A NOTE ON SOME NAIVE ESTIMATES OF THE FACTORIAL

LUCA GOLDONI

Abstract

In this very short note we make a remark on a rough and naive but easy way to estimate from below the factorial. This note arise from an example from the classical book [1].

1. Introduction

In order to estimate m ! in a rough but very easy way it is possible argue as follows:
(1) Upper estimate: by Arithmetic-Geometric means inequality it is

$$
\sqrt[m]{1 \cdot 2 \cdots m}<\frac{1+2+\cdots m}{m}
$$

hence

$$
\sqrt[m]{m!}<\frac{m(m+1)}{2 m}=\frac{(m+1)}{2}
$$

Therefore

$$
m!<2^{-m}(m+1)^{m}
$$

(2) Lower estimate: since

$$
\begin{aligned}
m! & =m \cdot(m-1) \cdots 2 \cdot 1 \\
m! & =1 \cdot 2 \cdots(m-1) \cdot m
\end{aligned}
$$

it is

$$
(m!)^{2}=(m \cdot 1)[(m-1) \cdot 2] \cdots[3 \cdot(m-1)][2 \cdot(m-1)](1 \cdot m)>m^{m}
$$

Therefore

$$
m!>\sqrt{m^{m}}
$$

Date: July 10, 2015.
2000 Mathematics Subject Classification. 11R09, 14A25.
Key words and phrases. Factorial, Elementary proof, naive estimate.
Dipartimento di Ingegneria e Scienza dell'Informazione. Università di Trento.
Dipartimento di Ingegneria. Università di Modena.

2. The improved estimate

We can improve the latter estimate in a very easy way as follows.
(1) If m is even then $m=2 n$ and

$$
\begin{aligned}
& (2 n)!=(2 n) \cdot(2 n-1) \cdots 1 \\
& (2 n)!=1 \cdot 2 \cdots(2 n-1) \cdot(2 n)
\end{aligned}
$$

so that

$$
[(2 n)!]^{2}=(2 n)^{2}[(2 n-1) \cdot 2]^{2} \cdots[(n+1) n]^{2}
$$

but

$$
[(n+1) n]>\cdots[(2 n-2) \cdot 3]>[(2 n-1) \cdot 2]
$$

thus

$$
(2 n)!>(2 n) 2^{n-1}(2 n-1)^{n-1}
$$

(2) If m is odd we have $m=2 n+1$ and

$$
(2 n+1)!=(2 n+1)(2 n)!
$$

hence

$$
(2 n+1)!>(2 n+1)(2 n) 2^{n-1}(2 n-1)^{n-1}
$$

3. Conclusion

Since

$$
\lim _{n \rightarrow \infty} \frac{\sqrt{(2 n)^{2 n}}}{(2 n) 2^{n-1}(2 n-1)^{n-1}}=0
$$

and

$$
\lim _{n \rightarrow \infty} \frac{\sqrt{(2 n+1)^{2 n+1}}}{(2 n+1)(2 n) 2^{n-1}(2 n-1)^{n-1}}=0
$$

our estimates are a bit better.

References

[1] H. Dörrie "Unendliche Reihen" Verlag von R. Oldenburg, 1951.
Università di Trento, Dipartimento di Ingegneria e Scienza dell'Informazione, Via Sommarive, 9-38123 Povo, Trento, Italy

E-mail address: goldoni@science.unitn.it

