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We study topological black hole solutions of the simplest quadratic gravity action and we find that two
classes are allowed. The first is asymptotically flat and mimics the Reissner-Nordström solution, while the
second is asymptotically de Sitter or anti–de Sitter. In both classes, the geometry of the horizon can be
spherical, toroidal or hyperbolic. We focus, in particular, on the thermodynamical properties of the
asymptotically anti–de Sitter solutions and we compute the entropy and the internal energy with Euclidean
methods. We find that the entropy is positive-definite for all horizon geometries and this allows us to
formulate a consistent generalized first law of black hole thermodynamics, which keeps in account the
presence of two arbitrary parameters in the solution. The two-dimensional thermodynamical state space is
fully characterized by the underlying scale invariance of the action and it has the structure of a projective
space. We find a kind of duality between black holes and other objects with the same entropy in the state
space. We briefly discuss the extension of our results to more general quadratic actions.
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I. INTRODUCTION

Quadratic gravity has always attracted a lot of interest
for its classical scale-invariant properties. Recently, scale-
invariant quadratic models were reconsidered within a much
larger physical context in [1], where it was shown that they
lead to an inflationary model consistent with observations,
provided one adds a new scalar field degree of freedom and
takes in account the running of the coupling parameters. In
this context, a much simpler inflationary scenario, consistent
with the latest observational data, was presented in [2].
Quadratic gravity models are particularly attractive as it

is believed that they are renormalizable and asymptotically
free [3–9], although ghosts are in general present. However,
the simplest case of fðRÞ ¼ R2 is also ghost-free [10].
The de Sitter and anti–de Sitter black hole solutions of this
kind of theory were investigated and their thermodynamical
properties discussed in pioneering works, such as [11,12].
Furthermore, inflation in quadratic gravity models, account-
ing for running coupling constants, was recently studied also
in [13]. A related black hole instability was investigated in
modified gravity in [14].
The peculiar properties of these theories stem from the

underlying scale invariance of the action, which forbids the
presence of any length scale, in contrast to general relativity
(GR), where the vacuum action contains the Planck mass
and, eventually, a dimensionful cosmological constant.
Thus, for example, one cannot tell the frequency of a
gravitational wave in this theory, but the ratios of the

frequencies of two waves is meaningful. Similarly, by
observing which events can be reached from a given event
by a gravity wave, or some other massless signal, one can
determine the local light cone. However, this is as far as one
can go in general. Thus, the space-time metric has no direct
physical meaning; only ratios of intervals really matter [15].
In the same way, masses or other scales are meaningless as
soon as we manage to maintain the scale-invariance sym-
metry, so we argue that to measure anything meaningful one
has to break this symmetry. In principle, one can imagine
detectors with no built-in scales. For example, one can use as
a clock a given gravitational wave of R2 gravity, and use it to
measure the ratio of its arbitrary frequency to that of other
waves, by observing interference phenomena, which are, in
principle, calculable using the theory.
We emphasize also the peculiar fact that scale invariance

is extremely sensitive to external perturbations. Even the
coupling of a very low mass particle or the introduction of a
clock network with its necessary built-in scale will break
the scale symmetry substantially [16]. Indeed, according to
a very general theorem, for asymptotically flat initial data
the total energy in R2 gravity is exactly zero [18], but any
other material device coupled to the field will have positive
energy. For de Sitter or anti–de Sitter boundary conditions
the situation is different. We will see that black hole
thermodynamics suggests that a continuous mass spectrum
is possible. This is in accord with the general understanding
of the scale invariance symmetry, according to which it
requires only dimensionless coupling constants and either
no masses or a continuous mass spectrum [19].
In this paper we wish to explore spherically symmetric

solutions, with topological horizon, along the lines of the
early work of Buchdahl [20]. We will consider the simplest
quadratic model fðRÞ ¼ R2, and we will generalize the
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solutions with spherical horizon found in [21] and recon-
sidered recently in [22]. We will pay special attention to the
thermodynamical properties of the asymptotically anti–de
Sitter solutions, as they clearly display the underlying scale
invariance of the action.
In the next section we derive the general vacuum solutions

of R2 gravity with spherical symmetry and topological
horizon. In Sec. III we study the thermodynamical properties
of these solutions and interpret the results from the point of
view of the underlying scale invariance symmetry. We
conclude in Sec. IV with a discussion of our results and
their extensions to more general quadratic actions.

II. TOPOLOGICAL BLACK HOLES
IN R2 GRAVITY

Let us first consider the generic modified gravity
Lagrangian,

L ¼ ffiffiffi
g

p
fðRÞ; ð1Þ

for which the equations of motion read [23,24]

XRμν −
1

2
fgμν −∇μ∇νX þ gμν□X ¼ 0; ð2Þ

where we set

X ¼ dfðRÞ
dR

: ð3Þ
Let us now restrict to the case fðRÞ ¼ R2. The equations
simplify to

2RRμν −
1

2
R2gμν − 2∇μ∇νRþ 2gμν□R ¼ 0; ð4Þ

while the trace of this equations reduces to□R ¼ 0. In this
paper we choose to work in Jordan frame only since
the Einstein frame is potentially ill defined. In fact, the
conformal transformation to the Einstein frame reads
gμν → Ω2gμν with Ω2 ¼ X. Hence, all the solutions with
R ¼ X ¼ 0 are excluded from the conformal mapping.
Given that a class of spherically symmetric solution with
identically vanishing Ricci scalar exists (see below), we
prefer to work in the Jordan frame.
We now look for spherically symmetric solutions with

metric

ds2 ¼ −e2NðrÞdt2 þ e−2NðrÞdr2 þ r2dΣ2
k; ð5Þ

where

dΣ2
k ¼

dρ2

1 − kρ2
þ ρ2dϕ2; k ¼ 0;�1; ð6Þ

parametrizes the geometry of the horizon (k ¼ 1 spherical,
k ¼ 0 flat or toroidal, k ¼ −1 hyperbolic). With this metric
ansatz, we have three differential equations of third or
fourth order for NðrÞ. By defining

N1 ≡ dN
dr

; N2 ≡ d2N
dr2

; N3 ≡ d3N
dr3

; N4 ≡ d4N
dr4

;

ð7Þ
the system of equations reads

½7 − ð2N1N3 þ 4N4
1 þ 8N2N2

1 − N2
2Þr4 − ð4N3 þ 24N3

1 þ 28N1N2Þr3 − ð16N2 þ 28N2
1Þr2 þ 8N1r�e4N − 6ke2N − k2 ¼ 0;

½5þ ð20N4
1 þ 18N1N3 þ 56N2N2

1 þ 2N4 þ 11N2
2Þr4 þ 4ð3N3 þ 19N1N2 þ 14N3

1Þr3 þ 4ðN2 þ N2
1Þr2 − 8N1r�e4N

− 6ke2N þ k2 ¼ 0;

½ð76N2N2
1 þ 36N4

1 þ 20N1N3 þ 2N4 þ 13N2
2Þr4 þ 10ð8N1N2 þ 8N3

1 þ N3Þr3 − 4ðN2 þ 4N2
1Þr2 − 16N1rþ 7�e4N

þ 6kð2N1r − 1Þe2N − k2 ¼ 0: ð8Þ

If we solve algebraically the system for N2; N3 and N4, we
find two inequivalent solutions.

A. Asymptotically (A)dS black holes

The first class of solutions corresponds to the system

N2 ¼ −
k − e2N þ 2N2

1r
2e2N

r2e2N
;

N3 ¼
2ð4e2NN3

1r
3 − 2e2NN1rþ 3N1kr − e2N þ kÞ

e2Nr3
;

N4 ¼ −
2

r4
½24N4

1r
4 − 16N2

1r
2 − 4N1r − 1

þ 2kð2N1rþ 1Þð6N1r − 1Þe−2N þ 3k2e−4N �: ð9Þ

The first of these equations is a second-order differential
equation that can be solved, yielding

NðrÞ ¼ 1

2
ln

�
kþ a

r
þ br2

�
; ð10Þ

with a and b arbitrary constant. The other two equations
are identically satisfied by this solution, so the system is
consistent. The structure of the spacetime depends upon
combinations of k, a, and b. In particular, the zeros of
the function −gtt ¼ expð2NÞ determine the location of the
horizons. Here, we adopt the mostly plus signature; there-
fore, we require a < 0 so that, when r → 0þ, gtt → ∞
independently of k and b. In accordance with usual GR
notation, we set Λ ¼ −3b and we write [25]
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−gtt ¼ k −
ωM
r

−
Λr2

3
: ð11Þ

In GR, ω is a parameter that depends on the volume of the
horizon space per unit radius and on the Newton constant.
However, in quadratic gravity, we have no natural Planck
scale, so we need to keep in mind that ωM really represents
a length scale, if we agree with conventions that coordinate
differentials are to represent lengths.
According to the value of k, we have three cases:

k=1: for Λ < 0 we have a single horizon and the well-
known Schwarzschild anti–de Sitter black hole;
for Λ > 0 we have the Schwarzschild–de Sitter
black hole with two unstable horizons or the single
horizon Nariai black hole; in both cases ω ¼ 4π.

k=0: there exists a unique horizon at rþ ¼ −12MΛ−1

provided Λ < 0; choosing a Teichmüller param-
eter τ to specify the conformal class of the torus
[26], we may set ω ¼ jImτj.

k=−1: there exists a unique horizon for Λ < 0, and
ω ¼ −2πχg, with χg ¼ 2 − 2g the Euler number
of the horizon manifold.

For k ¼ −1; 0 the metrics are usually dubbed topological
black holes [27–30]. The curvature invariants are indepen-
dent of k as the horizon is an Einstein space [26,31]
and read

R ¼ 36Λ; RμνRμν ¼ 324Λ2;

RμναβRμναβ ¼ 12ðω2M2 þ 18Λ2r6Þ
r6

: ð12Þ

From the last expression, we see that a physical singularity
appears at r ¼ 0 for any nonvanishing value of Λ and M.

B. Asymptotically flat black holes

The second, inequivalent, class of solutions is
obtained from

N2 ¼
k − e2N − 4e2NN1r − 2N2

1r
2e2N

r2e2N
;

N3 ¼
2ð4e2NN3

1r
3 þ 12e2NN2

1r
2 − 3N1krþ 12N1re2N þ 3e2N − 3kÞ

e2Nr3
;

N4 ¼ −
6

r4
½8N4

1r
4 þ 32N3

1r
3 þ 48N2

1r
2 þ 32N1rþ 7 − 8kðN1rþ 1Þ2e−2N þ k2e−4N �: ð13Þ

Again, the first equation can be solved exactly and one
finds that

NðrÞ ¼ 1

2
ln

�
kþ a

r
þ b
r2

�
: ð14Þ

As before, the other equations are identically satisfied by
this solution, which looks like a Reissner-Nordström black
hole, for which R ¼ 0 and

RμνRμν ¼ 4b2

r8
;

RμναβRμναβ ¼ 4ð3a2r2 þ 12abrþ 14b2Þ
r8

: ð15Þ

Again, the black hole horizon exists depending upon
combinations of k, a and b according to the following
scheme [32]:
k=1: the horizon exists provided ða > 0; b < 0Þ or

ða < 0; b ≤ a2=4Þ; it is formally identical to the
charged Reissner-Nordström family of solutions;
its analytic extension contains infinitely many
timelike naked singularities alternating with Kill-
ing horizons;

k=0: the horizon is located at rþ ¼ −b=a so it is well
defined for ða < 0; b > 0Þ or ða > 0; b < 0Þ;

however, for −m ¼ a < 0 and q2 ¼ b > 0, the
metric is dynamical at large positive r while the
static region encloses a naked singularity, so it
looks like a reversed black hole and it is not
asymptotically flat. There is also another asymp-
totically flat region bounded by the singularity for
negative r, with no horizons there, which seems
disconnected from the first unless one can glue
manifolds along the singularity. The other case is a
black hole enclosing a spacelike singularity, so the
causal structure appears to be a toroidal version of
the Schwarzschild solution;

k=−1: the horizon exists provided ða < 0; b > 0Þ or
ða > 0; b > −a2=4Þ. However in both cases the
metric is dynamical at large r, so it can hardly be
said to represent a black hole. Instead there is a
static region enclosed between the horizons, and
continuation to negative values of r seems pos-
sible. The largest zero looks like a cosmological
horizons, inasmuch as it encloses the static region.
A full determination of the causal structure will
not be attempted here.

To summarize, for the asymptotically flat class of solutions,
we shall consider only spherical and toroidal black holes,
the hyperbolic ones deserving special considerations that
go beyond the present paper.
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III. THERMODYNAMICS

A. Asymptotically AdS black holes

The thermodynamical properties of topological black
holes in GR can be defined in terms of the Euclidean action
IE. If the latter is finite and positive-definite, one can
construct the tree-level partition function Z ¼ expð−IEÞ
and formally define the internal energy and the entropy as
it is done in the canonical ensemble [33]

E ¼ ∂IE
∂β ; S ¼ βE − IE; ð16Þ

where β is the periodicity of the Euclidean black hole
metric, interpreted as the inverse of the horizon temper-
ature. Technically, the Euclidean action should be imple-
mented by boundary terms [34], which, however, do not
contribute to the thermodynamical quantities for either
spherical or topological black holes in GR [26,31,35]. As
wewill briefly recall below, in fðRÞ gravity boundary terms
can be important [36]. However, for the case at hand they
turn out to be irrelevant, just like in GR.
The thermodynamics of black holes in fðRÞ theories

crucially depends on the asymptotic form of the metric.
On a very general ground [37], it can be shown that if the
black hole is asymptotically flat, then its entropy has the
form [36]

S ¼ 16πXðRHÞ
A
4G

; ð17Þ

where A is the horizon area, G is the Newton’s constant,
and XðRHÞ denotes the derivative of fðRÞwith respect to R,
evaluated at the black hole horizon.
For the class of asymptotically flat solutions this formula

yields a vanishing entropy, since the R ¼ 0 everywhere.
Therefore, these black holes seem to have nonvanishing
temperature but zero entropy, as it will be discussed below.
The other class of black holes is asymptotically anti–de
Sitter with an infinite Euclidean action. Therefore, one
needs a subtraction procedure between the black hole
solution and a suitable background. This method has been
widely used in GR to consistently define the entropy of
topological black holes in anti–de Sitter space [26,31]. We
can apply the same method for the asymptotically anti–de
Sitter black holes of R2 gravity provided one interprets
correctly the dependence of the internal energy from the
parameters of the theory. We recall that in GR the
cosmological constant appears as a parameter in the action.
Therefore, the only parameter that can be, in principle,
varied is the black hole mass M and, in fact, the internal
energy is proportional to M only [38].
In the case of R2 instead, the radius of the anti–de Sitter

space, defined in our conventions by l2 ¼ −3=Λ, is
arbitrary. Therefore, we expect that the entropy, the internal
energy and so on, depend not only on M but also on l.

This is not a mere expectation: as we will see, we are
actually forced to vary l as a direct consequence of scale
invariance. Incidentally, the idea of considering the cos-
mological constant as a thermodynamical variable has a
nearly 20-year old history. A comprehensive recent analy-
sis, with references, for anti–de Sitter black holes within
Lovelock gravity can be found in [39], for Lovelock-Born-
Infeld gravity in [40] and Gauss-Bonnet topological black
holes in [41,42]. As a further consequence of the new role
for l, we expect that the usual first law is modified as well.
We now show that these expectations are indeed correct.
Let us first write

−gtt ¼ k −
L
r
þ r2

l2
; ð18Þ

where L ¼ ωM is now to be considered as an arbitrary
length. Let us also denote with rþ ¼ rþðL;lÞ the radius of
the event horizon, defined as the largest zero of the equation
gtt ¼ 0. We associate an inverse temperature β to the
horizon according to the formula

β ¼ −4π
�
dgtt
dr

�
−1

¼ 4πl2rþ
3r2þ þ kl2

: ð19Þ

It is known that, in GR and for k ¼ 1, the temperature has a
minimum value, below which the black hole dissolves into
pure radiation (a phenomenon referred to as the Hawking-
Page transition, [35]). On the opposite, for k ¼ 0;−1 the
black hole solution dominates over the empty anti–de Sitter
space at all temperatures so there is no phase transition. For
k ¼ −1, if we require the temperature to be positive, we
find that

rþ ≥ rc ≡ lffiffiffi
3

p ; ð20Þ

which corresponds to the critical length

Lc ¼ −
2l

3
ffiffiffi
3

p : ð21Þ

This quantity is crucial in order to define the appropriate
background to be subtracted from the Euclidean action
when k ¼ −1 (below we shall see that there is another
possible background choice for any k).
Let us define the quantity

ΔIE ¼ IbhE − IbkE ; ð22Þ

where the first term denotes the Euclidean action for the
black hole solution and the second for a suitable back-
ground space. In general, the Euclidean action for FðRÞ
gravity contains a bulk part and a boundary term of the
form [36]
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Ibound ∼
I

d3x
ffiffiffi
h

p
F0ðRÞK; ð23Þ

where h is the determinant of the metric on the boundary
and K the trace of its extrinsic curvature. In our case, we
have X ¼ 2R ¼ const [see Eq. (4)]; therefore, the differ-
ence between the background and the black hole terms
reduces to the integral of the differences of the respective
extrinsic curvatures at a large radius, where they coincide.
Thus, the boundary term does not give any contribution to
the expression (22).
We now compute the two contributions in Eq. (22). The

background term reads [43]

IbkE ¼
Z

d4x
ffiffiffi
g

p
R2 ¼

Z
β0

0

dτ
Z

r̄

rc

drr2R2 ¼ 48β0
l4

ðr̄3 − r3cÞ:

ð24Þ

The integration over r spans the interval ½rc; r̄�, where r̄ is
some arbitrarily large radius. Here, rc ¼ 0 for k ¼ 1; 0
while, for k ¼ −1, it is defined by (20). Since this back-
ground corresponds to an empty space, the inverse temper-
ature β0 is arbitrary. However, for the subtraction (22) to be
consistent, β0 must match with the inverse black hole
temperature, defined by Eq. (19), at r̄. This is guaranteed if

β20

�
k −

Lc

r̄
þ r̄2

l2

�
¼ β2

�
k −

L
r̄
þ r̄2

l2

�
; ð25Þ

which, for large r̄, yields

β0 ¼ β

�
1þ l2

2r̄3
ðLc − LÞ

�
; ð26Þ

where Lc ¼ 0 for k ¼ 1; 0 and it is defined by Eq. (21) for
k ¼ −1. Thus, the Euclidean action for the black hole is

IbhE ¼
Z

d4x
ffiffiffi
g

p
R2 ¼

Z
β

0

dτ
Z

r̄

rþ
drr2R2 ¼ 48β

l4
ðr̄3 − r3þÞ:

ð27Þ

By combining the expressions above, the terms containing
r̄ cancel out and we finally obtain

ΔIE ¼ 24β

l4
ð−r3þ þ kl2rþÞ −

48βLc

l2
; ð28Þ

with the usual understanding that Lc ¼ 0 for k ¼ 1; 0. Now,
with the help of Eqs. (16), we finally find the energy and
the entropy of the black hole, expressed respectively by

E ¼ 48

l2
ðL − LcÞ; ð29Þ

and

S ¼ 96πr2þ
l2

: ð30Þ

Note that the expression of the energy is in line with the
results found in [44]. Note also that this formula agrees
with Wald’s prediction Eq. [37], provided one replace
XðRHÞwith jXðRHÞj so that the sign is positive [45]. This is
reasonable since the origin of this term can be traced back
to the conformal transformation between Jordan and
Einstein frames. The conformal factor reads precisely
XðRÞ but it must be definite positive in order to preserve
the metric signature. From this, we see that the absolute
value is necessary and, as a byproduct, Wald’s formula is
correct also when XðRÞ is negative-definite.
It is instructive to compare the formulae above with the

ones found in GR, which read [31]

EGR ¼ M −Mc; SGR ¼ A
4G

; ð31Þ

where G is the Newton’s constant, A is the horizon area,
and M is the physical mass of the hole. We note immedi-
ately that, in contrast to the GR case, both energy and
entropy depend also on the anti-de Sitter radius l. In
addition, the entropy does not depend on G, as expected
since the scale invariance of the action for quadratic gravity
does not allow dimensionful parameters.
Our final goal is to write down the first law of black hole

thermodynamics. In GR we know that this has the universal
form TdSGR ¼ dEGR for all k. In our case we find instead
that

TdS ¼ dEþ 48ðL − LcÞ
l3

dl ¼ dEþ E
l
dl; ∀ k; ð32Þ

where E and S are the quantities defined in Eqs. (29) and
(30), while T ¼ β−1. As expected, the first law takes in
account the variations of the parameter l since it is as much
as arbitrary as L. Is the last contribution a pressure term?
We may answer noting that we can rewrite the above first
law as

TdS ¼ dEþ E
3V

dV; ð33Þ

where we have set V ¼ l3. In this form, this equation
clearly shows that the black hole thermodynamics is
described by the same equation governing a gas of massless
radiation, namely,

P ¼ E
3V

: ð34Þ

This result is fully consistent with the scale invariance of
the model. In fact, by using the expression for E, we can
also write, for all k,
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lTdS ¼ 48dðLl−1Þ; ð35Þ

which shows that the only relevant parameter of the theory
is the dimensionless ratio L=l, since also the temperature is
scale invariant. This becomes manifest if we write

lT ¼ 3z2 þ k
4πz

; ð36Þ

where we introduced the dimensionless parameter

z ¼ rþ
l
; ð37Þ

related to L=l by

L
l
¼ kzþ z3: ð38Þ

We now compute the heat capacities, formally defined as

CV ¼ T

�∂S
∂T

�
V
; CP ¼ T

�∂S
∂T

�
P
: ð39Þ

In terms of z we find, for all k,

CV ¼ 192πz2ð3z2 þ kÞ
ð3z2 − kÞ ; ð40Þ

and

CP ¼ 768πz2ð3z2 þ kÞðz3 þ kz − z0Þ
zðz2 − kÞð3z2 þ 5kÞ − 4z0ð3z2 − kÞ ; ð41Þ

where z0 ¼ kð1 − kÞ=ð3 ffiffiffi
3

p Þ. As expected, these quantities
are all scale invariant. By inspection, we find that CPðk ¼
1Þ > 0 for z > 1, while CPðk ¼ −1Þ > 0 when z >

ffiffiffi
3

p
=3,

which corresponds to rþ > rc.
Finally one can study the PV and PT phase diagrams by

using the explicit expression of P in a function of V and T

PðV; TÞ ¼ 16

27V4=3 ½ð9þ 4Δ2 þ 9kÞΔ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ 3k

p
ð9þ 4Δ2 þ 3kÞ�; ð42Þ

where

Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π2T2V2=3 − 3k

p
: ð43Þ

Concerning the isobaric PT curves, we find that P is a
monotonically growing function of T for all k. In the case of
isothermal PV curves, P is a monotonically decreasing
function of V only for k ¼ 0 or k ¼ −1. This is the behavior
found in many standard homogeneous thermodynamical
systems. For k ¼ 1 instead, the pressure has a global

maximum for Vmax ¼ ðπTÞ−3. This is consistent with the
fact that, for any fixed pressure P < PðVmaxÞ ¼ 2ð2πTÞ4,
there are two black holes with different size.

B. The thermodynamical state space

The above considerations bring to attention the structure
of the thermodynamical state space, and the corresponding
identification of the meaningful physical quantities of the
theory.
Let us first consider the parameter k as fixed. The

thermodynamical degrees of freedom are thus encoded
in any triplet of quantities like, for example, ðrþ; L;lÞ or
ðP;V; TÞ, related by an equation of state. To be definite, let
us discuss the theory in terms of the parameters ðL;lÞ,
which form a two-dimensional vector space. Physical states
are not single points since two metrics related by a scale
transformation,

ds2 → λ2ds2; ð44Þ
are both solutions of the field equations and physically
indistinguishable in a scale invariant theory. Thus, we adopt
the interpretation of scale invariance as the property that all
scaled metrics describe the same physics (or that they are
physically equivalent, remember that only ratios of space-
time intervals are meaningful). Under an arbitrary scaling,
we obtain a family of metrics differing only by the flow

ðL;lÞ → ðλL; λlÞ: ð45Þ
Every point on this line (i.e. an orbit of the dilatation group)
defines a class of equivalent metrics. So, inequivalent
physical states will be in one-to-one correspondence with
straight lines in ðL;lÞ space, in agreement with the well-
known fact that a continuous mass spectrum is not at odds
with scale invariance.
If we accept only positive scaling (i.e. λ > 0) on the

grounds that we should not admit negative mass black
holes, then the state space (namely, the space of orbits) is
clearly homeomorphic to a circle, and each solution is
characterized by a given value of the positive ratio L=l.
The quantities that are constant on the orbits are the
physically meaningful ones; such is the entropy, the ratio
L=l and the heat capacities CP and CV .
The restriction to positive values of λ has a striking

consequence: each orbit comes arbitrarily close to the
origin at L ¼ l ¼ 0. Looking at the metrics, we see that
they approach a kind of AdS2 metric: more precisely, in the
limit ðL;lÞ → ð0; 0Þ (with L=l ¼ const), and at any finite
r, all metrics tend to the line element

ds2 ¼ −
r2

l2
dt2 þ l2

r2
dr2 þ r2dω2: ð46Þ

By rescaling the coordinates according to r → l=Y and
t → l=T, one finds
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ds2 ¼
�
l2

Y2

�
½−dT2 þ dY2 þ dΣ2

k�; ð47Þ

which is manifestly conformal to Minkowski space for
Y ≠ 0. Alternatively, the above metric can be seen as the
direct product AdS2 ×Hk

2, namely, the two-dimensional
anti–de Sitter space times the horizon space manifold. This
is the only solution which belongs to all orbits simulta-
neously, so it is tempting to consider it as a universal
ground state for all solutions discussed so far (this is the
second possibility that we mentioned in Sec III A).
It is interesting to see what happens if we include also

scalings with negative λ. The space of orbits is then the
projective two-dimensional space RP2 and all orbits
intersect again at the point AdS2 ×Hk

2 of the previous
case. This leads to the bizarre consequence that we should
now consider states with both L < 0 and l < 0 to be
physically equivalent to the more familiar ones with
positive L and l. However, these solutions are not all
black holes: depending on k, some are wormholes and
some other have naked singularities. We do not know
whether this is a permitted extension of the formalism, nor
whether it makes any physical sense. For example, the
toroidal black hole would be dual (in the sense of being on
the same orbit) to a naked singularity, with no horizon, no
temperature but some positive entropy. The physical
interpretation of these solutions is not clear but it certainly
deserves further investigation.
So far, we have considered k as a fixed and discrete

parameter. In classical gravity it is an accepted wisdom that
no topology-changing process exists. Thus, within this
framework, each k operates like a superselection parameter
and the state space discussed above retains its form. On the
other hand, there could be topology-changing amplitudes
whenever the path integral between initial and final
configurations with different k is nonvanishing. In this
case, k is not a superselection parameter and the phase
space structure of the theory is more complicated. For
example, if there were a solution of the Euclidean equations
of motion which interpolates between a toroidal and a
spherical topology, there could be such a topology-changing
process. We leave this possibility as an open question.

C. Asymptotically flat black holes

For this class we encounter major differences with the
corresponding cousins in GR. Since the Ricci scalar
vanishes, both the volume part as well as the boundary
terms vanish when evaluated on the solutions, leading to a
vanishing partition function. At the same time, the Wald
entropy vanishes because XðRÞ ¼ 2R ¼ 0, and the total
energy vanishes too by the BHW theorem [18]. So the first
law takes the trivial form “0 ¼ 0”, and there are formally no
contradictions. On the other hand the surface gravity on the
horizon is certainly finite, suggesting the existence of a
well-defined horizon temperature. Black holes with no

entropy but finite temperature are not new, see e.g. [46].
In the present context, we have two suggestions.
One is that in pure R2 gravity there is nothing to radiate

but thermal gravitons; however, gravitons can be consis-
tently defined only in a perturbative sense, and it may well
be the case that the equations governing the perturbations
are not scale invariant, since they require a choice of
background that breaks scale invariance. There is a well-
known example in condensed matter physics: the Euler
equations of the fluid are Galilei invariant although the
equations for the sound waves are not (they are formally
Lorentz invariant) [47]. More generally, adding matter
makes the black hole radiate. But in doing so, we break
again the scale invariance, and ordinary thermodynamics is
promptly recovered.
The other suggestion is that there is graviton radiation

and the theory is still scale invariant but the quantum state is
pure. Here too we have a famous example: the Schwinger
pair production process has an effective temperature
although the state of the emitted radiation is pure. Both
possibilities seem sound; therefore, we cannot draw any
definitive conclusions regarding the physical interpretation
of these black holes.

IV. CONCLUDING REMARKS

We have given an almost exhaustive description of black
hole thermodynamical states in R2 gravity, taking into
account the special role played by the scale symmetry of
the action. Solutions are partitioned into classes with fixed
values of some ratios; in particular, no fixed mass or
temperature can be assigned to a black hole without
specifying also the anti–de Sitter radius. This has the
consequence that, in formulating thermodynamical laws,
this radius must also be varied along with the mass
parameter, in such a way as to give scale invariant laws.
In fact the pressure could have been predicted in this way.
We have found that the entropy is always a meaningful
quantity, which is constant within each class and coincides,
for all cases, with the Noether charge formula proposed by
Wald, up to a necessary change of sign. In fact, from the
thermodynamical point of view, each class of solutions can
be labeled uniquely by its entropy. Moreover, in the
absence of topology-changing processes, the discrete
parameter k acts as a superselection charge, making the
different topologies to behave as separate worlds. If top-
ology-changing processes exist, this is evidently no longer
true.
The above analysis may be extended to the generic

quadratic scale-invariant gravity model,

L ¼ ffiffiffi
g

p ðc1R2 þ c2RμνRμν þ c3RμναβRμναβÞ: ð48Þ

It is well known that only two out of the three terms of the
action are really independent, since one of them can be
eliminated by making use of the Gauss-Bonnet quadratic
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invariant, which does not contribute to the classical equation
of motion. A direct computation shows that one has a class
of static, topological spherically symmetric solution with
the asymptotically (anti–) de Sitter metric (11). Thus, the
analysis of the nature of pure R2 gravity can be repeated here
without any modification. Note, however, that in the
computation of the entropy with the Wald method, the
Gauss-Bonnet terms give a nonvanishing contribution.
We also observe that with the specific choice c1 ¼ 1

3
,

c2 ¼ −2, and c3 ¼ 1, one is dealing with the so-called
Weyl conformal gravity, where the Lagrangian density is
CμναβCμναβ, namely, a quadratic invariant of theWeyl tensor
Cμναβ. This model has been extensively studied, and static

black hole solutions have been found [48–50]. The corre-
sponding topological black hole solutions have been
investigated in [51–54].
Finally we recall that a long time ago, Buchdahl

realized that every Einstein space with arbitrary cosmo-
logical constant is a solution of the equations of motion of
R2 gravity [20]. It also follows that the Kerr Newman–
(anti)de Sitter metrics with arbitrary mass, angular
momentum, charge, and (anti–) de Sitter radius are a
solution to R2 gravity. The thermodynamical properties
of these black hole solutions can be investigated along
the lines drawn here, and they will be the subject of a
future paper.
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