
On the rejection-based algorithm for simulation and analysis of large-scale reaction
networks
Vo Hong Thanh, Roberto Zunino, and Corrado Priami

Citation: The Journal of Chemical Physics 142, 244106 (2015); doi: 10.1063/1.4922923
View online: http://dx.doi.org/10.1063/1.4922923
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/142/24?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Simulation of biochemical reactions with time-dependent rates by the rejection-based algorithm
J. Chem. Phys. 143, 054104 (2015); 10.1063/1.4927916

Efficient rejection-based simulation of biochemical reactions with stochastic noise and delays
J. Chem. Phys. 141, 134116 (2014); 10.1063/1.4896985

Improved delay-leaping simulation algorithm for biochemical reaction systems with delays
J. Chem. Phys. 136, 144108 (2012); 10.1063/1.3702433

Stochastic theory of large-scale enzyme-reaction networks: Finite copy number corrections to rate equation
models
J. Chem. Phys. 133, 195101 (2010); 10.1063/1.3505552

Modeling signal transduction networks: A comparison of two stochastic kinetic simulation algorithms
J. Chem. Phys. 123, 114707 (2005); 10.1063/1.2018641

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

193.205.210.41 On: Wed, 07 Oct 2015 12:36:42

http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/701402136/x01/AIP-PT/JCP_ArticleDL_092315/AIP-2639_EIC_APL_Photonics_1640x440r2.jpg/6c527a6a713149424c326b414477302f?x
http://scitation.aip.org/search?value1=Vo+Hong+Thanh&option1=author
http://scitation.aip.org/search?value1=Roberto+Zunino&option1=author
http://scitation.aip.org/search?value1=Corrado+Priami&option1=author
http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://dx.doi.org/10.1063/1.4922923
http://scitation.aip.org/content/aip/journal/jcp/142/24?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/143/5/10.1063/1.4927916?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/141/13/10.1063/1.4896985?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/136/14/10.1063/1.3702433?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/133/19/10.1063/1.3505552?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/133/19/10.1063/1.3505552?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/123/11/10.1063/1.2018641?ver=pdfcov

THE JOURNAL OF CHEMICAL PHYSICS 142, 244106 (2015)

On the rejection-based algorithm for simulation and analysis
of large-scale reaction networks

Vo Hong Thanh,1,a) Roberto Zunino,2,b) and Corrado Priami1,2,c)
1The Microsoft Research-University of Trento Centre for Computational and Systems Biology,
Piazza Manifattura 1, Rovereto 38068, Italy
2Department of Mathematics, University of Trento, Trento, Italy

(Received 10 December 2014; accepted 12 June 2015; published online 25 June 2015)

Stochastic simulation for in silico studies of large biochemical networks requires a great amount
of computational time. We recently proposed a new exact simulation algorithm, called the rejection-
based stochastic simulation algorithm (RSSA) [Thanh et al., J. Chem. Phys. 141(13), 134116 (2014)],
to improve simulation performance by postponing and collapsing as much as possible the propensity
updates. In this paper, we analyze the performance of this algorithm in detail, and improve it
for simulating large-scale biochemical reaction networks. We also present a new algorithm, called
simultaneous RSSA (SRSSA), which generates many independent trajectories simultaneously for
the analysis of the biochemical behavior. SRSSA improves simulation performance by utilizing
a single data structure across simulations to select reaction firings and forming trajectories. The
memory requirement for building and storing the data structure is thus independent of the number
of trajectories. The updating of the data structure when needed is performed collectively in a single
operation across the simulations. The trajectories generated by SRSSA are exact and independent
of each other by exploiting the rejection-based mechanism. We test our new improvement on real
biological systems with a wide range of reaction networks to demonstrate its applicability and
efficiency. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4922923]

I. INTRODUCTION

Stochastic modelling of biochemical reaction models the
system state as a vector of species populations. A reaction
between species is a random event with probability propor-
tional to a propensity dependent on the reaction kinetics. The
temporal evolution of biochemical networks can be realized
by an exact simulation procedure called the stochastic simu-
lation algorithm (SSA),1,2 also known as the Direct Method
(DM). Each SSA simulation step selects a reaction to fire
with a probability proportional to its propensity, according
to which the system jumps to a new state. Then, reaction
propensities are updated to reflect the changes in the system
state.

There are two main factors affecting performance of
SSA: (1) searching for next reaction events and (2) updating
propensities of reactions. Furthermore, due to the inherent
randomness in the simulation, many simulation runs should
be done to have a reasonable statistical estimation that further
increases the total simulation time. Many formulations have
been introduced to accelerate the stochastic simulation. The
Next Reaction Method (NRM)3 exploits a special indexed
structure, i.e., a binary heap, to store and extract smallest
(absolute) putative times. Extracting the smallest time from
the heap requires constant time, while updating requires
logarithmic time. Furthermore, NRM uses a dependency

a)Electronic mail: vo@cosbi.eu
b)Electronic mail: roberto.zunino@unitn.it
c)Electronic mail: priami@cosbi.eu

graph, which points out which propensities need to be updated
after a reaction firing, to reduce the number of propensity
updates. The Optimized Direct Method (ODM)4 and the
Sorting Direct Method (SDM)5 accelerate the search for next
reaction of SSA by sorting reactions in descending order
of propensities. The search for next reaction can further be
improved by dividing reactions into groups6,7 and performing
two steps: (1) selecting the group, then (2) locating the reaction
within that group. If groups are split into subgroups recursively
until a group contains only two reactions, we obtain a tree
structure with reactions on the leaves. Then, the search for the
next reaction is done by traversing the tree.8–11 The SSA with
Composition Rejection algorithm (SSA-CR)7,12 exploits the
reaction grouping strategy and rejection-based mechanism to
improve the search for next reaction. SSA-CR groups reactions
with propensities between bi−1 and bi (where b is a chosen
base, e.g., b = 2) into a group i. The search for the next
reaction in group i is done through a rejection test with the hat
function bi. The search for next reaction firings by SSA-CR is
thus propositional to the number of groups, depending on the
ratio between the highest and lowest propensities. Thus, if the
number of groups is bound by a small constant, the asymptotic
time complexity of the search for the next reaction in SSA-
CR is constant time. After a reaction firing, the propensities
of affected reactions are updated and moved to appropriate
groups. If the number of affected reactions is large and their
propensities vary significantly, SSA-CR has to frequently
update propensities and its underlying data structure, hence
decreasing its overall performance.6 Typically, the cost of
propensity updates done by SSA contributes around 65% to

0021-9606/2015/142(24)/244106/13/$30.00 142, 244106-1 © 2015 AIP Publishing LLC

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

193.205.210.41 On: Wed, 07 Oct 2015 12:36:42

http://dx.doi.org/10.1063/1.4922923
http://dx.doi.org/10.1063/1.4922923
http://dx.doi.org/10.1063/1.4922923
http://dx.doi.org/10.1063/1.4922923
http://dx.doi.org/10.1063/1.4922923
http://dx.doi.org/10.1063/1.4922923
http://dx.doi.org/10.1063/1.4922923
http://dx.doi.org/10.1063/1.4922923
http://dx.doi.org/10.1063/1.4922923
http://dx.doi.org/10.1063/1.4922923
mailto:vo@cosbi.eu
mailto:vo@cosbi.eu
mailto:vo@cosbi.eu
mailto:vo@cosbi.eu
mailto:vo@cosbi.eu
mailto:vo@cosbi.eu
mailto:vo@cosbi.eu
mailto:vo@cosbi.eu
mailto:vo@cosbi.eu
mailto:vo@cosbi.eu
mailto:vo@cosbi.eu
mailto:roberto.zunino@unitn.it
mailto:roberto.zunino@unitn.it
mailto:roberto.zunino@unitn.it
mailto:roberto.zunino@unitn.it
mailto:roberto.zunino@unitn.it
mailto:roberto.zunino@unitn.it
mailto:roberto.zunino@unitn.it
mailto:roberto.zunino@unitn.it
mailto:roberto.zunino@unitn.it
mailto:roberto.zunino@unitn.it
mailto:roberto.zunino@unitn.it
mailto:roberto.zunino@unitn.it
mailto:roberto.zunino@unitn.it
mailto:roberto.zunino@unitn.it
mailto:roberto.zunino@unitn.it
mailto:roberto.zunino@unitn.it
mailto:roberto.zunino@unitn.it
mailto:roberto.zunino@unitn.it
mailto:roberto.zunino@unitn.it
mailto:roberto.zunino@unitn.it
mailto:roberto.zunino@unitn.it
mailto:roberto.zunino@unitn.it
mailto:roberto.zunino@unitn.it
mailto:priami@cosbi.eu
mailto:priami@cosbi.eu
mailto:priami@cosbi.eu
mailto:priami@cosbi.eu
mailto:priami@cosbi.eu
mailto:priami@cosbi.eu
mailto:priami@cosbi.eu
mailto:priami@cosbi.eu
mailto:priami@cosbi.eu
mailto:priami@cosbi.eu
mailto:priami@cosbi.eu
mailto:priami@cosbi.eu
mailto:priami@cosbi.eu
mailto:priami@cosbi.eu
mailto:priami@cosbi.eu
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4922923&domain=pdf&date_stamp=2015-06-25

244106-2 Thanh, Zunino, and Priami J. Chem. Phys. 142, 244106 (2015)

85%, and in some peculiar cases even up to 99%, of the entire
simulation cost. Reducing propensity updates then provides an
improvement for the simulation performance. An attempt to
reduce propensity update cost is the Partial-propensity Direct
Method (PDM)13–15 where propensities are factoring out by
common reactants. Propensities of reactions with the shared
reactant will be updated in one operation. However, due to a
special form of the partial propensities, the reactant grouping
approach is limited to class of reactions involving at most two
reactants and their propensities must be in a form which can
be factorized (e.g., mass-action).14 Although non-elementary
reactions could be decomposed into elementary reactions,
wet-lab experiments can more easily measure the propensity
of the non-elementary reaction than the propensities of
the intermediate elementary reactions that are involved in.
When only the non-elementary reactions are measured, then
simulation can only be performed using a complex propensity
function. The Michaelis-Menten kinetics,16 for example, is
widely used to model enzymatic reactions in biological
systems.

We have recently proposed a new exact stochastic algo-
rithm called Rejection-based Stochastic Simulation Algo-
rithm (RSSA)17,18 to accelerate the stochastic simulation. Our
approach aims to reduce the propensity updates but is not
relying on any specific form of reactions in the system. RSSA is
thus able to simulate any type of reaction (e.g., non-elementary
reactions). RSSA is specifically tailored for reaction net-
works in which propensity computations are time-consuming
(e.g., complex propensity such as Michaelis-Menten rate func-
tion). During the simulation of RSSA, many propensity up-
dates are completely avoided. Specifically, RSSA abstracts
the propensity of a reaction with an interval including all
possible concrete propensity values. The propensity bounds
of reactions are derived by specifying an arbitrary bound
on the population of each species (the choice of which af-
fects the performance, but not the exactness of the results).
RSSA uses these propensity bounds to select the next reaction
firing in two steps. First, a candidate reaction is randomly
chosen proportionally to its propensity upper bound. The
selected candidate is then inspected through a rejection test
to ensure that it fires with the same probability determined
by SSA. The validation step postpones the evaluation of the
exact propensity of the candidate reaction by exploiting its
propensity lower bound. The exact propensity will be eval-
uated only if needed. The candidate reaction is either fired
or (with low probability) rejected. If it is accepted to fire,
only the state is updated, without recomputing the propen-
sity except in uncommon cases. New propensity bounds are
recomputed only when the population of a species exits the
chosen bound. In case of rejection, a new candidate reaction is
selected.

In this paper, we analyze the computational cost of RSSA
and introduce efficient formulations to improve its perfor-
mance for simulating large-scale biochemical reaction net-
works. We study how the search procedure applied to select
candidates affects the simulation performance. We also focus
on controlling the bounds of population of species which
indirectly affect the propensity bounds and the acceptance
probability of a candidate reaction to adaptively optimize itself.

The second contribution of this paper is a new algo-
rithm, called simultaneous rejection-based stochastic simu-
lation algorithm (SRSSA), that exploits the rejection-based
principle to efficiently generate multiple independent trajec-
tories simultaneously in one simulation run. SRSSA uses the
same propensity bounds across simulations to select the next
reaction firings instead of each one for separated simulation
runs. The simulation performance is improved by reducing and
lumping up together the computing of propensity bounds into
one operation. The generated trajectories by SRSSA are still
exact and independent of each other.

This paper is organized as follows. Section II reviews
the standard approaches for stochastic simulation of biochem-
ical reaction systems and recalls the basic ideas behind the
RSSA algorithm. Section III analyzes the performance of
RSSA and its proposed improvements. Section IV presents
our new SRSSA algorithm. Section V presents the experi-
mental results of our improvements on concrete models in a
range of problem sizes and complexities to demonstrate its
applicability and efficiency. The concluding remarks are in
Sec. VI.

II. STOCHASTIC SIMULATION BACKGROUND

We consider a well-mixed volume containing n species
denoted as S1 . . . Sn. The state of the system is represented
by a population vector X(t) = (X1(t), . . . ,Xn(t)), where Xi(t)
denotes the population of species Si at a time t. Species can
interact through m reactions R1 . . . Rm. The probability that
a reaction Rj fires in the next infinitesimal time t + dt is
a j(X(t))dt, where a j(X(t)) is called the reaction propensity.1

The propensity a j(X(t)) is roughly proportional to the number
of possible combinations of reactants involved in Rj and its
kinetics information. Hereafter, we use a j instead of a j(X(t))
for a shorthand.

If a particular reaction Rµ is selected to fire, the state
changes according to the state change vector vµ, which ex-
presses the changes in population of species involved in Rµ.
The state transition of the system is therefore modeled as
a (continuous-time) jump Markov process. The probability
distribution of the system is completely described by the chem-
ical master equation (CME);19 however, an analytic solution
of CME is hard to find, unless the system is rather simple.
Simulation is often the choice to construct possible realizations
of CME. The SSA, in particular, is an exact method to sample
temporal behavior encoded in CME.

SSA1,2 realizes the next state by simulating the joint prob-
ability density function (pdf) p(τ, µ) with p(τ, µ)dτ being the
probability that a reaction Rµ fires in the next infinitesimal time
t + τ + dτ, given the state X(t) at time t. Eq. (1) gives a closed
form of p(τ, µ),

p(τ, µ) = aµexp(−a0τ), (1)

where a0 =
m

j=1 a j. Note that the reaction Rµ fires with cor-
responding discrete probability aµ/a0 and the firing time τ is
exponentially distributed with parameter a0.

SSA samples the pdf p(τ, µ) and constructs a simula-
tion trajectory as follows. It computes m propensities a j for

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

193.205.210.41 On: Wed, 07 Oct 2015 12:36:42

244106-3 Thanh, Zunino, and Priami J. Chem. Phys. 142, 244106 (2015)

j = 1 . . . m at beginning. Then, for each simulation step the
next reaction firing Rµ and its firing time τ are realized from
Eq. (1) by

τ =
1
a0

ln
(

1
r1

)
, (2)

µ = smallest reaction index such that
µ
j=1

a j > r2a0, (3)

where r1 and r2 are two random numbers generated from a
uniform distribution U(0,1). The state is updated according
to the selected reaction Rµ and moves to a new state X(t + τ)
= X(t) + vµ. The propensities are updated to reflect the changes
in the system state. A reaction dependency graph is often used
to decide which propensities need to be updated after a reaction
firing.

A. Rejection-based stochastic simulation algorithm

RSSA is an exact simulation algorithm which generates
trajectories with the same statistical distribution as SSA. In
fact, RSSA exactly samples the pdf p(τ, µ) in Eq. (1); a reaction
Rµ is selected with probability aµ/a0 and its firing time is
exponentially distributed with parameter a0. A complete proof
for the exactness of RSSA is in the work of Thanh et al.17

RSSA accelerates the simulation by reducing the number of
propensity updates. In most of the simulation steps, RSSA
does not require to update propensities, hence reducing the
average number of propensity updates. RSSA is summarized
in Algorithm I.

RSSA computes for each reaction a propensity lower
bound a j and an upper bound a j for j = 1 . . . m and uses
these propensity bounds to select the next reaction firing.
These propensity bounds are derived by imposing a bound on
the population of each species in the state. For species Si, a
lower bound X i and an upper bound X i are defined around
its current population Xi(t). The population bounds for each
species Si could be chosen arbitrarily around its population
without affecting the correctness of the algorithm. The state
therefore satisfies X ≤ X(t) ≤ X for each species. The popula-
tion interval [X ,X] is called the fluctuation interval or abstract
state. The invariant a j ≤ a j ≤ a j holds for all reaction Rj with
j = 1 . . . m when X(t) ∈ [X ,X]. The propensity lower/upper
bounds are chosen to be the minimum/maximum of the propen-
sity function a j over the fluctuation interval [X ,X]. If the
propensity a j increases whenever the species population in-
creases, its minimum and maximum values correspond to the
evaluation of a j at the lower extreme and upper extreme of
the species population interval, respectively. For example, if a j

follows the mass action kinetics or the Michaelis-Menten ki-
netics where the monotonicity holds, we simply let a j = a j(X)
and a j = a j(X). If a j is a complex function, one can apply
numerical techniques, e.g., interval analysis,20 to compute the
bounds for propensity. The exact minimum and maximum,
however, are not really needed. A reasonable tight bound for
the propensity over the fluctuation interval is enough for the
simulation, but the next reaction firing is always selected with
the right probability.

ALGORITHM I. Rejection-based SSA (RSSA).

procedure: rssa
output: a trajectory of the reaction network

1: initialize time t = 0 and state X = x0

2: while (t < Tmax) do
3: define fluctuation interval [X, X] of state X

4: compute propensity upper bound a j and lower bound a j for

each reaction R j for j = 1 . . .m
5: compute the total propensity upper bound a0=

m
j=1a j

6: repeat
7: set u = 1
8: set accepted = false
9: repeat
10: generate three random numbers r1, r2, r3∼U (0,1)
11: select minimum index µ satisfied

µ
j=1a j > r1a0

12: if r2 ≤ (aµ/aµ)then
13: accepted = true
14: else
15: evaluate aµ with state X

16: if r2 ≤ (aµ/aµ) then
17: set accepted = true
18: end if
19: end if
20: set u = u ·r3

21: until accepted
22: compute firing time τ = (−1/a0)ln(u)
23: update time t = t +τ and state X = X + vµ

24: until (X < [X, X])
25: end while

Having propensity bounds, a candidate reaction Rµ is
selected with probability aµ/a0 where a0 =

m
j=1 a j. RSSA

realizes the candidate reaction by linearly accumulating
propensity upper bounds until it finds the smallest reaction
index µ satisfying the inequality:

µ
j=1 a j > r1 · a0, where r1

is a random number in U(0,1).
The candidate reaction Rµ then enters a rejection test for

validation with success probability aµ/aµ. In other words, we
toss a (biased) coin with success probability aµ/aµ. If the toss
succeeds, we accept the candidate Rµ to fire, otherwise we
reject it. The efficient simulation of this coin toss, however, is
tricky since we do not know the exact value of the propensity
aµ in advance, and we want to avoid computing it as much
as possible. To achieve that we draw a random number r2
∼ U(0,1). We then check whether r2 ≤ aµ/aµ, which does not
require us to compute aµ. If the check succeeds, then we know
that r2 ≤ aµ/aµ ≤ aµ/aµ, hence we can accept Rµ. Only when
this test fails, we indeed compute aµ, and then test r2 against
aµ/aµ. The computation of aµ is infrequently performed when
aµ/aµ is close to 1, which is often the case in practice. If Rµ

is accepted, its firing time is then computed. Otherwise, a new
candidate reaction is selected.

The firing time τ of the accepted reaction Rµ is gener-
ated following an Erlang distribution. This distribution is
chosen to be faithful with SSA. The key idea is that each
candidate selection step corresponds to a stochastic transition
with total rate a0. Such transition can cause the state X(t) to
either move to the new state X(t + τ) = X(t) + vµ if candidate
Rµ is accepted or perform a self-loop in the current state

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

193.205.210.41 On: Wed, 07 Oct 2015 12:36:42

244106-4 Thanh, Zunino, and Priami J. Chem. Phys. 142, 244106 (2015)

X(t + τ) = X(t) if candidate Rµ is rejected. Hence, if we
perform k trials before we accept (i.e., we rejected k − 1
candidates), we need to advance the time according to the sum
of k independent stochastic transitions of rate a0, which is
an Erlang distribution. The Erlang-distributed firing time τ is
sampled as

τ =

k
i=1

(−1/a0) ln(ui) = (−1/a0) ln(
k
i=1

ui), (4)

where ui is a random number from U(0,1). RSSA implements
this sampling technique by multiplying the variable u in every
validation steps by a uniform random quantity r3 until a trial
succeeds.

Knowing the reaction and its firing time, the state is up-
dated accordingly. RSSA postpones recomputing propensity
bounds if the state is confined in its fluctuation interval. Thus,
it checks whether the condition X(t) ∈ [X ,X] holds after the
state is updated. If the condition is true, which is often the case,
the next simulation step is performed. In the uncommon case
in which the state is outside the current fluctuation interval,
i.e., X(t) < [X ,X], a new fluctuation interval is defined. At
that time, new propensity bounds for reactions are derived
as well. We can reduce the number of reactions having to
recompute their propensity bounds by applying a Species-
Reaction (SR) dependency graph.17 The SR dependency graph
shows which reactions should recompute their propensity
bounds when a species exits its fluctuation interval. Thus,
only a subset of reactions requires to recompute propensity
bounds.

III. PERFORMANCE ANALYSIS AND IMPROVEMENTS
FOR RSSA

This section analyzes the performance of RSSA in gener-
ating a simulation trajectory. We discuss the factors affecting
the simulation performance and study formulations to improve
its efficiency. We measure the computation cost in terms of the
average CPU time. In our discussion, we use the O-notation to
express the time complexity.

A. Computational cost of RSSA

Let T search
RSSA be the average search time for a candidate

reaction and Tupdate
RSSA be the average update time after a reaction

fires. The average simulation step time TRSSA is expressed as

TRSSA = αT search
RSSA + Tupdate

RSSA /β +O(1), (5)

where α is the average number of times the search conducted
until the candidate reaction is accepted and, respectively, β is
the average number of skipped updates during the simulation.
α is equal to the reciprocal average acceptance probability
of a candidate reaction, i.e., α = a0/a0. β is the average fre-
quency of X(t) ∈ [X ,X]. The additional constant cost O(1)
in Eq. (5) denotes the CPU time for after-simulation data
handling. Although this processing time may contribute a
large portion to the simulation time, especially for simulating
small models, it depends on the operating system and is the

same for all algorithms so that we can still assume it to be a
constant.

We can improve the overall performance of RSSA by
reducing the search time T search

RSSA that depends on the search
procedures applied to realize a candidate reaction. The search
strategy used in the basic RSSA is equivalent to a linear
search. Its main advantage is that it does not require to
build any complex data structure in advance. Indeed, in an
implementation, we only need an array of size m to store
propensity upper bounds a j for j = 1 . . . m. However, the time
complexity of the search is linear with respect to the number of
reactions, i.e., T search

RSSA = O(m). The search performance can be
improved by sorting the propensity upper bounds in decreasing
order; however, the worst case complexity still remains
linear. We discuss options for implementing fast search
procedures that are different in speed and code simplicity
in Sec. III B. We also study the impact of their running
times to be able to tune the performance for each specific
problem.

An update step of RSSA is composed of defining a new
fluctuation interval and recomputing propensity bounds of
reactions. Defining new fluctuation intervals for each species
whose population moves out of its current population bounds
after a reaction firing is a constant because only a small
number of species are involved in that reaction. Reactions
that need recomputing propensity bounds when an involved
species moves out of their population bounds are retrieved
from the SR dependency graph. Let k be the average number of
reactions in the SR dependency graph that needs recomputing
propensity bounds, the complexity of update of propensity
bounds in RSSA is thereforeTupdate

RSSA = O(k). We remark that the
propensity updates in RSSA are performed infrequently and
controlled by tuning the fluctuation interval [X ,X]. Generally,
the narrower the interval [X ,X] we use, the more frequently
the propensity updates perform resulting in increasing the
updating time and the acceptance probability. If the fluctua-
tion interval degenerates into the state X = X = X(t), then α
= β = 1 which means a candidate reaction is always accepted
and reactions have to update their propensities after every
reaction firing as in SSA. On the other hand, if we increase
the fluctuation interval, we reduce the number of updates for
propensity bounds. We are even able to define a fluctuation
interval so that no update occurs in the whole simulation (β
= ∞). The update cost is thus zero, Tupdate

RSSA /β = 0, and has no
effect on the simulation. TRSSA will depend only the search
cost; however, in this situation because a j and a j are very
loose approximations of the exact propensities a j, the accep-
tance probability decreases significantly. Consequently, it in-
creases α since the candidate reaction is rejected frequently.
This indirectly affects the search for the next reaction firing,
which in turn negatively impacts the simulation performance.
We discuss mechanisms to control the fluctuation interval in
Sec. III C.

B. Search for a candidate reaction

An efficient search algorithm can be applied to reduce
the time complexity of RSSA in simulating large models.
Typically, a fast search algorithm with fast asymptotic speed

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

193.205.210.41 On: Wed, 07 Oct 2015 12:36:42

244106-5 Thanh, Zunino, and Priami J. Chem. Phys. 142, 244106 (2015)

requires to build complex underlying data structures (trees,
hash tables) before the actual search can be conducted. The
choice for the search algorithm thus depends on the problem
size and on the complexity of the data structures it needs to
build.

Tree-based search. By applying the tree-based search, we
reduce complexity of the search from linear to logarithmic
time. This search method is based on a (binary) tree structure
in which the leaf nodes will store the propensity upper bounds
a j and the inner nodes store the sums of values of their child
nodes. The tree root therefore holds the sum of all values stored
in the leaves, i.e., a0. In a implementation, an array is used
to represent the tree; however, the array requires O(m) more
elements than linear search array where m is the number of
reactions. This is because we have to store also partial sums
of propensity upper bounds in internal nodes, as well as the
pointers to parent/children pairs. The search will traverse the
tree to find a candidate reaction Rµ given the search value
r1 · a0. Starting at the tree root, that we mark as the current
node, the search recursively selects the next branch by compar-
ing on the search value with the value stored in the left child
node. The left branch is selected if the search value is less than
the value stored in left child of the current node. The right
branch is chosen otherwise. If the right branch is selected, the
search value is subtracted by the value stored in current node.
The search stops when it reaches a leaf. The reaction in this
leaf is chosen as the candidate for the rejection test. Since the
search complexity is linked to the depth of the tree, we use
a Huffman tree10,11,21 to optimize the average search length.
The key idea of the Huffman tree is to have the leaves storing
large values (hence more likely) close to the root than leaves
with small values. The time complexity for the (complete)
tree-based search is T search

RSSA = O(log m) and the update time is
also Tupdate

RSSA = O(k log m). This logarithmic time complexity
may provide a substantial improvement for simulating large
models.

Table lookup search. The search for a candidate reac-
tion can be reduced to constant time complexity by apply-
ing a table lookup method at the cost of an expensive pre-
processing to build the lookup tables.22,23 Although the table
lookup search can be applied to standard SSA for selecting
next reaction firings, the changes in propensities after each
reaction firing require the lookup tables to be updated and
makes the application of lookup search to SSA no more effi-
cient than linear search. The downside of the lookup search
is alleviated by RSSA where propensity bounds are used to
select next reaction firings. RSSA updates the lookup tables
infrequently, thus improving its amortized cost. We imple-
mented and experimented a well-known lookup search, called
the Alias method.24 The theoretical foundation underlying the
Alias method is a theorem stating that any discrete probability
distribution over m probability values can be expressed as an
equi-probable mixture of m two-point distributions. The m
probabilities used in this case are a j/a0 for j = 1 . . . m. The
setup of the Alias method requires to build two tables, each of
size m, in which the first table, called cutoff table, stores the
probability of the first values of the two-point mixtures and
the second table, called alias table, contains the alias to the
second parts of the mixtures.25 The random number r1 is first

used to lookup the position of the equi-probable mixture. It is
rescaled to select which part of the two-point mixture. These
steps require only one comparison to choose the part of the
two-point mixture and (at most) two table accesses to select the
candidate reaction. The time complexity of the search is thus
constant T search

RSSA = O(1). The generation of tables for the Alias
method has complexity proportional to the number of reactions
m, i.e., Tupdate

RSSA = O(m).26

C. Fluctuation interval control

A rejection test is applied on the selected candidate to
ensure it fires with a correct probability. The acceptance of
the candidate depends on the propensity bounds which can be
adjusted indirectly through the fluctuation interval [X ,X]. We
should emphasize that the width of the fluctuation interval does
not affect the correctness of the algorithm, but only affects the
simulation performance.

We can define the fluctuation interval by a fluctuation
parameter δ which could be a scalar value or a vector. If δ
is a scalar value, we call it uniform fluctuation since all spe-
cies uses the same parameter to the compute their fluctuation
interval. By using the uniform fluctuation rate, the fluctua-
tion interval will be defined (using vector notation) as [X ,X]
= [(1 − δ)X(t), (1 + δ)X(t)]. This approach has both advan-
tages and disadvantages. On the positive side, the calculation of
fluctuation interval is fast, requiring only vector computation.
However, it does not allow a fine control for each species. If
δ is a vector where each component δi defines the population
bound for each single species in the state, we call it nonuniform
fluctuation. The population bound for species Si is then defined
as [(1 − δi)Xi(t), (1 + δi)Xi(t)]. In an implementation, a lookup
table is used to store and retrieve the fluctuation parameters of
species.

In some models, the population of some species may vary
significantly during the simulation. The fluctuation parameters
for such species should be changed adaptively to optimize
the acceptance probability of the involved reactions. We call
this approach adaptive fluctuation. For example, an absolute
interval size (instead of a %) can be preferred in case the
population of a species is low (say, e.g., less than 25).
In order to exploit the adaptive interval control, we set a
threshold value λ on the population of species. During the
simulation, if the population of a species Si gets lower than
the threshold value, i.e., Xi(t) < λ, we will apply a fixed
(absolute) fluctuation interval ∆. The population Xi(t) of
species Si then is bound to the interval [Xi(t) − ∆,Xi(t) + ∆].
Otherwise, we will apply a fluctuation rate δi to define the
population bound of species Si. Thus, if Xi(t) ≥ λ, the interval
[(1 − δi)Xi(t), (1 + δi)Xi(t)] is applied to bound the population
of species Si. Following this simple scenario, we extend the
idea of adaptive fluctuation control to the models having many
phases. A species Si is in phase k if its population is less than
an upper threshold λki and greater than a lower threshold λk−1

i .
Thus, if species Si is bound to phase k, a fluctuation rate
δki will be applied to derive the population bound for that
species. This strategy allows the simulation to automatically
adjust the fluctuation interval depending on the phase of the
system.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

193.205.210.41 On: Wed, 07 Oct 2015 12:36:42

244106-6 Thanh, Zunino, and Priami J. Chem. Phys. 142, 244106 (2015)

IV. SIMULTANEOUS REJECTION-BASED ALGORITHM
FOR SIMULATION ANALYSIS
A. Simulation analysis

The state X at a given time t is a random variable. Thus to
have a reasonable estimation by simulation, we have to repeat-
edly perform independent simulations to generate realizations
of X(t). Let K be the number of simulations and let X r with
r = 1 . . . K be the realizations of X obtained by repeatedly per-
forming K independent runs of an exact simulation algorithm
under the same simulation conditions. The statistical properties
(e.g., mean, and variance) can be derived from the ensemble of
K trajectories and these properties are ensured to approach the
exact solution of CME as K approaches infinity.

Let ⟨X⟩ be the sample mean and s2 be the (unbiased)
sample variance of state X at time t based on an ensemble of
K independent simulations. We can compute these values by

⟨X⟩ =
K

r=1 X r

K
(6)

and

s2 =

K
r=1(X r − ⟨X⟩)2

K − 1
. (7)

By the law of large numbers, the sample mean and vari-
ance will asymptotically approach the true mean E[X] and
variance Var[X] of the random variable X when K tends to
infinity,

E[X] = lim
K→∞

⟨X⟩, (8)

Var[X] = lim
K→∞

s2. (9)

However, since the number of simulations K is limited,
the convergence of the estimation is measured by the size of
the confidence interval

d =
zs
√

K
, (10)

where z is a confidence level. If we fix the confidence level
z, the probability that the true mean E[X] lies in the inter-
val [⟨X⟩ − d,⟨X⟩ + d] is 2Φ(z) − 1 with Φ is the cumulative
distribution function (cdf) of the standard normal distribution
N(0,1). For instance, with the confidence level z = 1.96, the
probability that the true mean falls in [⟨X⟩ − 1.96s/

√
K ,⟨X⟩ +

1.96s/
√

K] is 95%. Thus, to reduce the confidence interval size
given a fixed confidence level, we have to increase the number
of trajectories K .

Moreover, given an ensemble of K trajectories, we can
infer the empirical distribution function (edf) (or histogram) of
the species population. This is done by partitioning the popula-
tion of species into bins and compute the occurring frequency
of species in each bin. The edf of species will approach its
pdf for large K . We can measure the statistical fluctuation
introduced by stochastic simulation from edf. For instance,
a statistical measurement is developed by Cao and Petzold27

based on the distance between two empirical distributions to
compare the accuracy of simulation algorithms. More specifi-
cally, given a fixed K , two algorithms have the same accuracy
if the distance between two empirical distributions computed
from two sets of independent realizations by these simulation

algorithms is less than the so called self distance.27 The self
distance is the distance between the edfs computed from two
sets of independent realizations derived from the same simula-
tion algorithm. It is a random variable bounded by

4B/(Kπ),

where B is the number of bins.

B. Simultaneous rejection-based simulation algorithm

In this section, we present our new algorithm, called
SRSSA, for generating multiple independent trajectories. The
advantage of SRSSA is that the trajectories are generated
simultaneously in a simulation run instead of many simula-
tion runs. The independent trajectories generated by SRSSA
are exact by exploiting the propensity bounds to select next
reaction firings as in RSSA. For independent runs of RSSA,
the propensity bounds have to be replicated and separated
for each simulation run. The propensity bounds in SRSSA,
however, are only computed once and shared across the simu-
lations. Since SRSSA uses the same propensity bounds across
the realizations, it reduces the memory requirement to store
the propensity bounds and improves its cache-friendliness. The
recomputing of the propensity bounds in SRSSA when needed
will be performed collectively in a single operation which
further reduces the total number of propensity updates and
improves the simulation time.

Let K be the number of trajectories and X r be the system
state of the rth realization with r = 1 . . . K . Let ar

j be the
propensity of reaction Rj in the rth realization. The key point
of SRSSA is that it computes a lower bound a j and an upper
bound a j for each reaction Rj such that a j ≤ ar

j ≤ a j for all
r = 1 . . . K , and then uses these propensity bounds to select
reaction firings for all K realizations. Thus, we only need to
store m propensity bounds of m reactions independently of the
number of realizations K . This feature is useful when we need
to generate a large number of realizations for an online analysis
of large reaction networks.

The propensity bounds a j and a j are derived by first

defining a global fluctuation interval [X ,X] which bounds
all possible populations of each species in all K states X r

with r = 1 . . . K . The algorithm then minimizes/maximizes the
propensity function a j on such a global fluctuation interval
[X ,X]. We define the global population bound for a species Si
by the following procedure. Let Xmin

i = min(X1
i , . . . ,X

K
i) and

Xmax
i = max(X1

i , . . . ,X
K
i), respectively, be the minimum and

maximum population of species Si in all K states. The chosen
population interval [Xi,Xi] = [(1 − δi)Xmin

i , (1 + δi)Xmax
i] will

bound all populations of species Si in K states, where δi is the
fluctuation rate of this species. Repeating this procedure for all
species in the state vector, we are forming a global fluctuation
interval [X ,X] for these K states.

Knowing the lower bounds a j and upper bounds a j,
SRSSA selects reaction firings and updates the state X r for the
corresponding rth realization with r = 1 . . . K by applying the
rejection-based selection. The SRSSA algorithm is outlined in
Algorithm II.

SRSSA initializes the time tr and initial state X r for
each r = 1 . . . K . It then derives the global fluctuation interval
[X ,X] for all these K states and computes the propensity lower
bound a j and upper bound a j for all reactions Rj. SRSSA

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

193.205.210.41 On: Wed, 07 Oct 2015 12:36:42

244106-7 Thanh, Zunino, and Priami J. Chem. Phys. 142, 244106 (2015)

ALGORITHM II. Simultaneous RSSA (SRSSA).

procedure: srssa
output: K independent trajectories of the reaction network

1: for each trajectory r = 1 . . .K , set initial time tr = 0 and initial state
X r = x0

2: build the species-reaction (SR) dependency graph G
3: for each species Si with i = 1 . . .n define a bound [Xi, Xi] such that

Xi ≤ X1
i . . .X

K
i ≤ Xi

4: compute propensity bounds a j and a j for each reaction R j with

j = 1 . . .m
5: compute total upper bound propensity a0=

m
j=1a j

6: repeat
7: set UpdateSpeciesSet= ∅
8: for (each trajectory r = 1→ K) do
9: repeat
10: set u = 1
11: set accepted = false
12: repeat
13: generate random numbers: r1, r2, r3∼U (0,1)
14: select minimum index µ satisfied

µ
j=1a j > r1a0

15: if (r2 ≤ (aµ/aµ)) then
16: set accepted = true
17: else
18: evaluate ar

µ with state X r

19: if (r2 ≤ (ar
µ/aµ)) then

20: set accepted = true
21: end if
22: end if
23: set u = u ·r3

24: until accepted
25: compute firing time τr = (−1/a0)ln(u)
26: set time tr = tr +τr

27: update state X r = X r + vµ

28: until (exists X r
i < [X i, X i]) or (tr ≥Tmax)

29: for all (species Si where X r
i < [Xi, Xi]) do

30: set UpdateSpeciesSet=UpdateSpeciesSet∪ {Si}
31: end for
32: end for
33: for all (species Si ∈UpdateSpeciesSet) do
34: define a new [Xi, Xi] such that Xi ≤ X1

i . . .X
K
i ≤ Xi

35: for all (R j ∈ReactionsAffectedBy(Si)) do
36: compute propensity bounds a j and a j

37: update total upper bound sum a0

38: end for
39: end for
40: until (tr ≥Tmax for all trajectories r = 1 . . .K)

maintains a set of species that should update their population
bounds which is represented by the set UpdateSpeciesSet,
initialized to an empty set. SRSSA also uses the SR graph
to retrieve which reactions should update propensity bounds
when a species exits its population bound.

Inside the main simulation loop, the rejection-based selec-
tion will be continuously applied to select reaction firings and
form trajectories. For the rth realization, a candidate reaction
Rµ is randomly selected with probability aµ/a0. Then, the
propensity aµ

r is evaluated on the corresponding state X r

and used to validate this candidate reaction with acceptance
probability aµ

r/aµ. Note that the propensity lower bound aµ

is still applied to avoid computing aµ
r as much as possible.

The selection of the reaction firing in the rth realization is
exact and independent of other realizations. If the reaction is
accepted, the time tr and state X r are updated. This selection
step is then repeated until a species population exits the global
population interval (see line 8-28, Algorithm II). Let Si be
the species whose population X r

i < [Xi,Xi] in the rth realiza-
tion. SRSSA adds this species Si to the UpdateSpeciesSet. It
then stops the current rth realization and moves to the next
realization.

Only when all K trajectories are stopped, new global pop-
ulation interval [Xi,Xi] for all species Si ∈ UpdateSpeciesSet
are redefined. This is the key difference between SRSSA and
RSSA. RSSA has to redefine a new population bound as soon
as a species exits its current population bound, while this
step in SRSSA is postponed and performed once when all
K simulationa are stopped. Then, SRSSA retrieves reactions
for which propensity bounds have to be recomputed because
they have reagent species that exit their population bounds
(see line 33-39, Algorithm II). This set of reactions affected
by species Si is extracted from the SR dependency graph and
denoted by the set ReactionsAffectedBy(Si). Thus, for each
Rj ∈ ReactionsAffectedBy(Si), its new lower bound a j and
upper bound a j are recomputed.

V. NUMERICAL EXAMPLES

In this section, we first report the performance of our
efficient RSSA formulations in simulating large models. Then,
we present the performance improvement of our new algo-
rithm SRSSA. The models we considered in the performance
comparisons are real biological processes. All the algorithms
were implemented in Java and run on an Intel i5-540 M pro-
cessor. The implementation of the algorithms as well as the
benchmark models are freely available at http://www.cosbi.eu/
research/prototypes/rssa.

A. RSSA formulations performance on large models

Table I summarizes the models that we used for the bench-
mark. The models are chosen with varying network sizes and
average number of propensity updates per reaction firing to
observe the effects of both the search and update on the simu-
lation performance. The number of reactions of models in the
Table I spans from a few reactions as in the gene expres-
sion model (8 reactions) to an order of ten thousands reac-
tions as in the B cell receptor signaling (24 388 reactions).
The average number of propensity updates after a firing of a

TABLE I. Summary of reaction models.

Model #Species #Reactions
#Propensity updates

per firing

Gene expression 5 8 3.5
Folate cycle 7 13 5
MAPK cascade 106 296 11.70
FcϵRI signaling 380 3 862 115.80
B cell receptor
signaling

1122 24 388 546.66

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

193.205.210.41 On: Wed, 07 Oct 2015 12:36:42

http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa
http://www.cosbi.eu/research/prototypes/rssa

244106-8 Thanh, Zunino, and Priami J. Chem. Phys. 142, 244106 (2015)

reaction of the corresponding networks also increases from
3.5 to 546.66. A brief description of these models is in the
following.

The gene expression model is a type of regulatory pathway
which plays a key role in the understanding of gene regulation
mechanisms and functionality.28 The result of gene expression
is a collection of proteins encoded by the corresponding gene.
Proteins are produced by two main consecutive processes: the
transcription and then the translation. During the transcrip-
tion process, the gene is copied to intermediate form called
messenger RNA (mRNA). mRNA then binds to ribosomes to
translate into the corresponding protein. We implement this
model with 5 species and 8 reactions.

The folate cycle is a metabolic pathway which has a vital
role in cell metabolism.29 The result of this metabolism is
the transfer of one-carbon units for methylation to produce
methionine and synthesis of pyrimidines and purines. In the
folate cycle, the tetrahydrofolate (THF) is catalysed to pro-
duce 5,10-methylene-THF which is subsequently either con-
verted to 5-methyl-THF or 10-formyl-THF. The folate cycle
completes when 5-methyl-THF is demethylated to produce
methionine and THF. This model is composed of 7 species and
13 enzymatic reactions where their rates are modelled by the
Michaelis-Menten kinetics.30,31

The mitogen-activated protein (MAP) kinase (MAPK)
cascade pathway describes a chain of proteins that cascade a
signal from the cell receptor to its nucleus. It is stimulated when
ligands, e.g., growth factors, bind to the receptor on the cell
surface. The pathway is controlled through three main proteins
kinases: MAPKKK, MAPKK, and MAPK. First, the ligand
activates MAPKKK. The activated MAPKKK phosphorylates
MAPKK and subsequently activates MAPK through further
phosphorylation. Finally, a cellular response, e.g., cell growth
is exhibited. We implement the MAPK model with 106 species
and 296 reactions.32

The FcϵRI signaling is used to model early events in high-
affinity IgE receptor.33 The signaling is initiated by ligand-
induced receptor aggregation and results in a response from
the immune system (e.g., allergic responses). This signaling
is extensively studied in the literature.34 We use the FcϵRI
signaling model developed by Liu et al.35 which contains 380
species and 3862 reactions.

The B cell receptor signaling model proposed in Barua
et al.36 studies the effect of protein Lyn and Fyn redundancy.
This model was implemented with a rule-based modeling
approach by including the site-specific details of protein-
protein interactions. The reaction network generated from the
model contains 1122 species and 24 388 reactions.

Figure 1 compares performance of RSSA formulations
with the DM, the NRM, and the PDM and its variants including
Sorting PDM (SPDM) and PDM with Composition Rejection
(PSSA-CR) on the benchmark models. In order to run the
partial-propensity approach (PDM, SPDM, and PSSA-CR)
with the folate cycle, we used a simplified version of the
Michaelis-Menten rate and modified the rate computation.
For RSSA, three variants of the search used for selecting
the candidate reaction are considered: (1) the basic RSSA
where linear search is applied, (2) RSSA with tree-based
search (RSSA-Binary), and (3) RSSA with Alias lookup search

(RSSA-Lookup). We also adaptively adjust the fluctuation
interval of a species depending on its population. If the popula-
tion of a species is less than 25, the absolute interval size∆ = 4
is applied. Otherwise, the fluctuation rate δ = 10% is applied.
The performance of algorithms is averaged from 100 simula-
tion runs. For each simulation run, the results are collected after
107 steps.

A conclusion from Fig. 1 is that our RSSA formulations
achieve better performance than all other algorithms in all
test cases, and outperform especially in large models. For
instance, the speed-up gain by RSSA in comparison with
DM, NRM, PDM, and SPDM in simulating the FcϵRI signal-
ing is 9, 8.6, 1.8, and 2, respectively. Furthermore, RSSA
with an efficient search achieves a significant performance
improvement when simulating large models. In simulating the
FcϵRI signaling, RSSA-Binary and RSSA-Lookup are roughly
3 and 2.3 times faster than RSSA. In this benchmark, our
efficient RSSA formulations perform better than PSSA-CR.
In the FcϵRI signaling, the speed-up gain of RSSA-Binary
and RSSA-Lookup in comparison with PSSA-CR is 4.3 and
3.1, respectively. The detailed performance analysis is given
below.

As shown in Fig. 1, DM and NRM are comparable for
small models (i.e., the gene expression, the folate cycle) and
NRM is often faster than DM if the number of propensity
updates is small. The speed-up gain by NRM is achieved
by using a priority queue for selecting the next reaction
firings and saving random numbers. The advantage of NRM
becomes negative when the number of update propensities
is large because of updating and maintaining the priority
queue. For example, the percentage of update of NRM for
the FcϵRI signaling is 94%, while in DM, it is around
87%, thus NRM is only 7% faster than DM. For the B cell
receptor signaling where the number of propensity updates
after a reaction firing is very large, the update cost of NRM
is at maximum and contributes up to 99.5% of its total
simulation time. In this case, NRM is 2.1 times slower than
DM.

By reducing the update cost, PDM and RSSA efficiently
accelerates the simulation. For the gene expression, the up-
date cost of DM and NRM contributes 61% and 75% of its
simulation time, respectively. By grouping common reactant
and updating propensities in single operations, PDM reduces
the update cost to nearly 45%. The update cost by RSSA
is further reduced to only 10% of its total simulation time,
although this advantage of RSSA is limited by the rejection
of candidate reaction where the acceptance probability of a
candidate is around 90%. The result is that RSSA is 20% faster
than DM and NRM. In simulating the gene expression model,
RSSA and PDM have a comparable performance. For the
folate cycle where Michaelis-Menten kinetics are applied, the
performance gain by RSSA is significant because it efficiently
handled the time-consuming Michaelis-Menten propensity.
The rates of reactions with Michaelis-Menten kinetics are not
constant but depend explicitly on their reactants, thus these
rates have to be recomputed as soon as the state changes.
RSSA only performs around 200 updates while other algo-
rithms have to perform all 107 updates. The percentage of
propensity update cost by DM and NRM thus contributes

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

193.205.210.41 On: Wed, 07 Oct 2015 12:36:42

244106-9 Thanh, Zunino, and Priami J. Chem. Phys. 142, 244106 (2015)

FIG. 1. Performance of RSSA formulations, DM, NRM, and partial-propensity variants including PDM, SPDM and PSSA-CR. In order to be able to simulate
the folate cycle with partial propensity algorithms (PDM, SPDM, and PSSA-CR), we used a simplified version of the Michaelis-Menten rate for this model and
modified the rate computation procedure.

73% and 85% of their simulation time, respectively. PDM
reduces percentage of the update cost to 33% by grouping reac-
tants. The update cost by RSSA is the best which contributes
only 20% of the its simulation time. Thus, RSSA is around
2.5 times faster than DM and NRM and roughly 20% faster
than PDM in simulating the folate cycle, even if this model
is rather small. In simulating the large models by RSSA,
a significant speed-up is also achieved. More specifically,
the speed-up gain by RSSA varies from 2 to 10 in compar-
ison with DM and NRM and about 1.2–1.8 with PDM and
SPDM.

A fast search procedure will make RSSA become more
efficient in simulating large models. This is shown in the
Fig. 1 where RSSA-Binary and RSSA-Lookup outperform all
other algorithms for large models. For example, RSSA-Binary
and RSSA-Lookup are 3.8 and 2.6 times, respectively, faster
than the basic RSSA in simulating the B cell receptor signal-
ing. For the B cell receptor signaling, PDM performance is
comparable with RSSA; however, by applying a fast search
algorithm, a sharp improvement is achieved for RSSA. For
instance, RSSA-Binary and RSSA-Lookup are, respectively,
3.7 and 2.3 times faster than PDM in simulating this model.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

193.205.210.41 On: Wed, 07 Oct 2015 12:36:42

244106-10 Thanh, Zunino, and Priami J. Chem. Phys. 142, 244106 (2015)

Although the advantage of the composition-rejection of PSSA-
CR makes it 2 times faster than PDM, the performance of
PSSA-CR is still less significant in comparison with our
efficient RSSA formulations. For example, RSSA-Binary is
around 1.9 times faster than PSSA-CR. A similar speed-up
gain for RSSA-Binary and RSSA-Lookup is also obtained for
simulating the MAPK cascade and the FcϵRI signaling. We
note that the performance of PSSA-CR for all other models
is very slow. An efficient search procedure, however, requires
to build complex data structures that negate its efficiency for
small models. For example, the basic RSSA is slightly faster
than RSSA-Binary and RSSA-Lookup in simulating the gene
expression.

We further compare performance of our efficient RSSA
formulations with NFSim37 on the B cell receptor signaling.
NFSim is a network-free simulation algorithm. It keeps track of
individual species in the model instead of species population.
Figure 2 shows the performances of these algorithms applied
to the B cell receptor signaling. For this model, we adjust
the initial population of species by multiplying a scale factor
(sf), which takes values from 1 to 1000, with a base value
300. The stopping time Tmax = 100 is used in this performance
comparison.

We have remarks from the Fig. 2. First, the memory
requirement and simulation time of NFSim are increasing
when increasing sf = 1–1000. In fact, the memory requirement
for NFSim is growing linearly with the number of species in the
system since it keeps track of each individual species. Thus, in
case sf = 1000, the NFSim simulation has crashed due to lack
of memory to keep track of all molecular species. We note that
in the original model,36 the population of species is obtained
by setting sf = 1000. In contrast, our RSSA formulations
are still be able to simulate the system with a reasonable
simulation time. Second, RSSA-Binary is faster than NFSim
for all values of sf. For example, in case sf = 100, RSSA-
Binary is roughly 2 times faster than NFSim. The speed-up
gain comes from the fast search and the low cost of update.
For example, the search cost and update cost contributing
to the simulation time of RSSA-Binary in the case sf = 100
are roughly 20% and 14%, respectively. Third, although the
search time of Alias lookup is faster than tree-based search, the

FIG. 2. Performance of efficient RSSA formulations and NFSim on B cell
receptor signaling model. NFSim crashes in case sf = 1000 due to lack of
memory to keep track of all individual molecular species.

update of the supporting tables are rather expensive. Note that
in RSSA-Lookup, the SR dependency graph is inapplicable
because we have to rebuild the entire supporting tables when
a species exits its population bounds. The update of RSSA-
Lookup contributes up to 92% of its simulation time in case
sf = 100, while the search contributes less than 4%. The
result is that RSSA-Lookup has a lowest performance in this
case.

B. SRSSA performance

In this section, we focus on the performance of SRSSA
with respect to RSSA and DM. We do not consider here NRM
and PDM because we already showed that RSSA always per-
forms better. We compare the simulation time while removing
all the initialization and output writing.

The first experiment compares the simulation time of the
algorithms on the gene expression. The simulation stopping
time for all simulations is set to Tmax = 100. SRSSA uses the
same fluctuation parameters to define the fluctuation interval
as RSSA. We compare the simulation time of algorithms to
generate a total K independent trajectories. For RSSA and
DM, we have to perform K independent runs of these algo-
rithms. But with SRSSA, we will set to generate K independent
trajectories simultaneously in one simulation runs. We vary the
total number of trajectories K from 10 to 1000 to observe its
effects on the performance of the algorithms. The performance
is plotted in the Fig. 3.

The speed-up gain of SRSSA with respect to RSSA and
DM is about 16% and 33%, respectively, for all values of K .
An explanation for this speed-up gain follows. Starting with a
small number of trajectories K = 10, we observe that there are
1.44 × 107 reaction firings in simulating the gene expression

FIG. 3. Performance of SRSSA, RSSA, and DM on gene expression model
for generating K trajectories.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

193.205.210.41 On: Wed, 07 Oct 2015 12:36:42

244106-11 Thanh, Zunino, and Priami J. Chem. Phys. 142, 244106 (2015)

model. Thus, DM has to perform 1.44 × 107 updates. RSSA
reduces the number of updates to 2.59 × 106 and its update cost
is about 25% of its total simulation time. By postponing and
lumping together propensity updates into single operations,
SRSSA further reduces the total number of updates to 400.
The update cost of SRSSA contributes less than 1% of its total
simulation time. This huge gain in the update cost compensates
for the higher search time. This is because the acceptance
probability of a candidate reaction in SRSSA is only around
78% which is lower than 93% of RSSA. For DM and RSSA,
both the search and update costs will grow linearly with K
since we have performed independent runs. However, with
SRSSA where trajectories use the same propensity bounds
for selecting the next reaction firings, only the search time
increases with K while the update is nearly constant. The total
number of updates in SRSSA is kept around 400 with the
acceptance probability remaining at 78%. The result is that
the same speed-up gain is achieved by SRSSA even using
K = 1000.

Figure 4 compares the performance of the algorithms on
the Folate cycle with the simulation stopping time Tmax = 0.05
and total number of trajectories K to be generated vary from
10 to 1000. As shown in the figure, SRSSA is better than
RSSA and DM for all values of K . More specifically, the
performance of SRSSA is roughly 30% faster than RSSA.
The high speed-up gain is because of further reducing the
number of updates of the time-consuming Michaelis-Menten
propensity. We observed that the update cost of RSSA is around
28% of its simulation time, while this percentage in SRSSA is
less than 1%.

For the last experiment, we compare the performance
of the algorithms with an oscillator model. The oscillator38

is an artificial model which is a noise-induced system. It is
used to observe the effect of large number of trajectories
generated simultaneously on the performance SRSSA. This

FIG. 4. Performance of SRSSA, RSSA, and DM on folate cycle for generat-
ing K trajectories.

TABLE II. Artificial oscillator model.

Reactions Rate

R1: A+B→ 2B c1= 1
R2: B+C→ 2C c2= 1
R3: C+A→ 2A c3= 1

model has three reactions which are listed in Table II. The
initial populations of species are: #A = 900, #B = 500, and
#C = 200.

For simulating the oscillator model, we fix a total of
K = 1000 trajectories to be generated for each algorithm.
However, we set up for SRSSA to generate these trajectories
in three different scenarios: (1) performing 100 runs of
SRSSA with N = 10 trajectories generated simultaneously
per run, (2) performing 10 runs of SRSSA with N = 100
trajectories generated simultaneously per run, and (3) per-
forming 1 run of SRSSA with N = 1000 generated simul-
taneously. Figure 5 shows performance of SRSSA with
these three different settings in comparing with RSSA and
DM.

Figure 5 shows that SRSSA is increasingly slow when
increasing the number of trajectories generated simultaneously
per run. For example, the performance of SRSSA in generating
of N = 1000 trajectories simultaneously is nearly 1.9 times
slower than RSSA. The reason for a poor performance of
SRSSA in this setting is that the oscillator model is noisy. The
fluctuation in population of species is very large. In fact, the
maximum signal-to-noise ratio in population of species, which
is equal to the ratio of the mean over the standard deviation, is
around 65%. SRSSA has to define a large interval to include
all possible values of states of all trajectories. Even though the
update cost is very low, the search becomes very costly due to
a lot of rejections. Specifically, the acceptance probability of

FIG. 5. Performance of SRSSA, RSSA, and DM on oscillator model for gen-
erating a total of K = 1000 trajectories. SRSSA generates these trajectories
by (1) performing 100 runs with N = 10 trajectories generated simultane-
ously per run, (2) performing 10 runs with N = 100 trajectories generated
simultaneously per run, and (3) 1 run with N = 1000 trajectories generated
simultaneously.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

193.205.210.41 On: Wed, 07 Oct 2015 12:36:42

244106-12 Thanh, Zunino, and Priami J. Chem. Phys. 142, 244106 (2015)

SRSSA reduces from 60% in case N = 10 to roughly 20% in
case N = 1000. The search cost of SRSSA in case N = 1000
is thus 7 times slower than RSSA. This high cost negates the
advantage of low update cost of SRSSA. In this model, a small
number of simultaneous trajectories generated in a simulation
run of SRSSA should be chosen. For example, in case N = 10,
SRSSA is still 7% and 26%, respectively, faster than RSSA and
DM.

VI. CONCLUSIONS

We studied efficient formulations to improve the search
and update of the basic RSSA algorithm to efficiently simu-
late large scale biochemical reaction systems. We discussed
different search procedures for selecting a candidate reaction.
We proposed different mechanisms to control the fluctuation
interval of the state. The proposed mechanism allows to control
the fluctuation interval of each species and adaptively maintain
it depending on the species population. We have implemented
and experimented with these strategies. The choice of a suit-
able strategy for search and update of reactions in RSSA ulti-
mately depends on the size and complexity of the underlying
data structures. A simple search method (e.g., linear search)
does not require any complex data structure, while having
a low search performance; instead, some search procedures
(e.g., binary search, Alias method) can have a fast speed,
but require a complex data structure which is expensive to
maintain. According to our experiments, complex methods
should be applied on large models. In simulating large models,
although the search of the Alias method is a constant, it
requires to build the lookup tables, which cost is proportional
to the number of reactions and negates the overall simulation
performance. A possible approach for the future work to
improve the cost of building lookup tables is to exploit the
composition-rejection strategy. To integrate the composition-
rejection strategy with RSSA, we group reactions into groups
by their propensity upper bounds. A reaction in a group is
selected by applying the composition-rejection search and
then the rejection-based test to validate the selection. Each
time a species whose population moves out of its fluctuation
interval, we only need to update propensity bounds of affected
reactions and move these reactions to their corresponding
groups.

In this work, we also proposed a new algorithm called
SRSSA for generating multiple independent trajectories to
support the analysis of biochemical reaction systems. The
advantage of SRSSA is that trajectories are generated simul-
taneously by one simulation run, instead of performing many
simulation runs. SRSSA uses only a single set of propensity
bounds across simulations to select reaction firings. The mem-
ory needed to compute and store the propensity bounds is thus
independent of the number of trajectories. The selection of
reactions to form trajectories of SRSSA, however, is exact by
exploiting the rejection-based mechanism. The update of the
propensities is lumped up together in one operation. For typical
systems, we can choose a large number of simultaneous trajec-
tories to be generated in a simulation run of SRSSA; however,
for noise-induced systems, a small number of simultaneous

trajectories for SRSSA, e.g., 10, should be chosen for a better
performance.

1D. Gillespie, “A general method for numerically simulating the stochastic
time evolution of coupled chemical reactions,” J. Comput. Phys. 22(4),
403–434 (1976).

2D. Gillespie, “Exact stochastic simulation of coupled chemical reactions,”
J. Phys. Chem. 81(25), 2340–2361 (1977).

3M. Gibson and J. Bruck, “Efficient exact stochastic simulation of chemical
systems with many species and many channels,” J. Phys. Chem. A 104(9),
1876–1889 (2000).

4Y. Cao, H. Li, and L. Petzold, “Efficient formulation of the stochastic simu-
lation algorithm for chemically reacting systems,” J. Chem. Phys. 121(9),
4059 (2004).

5J. McCollum et al., “The sorting direct method for stochastic simulation of
biochemical systems with varying reaction execution behavior,” Comput.
Biol. Chem. 30(1), 39–49 (2006).

6S. Mauch and M. Stalzer, “Efficient formulations for exact stochastic simu-
lation of chemical systems,” IEEE/ACM Trans. Comput. Biol. Bioinf. 8(1),
27–35 (2011).

7T. Schulze, “Efficient kinetic Monte Carlo simulation,” J. Comput. Phys.
227(4), 2455–2462 (2008).

8J. Blue, I. Beichl, and F. Sullivan, “Faster Monte Carlo simulations,” Phys.
Rev. E 51(2), 867–868 (1995).

9H. Li and L. Petzold, Logarithmic direct method for discrete stochas-
tic simulation of chemically reacting systems, Technical Report, 2006;
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf.

10V. H. Thanh and R. Zunino, “Tree-based search for stochastic simulation
algorithm,” in Proceedings of the ACM-SAC, (2012).

11V. H. Thanh and R. Zunino, “Adaptive tree-based search for stochastic
simulation algorithm,” Int. J. Comput. Biol. Drug Des. 7(4), 341–357 (2014).

12A. Slepoy, A. P. Thompson, and S. J. Plimpton, “A constant-time kinetic
Monte Carlo algorithm for simulation of large biochemical reaction net-
works,” J. Chem. Phys. 128(20), 205101 (2008).

13S. Indurkhya and J. Beal, “Reaction factoring and bipartite update graphs
accelerate the Gillespie algorithm for large-scale biochemical systems,”
PLoS One 5(1), 8125 (2010).

14R. Ramaswamy, N. Gonzlez-Segredo, and I. F. Sbalzarini, “A new class of
highly efficient exact stochastic simulation algorithms for chemical reaction
networks,” J. Chem. Phys. 130(24), 244104 (2009).

15R. Ramaswamy and I. F. Sbalzarini, “A partial-propensity variant of the
composition-rejection stochastic simulation algorithm for chemical reaction
networks,” J. Chem. Phys. 132(4), 044102 (2010).

16E. Crampina, S. Schnella, and P. McSharry, “Mathematical and computa-
tional techniques to deduce complex biochemical reaction mechanisms,”
Prog. Biophys. Mol. Biol. 86(1), 77–112 (2004).

17V. H. Thanh, C. Priami, and R. Zunino, “Efficient rejection-based simulation
of biochemical reactions with stochastic noise and delays,” J. Chem. Phys.
141(13), 134116 (2014).

18V. H. Thanh, “On efficient algorithms for stochastic simulation of biochem-
ical reaction systems,” Ph.D. thesis, University of Trento, Italy, 2013,
http://eprints-phd.biblio.unitn.it/1070/.

19D. Gillespie, “A rigorous derivation of the chemical master equation,” Phys-
ica A 188(1–3), 404–425 (2007).

20R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval
Analysis (SIAM, 2009).

21D. Huffman, “A method for the construction of minimum-redundancy
codes,” in Proceedings of the IRE (IEEE, 1952), Vol. 40, pp. 1098–1101.

22L. Devroye, Non-Uniform Random Variate Generation (Springer-Verlag,
1986).

23W. Hormann, J. Leydold, and G. Derflinger, Automatic Nonuniform Random
Variate Generation (Springer-Verlag, 2004).

24A. J. Walker, “An efficient method for generating discrete random variables
with general distributions,” ACM Trans. Math. Software 3(3), 253–256
(1977).

25R. A. Kronmal and A. V. Peterson, “On the alias method for generating
random variables from a discrete distribution,” Am. Stat. 33(4), 214–218
(1979).

26M. D. Vose, “A linear algorithm for generating random numbers with a given
distribution,” IEEE Trans. Software Eng. 17(9), 972–974 (1991).

27Y. Cao and L. Petzold, “Accuracy limitations and the measurement of errors
in the stochastic simulation of chemically reacting systems,” J. Comput.
Phys. 212(1), 6–24 (2006).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

193.205.210.41 On: Wed, 07 Oct 2015 12:36:42

http://dx.doi.org/10.1016/0021-9991(76)90041-3
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1021/jp993732q
http://dx.doi.org/10.1063/1.1778376
http://dx.doi.org/10.1016/j.compbiolchem.2005.10.007
http://dx.doi.org/10.1016/j.compbiolchem.2005.10.007
http://dx.doi.org/10.1109/TCBB.2009.47
http://dx.doi.org/10.1016/j.jcp.2007.10.021
http://dx.doi.org/10.1103/PhysRevE.51.R867
http://dx.doi.org/10.1103/PhysRevE.51.R867
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://engineering.ucsb.edu/cse/Files/ldm0513.pdf
http://dx.doi.org/10.1504/IJCBDD.2014.066542
http://dx.doi.org/10.1063/1.2919546
http://dx.doi.org/10.1371/journal.pone.0008125
http://dx.doi.org/10.1063/1.3154624
http://dx.doi.org/10.1063/1.3297948
http://dx.doi.org/10.1016/j.pbiomolbio.2004.04.002
http://dx.doi.org/10.1063/1.4896985
http://eprints-phd.biblio.unitn.it/1070/
http://eprints-phd.biblio.unitn.it/1070/
http://eprints-phd.biblio.unitn.it/1070/
http://eprints-phd.biblio.unitn.it/1070/
http://eprints-phd.biblio.unitn.it/1070/
http://eprints-phd.biblio.unitn.it/1070/
http://eprints-phd.biblio.unitn.it/1070/
http://eprints-phd.biblio.unitn.it/1070/
http://eprints-phd.biblio.unitn.it/1070/
http://eprints-phd.biblio.unitn.it/1070/
http://eprints-phd.biblio.unitn.it/1070/
http://eprints-phd.biblio.unitn.it/1070/
http://eprints-phd.biblio.unitn.it/1070/
http://eprints-phd.biblio.unitn.it/1070/
http://eprints-phd.biblio.unitn.it/1070/
http://eprints-phd.biblio.unitn.it/1070/
http://eprints-phd.biblio.unitn.it/1070/
http://eprints-phd.biblio.unitn.it/1070/
http://eprints-phd.biblio.unitn.it/1070/
http://eprints-phd.biblio.unitn.it/1070/
http://eprints-phd.biblio.unitn.it/1070/
http://eprints-phd.biblio.unitn.it/1070/
http://eprints-phd.biblio.unitn.it/1070/
http://eprints-phd.biblio.unitn.it/1070/
http://eprints-phd.biblio.unitn.it/1070/
http://eprints-phd.biblio.unitn.it/1070/
http://eprints-phd.biblio.unitn.it/1070/
http://eprints-phd.biblio.unitn.it/1070/
http://eprints-phd.biblio.unitn.it/1070/
http://eprints-phd.biblio.unitn.it/1070/
http://eprints-phd.biblio.unitn.it/1070/
http://eprints-phd.biblio.unitn.it/1070/
http://eprints-phd.biblio.unitn.it/1070/
http://eprints-phd.biblio.unitn.it/1070/
http://eprints-phd.biblio.unitn.it/1070/
http://eprints-phd.biblio.unitn.it/1070/
http://eprints-phd.biblio.unitn.it/1070/
http://eprints-phd.biblio.unitn.it/1070/
http://eprints-phd.biblio.unitn.it/1070/
http://eprints-phd.biblio.unitn.it/1070/
http://dx.doi.org/10.1016/0378-4371(92)90283-V
http://dx.doi.org/10.1016/0378-4371(92)90283-V
http://dx.doi.org/10.1109/JRPROC.1952.273898
http://dx.doi.org/10.1145/355744.355749
http://dx.doi.org/10.2307/2683739
http://dx.doi.org/10.1109/32.92917
http://dx.doi.org/10.1016/j.jcp.2005.06.012
http://dx.doi.org/10.1016/j.jcp.2005.06.012

244106-13 Thanh, Zunino, and Priami J. Chem. Phys. 142, 244106 (2015)

28D. J. Wilkinson, Stochastic Modelling for Systems Biology (CRC Press,
2006).

29L. B. Bailey, Folate in Health and Disease, 2nd ed. (CRC Press, 2009).
30M. C. Reed, R. L. Thomas, J. Pavisic, S. J. James, C. M. Ulrich, and

H. Frederik Nijhout, “A mathematical model of glutathione metabolism,”
Theor. Biol. Med. Modell. 5(8) (published online 2008).

31M. Scotti, L. Stella, E. J. Shearer, and P. J. Stover, “Modeling cellular
compartmentation in one-carbon metabolism,” WIREs: Syst. Biol. Med.
5(3), 343–365 (2013).

32W. Kolch, “Meaningful relationships: The regulation of the ras/raf/mek/erk
pathway by protein interactions,” Biochem. J. 351(2), 289–305 (2000).

33J. R. Faeder et al., “Investigation of early events in fceri-mediated signaling
using a detailed mathematical model,” J. Immunol. 170, 3769–3781 (2003).

34L. A. Chylek, D. A. Holowka, B. A. Baird, and W. S. Hlavacek, “An inter-
action library for the FcϵRI signaling network,” Front. Immunol. 5(172),
1664–3224 (2014).

35Y. Liu et al., “Single-cell measurements of ige-mediated fceri signaling
using an integrated microfluidic platform,” PLoS One 8(3), 60159 (2013).

36D. Barua, W. S. Hlavacek, and T. Lipniacki, “A computational model for
early events in b cell antigen receptor signaling: Analysis of the roles of lyn
and fyn,” J. Immunol. 189, 646–658 (2012).

37M. W. Sneddon, J. R. Faeder, and T. Emonet, “Efficient modeling, simulation
and coarse-graining of biological complexity with NFsim,” Nat. Methods
8(2), 177–183 (2011).

38A. Condon, D. Harel, J. N. Kok, A. Salomaa, and E. Winfree, Algorithmic
Bioprocesses (Springer, 2009).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

193.205.210.41 On: Wed, 07 Oct 2015 12:36:42

http://dx.doi.org/10.1186/1742-4682-5-8
http://dx.doi.org/10.1002/wsbm.1209
http://dx.doi.org/10.1042/0264-6021:3510289
http://dx.doi.org/10.4049/jimmunol.170.7.3769
http://dx.doi.org/10.3389/fimmu.2014.00172
http://dx.doi.org/10.1371/journal.pone.0060159
http://dx.doi.org/10.4049/jimmunol.1102003
http://dx.doi.org/10.1038/nmeth.1546

