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Abstract

We consider the toroidal black holes that arise as a generalization of the AdS5 × S5 solution of type IIB supergravity. The
symmetries of the horizon space allow T-duality transformations that can be exploited to generate new inequivalent black
hole solutions of both type IIB and type IIA supergravity, with non-trivial dilaton, B-field, and RR-forms. We examine the
asymptotic structure and thermodynamical properties of these solutions.
 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

In its simplest form, target space duality claims
that a bosonic closed string moving on a circle of ra-
dius R is physically equivalent to one moving on a
circle of radius 2α′h̄/R, where α′ is the string ten-
sion; for a review, see [1]. This symmetry was then
extended to many compact directions, including the
internal degrees of freedom typical of heterotic string
theory by Narain et al. [2,3]. For time-dependent back-
grounds [4–6], the analogue of T-duality is the scale
factor duality that relates a physically expanding and
a physically contracting universe. More generally, if
the background fields of a low energy effective ac-
tion in string theory are independent of D coordi-
nates, then this action shows an O(D,D) symmetry.
The symmetry group is replaced by SO(D − 1,1) if
one of the coordinates is time-like. Hence, given a
solution of the equations of motion, one may gen-
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erate a new one by means of an O(D,D) transfor-
mation. However, only the action of the subgroup
O(D) ⊗ O(D)/O(D) of O(D,D) generates physi-
cally inequivalent solutions [7–10]. T-duality is a par-
ticular case of anO(D)⊗O(D) transformation and if
theD coordinates are compact, the old and the new so-
lutions represent the same conformal field theory [11].
The aim of the present work is to investigate the

symmetries of toroidal black holes. These belong to
a wider class of black hole solutions to Einstein’s
equation with a negative cosmological constant, called
topological black holes [12–21]. They generalize the
ordinary asymptotically flat Schwarzschild black hole
in D dimensions to black holes that are locally as-
ymptotically anti-de Sitter such that the topology of
the horizon may be elliptic, toroidal, or hyperbolic.
The toroidal case clearly shows translational invari-
ance along the compact coordinates of the (D − 2)-
dimensional horizon space. The metric is then inde-
pendent of these (D − 2) coordinates, and the effec-
tive action must exhibit anO(D−2) symmetry group.
Moreover, since the metric is static, the action is also
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invariant under an SO(D − 2,1) group of transfor-
mations as well. We will investigate the inequivalent
solutions obtained by the action of the relevant sub-
groups on the toroidal black hole metric. In particular,
we will focus on the 5-dimensional toroidal black hole
that can replace the AdS5 sector of the AdS5×S5 solu-
tion of type IIB supergravity [22]. Therefore, we must
also study the action of the group on the anti-self-dual
5-form that implements the model.
By performing a few preliminary computations,

following [7–10], we find that the action of the
SO(3,1) ⊗ SO(3,1)/SO(3,1) group always leads to
metrics with naked singularities. Hence, we will focus
on the T-duality transformations only, that belong
to the O(3) ⊗ O(3) invariance group. In general,
T-duality is a map between type IIB and type IIA
solutions, and we will explicitly see this through
the transformations of the spectrum of RR-forms. In
strict analogy with the duality between the uncharged
and charged black strings [23], we will first boost
the toroidal black hole and then apply T-dualities in
order to generate an axion charge that is dual to the
momentum.Also, we will check that the entropy of the
black hole is invariant under T-duality [24]. Finally, we
will see that the local asymptotic structure of the black
hole changes from anti-de Sitter to warped products of
compactified Minkowski space–times and hyperbolic
spaces.

2. Toroidal black holes

Toroidal black holes belong to a larger class of
topological black holes that arise as solutions of the
Einstein equations with a negative cosmological con-
stant [12–19]. They are Einstein space–times which
are locally asymptotically anti-de Sitter. The horizon
may have elliptic, toroidal, or hyperbolic topology as
opposed to asymptotically flat black holes, for which
only spherical topology is possible. The toroidal case
has the D-dimensional metric

(1)
ds2 = −f (r) dt2 + f (r)−1 dr2 + r2

l2
δαβ dxα dxβ ,

where

(2)f (r) = r2

l2
− 2M

rD−3 .

Here, M is the mass parameter, l is the AdS radius,
and xα (α = 1, . . . ,D − 2) are the compact coordi-
nates parameterizing the torus horizon. The horizon is
located at rD−1

+ = 2Ml2. For D = 5, this metric may
replace the AdS5 sector of the AdS5 × S5 solution of
type IIB supergravity [22], see also [25,26]. Then, the
10-dimensional metric is

ds2 = −f (r) dt2 + f (r)−1 dr2

(3)+ r2

l2
[
dx21 + dx22 + dx23

]
+ l2 dΩ2

5 .

This solution must be supplemented with an anti-self-
dual 5-form

Fµ1...µ5 = +4
l
εµ1...µ5,

(4)Fm1...m5 = −4
l
εm1...m5,

in order to satisfy the fundamental equation [22]

(5)RMN = 1
6 · 42F

A2A3A4A5
M FNA2A3A4A5 .

With these conventions, ε01...89 = −√−detG, µ =
t, r, x1, x2, x3, and the m’s are the indices of the
coordinates on the 5-sphere S5. Upper case Latin
letters label all the coordinates. The Hodge operator
* applied to a p-form is defined such that ∗∗F (p) =
(−1)p+1F (p).
It is clear that the metric (3) is static and translation-

ally invariant along the space-like compact directions
x1, x2, and x3. Thus, we can generate new inequiva-
lent solutions by means of an O(3) ⊗ O(3)/O(3) or
an SO(3,1)⊗ SO(3,1)/SO(3,1) group of transforma-
tions. As mentioned above, in the latter case we al-
ways obtain metrics with naked singularities, and we
will focus on T-duality transformations that belong to
the more general O(3) ⊗ O(3) group. Since x1, x2,
and x3 are compact, all the new solutions that we ob-
tain represent the same conformal theory [11].

3. Application of T-duality

The T-duality transformations for the Neveu–
Schwarz sector of an effective theory are well known.
Given a metric GMN , a B-field BMN , and dilaton φ,
independent of the coordinate x , the transformation
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rules are [27,28]

G̃xx = 1/Gxx, G̃xN = BxN/Gxx,

G̃MN = GMN − (GxMGxN − BxMBxN)/Gxx,

B̃xM = GxM/Gxx,

B̃MN = BMN − 2Gx[MBN]x/Gxx,

(6)2φ̃ = 2φ − lnGxx,

whereM and N run over all the coordinates except x .
Here, T[MN] = (1/2!)(TMN −TNM). The type IIA/IIB
T-duality transformation rules for the RR-form fields
were derived more recently in [29,30], and put in
a general form by Hassan in [31] (see also [32]
for the SO(D,D) transformation rules). According
to [31], the components of an RR-form F which is
independent of x are related to the components of its
T-dual F̃ by

F̃
(n)
xM2...Mn

= F
(n−1)
M2...Mn

− (n − 1)GxxGx[M2F
(n−1)
xM3...Mn],

(7)F̃
(n)
M1...Mn

= F
(n+1)
xM1...Mn

− nBx[M1 F̃
(n)
xM2...Mn].

In this formalism, the index M runs over all the coor-
dinates except x , the anti-symmetrization symbols on
the right-hand sides do not involve the index x , and
the upper index of the form indicates its rank. Follow-
ing closely the method explained in [23] (see also [33,
34]), we first perform a boost by the change of co-
ordinates x1 → x1 coshα + t sinhα, t → t coshα +
x1 sinhα. Then, we apply a T-duality on the back-
ground fields along x1 using (6). The resulting metric,
dilaton field, and B-field take the form

ds2 = − r2

l2
h(r)g(r)−1 dt2 + l2

r2
h(r)−1 dr2

+ l2

r2
g(r)−1 dx21 + r2

l2
[
dx22 + dx23

]
+ l2 dΩ2

5 ,

Btx1 = − q

r4
g(r)−1,

(8)e−2φ = r2

l2
g(r),

where

h(r) = 1− m

r4
+ q2

mr4
,

(9)g(r) = 1+ q2

mr4
.

The axion charge is given by q = 2Ml2 coshα sinhα,
and the rescaled mass ism = 2Ml2 cosh2 α. In analogy

with the charged black string found in [23], the
horizon is unique and its location is unchanged: r4+ =
(m2 − q2)/m = 2Ml2. Also, in the extremal limit
M → 0, α → ∞ (such that m = q) one can check
that the horizon disappears and the metric is no longer
singular. However, as opposed to [23], in the limit
α → 0 we do not recover the original metric, because
of the term r2/l2 that multiplies the horizon sub-
metric.
In the large r limit, the metric of the black hole

reduces to

ds2 ≈ r2

l2
[
−dt2 + dx22 + dx23

]

(10)+ l2

r2
[
dr2 + dx21

]

which looks singular as r → ∞. However, it can be
checked that the scalar curvature of the black hole
tends toGµνR

µν = −8/l2 and all the scalar curvature
polynomials are finite (and constant) in the limit. This
is not surprising since the topology of the space–time
for large r is a warped product of a 3-dimensional
Minkowski space–time, compactified along x2 and x3,
and a 2-dimensional hyperbolic space compactified
along x1.
In general, T-duality is a map between type IIA

and type IIB supergravity solutions. Hence, we expect
that the anti-self-dual 5-form is mapped to forms with
even rank. This can be readily verified by means of the
transformation rules (7), and we find

F (4)
µ1...µ4

= 4r
l2

√
g(r) εµ1...µ4, µ *= x1,

(11)
F

(6)
A1...A6

= −4r
l2

√
g(r) εA1...A6, Ai *= t, r, x2, x3,

where ε denotes the volume form of the corresponding
subspace. It can be verified that F (4) = ∗F (6) and
F (6) = − ∗F (4). Thus, we have obtained a non-trivial
solution for type IIA supergravity with a black hole
sector, B-field, dilaton, and RR-forms.
The above solution is still translationally invariant

along x1, x2, and x3. For example, we could apply
another boost and a T-duality along x2 to generate
an axion charge independent of q . For simplicity,
we restrict our attention to T-duality only. First,



98 M. Rinaldi / Physics Letters B 547 (2002) 95–99

a T-duality transformation along x2 yields

ds2 = − r2

l2
h(r)g(r)−1 dt2 + l2

r2
h(r)−1 dr2

+ l2

r2
[
g(r)−1 dx21 + dx22

]
+ r2

l2
dx23 + l2 dΩ2

5 ,

Btx1 = − q

r4
g(r)−1,

(12)e−2φ = r4

l4
g(r).

By computing the forms, we find a 3-form and a
7-form

F (3)
µ1µ2µ3 = 4r2

l3

√
g(r) εµ1µ2µ3 , µ *= x1, x2,

(13)F
(7)
A1...A7

= −4r
2

l3

√
g(r) εA1...A7, Ai *= t, r, x3.

It can be verified that F (3) = ∗F (7), F (7) = ∗F (3),
and we see that this is again a solution for type IIB
supergravity. The horizon location is unaltered and, in
the extremal limitm = q , the singularity disappears. In
the large r limit, the black hole metric has the topology
of a warped product of 2-dimensional Minkowski
space–time, with x3 compact, and a 3-dimensional
hyperbolic space compactified along x1 and x2. Again,
there are no singularities as r → ∞ and the scalar
curvature tends to a constant.
As a final step, we apply a T-duality along x3 to the

solution above. The metric, the B-field, and the dilaton
are given by

ds2 = − r2

l2
h(r)g(r)−1 dt2 + l2

r2
h(r)−1 dr2

+ l2

r2
[
g(r)−1 dx21 + dx22 + dx23

] + l2 dΩ2
5 ,

Btx1 = − q

r4
g(r)−1,

(14)e−2φ = r6

l6
g(r).

The previous forms are mapped into a 2-form and an
8-form

F (2)
µ1µ2 = 4r3

l4

√
g(r) εµ1µ2, µ *= x1, x2, x3,

(15)F
(8)
A1...A8

= −4r
3

l4

√
g(r) εA1...A8, Ai *= t, r,

that satisfy the type IIA duality condition F (2) =
∗F (8) and F (8) = − ∗F (2). All the previous charac-
teristics are unchanged, i.e., the horizon location and
the absence of curvature singularities as r → ∞. Also,
the r = 0 curvature singularity disappears in the ex-
tremal limit m = q . In particular, we see that in this
limit the black hole metric reduces to a warped prod-
uct of time and a 4-dimensional hyperbolic space com-
pactified along x1, x2 and x3, with a scalar curvature
GµνR

µν → −8/l2.
According to the general formalism, these duality

transformations generate solutions of type IIA or type
IIB supergravity. In particular, we explicitly checked
that the fields (14), (15) are a non-trivial solution of
the type IIA supergravity. Indeed, these are solutions
for the equations of motion [35]

0= RAB + 2∇A∇Bφ − 1
4
HCD

A HBCD

+ 1
4 · 2!e

2φFCDFCDGAB − 1
2
e2φFC

A FBC,

0= ∇M

(
e−2φHM

PQ

)
,

(16)0= 4∇2φ − 4
(
∇φ

)2 + R − 1
12

HABCHABC,

where HMNP = 3!∂[MBNP ] . These equations are
obtained by variation of the effective type IIA action

(17)

S = 1
2κ2

∫
d10x

√
−G

×
{
e−2φ

[
R + 4∇2φ − 1

12
HMNP HMNP

]

− 1
4
FMNFMN

}
,

with vanishing 4-form.
In general, if an asymptotically flat low energy

string theory solution has a horizon and at least one
space-like symmetry, then the dual solution also has
a horizon, with the same area (in Einstein frame),
and the same temperature [24]. The horizon area is
invariant in our case as well. After the boost of the
metric (3), the area is A = (2πr+/l)3

√
g(r+). The 5-

dimensional black hole metric in Einstein frame ds2(E)

is related to the one in string frame ds2(ST) through
ds2(E) = exp(−4φ/3) ds2(ST). In particular, let Hij (i =
1,2,3) be the horizon metric of (14) in Einstein frame.
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Then

Hij dxi dxj = r2

l2
g(r)−1/3 dx21

(18)+ r2

l2
g(r)2/3

(
dx22 + dx23

)
.

The area is then (2π)3
√
detH(r+) which coincides

with A. Hence, the black hole and its dual have the
same entropy. It is straightforward to check that this is
true for the metrics (8) and (12) as well.

4. Conclusions

The application of T-duality transformations to the
toroidal black hole generates new black hole solutions
in the context of type IIA and type IIB supergravity
with non-trivial dilaton, B-field, and RR-forms. The
analogy with the duality between the charged and
uncharged black string is strict, and all the newmetrics
have a unique horizon with unchanged location and
entropy.We also analyzed the asymptotic structure and
showed that it takes the form of a warped product
of compactified hyperbolic spaces and Minkowski
space–times. As opposed to the original toroidal black
hole, the new metrics are not Einstein space–times,
and the Ricci scalar is constant only in the large r limit.
In the original solution (3) and (4), the effect of the

5-form is to produce an effective cosmological con-
stant. One might wonder whether a similar mecha-
nism is valid for the dualized solutions. Namely, one
would like to check if, for example, the solution (14)
can be generated by replacing the RR-forms (15) by
a constant term in the action (17). Preliminary com-
putations (with q = 0), indicate that this mechanism
does not work. Further investigations may be worthy.
Finally, we note that topological black holes with hy-
perbolic topology [19] show translational invariance
as well and it would be interesting to apply T-duality
transformations, in analogy with the toroidal case.
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