
Furthermore, tRSSA is computationally efficient because the
evaluation of a j(X(t), t) is easier than the calculation of its
integration and solving its inverse problem to find the waiting
time.

The firing time of the accepted reaction Rj is the sum
of exponentially distributed numbers with rate a0 until it is
accepted. However, the total propensity upper bound a0 may
change depending on which time interval [ti, ti+1] the current
time t is residing in. tRSSA thus has to update a0 to reflect
the change anytime the current time t moves out of the cur-
rent time interval [ti, ti+1]. To identify the time interval of the
current time, tRSSA has to advance the time t by the waiting
time τ of each candidate reaction regardless it is accepted
or rejected. First, the waiting time τ of a candidate reaction
is generated from an exponential distribution Exp(a0). Then,
tRSSA advances the current time by this amount to t = t + τ.
At this point, if the time t is confined in its current time interval
[ti, ti+1], the candidate reaction will be selected and validated
to fire. Otherwise, if the time t jumps out of its current time
interval, the next time interval is loaded. The new reaction rate
bounds cj and cj as well as propensity bounds a j and a j are
updated, and then a new selection step is performed.

C. The tRSSA

Algorithm II outlines the details of tRSSA for simulating
biochemical reactions with time-dependent reaction rates. The
result of a tRSSA simulation is a trajectory of the reaction
network starting at time t = 0 with an initial state x and fin-
ishing at time tmax.

The lines 2-8 set up the propensity bounds a j and a j

for j = 1 . . . m which are used by tRSSA for the selection of
next reaction firings. The initialization steps are composed of
three steps: (1) specifying the bound [X ,X] around the current
state X(t), (2) discretizing the simulation time [0, tmax] into
intervals 0 < t1 < · · · < tk = tmax, and finally (3) computing
the corresponding bounds. tRSSA then moves to the main
simulation loop which is outlined in lines 9-39.
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ALGORITHM II. Time-dependent rejection-based SSA (tRSSA).

procedure: tRSSA
output: a trajectory of the reaction network

1. initialize time t = 0 and state X = x
2. define the bound [X, X ] for state X

3. discretize [0, tmax] to k intervals 0 < t1 < . . . < tk = tmax

4. set i = 1
5. compute c j and c j over time interval [ti−1, ti] for j = 1 . . .m

6. compute h j and h j over abstract state [X, X ] for j = 1 . . .m

7. derive propensity bounds a j and a j for j = 1 . . .m

8. compute a0=
m

j=1a j

9. while (t < tmax) do
10. generate a random number r1∼ U(0,1)
11. compute τ = (−1/a0)ln(r1)
12. update time t = t +τ

13. if (t > ti) then
14. set t = ti
15. update i = i+1
16. compute c j and c j over interval [ti−1, ti] for j = 1 . . .m

17. update propensity bounds a j and a j for j = 1 . . .m

18. go to 9
19. end if
20. generate two random numbers r2, r3∼U (0,1)
21. select minimum index j s.t.

 j
k=1ak > r2a0

22. set accept=false
23. if (r3 ≤ (a j/a j)) then
24. set accepted =true
25. else
26. evaluate a j with current state X

27. if (r3 ≤ (a j/a j)) then
28. accepted =true
29. end if
30. end if
31. if (accepted) then
32. update state X = X + v j

33. if (X < [X, X ]) then
34. define a new [X, X ] around X

35. compute h j and h j for interval [X, X ] for j = 1 . . .m

36. update propensity bounds a j and a j for j = 1 . . .m

37. end if
38. end if
39. end while

For each simulation step, tRSSA generates the waiting
time τ of candidate reaction from an exponential distribution
with rate a0. This step (line 11) requires a random number
r1 ∼ U(0,1). The time is advanced to a new time t = t + τ.
tRSSA then checks whether the current time t is bounded
by the time point ti. If it is indeed the case that t ≤ ti, the
candidate reaction will be selected and validated to fire through
a rejection-based selection. If t > ti, we have to load a new
time interval and update the propensity bounds. Note that since
the reaction rate bounds and the state bounds are independent,
we only need to update rate bounds while reusing the state
bounds. Thus, we compute new bounds for reaction rate cj(t)
for j = 1 . . . m in this new time interval. The corresponding
propensity bounds for reactions are updated as well to reflect
changes in the reaction rate bounds and a new simulation loop
will be performed. The steps for checking the current time t
are implemented in lines 13-19.

The rejection-based selection of tRSSA is implemented
in lines 20-38. A candidate Rj is selected so that its index j is
the smallest one satisfying

 j

k=1 ak > r2a0, where r2 ∼ U(0,1)
(line 21). The candidate Rj is then validated to ensure if it
is accepted with success probability a j/a j (lines 22-30). The
validation of candidate requires a random number r3 ∼ U(0,1).

If the candidate Rj is accepted, the state is updated to move
to a new state X = X + v j. tRSSA then checks whether the new
state is in its current bound [X ,X]. If this is the case, the next
simulation step is performed without changing the propensity
bounds. In an uncommon case where the state X(t) < [X ,X], a
new fluctuation interval should be derived. The new bounds h j

and h j as well as propensity bounds a j and a j are updated to
reflect the changes in state. The update of propensity bounds
can be performed locally by applying a Species-Reaction (SR)
dependency graph.21 The SR dependency graph is a directed
bipartite graph which shows the dependency of reactions on
species. A directed edge from a species Si to a reaction Rj

is in the graph if a change in the population of species Si
requires reaction Rj to recompute its propensity. Thus, when
a species Si moves out of its fluctuation interval, only the
reactions Rj which are affected by this species need to update
their propensity bounds.

IV. NUMERICAL EXAMPLES

In this section, we report the simulation results by our
tRSSA in comparison with MNRM. All of these algorithms
were implemented in Java and run on an Intel i5-540M pro-
cessor. The implementation of the algorithms as well as the
benchmark models is freely available at the url http://www.
cosbi.eu/research/prototypes/rssa.

We report numerical simulation results on three models
acting as a benchmark: (1) time-dependent transcription regu-
lation, (2) epidemic model with periodic contract rate, and
(3) birth-process with sigmoidal birth rate. The reaction rates
in the three models have different time-dependent forms. In
the transcriptional regulatory model, the rates of reactions are
modelled as an exponential function. The analytic formulas
for both the integration of these rates and the solution of the
inverse problem for computing the waiting times are available.
Thus, in this example, the exact value of the firing time of the
next reaction firing can be computed. The other two models do
not allow the integration of reaction rates and/or the analytical
solution of the inverse of the integration. For the epidemic
model, we are able to integrate reaction rates; however, finding
the reaction firing time requires to solve a non-linear equation
and a numerical root finding method must be applied. In the
last model, the birth rate has a steep sigmoidal form. The
integration of the reaction rate in this example is extremely
difficult and inconvenient to implement. Thus, MNRM has
to approximate the sigmoidal birth rate by assuming it as
piecewise constant during a time interval.

A. Time-dependent transcription regulation

We consider a transcriptional regulatory model listed in
Table I.41 This model has 10 reactions which represents the
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TABLE I. Time-dependent transcription regulation.

Reaction Rate

R1: RNA→ RNA+M 0.043
R2: M→ ∅ 0.000 7
R3: DNA ·D→ RNA+DNA ·D 0.071 5
R4: RNA→ ∅ 0.003 9
R5: DNA+D→ DNA ·D 0.019 9ek t

R6: DNA ·D→ DNA+D 0.479 1
R7: DNA ·D+D→ DNA ·2D 0.000 19ek t

R8: DNA ·2D→ DNA ·D+D 0.876 5×10−11

R9: 2M→ D 0.083ek t

R10: D→ 2M 0.5

translation of mRNA into protein M (monomer) with the tran-
scription factor D (dimer). The dimerization of monomer M
to produce dimer D is modelled by reactions R9 and R10,
respectively. In this model, the transcription (reaction R3) and
then the translation (reaction R1) occur after the transcription
factor D binds to DNA (reaction R5). The DNA can be bound at
two binding regions denoted by DNA·D and DNA·2D, respec-
tively. Reactions R5, R7, and R9 have a general exponential rate
form c(t) = c0ekt, where c0 is a constant which is different for
each reaction and the parameter k is the same for all reactions.
In this example, we consider k = − ln(2)/P, where the time
period P = 30. To simplify the simulation, we do not consider
the cell division process, which splits the population of species
by a half after time period P.

In the following, we derive the analytical formulas for the
integration of the exponential reaction rate cj(t) = c0ekt and
then the computation of the waiting time τj of reaction Rj,

which is used in the simulation by MNRM. More specifically,
we calculate the integration of cj(t) over the time interval
[t, t + τj] by  t+τ j

t

cj(s)ds = c0

 t+τ j

t

eksds

=

 c0

k
eks

 t+τ j

t

=
c0

k
ekt(ekτ j − 1). (13)

The waiting time τj of reaction Rj is derived by plugging
the integration of cj(t) in Eq. (13) into Eq. (11). We have

τj =
1
k

ln( k(Sj − Tj)
c0ekth j(X(t)) + 1). (14)

We thus use Eq. (14) to compute the waiting times of reactions
with exponential rate form in MNRM.

tRSSA discretizes the simulation time into intervals with
length ∆t = P/2 = 15. Thus, for time-dependent rate, the ra-
tio of the lower bound rate cj and its upper bound rate cj

is e− ln 2/2 = 0.71. The fluctuation interval [X ,X] is defined
around ±10% of the state X(t).

We simulated the time-dependent transcription regulation
model to a time Tmax = 120 with the initial conditions #DNA
= 10, #M = 10, and #D = 30. We performed 10 000 indepen-
dent simulation runs of this model and averaged the results
to benchmark the algorithms. Figure 1 shows the mean (left)
and variance (right) of population of monomer M and dimer D
by tRSSA and MNRM. The figure shows that both the mean
and variance of population of species predicted by tRSSA and
MNRM strongly agree with each other.

FIG. 1. Population of monomer M and
dimer D in time-dependent transcrip-
tion regulation predicted by tRSSA and
MNRM.
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FIG. 2. Performance of tRSSA and MNRM in simulating of the time-
dependent transcription regulation model.

Figure 2 compares the performances of tRSSA and
MNRM in simulating the time-dependent transcription regu-
lation. The figure shows that tRSSA outperforms MNRM in
simulating this model by avoiding propensity updates. More
in details, there are in average 3150 reaction firings in the
simulation. MNRM thus has to perform 3150 propensity
updates, while tRSSA only performs about 435 propensity
updates (about 14% in comparison with the total number of
propensity updates performed by MNRM). The acceptance
probability of a candidate reaction in tRSSA is kept around
69.7%. Thus, tRSSA is about 22% faster than MNRM.

B. Epidemic model with periodic contact rate

The reactions of the epidemic model are listed in Table II.
This model contains 3 individual species: susceptible S, in-
fected I, and recovered R involved in 6 reactions to repre-
sent a simple transmission of an infectious disease.42,43 The
spreading of the disease is modelled as follows. A susceptible
species S becomes infected when it contacts with an infected
species I by R1. The infected species I can recover to become
disease-free R due to immunity which is modelled by R2. In
this model, a recovered species can be infected again as shown
in R3. The reactions R4–R6 model the natural degradation of
S, I, and R, respectively. The contact rate of the disease in
R1 is modelled as a periodic function44 and chosen to be c(t)
= c0(1 + ϵ sin(ωt)), where constant c0 = 0.003 and ω = 2π/T
in which the period of the sine function is T = 6.

The integration of reaction rate of a general reaction Rj

with sinusoidal form cj(t) = c0(1 + ϵ sin(ωt)) in an interval

TABLE II. Epidemic model with periodic contact rate.

Reaction Rate

R1: S+ I→ 2I c0(1+ϵ sin(ωt))
R2: I→ R 0.02
R3: R→ S 0.007
R4: S→ ∅ 0.002
R5: I→ ∅ 0.05
R6: R→ ∅ 0.002

[t, t + τj] is derived as follows: t+τ j

t

cj(s)ds = c0

 t+τ j

t

(1 + ϵ sin(ωs))ds

= c0


s − ϵ

ω
cos(ωs) t+τ j

t

= c0(τj − ϵ

ω
(cos(ω(t + τj)) − cos(ωt))). (15)

For MNRM, by substituting Eq. (15) into Eq. (11), the waiting
time τj of reaction Rj is thus the solution of a non-linear
equation,

f (τj) = τj −
ϵ

ω
cos(ω(t + τj)) + ϵ

ω
cos(ωt)

−
Sj − Tj

c0h j(X(t)) = 0. (16)

Because an analytic solution for the waiting time τj in
Eq. (16) is not trivial, we numerically approximate it by apply-
ing the Newton-Raphson method. In our implementation, the
criterion for stopping the Newton-Raphson search is the rela-
tive error smaller than 1.0 × 10−7. Furthermore, we constrain
the search for the minimal τj in the current period of the sine
function that is the time interval [t, (t/T + 1)T].

The fluctuation interval [X ,X] for tRSSA is defined to be
±10% of the current state X(t). We compute the bounds of the
reaction rate cj(t) by discretizing the period [0,T] into time
intervals so that the ratio of minimum and maximum of the sine
function in an interval is 1/2. Specifically, we discretize the
period [0,T] into 6 subintervals and compute the rate bounds
such that

[cj,cj] =




[c0,c0(1 + ϵ/2)], if t ∈

0,

T
12


∪
5T

12
,
T
2



[c0(1 + ϵ/2),c0(1 + ϵ)], if t ∈
 T
12

,
5T
12



[c0(1 − ϵ/2),c0], if t ∈
T

2
,
7T
12


∪
11T

12
,T


[c0(1 − ϵ),c0(1 − ϵ/2)], if t ∈
7T

12
,
11T
12



.

(17)

The epidemic model is simulated by performing 10 000
independent runs with the initial conditions #S = 1000,
#I = 10, and #R = 0 and ending time of simulation Tmax = 120.
Figure 3 plots the mean and variance of number of infected
species I with the value of ϵ taken from the set: 0, 0.2, and 0.6.
The general behaviour of the system shown in Figure 3 is that
the number of infected I approaches the peak, then decreases to
steady value. However, the peak value and time to approach the
peak are different when increasing ϵ . For example, the peak of
the number of infected I in case ϵ = 0.6 is around 950, while in
case of ϵ = 0 is around 895. Figure 3 shows a strong agreement
between tRSSA and MNRM in simulating the epidemic model
for all cases of ϵ .

Figure 4 compares the performance of tRSSA and MNRM
with different values of ϵ . A general conclusion from Figure 4
is that tRSSA outperforms MNRM in all cases. The speedup
gain of tRSSA increases from 1.19 to 1.9 in comparison with
MNRM when increasing ϵ from 0 to 0.6. In case ϵ = 0, the
contact rate is constant so MNRM can compute the waiting
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FIG. 3. The number of infected I pre-
dicted by tRSSA and MNRM with dif-
ferent settings of parameter ϵ.

FIG. 4. Performance of tRSSA and MNRM in simulating Epidemic model
with different settings of parameter ϵ.

time of corresponding reactions without the need to numeri-
cally solve Eq. (16). However, when increasing ϵ , MNRM has
to spent time to numerically solve Eq. (16) which increases
total simulation time. As shown in the figure, the simulation
time of MNRM in case ϵ = 0.6 is almost double its simulation
time in case ϵ = 0. tRSSA, however, does not need to solve
any equation. It only requires to evaluate the propensity which
is much more computationally efficient. Furthermore, tRSSA
avoids the propensity evaluation as much as possible. Thus,
the computational time of tRSSA only slightly increases when
ϵ increases from 0 to 0.6. The increase in the simulation
time of tRSSA is due to the decrease of acceptance proba-
bility which decreases from 82% with ϵ = 0% to 78% with
ϵ = 0.6.
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C. Birth process with sigmoidal birth rate

In this example, we use a simple birth process with a
steep sigmoidal birth rate to demonstrate the ability of tRSSA
to cope with a very complex reaction rate. The birth process

is a simple birth reaction, ∅
c(t)
→ S in which species S is

continuously produced with a time-dependent birth rate c(t).
The birth rate has general form c(t) = c0φ(t), where φ(t) is a
steep sigmoidal equation,

φ(t) = 1
1 + ( t

K
)m . (18)

In this simulation, we consider c0 = 1, K = 20, and m = 5.
Since the integration of φ(t) is difficult to implement,45 MNRM
computes the waiting time τ of the reaction by assuming
that the rate c(t) is constant during the time interval [t, t + τ]
(i.e., c(t ′) = c(t) for all t ′ ∈ [t, t + τ]). tRSSA discretizes the
simulation time Tmax into intervals with length ∆t = K/4 and
compute the bounds of the reaction rate c(t) by using its
monotonic decreasing property.

We compare simulation results by tRSSA with MNRM
and quantify the approximation error introduced by MNRM
in simulating this birth process in Figs. 5 and 6. We simulated
the birth process with initial condition #S = 0. The simulation
stops at time Tmax = 40. The plot in Fig. 5 shows the mean
and variance of species S by tRSSA and MNRM averaging
from 10 000 independent runs. We further derive the histo-
grams of species S predicted by tRSSA and MNRM and use
the histogram distance46 to measure the approximation error
introduced by MNRM with the assumption that the sigmoidal
rate c(t) is piecewise constant over time interval [t, t + τ].
According to Cao and Petzold,46 two different simulation algo-
rithms are considered to have the same accuracy if the histo-
gram distance between these simulation algorithms is less than
the self distance, which is the histogram distance that computes
from two independent ensembles produced from the same
simulation algorithm. The self distance is bound by

√
4B/πN ,

where B is the number of bins that is used to divide the entire
range of population of species S into a series of small intervals
in order to compute the histogram and N is the total number of
simulation runs. Thus, a larger histogram distance between an
approximate simulation and an exact simulation in comparison
with the self distance will quantify the approximation error

FIG. 6. The approximation error made by MNRM in simulating the birth
process with one species S by assuming the birth rate is constant during a time
interval. The solid line with filled triangle is the histogram distance between
MNRM and tRSSA. The dashed line denotes the bound of the histogram self
distance

√
4B/πN ≈ 0.0798.

introduced by the approximate algorithm. In our experiment,
we derived the histograms of #S(t) by tRSSA and MNRM,
respectively, and computed their histogram distance by fixing
N = 10 000 runs for each algorithm and total B = 50 bins. The
bound of the histogram self distance in this setting is thus√

4B/πN ≈ 0.0798. Fig. 6 plots the approximation error made
by MRNM by comparing the histogram distance between it
and tRSSA and the bound of self distance. As shown in Fig. 6,
the approximation error made by MNRM is very significant
especially when the population of S is low. For example, at
time t = 10 with the average population of species S around
10, the histogram distance is 0.91 which is 11.4 times larger
than the bound of the self distance 0.0798.

We compare the performance of tRSSA and MNRM on
two models. The first model is composed of one birth process
where only one species is produced. The second model has 10
birth processes which produce 10 different species. The second
model is created by replicating 10 times the birth process.
The initial population is set to zero for all of the species in
both of these models. Fig. 7 plots in the left performances of
tRSSA and MNRM for one birth process model, while the
right is for the ten birth process model. The performance of
tRSSA and MNRM for the one birth process model is compa-
rable. However, for the ten-process model, tRSSA is roughly
30% faster than MNRM. Such a significant speedup gain is

FIG. 5. Prediction of the birth pro-
cess with one species S by tRSSA and
MNRM.
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FIG. 7. Performance of tRSSA and MNRM in simulating the birth process
with different settings.

achieved due to reducing the number of propensity updates.
In the ten-process model, tRSSA just performs 7 propensity
updates instead of 230 as done by MNRM. We remark that
evaluating the sigmoidal rate is time-consuming. Furthermore,
the acceptance probability of tRSSA is kept at 90%.

V. CONCLUSIONS

In this paper, we studied the problem of simulating bio-
chemical reactions with time-dependent rates. We proposed an
exact and efficient simulation algorithm, called tRSSA, to cope
with time-dependent rates. Our tRSSA exploits the propensity
bounds of reactions and the rejection-based mechanism to
select the next reaction firings. The propensity bounds are
derived by bounding both the state and reaction rates. By
using these bounds, tRSSA selects the reaction firings without
the need to integrate the reaction rates, while preserving the
exactness of the selection. Thus, the simulated trajectories
by our algorithm are exact. The experiments on the bench-
mark have shown that our new approach is not only exact
but also computationally efficient with respect to existing
approaches. In the sense of exactness, tRSSA is significantly
better for simulating models where reaction rates are complex
and difficult to integrate. In the sense of performance, tRSSA
significantly improves simulation performance for large reac-
tion networks where the number of propensity updates is
large.
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