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SEGMENTS AND HILBERT SCHEMES OF POINTS

FRANCESCA CIOFFI, PAOLO LELLA, MARIA GRAZIA MARINARI, AND MARGHERITA ROGGERO

Abstract. Using results obtained from the study of homogeneous ideals sharing the same initial
ideal with respect to some term order, we prove the singularity of the point corresponding to
a segment ideal with respect to the revlex term order in the Hilbert scheme of points in Pn.
In this context, we look inside properties of several types of “segment” ideals that we define
and compare. This study led us to focus our attention also to connections between the shape
of generators of Borel ideals and the related Hilbert polynomial, providing an algorithm for
computing all saturated Borel ideals with the given Hilbert polynomial.

Introduction

The Hilbert scheme can be covered by some particular affine varieties [3, 7, 19, 23, 12] that
have been called Gröbner strata in [12] because they are computed from a monomial ideal by
Gröbner basis techniques. The behaviour of Gröbner strata can give interesting information on
the Hilbert scheme itself. Very recently, in [22] M. Roggero showed that an open covering of
the Hilbert scheme can be constructed from Borel ideals by avoiding to involve any term order,
that is instead needed for Gröbner strata. This fact gives us further reasons to investigate Borel
ideals and their very particular features.

Among Borel ideals there are several types of “segment” ideals, the definitions of which are
already well known or arise from some interesting properties of Gröbner strata studied in [12]
(Definitions 3.1 and 3.7). In section 3 we characterize the existence of this kind of ideals in terms
of the corresponding Hilbert polynomial, in some cases. In this context we need to focus our
attention also to the shape of admissible polynomials.

In [10] the coefficients of Hilbert polynomials are completely characterized by the numbers of
components of certain subschemes defined by very particular ideals called fans. In [21] these num-
bers of components are described by the shape of minimal generators of Borel ideals. Although
the geometric meaning is contained in the fans, in section 4 we observe that this connection be-
tween coefficients of Hilbert polynomials and minimal generators of Borel ideals can be described
without using fans, but directly by the combinatorial properties of Borel ideals themselves. This
study led us to project an algorithm to compute all saturated Borel ideals with a given Hilbert
polynomial. In section 5 we describe this procedure.

In [20] and in [17] the smoothness of points of Hilbert schemes is studied by means of the
dimension of the vector space of the global sections of the normal sheaf to the corresponding
projective subscheme. In section 6, applying results of [12] about Gröbner strata, we make some
new consideration (Theorem 6.2) on smoothness of points in the Hilbert scheme Hilbnd and, in
particular, prove the main result of this paper, i.e. the point of Hilbnd corresponding to the
segment ideal with respect to the revlex term order is singular (Theorem 6.4). In literature we
have not found any proof of such a result.
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1. General setting

Let K be an algebraically closed field of characteristic 0, S := K[x0, . . . , xn] the ring of
polynomials over K in n+ 1 variables endowed so that x0 < x1 < . . . < xn and Pn

k = ProjS the
n-dimensional projective space over K.

A term of S is a power product xα := xα0

0 xα1

1 . . . xαn
n , where α0, α1, . . . , αn are non negative

integers. We set min(xα) := min{i : αi 6= 0} and max(xα) := max{i : αi 6= 0}. We also let
T := {xα0

0 xα1

1 . . . xαn
n | (α0, α1 . . . , αn) ∈ Nn+1} be the monoid of all terms of S.

A graded structure on S is defined by assigning a weight-vector w = (w0, . . . , wn) ∈ Rn+1
+ and

imposing vw(x
α) =

n∑
i=0

wiαi. For each non negative integer t, St is the K-vector space spanned

by {xα ∈ T : vw(x
α) = t}. The standard grading corresponds to w = (1, . . . , 1) and, unless

otherwise specified, we will always consider it.
For any N ⊆ T, Nt is the set of the t-degree elements of N and λi,t(N) := |{xα ∈ Nt :

i ≤ min(xα)}| denotes the cardinality of the subset of terms of Nt which are not divided by
x0, . . . , xi−1. For any homogeneous ideal I ⊆ S, It is the vector space of the homogeneous
polynomials in I of degree t; I≤t and I≥t are the ideals generated by the homogeneous polynomials
of I of degree ≤ t and ≥ t, respectively.

Fixed any term-order � on T, each f ∈ S has a unique ordered representation f =
s∑

i=1
c(f, τi)τi,

where c(f, τi) ∈ K∗, τi ∈ T, τ1 ≻ · · · ≻ τs, T (f) := τ1 is the maximal term of f . For any
F ⊂ S, T{F} := {T (f) : f ∈ F}, T (F ) := {τT (f) : f ∈ F, τ ∈ T} and N (F ) := T \ T (F ).
For any ideal I ⊂ S, T{I} = T (I) and N (I) is an order ideal, often called sous-éscalier or
Gröbner-éscalier of I. A subset G ⊂ I is a Gröbner-basis of I if T (G) = T (I) (see for instance
[18]).

For a monomial ideal I, G(I) denotes the unique set of minimal generators of I consisting of
terms.

Remark 1.1. (1) In our setting, we consider on T mainly (standard) graded term orders. In
particular, given two terms xα and xβ of T of the same degree t, we say that xα is less than xβ

with respect to:

(i) lex order if αk < βk, where k = max{i ∈ {0, . . . , n} : αi 6= βi};
(ii) revlex order if αh > βh, where h = min{i ∈ {0, . . . , n} : αi 6= βi};

(iii) a reverse order if α0 > β0 or α0 = β0 and
xα

xα0

0

�
xβ

xβ0

0

, where � is any graded term order

on T ∩K[x1, . . . , xn]. Recall that a reverse order is well suited for the homogeneization
of a Gröbner basis [5] and that revlex is a particular reverse order.

(2) With respect to the term orders introduced in (1), for every positive integers j and n ≥ 2,
Tj can be decomposed in increasing order as follows, where we let T(n) := T ∩K[x0, . . . , xn−1]:

lex:

Tj = T(n)j ⊔ Tj−1xn = T(n)j ⊔ xn[T(n)j−1 ⊔ T(n)j−2xn] = . . . =

j⊔

i=0

T(n)j−ix
i
n (⋆)

revlex:

Tj = x0Tj−1 ⊔ {τ ∈ Tj : min(τ) ≥ 1} = x0Tj−1 ⊔ x1{τ ∈ Tj−1 : min(τ) ≥ 1}⊔

⊔ {τ ∈ Tj : min(τ) ≥ 2} = . . . =

n⊔

i=0

xi{τ ∈ Tj−1 : min(τ) ≥ i}
(⋆⋆)

reverse:
Tj = x0Tj−1 ⊔ {τ ∈ Tj : min(τ) ≥ 1} (⋆ ⋆ ⋆)
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(3) For each positive integer j and ω ∈ {1, . . . ,
(
n+j
j

)
− 1}, let Λω := Λω,j be the set of the ω

smallest terms of Tj w.r.t. revlex order. Thus, from (⋆⋆) of (2) it follows straightforward that

Λω =

γ(ω)⊔

i=0

xi{τ ∈ Tj−1 : min(τ) ≥ i} ⊔ xγ(ω)+1{τ1, . . . , τβ(ω)}

where, γ(ω) + 1 = min{t ∈ N : ω ≤
t∑

ℓ=0

(
j−1+n−ℓ

j−1

)
}, β(ω) := ω −

γ(ω)∑
ℓ=0

(
j−1+n−ℓ

j−1

)
and τ1, . . . τβ(ω)

are the smallest β(ω) terms of Tj−1 satisfying min(τi) ≥ γ(ω) + 1, for every 1 ≤ i ≤ β(ω).
(4) Fixed any term order � on T and any weight vector w, the weighted term order �w is

defined as follows:

xα ≺w xβ if vw(x
α) < vw(x

β) or vw(x
α) = vw(x

β) and xα ≺ xβ.

Speaking of w-term order we understand � to be the graded lex order.

Let I ⊂ S be any homogeneous ideal. Then, HS/I(t) denotes the Hilbert function of the
graded algebra S/I. It is well known that there are a polynomial pS/I(z) ∈ Q[z], called Hilbert
polynomial, and positive integers ρH := min{t ∈ N | HS/I(t

′) = pS/I(t
′),∀ t′ ≥ t}, αH := min{t ∈

N | HS/I(t) <
(n+t

t

)
} called respectively regularity of the Hilbert function H and initial degree

of H (or also of I). For convenience, we will also say that pS/I(z) is the Hilbert polynomial for
I or that I is an ideal with Hilbert polynomial pS/I(z). If I is not Artinian, set ∆HS/I(t) :=
HS/I(t) −HS/I(t − 1), for t > 0, and ∆HS/I(0) := 1; we use an analogous notation for Hilbert
polynomials. If h is a linear form general on S/I, then it is easy to prove that pS/(I,h) = ∆pS/I .

Polynomials p(z) ∈ Q[z] that are Hilbert polynomials of projective subschemes are called
admissible and are completely characterized in [10] by the fact that they can be always written
in a unique form of the following type (see [10, 13]), where ℓ is the degree of p(z) and m0 ≥ m1 ≥
· · · ≥ mℓ ≥ 0 are integers:

p(z) =

ℓ∑

i=0

(
z + i

i+ 1

)
−

(
z + i−mi

i+ 1

)
.

The saturation of a homogeneous ideal I ⊂ S is Isat := {f ∈ S | ∀ i ∈ 0, . . . , n,∃ ki : x
ki
i f ∈

I} = ∪h≥0(I : mh), where m = (x0, . . . , xn), and I is saturated if I = Isat.
If X ⊂ Pn

K is a projective subscheme, reg(X) is its Castelnuovo-Mumford regularity, i.e
reg(X) = min{t ∈ N | H i(IX(t′ − i)) = 0,∀ t′ ≥ t}.

An ideal I ⊂ S is m-regular if the i-th syzygy module of I is generated in degree ≤ m+ i and
the regularity reg(I) of I is the smallest integer m for which I is m-regular. If I is saturated and
defines a scheme X, then reg(I) = reg(X) and we set HX(t) := HS/I(t) and pX(z) := pS/I(z).

For an admissible polynomial p(z), the Gotzmann number r is the best upper bound for the
Castelnuovo-Mumford regularity of a scheme having p(z) as Hilbert polynomial and is computable
by using the following unique form of an admissible polynomial:

p(z) =

(
z + a1
a1

)
+

(
z + a2 − 1

a2

)
+ . . .+

(
z + ar − (r − 1)

ar

)
,

where a1 ≥ a2 ≥ . . . ≥ ar ≥ 0. We refer to [8] for an overview of these arguments.

Example 1.2. If p(z) = dz + 1 − g is an admissible polynomial, then its Gotzmann number is

r =
(
d
2

)
+ 1− g. Indeed, we get

p(z) =

(
z + 1

1

)
+ . . .+

(
z + 1− (d− 2)

1

)
+

(
z + 0− (d− 1)

0

)
+ . . .+

(
z + 0−

(
d−2
2

)
+ g

0

)
.
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2. Results on Borel ideals and Gröbner strata

Definition 2.1. (1) For any xα ∈ T such that αj > 0, the terms obtained from xα via a j-th
elementary move are:

(i) e+j (x
α) := xα0

0 . . . x
αj−1
j x

αj+1+1
j+1 . . . xαn

n , for any j ∈ {0, . . . , n − 1};

(ii) e−j (x
α) := xα0

0 . . . x
αj−1+1
j−1 x

αj−1
j . . . xαn

n , for any j ∈ {1, . . . , n},

and for each positive integer a we will denote by (e−j )
a, (e+j )

a the corresponding elementary move
applied a times.

(2) For any positive integer t, <B denotes the partial order on Tt given by the transitive
closure of the relation: e−j (x

β) < xβ, i.e xα <B xβ if xα is gotten from xβ via a finite sequence

of elementary moves e−j .

(3) A set B ⊂ Tt is a Borel set if, for every xα of B and xβ of Tt, x
α <B xβ implies that xβ

belongs to B.
(4) A monomial ideal J ⊂ S is a Borel ideal if, for every degree t, J ∩ Tt is a Borel set.

The combinatorial property by which Borel ideals are defined is also called strong stability. It
has been first introduced in [9] and later in [10], where the ideals satisfying it are called balanced.
In characteristic 0 it is equivalent to the property for an ideal J of being fixed by lower triangular
matrices, from which the name Borel ideals derives.

From the definition it follows immediately that, ifB ⊂ Tt is a Borel set, then the setN := Tt\B
has the property that for every xγ ∈ N and xδ ∈ Tt, with xδ <B xγ it holds xδ ∈ N , that is N
is closed w.r.t. elementary moves e−j . In particular, if J is a Borel ideal, then for every integer

t ≥ 0, N (J)t is closed w.r.t. elementary moves e−j and Jt is closed w.r.t. elementary moves e+j .

Remark 2.2. Note that, for every term order �, if xα, xβ ∈ Tt satisfy xα <B xβ then xα ≺ xβ.
Namely, as xα <B xβ means that there is a finite number of elementary moves e−j connecting

xβ to xα, assuming that xj | x
β for a suitable 0 ≤ j ≤ n, we can verify our contention for

xα = e−j (x
β). Setting τ := xβ

xj
and writing xα = e−j (x

β) = xj−1τ, x
β = xjτ, we get xα ≺ xβ as

xj−1 ≺ xj.

Proposition 2.3. For a Borel ideal J ⊂ S,

(i) in our notation Jsat is obtained by setting x0 = 1 in the minimal generators of J ;
(ii) the Krull dimension of S/J is equal to min{max(xα) : xα ∈ J} = min{i ∈ {0, . . . , n} :

xti ∈ J, for some t};
(iii) the regularity of J is equal to the maximum degree of its minimal generators.

Proof. (i) For example, see [21, Property 2].
(ii) This result follows straightforward from Lemma 3.1(a) of [11] or from Corollary 4, section

5, chapter 9 of [5]. Thus, if J is saturated and ℓ is the degree of the Hilbert polynomial of J , we
get ℓ = min{i ∈ {0, . . . , n} : xti ∈ J, for some t} − 1.

(iii) See [2, Proposition 2.9]. �

Remark 2.4. Let B ⊂ Tt be a non-empty Borel set, N := Tt \B and J = (B) the Borel ideal
generated by the terms of B, so that N (J)t = N . Thus

N (J)t+1 = x0N ⊔ x1{x
α ∈ N : 1 ≤ min(xα)}⊔

⊔x2{x
α ∈ N : 2 ≤ min(xα)} ⊔ . . . ⊔ xn−1{x

α ∈ N : n− 1 ≤ min(xα)}

and Tt+1 \ N (J)t+1 is a Borel set. In particular, if J is a Borel ideal and N := N (J)t, for every
degree t we have (see [16, Theorem 3.7]):

N (J)t+1 ⊆ N (J≤t)t+1 = x0N ⊔ x1{x
α ∈ N : 1 ≤ min(xα)}⊔

⊔x2{x
α ∈ N : 2 ≤ min(xα)} ⊔ . . . ⊔ xn−1{x

α ∈ N : n− 1 ≤ min(xα)}
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from which | N (J)t+1 |≤| N (J≤t)t+1 |=
n−1∑
i=0

λi,t(N(J≤t)) and G(J)t+1 = N (J≤t)t+1 \ N (J)t+1.

Definition 2.5. For each Borel subset A ⊂ Tt the minimal elements of A, w.r.t. <B, are the
terms xα ∈ A such that e−j (x

α) /∈ A for every j > 0 with αj > 0 and the maximal elements

outside A, w.r.t. <B , are the terms xβ /∈ A such that e+j (x
β) ∈ A for every j > 0 with βj > 0.

Remark 2.6. Let B ⊂ Tt be a Borel subset, if xα ∈ B,xβ /∈ B are respectively a minimal
element of B and a maximal element outside B w.r.t. <B, then both B \ {xα} and B ∪ {xβ} are
Borel subsets of Tt as by definition both are closed w.r.t. elementary moves e+j .

Proposition 2.7. Let p(z) be an admissibile polynomial with Gotzmann number r and let J ⊂ S
be a Borel ideal with p(z) as Hilbert polynomial. Then, for each s > r, a minimal term of Js
w.r.t. <B is divided by x0.

Proof. As s > r ≥ reg(J), for each xα ∈ Js it holds xα = τ · xγ for some xγ ∈ G(J) and τ ∈ T

with deg(τ) > 0. If x0 ∤ xα, let j > 0 be such that xj | τ , then xα
′

:= τ ′ · xγ , with τ ′ = τ ·x0

xj
,

satisfies xα
′

∈ Js and xα
′

<B xα, contradicting the minimality of xα. �

Given an admissible polynomial p(z), a term order � and a monomial ideal J with p(z) as
Hilbert polynomial, the Gröbner stratum St(J,�) in the Hilbert scheme Hilbn

p(z) of subschemes

of Pn with Hilbert polynomial p(z) is an affine variety that parameterizes the family of ideals
having the same initial ideal J with respect to � [23, 7, 12, 3, 19]. When only homogeneous
ideals are concerned, we write Sth(J,�). Now, we recall briefly the construction of St(J,�), and
hence of Sth(J,�), referring to Definition 3.4 of [12], although here we omit many details that
make the procedure more efficient.

For any term xα of G(J) we set Fα := xα +
∑

{xβ∈N (J) : xβ<xα} cαβx
β, considering cαβ as

new variables. Then, we reduce all the S-polynomials S(Fα, Fα′) with respect to {Fα}xα∈J .
The ideal A(J) generated in K[cαβ] by the x-coefficients of the reduced polynomials is the
defining ideal of St(J,�) and does not depend on the reduction choises. If in particular we set
Fα := xα +

∑
{xβ∈N (J)t : xβ<xα} cαβx

β, where t is the degree of xα, then we obtain the ideal of

Sth(J,�).
For properties of Gröbner strata we refer to [23, 7, 12], but it is noteworthy to point out

an unexpected feature of Gröbner strata, i.e. they are homogeneous varieties with respect to
some non-standard graduation [7, 12]. Thus, the embedding dimension of Sth(J,�), denoted
by ed(Sth(J,�)), is the dimension of the Zariski tangent space of the stratum at the origin and
can be computed by the same procedure which produces Gröbner strata. In fact, the ideal L(J)
generated in K[cαβ ] by the linear components of the generators of A(J), as computed above,
defines the Zariski tangent space of the stratum at the origin (Theorems 3.6(ii) and 4.3 of [12]).
This fact gives a new tool for studying the singularities of Hilbert schemes.

3. Segments

Definition 3.1. A set B ⊂ Tt is a segment with respect to (w.r.t., for short) a term order �
on T if, whenever a term τ belongs to B, all the t-degree terms which are greater than τ belong
to B. A monomial ideal I is a segment ideal w.r.t. �, if I ∩ Tt is a segment w.r.t. �, for every
t ≥ 0.

Lemma 3.2. Let I ⊂ S be a saturated Borel ideal, � any term order on T and p > q integers.
If Ip is a segment then Iq is a segment too.

Proof. Let xα be a term of Iq and xβ a term of Tq such that xα � xβ, hence xp−q
0 xα � xp−q

0 xβ

and, since Ip is a segment, xp−q
0 xβ belongs to Ip. Recalling that I is saturated, xβ belongs to Iq

and we are done. �



6 F. CIOFFI, P. LELLA, M. G. MARINARI, AND M. ROGGERO

Remark 3.3. A segment is a Borel set and a segment ideal is a Borel ideal. Indeed, by recovering
the arguments of Remark 1.1(2), xix

α ≺ xhx
α if i < h, thus xα <B xβ implies that xα ≺ xβ,

for any term order �. In particular, if � is the lex order and I is a monomial ideal generated in
degree ≤ q such that Iq is a segment w.r.t. �, then Ip is a segment too, for every p > q.

Remark 3.4. (1) To each admissible polynomial p(z) of degree 0 ≤ ℓ ≤ n corresponds a unique
saturated segment ideal L(p(z)) w.r.t. lex order (see [1, 13]). In particular for a constant
polynomial p(z) = d we have the following, where T(2) := T ∩K[x0, x1],

L(d) = (xn, xn−1, . . . , x2, x
d
1),

N (L(d))j =

{
T(2)j if 0 ≤ j < d

{xd+i
0 , xd+i−1

0 x1, . . . , x
i+1
0 xd−1

1 } if j = d+ i, ∀ i ≥ 0,
.

(2) A segment ideal w.r.t. the revlex order exists if and only if the Hilbert polynomial is
constant and the Hilbert function H is non-increasing, i.e. ∆H(t) ≤ 0 for every t > αH =
min{t ∈ N|H(t) <

(t+n
n

)
} [6, 15].

(3) The same reasoning of [6, 15] shows that, more in general, a segment ideal J w.r.t. a reverse
term order exists if and only if the Hilbert polynomial is constant and the Hilbert function H
is non-increasing. Namely, if αH is the initial degree and xαH

1 ∈ N (J) it must be xαH+1
1 ∈ J

otherwise, letting τ ≻ xαH

1 be the smallest degree αH term in J , it would be xαH+1
1 ∈ N (J) with

xαH+1
1 ≻ x0τ ∈ J .

Proposition 3.5. If an ideal J ⊂ S of initial degree αH has the property that there exist an
integer t ≥ αH and four terms xα, xβ ∈ N (J)t, xγ , xδ ∈ Jt with xα+β = xγ+δ, then J is not a
segment ideal w.r.t. any term order �.

Proof. If J were a segment ideal w.r.t some �, by the given assumptions we would have in
particular both N (J)t ∋ xβ ≺ xδ ∈ Jt and N (J)t ∋ xα ≺ xγ ∈ Jt. From these it would follow
xα+β ≺ xα+δ ≺ xγ+δ contradicting xα+β = xγ+δ. �

Example 3.6. (1) The (saturated) Borel ideal J = (x32, x
3
1x

2
2, x

5
1x2, x

6
1) ⊂ K[x0, x1, x2] is not a

segment ideal w.r.t. any term order as it satisfies the conditions of Proposition 3.5. Namely, its
initial degree is 3 and, for t = 6 ≥ 3, we have: J6 ∋ x30x

3
2, x

6
1 and x20x

2
1x

2
2, x0x

4
1x2 ∈ N (J)6 with

x30x
3
2 · x

6
1 = x20x

2
1x

2
2 · x0x

4
1x2.

(2) Here we show that Proposition 3.5 cannot be inverted. The Borel ideal J = (x32, x1x
2
2, x

2
1x2,

x20x
2
2, x

3
0x1x2, x

5
0x2, x

7
1) ⊂ K[x0, x1, x2] of [4, Example 5.8] has the property that J3 is a segment

w.r.t. revlex order while Jt is a segment w.r.t. lex order, for every t ≥ 4 so that at each degree
it does not satisfy the conditions of Proposition 3.5. Nevertheless J is not a segment w.r.t. any
term order �, namely if it were, from x21x2 ∈ J3 and x0x

2
2 ∈ N (J)3, it would follow x0x2 ≺ x21

contradicting (x0x2)
2 ∈ J4, x

4
1 ∈ N (J)4. Note also that Jsat = (x2, x

7
1) is the saturated lex

segment.

Definition 3.7. Let I ⊂ S be a non null saturated Borel ideal and � a term order on T.

(a) [12] I is a hilb-segment ideal if Ir is a segment, where r is the Gotzmann number of the
Hilbert polynomial of I;

(b) I is a reg-segment ideal if Iδ is a segment, where δ is the regularity of I;
(c) I is a gen-segment ideal if, for every integer s, G(I)s consists of the greatest terms among

the s-degree terms not in 〈Is−1〉.

Remark 3.8. The criterion given by Proposition 3.5 can be adapted also to hilb-segment ideals
and to reg-segment ideals I, by simply verifying it at degree r = Gotzmann number and at degree
δ = reg(I), respectively. Computational evidence suggests that the condition of this criterion is
also necessary for reg-segment and hilb-segment ideals.
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The following results about Gröbner strata motivate the definitions of reg-segment ideal and
of hilb-segment ideal, respectively.

Proposition 3.9. (i) Let I ⊂ S be a Borel saturated ideal generated in degree ≤ r. If s is the
maximum degree of terms in G(I) in which x1 appears, then Sth(I≥m) ∼= Sth(I≥s), for every
m ≥ s. In particular, if x1 does not appear in any term of G(I), then Sth(I≥m) ∼= Sth(I≥s) for
every m (Theorem B and, also, Corollary 4.8(ii),(iii) of [12]).

(ii) An isolated, irreducible component of Hilbn
p(z) that contains a smooth point corresponding

to a hilb-segment ideal is rational (Theorem D and, also, Corollary 6.8 of [12]).

Proposition 3.10. Let I ⊂ S be a saturated Borel ideal and � a term order on T. Then

(i) I segment ideal ⇒ I hilb-segment ideal ⇒ I reg-segment ideal ⇒ I gen-segment ideal.
(ii) � is the lex order ⇔ the implications in (i) are all equivalences, for every ideal I.
(iii) If the projective scheme defined by I is 0-dimensional, then: I segment ideal ⇔ I hilb-

segment ideal ⇔ I reg-segment ideal.

Proof. (i) The first implication is obvious. For the second one, it is enough to apply Lemma 3.2
since r ≥ δ. For the third implication, recall that I is generated in degrees ≤ δ, by definition.
Moreover, if I is a reg-segment ideal, by Lemma 3.2 It contains the greatest terms of degree t,
for every t ≤ δ. Thus, in particular, minimal generators of I must to be the greatest possible.

(ii) First, suppose that � is the lex order. Then, by (i), it is enough to show that a gen-segment
ideal is also a segment ideal. Indeed, by induction on the degree s of terms and with s = 0 as
base of induction, for s > 0 suppose that Is−1 is a segment. Thus, by Remark 3.3, we know that
〈Is−1〉s is a segment and, since possible minimal generators are always the greatest possible, we
are done.

Vice versa, if � is not the lex order, let s be the minimum degree at which the terms are
ordered in a different way from the lex one. Thus, there exist two terms xα and xβ with maximum
variables xl and xh, respectively, such that xβ ≺ xα but xh ≻ xl. The ideal I = (xh, . . . , xn) is a
gen-segment ideal but not a segment ideal, since xβ belongs to I and xα does not.

(iii) It is enough to show that, in the 0-dimensional case, a reg-segment ideal I is also a
segment ideal. By induction on the degree s, if s ≤ δ, then the thesis follows by the hypothesis
and by Lemma 3.2. Suppose that s > δ and that Is−1 is a segment. At degree s there are not
minimal generators for I so that a term of Is is always of type xαxh with xα in Is−1. Let xβ

be a term of degree s such that xβ ≻ xαxh, thus x
β ≻ xαx0. By Proposition 2.3, we have that

(x1, . . . , xn)
s ⊆ I. So, if xβ is not divided by x0, then xβ belongs to Is, otherwise there exists

a term xγ such that xβ = xγx0. Thus xγ ≻ xα and by induction xγ belongs to Is−1 so that
xβ = xγx0 belongs to Is. �

Example 3.11. Let � be the revlex order.
(1) The ideal I = (x22, x1x2) ⊂ K[x0, x1, x2] is a hilb-segment ideal, but it is not a segment

ideal. In this case, the Hilbert polynomial is p(z) = z + 2 with Gotzmann number 2 and
reg(I) = 2. We have x31 ∈ N (I) and x0x1x2 ∈ I with x31 � x0x1x2.

(2) I ′ = (x32, x1x
2
2, x

2
1x2) ⊂ K[x0, x1, x2] is a reg-segment ideal, but not a hilb-segment ideal.

In this case, the Hilbert polynomial is p(z) = z + 4 with Gotzmann number 4 and reg(I ′) = 3.
We get x0x

3
2 ∈ I ′ with x0x

3
2 � x41 /∈ I ′.

(3) I ′′ = (x24, x3x4, x
3
3) ⊂ K[x0, . . . , x4] is a gen-segment ideal but not a reg-segment ideal.

In this case, the Hilbert polynomial is p(z) = 2z2 + 2z + 1 with Gotzmann number 12 and
reg(I ′′) = 3. We get x0x

2
4 ∈ I ′′ with x0x

2
4 � x32 /∈ I ′′.

Remark 3.12. If I is a saturated Borel ideal and also an almost revlex segment ideal, as defined
in [6], then it is a gen-segment ideal w.r.t. revlex order.

Theorem 3.13. To the ideal J generated by a Borel set B ⊂ Td, consisting of all but d terms
of degree d, corresponds a projective scheme with Hilbert polynomial p(z) = d.
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Proof. By the Borel condition, we have that xd1 belongs to J , otherwise |N (J)d| ≥ d + 1 > d
by Remark 2.4(1), so that by Remark 2.4(2) we have |N (J)t| = d, for every t ≥ d. The ideal
I = Jsat is the saturated ideal of a projective subscheme with Hilbert polynomial p(z) = d. �

Remark 3.14. (1) For every positive integer d and any term order � on T, there exists a unique
saturated segment ideal I ⊂ S, with Hilbert polynomial p(z) = d. This is a straightforward
consequence of Theorem 3.13: it is enough to take the ideal J generated by all but the least d
terms of degree d.

(2) In [15] for the revlex order and then in [4] for each term order, it is shown that the generic
initial ideal of a set X of d general points in Pn is a segment ideal with Hilbert polynomial
p(z) = d. As the Hilbert function of X is the maximum possible, that is HX(t) = min{

(t+n
t

)
, d},

we deduce that this is the Hilbert function of the saturated segment ideal of (1).
(3) For the revers term orders it is possible to give a direct and constructive proof of (1). If

J ⊂ S is a segment ideal w.r.t. a revers order with Hilbert polynomial p(z) = d, its Hilbert
function must to be non-increasing by Remark 3.4(2) and strictly increasing until it reaches the
value d, after which it is always equal to d, because J is a saturated ideal of Krull dimension 1.
Thus, HS/J(t) must to be the maximum possible and we have two items:

(i) αH = ρH + 1, so that J = (x1, . . . , xn)
αH ;

(ii) αH = ρH , so that J is generated only in degrees αH and αH + 1; more precisely, the
minimal generators of degree αH are the greatest

(αH+n
αH

)
− d terms of TαH

(so that in

N (J)αH
there are d−

(αH+n−1
n−1

)
terms xβ with min(xβ) ≥ 1) and the minimal generators

of degree αH + 1 are the all terms τ � xαH+1
1 which are not multiples of terms in JαH

(these terms are at least d−
(αH−1+n

αH−1

)
, by Remark 2.4).

It follows that in case (i) we have |G(J)| =
(ρH+n

n−1

)
and in case (ii) |G(J)| ≥

(ρH+n
n

)
− d + d −(

ρH+n−1
n

)
=
(
ρH+n−1

n−1

)
.

3.1. On hilb-segment ideals. Let � be any term order and p(z) an admissible polynomial
with Gotzmann number r. We want to see under which conditions there exists a hilb-segment
ideal for p(z). In this context, it is immediate to see that, if r = 1, then p(z) =

(z+ℓ
ℓ

)
, where ℓ < n

is the degree of p(z), so that I = (xℓ+1, . . . , xn) is the hilb-segment ideal for p(z). Moreover, we
have already observed that a hilb-segment ideal exists always for a constant polynomial p(z) = d.

Example 3.15. The following saturated Borel ideals are not hilb-segment ideals for any term
order:

1) J = (x22, x
3
1x2, x

4
1) ⊂ K[x0, x1, x2], (see [4]) as H = (1, 3, 5, 7, . . . , p(z) = 7, . . .) we have

r = 7 so, if J were a hilb-segment ideal w.r.t. some �, at degree 7 we should have N (J)7 ∋
x40x

2
1x2 ≺ x50x

2
2 ∈ J7 and N (J)7 ∋ x40x

2
1x2 ≺ x30x

4
1 ∈ J7 contradicting (x40x

2
1x2)

2 = x50x
2
2 · x

3
0x

4
1.

2) J = (x32, x1x
2
2, x

2
1x2) ⊂ K[x0, x1, x2], as H = (1, 3, 6, 7, . . . , p(z) = z + 4, . . .) we have

reg(J) = 3 and r = 4, so we can repeat the same reasoning of 1) with x0x
2
1x2 ∈ J4 and x41,

x20x
2
2 ∈ N (J)4.

Proposition 3.16. In K[x0, x1, x2] every saturated Borel ideal with Hilbert polynomial p(z) =
d 6 6 is a hilb-segment ideal. Whereas for every p(z) = d > 7, a saturated Borel ideal, which is
not a hilb-segment for any term order, always exists.

Proof. We give a direct constructive proof of the result, based in part on the characterization of
the Borel subsets in three variables of [14].

d 6 2 there exists a unique saturated Borel ideal (x2, x
d
1), which is the hilb-segment ideal w.r.t.

lex order;
d = 3 there are only two saturated Borel ideals: the hilb-segment ideals (x2, x

3
1) (w.r.t. lex)

and (x22, x1x2, x
2
1) (w.r.t. revlex);
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d = 4 there are only two saturated Borel ideals: the hilb-segment ideals (x2, x
4
1) (w.r.t. lex)

and (x22, x1x2, x
3
1) (w.r.t. revlex);

d = 5 there are three saturated Borel ideals: the hilb-segment ideals (x2, x
5
1) (w.r.t lex), (x22,

x1x2, x
4
1) (w.r.t. (4, 2, 1)-term order) and (x22, x

2
1x2, x

3
1) (w.r.t revlex);

d = 6 there are four saturated Borel ideals: the hilb-segment ideals (x2, x
6
1) (w.r.t. lex),

(x22, x1x2, x
5
1) (w.r.t. (5, 2, 1)-term order), (x22, x

2
1x2, x

4
1) (w.r.t. (3, 2, 1)-term order) and

(x32, x1x
2
2, x

2
1x2, x

3
1) (w.r.t revlex);

d > 7 (i) Let us firstly consider the case d = 2a + 1, a ≥ 3 and the ideal J = (x22, x
a
1x2,

xa+1
1 ). It has Hilbert polynomial p(z) = 2a + 1, in fact in degree 2a + 1, the 2a + 1

monomials {xa+i
0 xa−i

1 x2, x
a+j+1
0 xa−j

1 , i = 1, . . . , a, j = 0, . . . , a}, belong to the quotient.

Moreover x2a−1
0 x22, x

a
0x

a+1
1 ∈ J and x2a−2

0 x21x2, x
a+1
0 xa−1

1 x2 /∈ J , but x2a−1
0 x22 · x

a
0x

a+1
1 =

x2a−2
0 x21x2 · x

a+1
0 xa−1

1 x2 (if a = 3 this is exactly the ideal of Example 3.15 1)).

(ii) In the case d = 2a, a ≥ 4, let us consider the ideal J = (x32, x1x
2
2, x

2
1x2, x

2a−3
1 ).

It has Hilbert polynomial p(z) = 2a, namely N (J)2a = {x2a−2
0 x22, x

2a−2
0 x1x2, x

2a−1
0 x2,

x2a−i
0 xi1, i = 0, . . . , 2a − 4}. Moreover x2a−3

0 x21x2 ∈ J2a, x
2a−2
0 x22, x

2a−4
0 x41 ∈ N (J)2a, and

(x2a−3
0 x21x2)

2 = x2a−2
0 x22 · x

2a−4
0 x41. �

Proposition 3.17. Let � be any reverse term order and p(z) an admissible polynomial of positive
degree with Gotzmann number r.

(1) If p(r) ≤
(r−1+n

n

)
, then there is not the hilb-segment ideal for p(z).

(2) If p(z) = dz + 1− g, there exists the hilb-segment ideal J for p(z) if and only if
(i) r = d or r = d+ 1, when n = 2;
(ii) r = d = 1, when n > 2.

Proof. (1) By the hypothesis we have that xr1 belongs to the ideal, hence the Krull dimension
must to be 1 by Proposition 2.3, and we are done.

(2) In this case, the hilb-segment ideal J exists if and only if p(r) =
(n+r−1

n

)
+ d. Infact, the

sous-éscalier of (J, x0)r contains the least d terms not divided by x0 and, since the term order is
reverse and r ≥ d, also the sous-éscalier of Jr must contain the same least d terms not divided by
x0. Hence, by the Borel property, all the terms divided by x0 must to belong to the sous-éscalier
of Jr, too. Thus, since r =

(d
2

)
+ 1− g by Example 1.2, we get:

dr + r −

(
d

2

)
=

(
n+ r − 1

n

)
+ d⇔ d =

1

2

(
2r − 1±

√
8

(
r + 1

2

)
− 8

(
r + n− 1

n

)
+ 1

)

so that J exists if and only if the argument ∆ under the square root is not negative. By an easy
calculation we obtain the thesis. �

3.2. On gen-segment ideals for revlex order. We describe some procedure to construct
gen-segment ideals w.r.t revlex order with a given admissible polynomial p(z). We have already
observed that a hilb-segment ideal exists always and, thus, also a gen-segment ideal for a constant
polynomial p(z) = d.

Lemma 3.18. If p(z) = dz +1− g is an admissible polynomial with Gotzmann number r, there

exist two integers n ≥ 2 and j(n) > 0 such that
(j(n)−1+n

n

)
≤ p(j(n) − 1) and p(j(n) + h) <(j(n)+h+n

n

)
for every h ≥ 0.

Proof. Any projective scheme of dimension 1 with Hilbert polynomial p(z) has regularity ≤ r, so
that p(r) <

(r+n
n

)
, for any n ≥ 2. Now, it is enough to show that there exist integers n ≥ 2 and

t < r such that p(t) ≥
(
t+n
n

)
. Since in the plane, i.e. for n = 2, it holds g ≤ 1

2 (d− 1)(d− 2), then

p(t) = dt+1−g ≥ dt+1− 1
2 (d−1)(d−2) and, for t = d−1, we have d(d−1)+1− 1

2(d−1)(d−2) =(
d−1+2

2

)
. Thus, n = 2, d ≤ j(n) ≤ r. �
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Proposition 3.19. Let p(z) = dz + 1 − g be an admissible polynomial. For any n ≥ 2 there
exists a gen-segment ideal I(n) ⊂ S w.r.t. revlex order with Hilbert polynomial p(z).

Proof. By Lemma 3.18 we can take an integer n ≥ 2 for which there exists j(n) > 0 such that(j(n)−1+n
n

)
≤ p(j(n)− 1) and p(j(n) +h) <

(j(n)+h+n
n

)
for every h ≥ 0. First, we prove the thesis

in this case.
Under the given assumptions we have p(j(n)) −

(
j(n)−1+n

n

)
≥ d = p(j(n)) − p(j(n)− 1), thus,

by Remark 2.4 (3), in Λp(j(n)),j(n) there are at least d terms xα such that min(xα) ≥ 1 and
we let τ1 < · · · < τd be the least w.r.t. revlex order among them. We also set N(t) := Tt,
for every 0 ≤ t < j(n), N(j(n)) := Λp(j(n)),j(n), N(t) := x0 · Nt−1 ⊔ xh1 · {τ1, . . . , τd}, for every
t = j(n) + h, h ≥ 1 and N := ⊔t≥0N(t). By construction N ⊂ T is such that Nt = N(t),∀ t ≥ 0
and | Nt |= p(t),∀ t ≥ j(n). Thus, the monomial ideal I(n) ⊂ S such that N (I(n)) = N is,
by construction, a gen-segment ideal with Hilbert polynomial p(z). Moreover G(I(n))t = ∅, for
t < j(n) and t > j(n) + 1, so that reg(I(n)) ≤ j(n) + 1 ≤ r.

Now, suppose that n is such that p(t) <
(t+n

n

)
for every t ≥ 0 and let n0 := max{n′ | ∃j(n′) :(j(n′)−1+n′

n′

)
≤ p(j(n′)− 1) and p(j(n′)) <

(j(n′)+n′

n′

)
}. Above we proved that for such an n0 there

exists a gen-segment ideal I(n0) ⊂ K[x0, . . . , xn0
] w.r.t. revlex order with Hilbert polynomial

p(z). Now, it is enough to observe that I(n) := (I(n0), xn0+1, . . . , xn) ⊂ S is a gen-segment ideal
w.r.t. revlex order as claimed. �

Remark 3.20. Given an admissible polynomial p(z) = dz + 1 − g, if n > 2 is such that

p(t) <
(t+n

n

)
for every t ≥ 0 and “there exists l(n) := min{l ∈ N :

∑n−1
i=1 λi,l(Nl) ≥ d}”, by a

similar procedure we can construct a gen-segment ideal J(n) ⊂ S w.r.t. revlex order with Hilbert
polynomial p(z) different from those coming from the smaller n′’s as in the proof of Proposition
3.19. Indeed, under the given assumptions, Λp(l(n)),l(n) ⊂ Tl(n) does no longer contain at least
d terms xα with min(xα) ≥ 1, but surely its expansion in degree l(n) + 1 does it and we let
τ̄1 < · · · < τ̄d be the least w.r.t. revlex order of them. Similarly as before, we take M(t) := Tt,
for every 0 ≤ t < l(n), M(l(n)) := Λp(l(n)),l(n), M(l(n) + 1) := x0 · M(l(n)) ⊔ {τ̄1, . . . , τ̄d},

M(t) := x0 ·M(t − 1) ⊔ x
t−l(n)−1
1 {τ̄1, . . . , τ̄d} for every t > l(n) + 1. We finally let J(n) be the

gen-segment ideal such that N (J(n)) = M := ⊔t≥0M(t) and note that it has p(z) as Hilbert
polynomial and regularity ≤ l(n) + 2.

Example 3.21. (1) The Gotzmann number of the admissible polynomial p(z) = 6z − 3 is 12
and we obtain the following gen-segment ideals:

(i) if n = 2, we can apply the procedure described in the proof of Proposition 3.19 with
j(2) = 9 and construct the ideal I(2) = (x92, x1x

8
2, x

2
1x

7
2, x

3
1x

6
2);

(ii) if n = 3, there is not a j(3), yet we can apply the procedure described in Remark 3.20

with l(3) = 2, since p(t) <
(3+t

t

)
, for every t > 0, obtaining J(3) = (x23, x

2
2x3, x

4
2) besides

(I(2), x3);
(iii) if n ≥ 4, neither j(n) nor l(n) exist and we have only (I(2), x3, . . . , xn) and (J(3), x4, . . . ,

xn).

(2) The Gotzmann number of the admissible polynomial p(z) = 7z + 1 is 22 and we have
j(2) = 12, j(3) = 4, j(4) = 3, j(5) = j(6) = j(7) = 2, while for n ≥ 8, there is not a j(n).

Moreover, by definition of j(n), we have α(n) := p(j(n))−
(j(n)−1+n

n

)
≥ 7, thus we can apply the

procedure described in the proof of Proposition 3.19 and

(i) for n = 2, as α(2) = 85−78 = 7, we obtain I(2) = (x122 , x1x
11
2 , . . . , x51x

7
2) (reg(I(2)) = j(2));

(ii) for n = 3, as α(3) = 29 − 20 = 9 > 7, we obtain I(3) = (x43, x2x
3
3, x

2
2x

2
3, x

3
2x3, x

4
2,

x1x
3
3, x

2
1x2x

2
3, x

2
1x

2
2x3) (reg(I(3)) = j(3) + 1), besides (I(2), x3);

(iii) for n = 4, as α(4) = 22 − 15 = 7, we obtain I(4) = ((x4, x3, x2)
3, x1(x4, x3)

2) (reg(I(4)) =
j(4)), besides (I(2), x3, x4) and (I(3), x4);
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(iv) for n = 5, as α(5) = 15 − 6 = 9 > 7, we obtain I(5) = ((x5, x4, x3)
2, x22x5, x1x2x5,

x22x4, x1x2x4, x
2
2x3, x

3
2) (reg(I(5)) = j(5) + 1), besides (I(2), x3, x4, x5), (I(3), x4, x5),

(I(4), x5);
(v) for n = 6, as α(6) = 15 − 7 = 8 > 7, we obtain I(6) = ((x6, x5, x4, x3)

2, x2x6, x2x5,
x2x4, x

2
2x3, x1x2x3, x

3
2), (reg(I(6)) = j(6)+1), besides (I(2), x3, x4, x5, x6), (I(3), x4, x5, x6),

(I(4), x5, x6) and (I(5), x6);
(vi) for n = 7, as α(7) = 15 − 8 = 7, we obtain I(7) = (x7, x6, x5, x4, x3, x2)

2, (reg(I(7)) =
j(7)), besides (I(2), x3, x4, x5, x6, x7), (I(3), x4, x5, x6, x7), (I(4), x5, x6, x7), (I(5), x6, x7)
and (I(6), x7);

(vii) for n ≥ 8, j(n) does not exist yet, as λ1,1(Λp(1),1) ≥ 7 we have J(n) = (J(8), x9, . . . , xn)
besides the ideals coming from I(m),m ≤ 7.

Proposition 3.22. The saturated segment ideal L(p(z)) ⊂ S w.r.t. lex order with Hilbert poly-
nomial p(z) is a gen-segment ideal w.r.t. the revlex order if and only if deg(p(Z)) ≤ 1 or there
are only two generators of degree > 1.

Proof. In section 1 we have already recalled that, given an admissible polynomial p(z) of degree

ℓ, there exist unique integers m0 ≥ m1 ≥ · · · ≥ mℓ ≥ 0 such that p(z) =
∑ℓ

i=0

(
z+i
i+1

)
−
(
z+i−mi

i+1

)

[13, 10, 1]. Let aℓ := mℓ, aℓ−1 := mℓ−1 −mℓ, . . . , a0 := m0 − m1. Note that L(p(z)) ⊂ S has
the n+ 1− ℓ− 2 greatest variables as generators of degree 1, i.e. N (L(p(z)))1 = {x0, . . . , xℓ+1}.

Thus, for every j ≤ aℓ, the greatest term of N (L(p(z)))j is xjℓ+1, w.r.t. both lex and revlex
orders (namely N (L(p(z)))j = Tj ∩ K[x0, . . . , xℓ+1]). In degree aℓ + 1 the ideal L(p(z)) has a

new generator xaℓ+1
ℓ+1 , so that N (L(p(z)))aℓ+1 = (Taℓ+1 ∩ K[x0, . . . , xℓ+1]) \ {x

aℓ+1
ℓ+1 }, therefore

its greatest term, w.r.t. both lex and revlex orders, is xℓx
aℓ
ℓ+1, and so on until there is a new

generator in degree aℓ + aℓ−1 + 1 if al−2 6= 0, which is x
aℓ−1+1
ℓ xaℓℓ+1 (or, if aℓ−2 = 0, the new

generator is x
aℓ−1

ℓ xaℓℓ+1). At this point, the greatest term in N (L(p(z)))aℓ+aℓ−1+1 is x
aℓ−1+2
ℓ xaℓ−1

ℓ+1

w.r.t. revlex order and xℓ−1x
aℓ−1

ℓ xaℓℓ+1 w.r.t. lex order (similarly for the case in parenthesis).

Moreover, since the new generator of L(p(z)) at degree aℓ + aℓ−1 + aℓ−2 + 1 is x
aℓ−2+1
ℓ−1 x

aℓ−1

ℓ xaℓℓ+1

(if ℓ = 2 the third generator of degree > 1 is xa01 xa12 xa23 or, if aℓ−3 = 0, is x
aℓ−2

ℓ−1 x
aℓ−1

ℓ xaℓℓ+1), it is
not the greatest term w.r.t. revlex order. �

Example 3.23. (i) The ideal L(p(z)) = (x4, x
5
3, x

3
2x

4
3, x

6
1x

2
2x

4
3) is the saturated segment ideal

w.r.t. lex in K[x0, . . . , x4], with Hilbert polynomial p(z) = 2z2 + 2z + 1 and Gotzmann number
12, but is not a gen-segment ideal w.r.t. revlex order.

(ii) The ideal L(p(z)) = (x5, x
5
4, x

2
3x

4
4) is the saturated segment ideal w.r.t. lex in K[x0, . . . , x5],

with Hilbert polynomial p(z) = 2/3z3 + 2z2 − 11/3z + 10 and Gotzmann number 6, and is also
a gen-segment ideal w.r.t. revlex order.

4. Saturations of Borel ideals and Hilbert polynomial

Let J ⊂ S be a Borel ideal. Recall that in our notation the (Borel) ideal Jsat is obtained
by setting x0 = 1 in each minimal generator of J (Proposition 2.3(i)). In this section we let
Jx0

:= Jsat and denote Jx0x1
the Borel ideal obtained by setting x0 = x1 = 1 in the minimal

generators of J . We call Jx0x1
the x1-saturation of J and say that J is x1-saturated if J = Jx0x1

,
so that an ideal J x1-saturated is also saturated.

Remark 4.1. An ideal J ⊂ S, which is x1-saturated and has Hilbert polynomial p(z) := pS/J(z),
has the same minimal generators of the saturated Borel ideal J ∩K[x1, . . . , xn] ⊂ K[x1, . . . , xn],
for which the Hilbert polynomial is ∆p(z).

The following result is analogous to Theorem 3 of [21], where the notion of “fan” is used. Here
we apply the combinatorial properties of Borel ideals only.
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Proposition 4.2. Let J ⊂ S be a saturated Borel ideal with Hilbert polynomial p(z) and Gotz-
mann number r. Let I = Jx0x1

be the x1-saturation of J and let q := dimK Ir − dimK Jr.
Then

(i) pS/I(z) = p(z)− q;
(ii) q is equal to the sum of the exponents of x1 in the minimal generators of J .

Proof. (i) We show that if q = dimK Is − dimK Js then q = dimK Is+1 − dimK Js+1, for every
s ≥ r. Let xβ1 , . . . , xβq be the terms of Is \ Js. Thus, x0x

β1 , . . . , x0x
βq are terms of Is+1 \ Js+1

and so dimK Is+1 − dimK Js+1 ≥ q, since x0x
βi belongs to Js+1 if and only if xβi belongs to Js

being J saturated. Now, for obtaining the opposite inequality it is enough to show that every
term of Is+1 \ Js+1 is divided by x0. Let xγ ∈ Is+1 be such that min(xγ) ≥ 1 and let xα be a
minimal generator of I such that xγ = xαxδ. Since J is saturated and I is the x1-saturation of J ,
xαxa1 is a minimal generator of J for some non negative integer a. Hence, for every xδ

′

of degree

s + 1 − |α| and with min(xδ
′

) ≥ 1, by the Borel property xαxδ
′

belongs to Js. In particular,
xγ ∈ Js+1.

(ii) Let xα1xs11 , . . . , xαhxsh1 be the minimal generators of J , with x1 not dividing xαi ,∀ 1 ≤ i ≤

h. As the
∑

si terms xαixsi−t
1 x

r−|αi|−si+t
0 , 1 ≤ t ≤ si, are in Ir \Jr, one has q ≥

∑
si. Vice versa,

we show that each term xδ in Ir \ Jr is of the previous type. We can write xδ = xβx
r−|β|−u
0 xu1 ,

with min(xβ) ≥ 2 and u < si. Let s be the minimum non negative integer such that xβxs1 is in
J . Then there exists i such that xαixsi1 |x

βxs1, i.e. xαi |xβ and si ≤ s. By the definition of s, we
get si = s and there exists xγ with min(xγ) ≥ 2 such that xβ = xαixγ . Since xβ does not belong

to J we have |γ| < si = s, otherwise xαix
|γ|
1 and hence, by the Borel property, xβ = xαixγ should

belong to J . Now we can take xβx
s−|γ|
1 and observe that this term belongs to J because it follows

xαixs1 in the Borel relation. Thus s ≤ s− |γ|, so that γ = 0, i.e. xβ = xαi as claimed. �

Proposition 4.3. Let J ⊂ S be a saturated Borel ideal with Hilbert polynomial p(z) and Gotz-
mann number r. Let xβx0 be a term of J of degree s ≥ r which is minimal in J w.r.t. <B. Then
the ideal I := (G((Js)) \ {x

βx0}) is Borel and pS/I(z) = p(z) + 1.

Proof. First, note that Is is closed w.r.t. <B by Remark 2.6. We show that, for every t ≥ 0,
xβx1+t

0 is the unique term in Js+t \ Is+t. For t = 0 we have the hypothesis. For t > 0, note that

xβx1+t
0 cannot belong to I. On the contrary, there would be a term xγ ∈ Is such that xγ 6= xβx0

and xγ | xβx1+t
0 . But every degree s factor of xβx1+t

0 different from xβx0 is lower w.r.t. <B and

so it cannot belong to Is. Then, x
βx1+t

0 /∈ Is+t. If x
α is a term of Js+t \ Is+t, there exists a term

of Js+t−1 \ Is+t−1 which divides xα. By induction, this term is xβxt0 and the thesis follows from
the fact that every multiple of degree s+ t of xβxt0, different from xβx1+t

0 , belongs to Is+t. �

Proposition 4.4. Let I and J be Borel ideals of S. If for every s ≫ 0 we have Is ⊂ Js and
pS/I(z) = pS/J(z) + a, with a ∈ N, then I and J have the same x1-saturation.

Proof. Let s ≥ max{reg(I), reg(J)}. In case a = 1, there exists a unique term in Js+t \ Is+t, for
every t ≥ 0. Let xα be the unique term in Js \ Is. Then, both xαx0 and xαx1 belong to Js+1. By
the Borel property, xαx1 must be in Is+1 and so the unique term in Js+t \ Is+t is x

αxt1. This is
enough to say that I and J have the same x1-saturation. If a > 1, the thesis follows by induction
applying Proposition 4.3. �

Corollary 4.5. Let p(z) be an admissible polynomial of degree h ≤ n and P := {q(z) = p(z) +
u | u ∈ Z and q(z)admissible} the set of all admissible polynomials of degree h which differ from
p(z) only for an integer. Then

(i) there is a polynomial p̂(z) in P such that, for every q(z) in P , q(z) = p̂(z)+ c with c ≥ 0;
(ii) every saturated Borel ideal I with Hilbert polynomial pS/I = p̂(z) is x1-saturated.
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Proof. (i) Every admissible polynomial p(z) has a unique saturated lex segment ideal L(p(z)).
If H is the saturated lex segment ideal of p(z) + u, then we have H ⊂ L(p(z)) if u > 0 and
L(p(z)) ⊂ H if u < 0. Thus, we can apply Proposition 4.4, obtaining that L(p(z)) and H
have the same x1-saturation I. We claim that p̂(z) is the Hilbert polynomial of I. Indeed, by
Proposition 4.2 the Hilbert polynomial of I is of type p(z) − q. If p̂(z) = p(z) − q − t with
t ≥ 0, then the saturated lex segment ideal of p̂(z) should have I as x1-saturation and should be
contained in I, that is possible only if t = 0.

(ii) Let J be a Borel ideal with p̂(z) as Hilbert polynomial. If J were not x1-saturated, by
Proposition 4.2 the x1-saturation of J should have a Hilbert polynomial of type p̂(z) − q, with
q > 0, against the definition of p̂(z), �

Definition 4.6. The polynomial p̂(z) of Corollary 4.5 is called minimal polynomial.

Remark 4.7. An alternative proof of the previous statement can be obtained by following the
construction of the Gotzmann number.

Example 4.8. By Proposition 4.2, a Borel ideal with a minimal Hilbert polynomial is x1-
saturated. The vice versa is not true. For example, the ideal I = (x23, x2x3, x

2
2) ⊂ K[x0, x1, x2, x3]

is x1-saturated and is a reg-segment ideal w.r.t. the revlex order. The corresponding Hilbert
polynomial is pS/I(z) = 3z +1 which is not minimal because the Borel ideal (x3, x

3
2) has Hilbert

polynomial 3z.

Remark 4.9. From the proof of Corollary 4.5 we deduce the following fact. Let I ⊂ K[x0, . . . ,
xn] be a Borel ideal with Hilbert polynomial p(z). If I = Ix1

· K[x0, . . . , xn], where Ix1
⊂

K[x1, . . . , xn] is the segment ideal w.r.t. lex order with Hilbert polynomial ∆p(z), then p(z) =
p̂(z).

5. An algorithm to compute saturated Borel ideals

In this section, by exploiting the arguments of section 4, we describe an algorithm for comput-
ing all the saturated Borel ideals with a given Hilbert polynomial p(z). We first give an efficient
strategy to find the minimal elements in a Borel set B, that consists in representing B by a
connected planar graph, in which the nodes are the terms of B and the edges are the elementary
moves which connect the terms. In Figure 1 we give some examples showing that it is easy to
single out the minimal terms looking at these graphs.

Let 0 ≤ k < n be an integer. Recall that, if I ⊂ K[xk, . . . , xn] is a saturated Borel ideal

which has a non null Hilbert polynomial p(z) with Gotzmann number r, then J := (I,xk)
(xk)

⊂

K[xk+1, . . . , xn] has Hilbert polynomial ∆p(z), being xk a non zero-divisor on K[xk,...,xn]
I .

This fact tells that every saturated Borel ideal I ⊂ K[xk, . . . , xn] with Hilbert polynomial p(z)
“comes from” a Borel ideal J ⊂ K[xk+1, . . . , xn] with Hilbert polynomial ∆p(z) and generated
in degrees ≤ r. So, our idea to construct all saturated Borel ideal with given Hilbert polynomial
p(z) consists in applying a recursion on the number of variables: in the hypothesis of knowing
all Borel ideals J in n− k variables generated in degrees ≤ r with Hilbert polynomial ∆p(z), we

construct the saturated Borel ideals I in n− k+1 variables such that J := (I,xk)
(xk)

for some of the

ideals J .
Let J ⊂ K[xk+1, . . . , xn] be a Borel ideal with Hilbert polynomial ∆p(z) and I := (Jsat ·

K[xk, . . . , xn])r, where r is the Gotzmann number of p(z). Let N be the set of terms xα of
K[xk, . . . , xn]r such that there exists a composition F of elementary moves of type e−j and a

term τ of N (J)r such that F (τ) = xα. Hence, by construction, the terms of N \ N (J) are
not maximal and N is contained in the sous-éscalier of any ideal of K[xk, . . . , xn] having J
as hyperplane section. Note that the Gotzmann number of ∆k+1p(z) is not higher than the
Gotzmann number of ∆kp(z).
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Figure 1. Here are: on the left the graph of K[x0, . . . , x3]3, in the center the
graph of (x23, x2x3, x

3
2)3, where we coloured the minimal elements, on the right

the graph of (x23, x1x3, x
3
1)3 which is not Borel (the terms in the ideal are the

boxed ones).

Lemma 5.1. N (I)r = N .

Proof. It is enough to show that K[xk, . . . , xn]r = (I,N) (Figure 2). Indeed, let xγ = xγkk · · · x
γn
n

be in K[xk, . . . , xn]r. The term xβ = (e+k )
γk(xγ) belongs to K[xk+1, . . . , xn]r, hence is in Jr or in

N (J)r. If x
β is in Jr, then x

γk+2

k+2 · · · x
γn
n belongs to Jsat

r , hence to I, otherwise xγ = (e−k+1)
γk(xβ)

is in N . �
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K[xk, . . . , xn] r
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N (J)r
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I

Figure 2. Partition of K[xk, . . . , xn].
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Proposition 5.2. With the above notation, the Hilbert polynomial p(z) for I differs from p(z)
only for a constant. If q = p(r) − p(r) > 0, execute the following instruction q times: select a
minimal term τ in Ir and set I := (G((Īr)) \ {τ}). After these q steps, the new ideal obtained
has Hilbert polynomial p(z).

Proof. The theses follow from the results presented in section 4. �

Proposition 5.2 suggests the design of the following two routines BorelGenerator and
Remove, that have been implemented by the second author in a software with an applet available
at http://www.dm.unito.it/dottorato/dottorandi/lella/borelEN.html.

procedure BorelGenerator(n,p(z),r,k) → F
if p(z) = 0 then

return
{
(1)
}
;

else

E ← BorelGenerator(n,∆p(z),r,k + 1);
F ← ∅;
for all J ∈ E do

Ī ← J · k[xk, . . . , xn];
q ← p(r)− dimk k[xk, . . . , xn]r + dimk Īr;
if q > 0 then

F ← F ∪ Remove(n,k,r,Ī,q);
end if

end for

return F ;
end if

end procedure

procedure Remove(n,k,r,Ī,q) → E
E ← ∅;
if q = 0 then

return E ∪ Īsat;
else

F ← MinimalElements(Ī,r)
for all xα ∈ F do

E ← E ∪ Remove(n,k,r,(G((Īr)) \ x
α),q − 1);

end for

return E ;
end if

end procedure

Remark 5.3. The terms removed by our strategy are minimal in I. An alternative strategy
could consists in adding to JrK[xk, . . . , xn] maximal terms of Ir \ J . In this case, since we want

that dimK Ir =
(
n−k+r

r

)
− p(r) and we have already

(
n−(k+1)+r

r

)
−∆p(r) terms of J , we should

add

q′ =

(
n− k + r

r

)
− p(r)−

(
n− (k + 1) + r

r

)
+∆p(r) =

(
n− k − 1 + r

r − 1

)
− p(r − 1)

terms for any J , where q′ depends only on r, n−k and p(z); hence, we will write q′(r, n−k, p(z))
instead of q′. On the other hand, the value of q = p(r)− |N r| = p(0)− p(0) depends on J . Note
that q′ + q = dimK Ir − dimK Jr. Anyway, we observe that if n− k > deg(p(z)) + 1 then q′ ≥ q.

http://www.dm.unito.it/dottorato/dottorandi/lella/borelEN.html
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The minimal polynomial p̂(z) of Definition 4.6 can be recovered from ∆p(z) by the decomposition
of Gotzmann in the following way. If

∆p(z) =

(
z + b1
b1

)
+

(
z + b2 − 1

b2

)
+ . . . +

(
z + bt − (t− 1)

bt

)

with b1 ≥ b2 ≥ . . . ≥ bt ≥ 0, then

p̂(z) =

(
z + a1
a1

)
+

(
z + a2 − 1

a2

)
+ . . .+

(
z + at − (t− 1)

at

)

where ai = bi + 1. The Gotzmann number of ∆p(z) is also the Gotzmann number r̂ of p̂(z). If
r is the Gotzmann number of p(z), then r − r̂ = p(0) − p̂(0) ≥ p(0) − p(0) = q. We prove that
q′ ≥ q by induction on c = r− r̂. If c = 0 then we get q = 0. If c > 0, by induction we have that
q′(r − 1, n − k, p(z)− 1) ≥ q − 1, hence

q′(r, n − k, p(z)) =

(
r − 1 + n− k

n− k

)
− p(r − 1) =

=

(
r − 2 + n− k

n− k

)
+

(
r − 1 + n− k − 1

n− k − 1

)
− p(r − 1)+

+ p(r − 2)− p(r − 2) =

= q′(r − 1, n − k, p(z)− 1) +

(
r − 1 + n− k − 1

n− k − 1

)
−∆p(r − 1)− 1 ≥

≥ q +

(
r − 1 + n− k − 1

n− k − 1

)
−∆p(r − 1)− 2

and
(r−1+n−k−1

n−k−1

)
−∆p(r− 1) ≥ 2 since r− 1 is a bound from above of the Gotzmann number of

∆p(z) and J is not a hypersurface because n− k − 1 > deg(∆p(z)) + 1.

Example 5.4. (a) If p(z) = d, then r = d and r̂ = 0, so q = d and q′ =
(d−1+n

n

)
− d. If moreover

n = deg(p(z)) + 1, then q′ = 0.
(b) The Gotzmann number of p(z) = 3z + 1 is r = 4 and, if n = 3 and k = 0, then

q′(r, n, p(z)) =
(r−1+n

n

)
− p(r − 1) = 20 − 10 = 10 and r − r̂ = 1. If J4 = (x3, x

3
2)4 we get

|N r| = 12 and q = 1, meanwhile if J4 = (x23, x2x3, x
2
2) we obtain |N r| = 13 and q = 0.

6. Reverse Lexicographic point

In this section exploiting results of [12] we study the points corresponding to hilb-segment
ideals in the Hilbert scheme Hilbnd of subschems of Pn with Hilbert polynomial p(z) = d, where
d is a fixed positive integer. Recall that for p(z) = d the Gotzmann number is d itself.

From now, J ⊂ S is a hilb-segment ideal with respect to some term order � and with Hilbert
polynomial p(z) = d and let B := {xβ ∈ N (J)d : x1x

β ∈ J}. Recall that G(I) denotes the set of
minimal generators of I and ed(Sth(J,�)) is the embedding dimension of the Gröbner stratum
Sth(J,�).

Lemma 6.1. With the notation above, we obtain that ed(Sth(J,�)) ≥ |G(J)| · |B|.

Proof. With the same notation introduced in section 2, by Corollary 4.8(i) of [12] it is enough

to look at the variables cαβ appearing in the polynomials Fα such that xα = xγx
d−|γ|
0 , where xγ

belongs to G(J). More precisely, we need to count the number of such variables which do not
correspond to a pivot in a Gauss reduction of the generators of L(J) (see also Theorem 4.3 of
[12]).

First we note that in every S-polynomial which involves such an Fα, the polynomial Fα itself
is multiplied by a term in which at least a variable xh appears, with h > 0 (otherwise the
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other polynomial involved in the S-polynomial should have xd0 as initial term). It is enough to
investigate the terms xβx1, where xβ belongs to B, because, if xβx1 belongs to Jd+1, then xβxh
belongs to Jd+1 for any h > 0. Since J is a hilb-segment ideal, every term xβ of B is less than
xα. By the definition of B, every term xβ of B is always involved in a reduction step so that it
does not appear in any generator of L(J) (see Criterion 4.6 of [12]). The number of such terms
is at least |G(J)| · |B| and we are done. �

Theorem 6.2. If for the hilb-segment ideal J we have |G(J)| · |B| > nd, then J corresponds to
a singular point in Hilbnd .

Proof. Let HRS be the unique irreducible component of Hilbnd containing the lexicographic point
[20]. Recall that HRS has dimension equal to nd and that every Borel ideal belongs to HRS [21].
Since J is a hilb-segment ideal w.r.t. �, the Groebner stratum Sth(J,�) is an open subset of
HRS (Corollary 6.7 of [12]) and hence dim Sth(J,�) = nd. The point J is smooth for Hilbnd if
and only if it is smooth for the Groebner stratum Sth(J,�) (see Corollary 4.5 of [12]). Thus, J
is smooth if and only if ed(Sth(J,�)) = nd (Corollary 4.5 of [12]). By Lemma 6.1 the thesis is
proved. �

Example 6.3. Let I be the generic initial ideal of 7 general points in P3 w.r.t. revlex order,
i.e. the (saturated) hilb-segment ideal with Hilbert polynomial p(z) = 7. We obtain G(I) =
{x23, x2x3, x

2
2, x

2
1x3, x

2
1x2, x

3
1} and B = {x50x

2
1, x

5
0x1x2, x

5
0x

2
2}. Thus |G(I)| · |B| = 6 · 3 = 18 < nd =

21. But, as it is shown in [12], we can compute directly the Gröbner stratum of I≥7 showing that
its embedding dimension is 27 > nd = 21. Actually, in [12] the authors construct the stratum of
I≥3 which is isomorphic to the stratum of I≥7, obtaining a big improvement of the computation.

For 8 points in P3, we have N (I)8 = {x80, x
7
0x1, x

7
0x2, x

7
0x3, x

6
0x

2
1, x

6
0x1x2, x

6
0x1x3, x

6
0x

3
2}, so that

B = {x60x
2
1, x

6
0x1x2, x

6
0x1x3, x

6
0x

3
2} and |B| = 4. Since |G(I)| = 7, we get |G(I)| · |B| = 7 ·4 = 28 >

3 · 8 = 24.

Theorem 6.4. For every d > n ≥ 3, the hilb-segment ideal J w.r.t the revlex order corresponds
to a singular point in Hilbnd .

Proof. In Remark 3.14 we observed that J must have maximal Hilbert function, so that the
regularity ρH of its Hilbert function is the integer such that

(
ρH−1+n

n

)
< d ≤

(
ρH+n

n

)
. Moreover,

if d =
(ρH+n

n

)
then |G(J)| =

(ρh+n
n−1

)
, otherwise |G(J)| ≥

(ρH+n−1
n−1

)
.

If d = n+1 then ρH = 1 and J = (x1, . . . , xn)
2, so that |G(J)| =

(
2+n−1
n−1

)
=
(
n+1
2

)
. Moreover,

B consists of the terms of type xd−1
0 xi with i > 0, thus |B| = n and the statement is true because(n+1

2

)
· n > n(n+ 1) for every n ≥ 3.

If d ≥ n+ 2 then ρH ≥ 2.
If d =

(ρH+n
n

)
, we show that |B| > ρH + 1. If we multiply every term of degree ρH in the

variables x1, . . . , xn by xd−ρH
0 , we obtain terms of degree d that multiplied by x1 give

(
ρH+n−1

n−1

)

terms which belong to B. Thus |B| ≥
(ρH+n−1

n−1

)
> ρH +1 and |G(J)| · |B| > dn

ρH+1 · (ρH +1) = dn.

If d <
(ρH+n

n

)
and ρH ≥ 3, we show that |B| ≥ ρH + n. Let xβ any of the

(ρH+n−2
n−1

)
terms of

degree ρH −1 in the variables x1, . . . , xn. Thus, if x
βx1 belongs to J , then xβxd−ρH+1

0 belongs to

B; otherwise, if xβx1 does not belong to I, then xβxd−ρH
0 x1 belongs to B. Anyway, the term xβx21

belongs to J because it is not divided by x0 and has degree ρH+1 and the terms of N (I)ρH+1 are

all divided by x0. Such terms are all distinct, so that |B| ≥
(ρH+n−2

n−1

)
. Now it is easy to check that(ρH+n−2

n−1

)
≥ ρH + n, for every ρH ≥ 3 and n ≥ 3. Thus, |G(J)| · |B| ≥

(ρH+n−1
n−1

)
· (ρH + n) > nd,

by Remark 3.14(3).

It remains to study the case ρH = 2 in which |G(I)| ≥
(n+1

2

)
and |B| ≥ n, because of

the arguments above, with n =
(n+1

n

)
< d <

(2+n
n

)
. If d <

(n+1
2

)
, then we get immediately

|G(J)| · |B| > nd. If
(
n+1
2

)
< d <

(
n+1
2

)
, all the d terms of N (J)d are in B except at most the
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n + 1 terms divided by xd−1
0 . Thus, in this case |B| ≥ d − (n + 1), which is ≥ n + 2 except for

n = 3 and d = 7, 8. These last two cases have been directly studied in Example 6.3. �

Observing that:

(i) a segment ideal w.r.t. revlex order gives rise to a singular point in Hilbnd and defines a
scheme not contained in any hyperplane;

(ii) a segment ideal w.r.t. lex order gives rise to a smooth point in Hilbnd and defines a scheme
contained in some hyperplane;

one might guess that there is a relationship between the smoothness of a point in Hilbnd corre-
sponding to a (saturated) monomial ideal and the presence of linear forms in the ideal. But, the
next example (for which we are indebted to G. Floystad) shows that this is not the case.

Example 6.5. (i) Let I = (xa11 , . . . , xaii , . . . , xann ) be a (saturated monomial) complete intersec-
tion ideal defining a 0-dimensional scheme X of degree d =

∏
i ai in Pn and let zI denote the

corresponding point of of Hilbnd . Being I a monomial ideal, zI lies in the closure of the lexico-
graphic point component of Hilbnd (see for example Corollary 18.30 of [17]). Using the normal
sheaf to X, we get that the dimension of the tangent space to Hilbnd at zI is nd, coinciding with
that of the lexicographic point component. Thus I gives an example of a monomial ideal which
does not contain linear forms and corresponds to a smooth point in Hilbnd .

(ii) Let J ⊂ K[x1, . . . , xn] be a saturated monomial ideal giving a singular point zJ of Hilb
n−1
d ,

so that the dimension of the tangent space to Hilbn−1
d in zJ is α > (n− 1)d. Taking J̃ = ((x0) +

J) ⊂ K[x0, . . . , xn], the dimension of the tangent space to Hilbnd in zJ̃ is α+d > (n−1)d+d = nd,
hence zJ̃ is singular too.
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