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We discuss the impact of adiabatic renormalization on the power spectrum of scalar and tensor

perturbations from inflation. We show that adiabatic regularization is ambiguous as it leads to very

different results, for different adiabatic subtraction schemes, both in the range v ! k=ðaHÞ * 0:1 and in

the infrared regime. All of these schemes agree in the far ultraviolet, v $ 1. Therefore, we argue that in
the far infrared regime, v % 1, the adiabatic expansion is no longer valid, and the unrenormalized spectra

are the physical, measurable quantities. These findings cast some doubt on the validity of the adiabatic

subtraction at horizon exit, v ¼ 1, to determine the perturbation spectra from inflation which has recently

been advocated in the literature.
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I. INTRODUCTION

Inflation was originally proposed to solve the initial
condition problem of standard big bang cosmology. At
the same time, it was found that inflation typically leads
to a nearly scale invariant spectrum of scalar and tensor
fluctuations [1,2]. It is this finding, which is so well con-
firmed by the observed anisotropies and polarization in the
cosmic microwave background [3], which has led to a wide
acceptance of the inflationary paradigm. Using present and
future CMB data, in combination with other cosmological
data sets, we are now in the position to constrain models.

Typically, an inflationary model predicts the value of
three parameters, namely, the scalar spectral index ns, the
tensor spectral index nt, and the tensor-to-scalar ratio r. So
far, observations just provide upper limits on tensor fluc-
tuations. These are not independent of the scalar spectral
index ns as it is evident from the two-dimensional one- and
two-! confidence contours, shown in Fig. 5 of Ref. [4].
These data can be used to constrain inflationary models.
For example, in [4] it is noted that a model of inflation with
a scalar field potential of the form "#4 is ruled out if the
number N of e foldings of inflation after horizon crossing
of the scales probed byWMAP, k ’ 0:002h=Mpc ’ 6H0, is
of the order of N & 50–60. In this expression, H0 is the
current value of the Hubble parameter, and h ¼ 0:72'
0:08.

This is a truly breathtaking result meaning that CMB
data, i.e. cosmological observations on the largest scales,
can provide information about the physics at energy scales
much higher than those attainable in the laboratory, hence
about the physics on the smallest scales. It is therefore of
the utmost importance that these results are subjected to
the deepest scrutiny. With this point in mind, we have

studied the recent works [5–7]. In particular, in Ref. [5],
the author argues that the inflationary power spectra, as
they are usually calculated, are not correct. In fact, since
they diverge at coincident points, one should subtract an
appropriate adiabatic counterterm (see also [8] for a differ-
ent point of view). In Ref. [7] the authors perform explicit
calculations along these lines and subtract the adiabatic
term at the Hubble exit, namely, when v ¼ k=ðaHÞ ¼ 1.
As a result, the values of the tensor-to-scalar ratio that they
find differ significantly from the ones usually adopted to be
compared with the data of [4]. The most surprising con-
sequence is that, for example, the chaotic inflationary
model "#4 is no longer ruled out by the WMAP data.
It is well-known that the standard power spectra are

nearly time independent on super-Hubble scales, i.e.
when v ( 1. In this paper, we show that this is not the
case for the adiabatic contribution to the spectra in a
realistic model of inflation. The renormalized spectra, no
matter what approach is used for the adiabatic subtraction,
always depend on v. The adiabatic regularization, even
when performed at horizon exit or a few Hubble times
later, is ambiguous in the sense that it gives a different
result depending on which approach is used. In some cases,
the result is even strongly time dependent. In fact, we show
that there are different ways to perform the adiabatic sub-
traction, which all agree in the far ultraviolet regime, but
yield very different results for v ( 1. The most reasonable
adiabatic expression actually yields an adiabatic spectrum
Pð2Þ such that the ratio Pð2Þ=PðIRÞ becomes quickly negli-
gible for v % 1, indicating that the spectrum is not
modified.
These considerations indicate that the correct time at

which the adiabatic subtraction has to be performed is the
end of inflation, rather than the time of Hubble exit.
However, at the end of inflation, all of the modes relevant
for observational cosmology are in the far infrared region
where the adiabatic expansion seems inappropriate as the
expansion of the Universe is not slow compared to the
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oscillation frequency of the mode and, thus, not adiabatic.
If one insists, however, to extend the adiabatic regulariza-
tion in the infrared, we present an argument, which shows
that the adiabatic counterterms become negligible anyway.
Thus, we shall argue that the physical result is not affected
by adiabatic regularization.

The paper is organized as follows: in the next section we
present approximate expressions for the scalar and tensor
power spectra in the framework of slow-roll inflation. In
Sec. III, we discuss different adiabatic subtractions for both
the scalar and tensor power spectrum, and we argue that the
difference with the original power spectra becomes irrele-
vant in the far infrared regime. In Sec. IV, we draw our
conclusions. Some technical results are deferred to
appendices.

II. POWER SPECTRA FROM SLOW-ROLL
INFLATION

A. Linear perturbations in slow-roll inflation

We consider a spatially flat Universe, whose dynamics is
driven by a classical minimally coupled scalar field, de-
scribed by the action

S ¼
Z

d4x
ffiffiffiffiffiffiffi)g

p "
R

16$G
) 1

2
g%&@%#@&#) Vð#Þ

#
: (1)

For a spatially flat Friedmann space-time, of the form
ds2 ¼ )dt2 þ a2ðtÞ'ijdx

idxj, the background equations
of motion for # and for the scale factor aðtÞ read

€#þ 3H _#þ V# ¼ 0; (2)

$
_a

a

%
2
¼ H2 ¼ 1

3M2
pl

" _#2

2
þ V

#
; (3)

_H ¼ ) 1

2M2
pl

_#2; (4)

whereM2
pl ¼ 1=ð8$GÞ is the reduced Planck mass. The dot

denotes a derivative with respect to the cosmic time t.
Linear perturbations of the metric in longitudinal gauge
are given by

ds2 ¼ )ð1þ 2"Þdt2 þ a2½ð1) 2#Þ'ij þ hij,dxidxj:
(5)

Here, " and # represent the Bardeen potentials, and hij
describes traceless, transverse tensor degrees of freedom,
that is gravitational waves. We do not discuss vector
perturbations.

In single-field inflationary models, and to first order in
perturbation theory, we have # ¼ ". Scalar perturbations
have only one degree of freedom, which can be studied by
means of a single gauge invariant variable, such as the so-
called Mukhanov variable [9], defined, in longitudinal
gauge, by

Q ¼ ’þ
_#

H
": (6)

In this expression, we assume that the scalar field can be
written as a background term plus a linear perturbation,
namely, as #þ ’.
Often, one also uses the curvature variable ( , which, for

# ¼ ", is defined as [10]

( ¼ H
_#
Q ¼ 2ðH)1 _"þ"Þ

3ð1þ wÞ þ": (7)

Here, w is the equation of state parameter, which satisfies

1þ w ¼ 2 _#2

_#2 þ 2Vð#Þ : (8)

It is important to note that both ( andQ are related to the
Bardeen potential" via a first order equation. They are not
independent degrees of freedom, and it is therefore not
consistent to think of Q as a quantum degree of freedom
and of " as a classical variable. When we quantize Q, or
rather aQ as below, we also quantize the Bardeen potential.
In fact, we do not equate expectation values of some
quantum fields to classical first order perturbations of the
metric via Einstein’s equation, but we do quantize the
metric perturbations.
The equation governing Q in Fourier space, is given by

€Q kþ3H _Qkþ
1

a2
k2Qkþ

"
V##þ2

d

dt

$
3Hþ

_H

H

%#
Qk¼ 0;

(9)

where V## denotes the second derivative of V with respect
to #. During inflation, we assume that the so-called slow-
roll parameters

) ¼
M2

pl

2

$
V#

V

%
2
; * ¼ M2

pl

V##

V
(10)

are small, ), j*j % 1. To leading order in these parameters,
each mode Qk satisfies the equation

€Q k þ 3H _Qk þH2

"
k2

a2H2 þ 3*) 6)
#
Qk ¼ 0: (11)

Analytic solutions for Eq. (11) can be found if the slow-
roll parameters are constant. More generally, along the
lines of [11,12], we can study this equation in the infrared
(IR) regime, corresponding to k=ðaHÞ< c and in the ul-
traviolet (UV) regime, corresponding to k=ðaHÞ> c,
where 1=10 & c & 1. We will shortly see that we can
‘‘match’’ the UV solution to the IR one at k=ðaHÞ ¼ c.
In the UV, the slow-roll parameters can be considered as
constant. The canonically normalized solution to Eq. (11)
with adiabatic vacuum initial conditions then reads

QðUVÞ
k ¼ 1

a3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$ð1þ )Þ

4H

s
Hð1Þ

&

"
k

aH
ð1þ )Þ

#
; (12)
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where Hð1Þ
& is the Hankel function of the first kind with

index & ¼ 3
2 ) *þ 3). It is instructive to rewrite Eq. (9) in

the form

ðaQkÞ00 þ
$
k2 ) z00

z

%
aQk ¼ 0; (13)

where z ¼ a
_#

H
¼ )aMpl

ffiffiffiffiffiffi
2)

p
; (14)

and primes denote derivatives with respect to conformal
time +, defined by ad+ ¼ dt. Equation (13) is simply the
equation of a harmonic oscillator with a negative time-
dependent mass )z00=z. When k2 ) z00

z < 0, this leads to

amplification on the mode aQk. This form of the perturba-
tion equation is completely general and independent of the
form of the potential.

In the far IR, v % 1, one can neglect the term k2, and the
nondecaying mode of the solutionQk is well approximated

by Qk /
_#
H ¼ )Mpl

ffiffiffiffiffiffi
2)

p
. On the other hand, in the far UV,

)k+ ’ v $ 1 and one can neglect the term z00=z, so that
Eq. (13) reduces to the equation for a simple harmonic
oscillator.

As mentioned above, by imposing that the UV solution
approximately matches the IR solution for k=ðaHÞ ¼ c, we
obtain the solution valid for k < caH, namely [12]

QðIRÞ
k ¼ 1

a3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$ð1þ )Þ

4H

s $
Hc

H

%
,
Hð1Þ

3=2

"
k

aH
ð1þ )Þ

#
: (15)

Here,Hc is the value of the Hubble parameter at the time tc
when k ¼ caH, and

, ¼ 3þ V##

3 _H
¼ 3

$
1) *

3)

%
: (16)

We now turn to tensor perturbations hij. In Fourier
space, both tensor polarizations evolve according to

€h k þ 3H _hk þ
k2

a2
hk ¼ 0: (17)

As before, one can derive approximate solutions in the UV
and IR. The mode and the amplitude are chosen such that
the canonically normalized variable ðaMpl=

ffiffiffi
2

p
Þh satisfies

adiabatic vacuum initial conditions in the UV. Thus, one
finds

hðUVÞk ¼ 1

a3=2M2
pl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$ð1þ )Þ

2H

s
Hð1Þ

&

"
k

aH
ð1þ )Þ

#
; (18)

with & ¼ 3=2þ ), and

hðIRÞk ¼ 1

a3=2M2
pl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$ð1þ )Þ

2H

s $
Hc

H

%
Hð1Þ

3=2

"
k

aH
ð1þ )Þ

#
: (19)

B. Power spectra

With the solutions discussed in the previous subsection,
we can now compute the scalar and tensor power spectrum,
defined by

P( ðkÞ ¼
k3

2$2

$
H
_#

%
2
jQkj2; PtðkÞ ¼

2k3

$2 jhkj2: (20)

In terms of the variable v ¼ k=ðaHÞ, the expansion of the
spectra to first order in the slow-roll parameters, in the UV
and IR, respectively, yields

PðUVÞ
( ¼ 1

2M2
pl

$
Hv

2$

%
2
"
1þ v2 þ fðvÞ)v þ gðvÞ*v

)v

#
;

(21)

PðUVÞ
t ¼ 8

M2
pl

$
Hv

2$

%
2
½1þ v2 þ ftðvÞ)v,; (22)

and

PðIRÞ
( ¼ 1

2M2
pl

$
Hv

2$

%
2
$
Hc

Hv

%
2,
"
1þ v2 ) 2)v

)v

#
; (23)

PðIRÞ
t ¼ 8

M2
pl

$
Hv

2$

%
2
$
Hc

Hv

%
2
½1þ v2 ) 2)v,: (24)

These UVand IR spectra have the correct asymptotic form,
but they do not match exactly at v ¼ c since we have
neglected the decaying mode contribution in PðIRÞ. The
small discontinuity is of the order of the slow-roll parame-
ters. The functions fðvÞ, ftðvÞ, and gðvÞ appearing in these
expressions are defined and plotted in Appendix A.Hv, )v,
and *v are the values of these quantities calculated at the
time tv for which k=ðaHÞ ¼ v. The functions fðvÞ, ftðvÞ,
and gðvÞ always appear multiplied by * or ). Therefore,
they are always subdominant for wave numbers k which
exit the Hubble scale in the slow-roll regime, i.e. when
)v % 1 and *v % 1.
An important observable parameter is the tensor-to-

scalar ratio r ¼ Pt=P( . On considering the particular
case when V ¼ m2#2=2, we have * ¼ ) and , ¼ 2.
Therefore, for this particular case, and at the leading order
in the slow-roll parameters, we find

rðUVÞ ¼ 16)v; rðIRÞ ¼ 16)c: (25)

Note that, during slow-roll evolution, ) varies slowly ( _) is
second order in the slow-roll parameters), so that also rðIRÞ

is nearly constant for scales which reach k ¼ caH during
slow roll.
To compare our findings with the five-year WMAP

results, we must write rðUV;IRÞ in terms of the spectral index
ns ¼ 1þ d

d lnk lnP( . In turn, ns must be expressed as a
function of v and N, i.e. the number of e folds between
the epoch when the modes corresponding to the scales
probed by WMAP exit the Hubble scale and the end of
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inflation. In Appendix B, we show that when V ¼
m2#2=2,

nðUVÞs ¼ 1) 4)v; nðIRÞs ¼ 1) 4)c; (26)

where

)s ¼ *s ¼
1

2ðN þ lnsÞ ; (27)

while s is either v or c. It then follows that

rðUV;IRÞ ¼ 4ð1) nðUV;IRÞs Þ:
The generic slow-roll expression for the scalar spectral

index is [10]

ns ¼ 1) 6)þ 2*: (28)

One easily verifies that for general chaotic inflation models

with V¼ "
p

#p

Mp)4
pl

, one has )¼ p2

2 ð
Mpl

# Þ2, while *¼pðp)1Þ-

ðMpl

# Þ2, hence

ns ¼ 1)
$
2þ 4

p

%
): (29)

III. RENORMALIZED POWER SPECTRA

We now investigate how the power spectrum is modi-
fied, when corrected by the subtraction of the adiabatic
expansion up to the second order.

Let us briefly review how to obtain the adiabatic con-
tribution to the power spectrum, in terms of the Mukhanov
variable, for the scalar perturbations. As explained in the
Appendix of [13], it is more convenient to formulate the
adiabatic expansion by using the modulus of the
Mukhanov variable xk ¼

ffiffiffi
2

p
jQkj, which satisfies the

Pinney equation

€x k þ 3H _xk þ
"
k2

a2
þ V## þ 2

d

dt

$
3Hþ

_H

H

%#
xk ¼

1

a6x3k
:

(30)

In conformal time, the above equation simplifies to

ðaxkÞ00 þ$2ðaxkÞ ¼
1

ðaxkÞ3
; (31)

where

$2
k ¼ k2 þ a2V## ) 1

6
a2 ~R; (32)

and

~R ¼ R) 6
$
)4

a02

a4
) 2

a002

a2a02
þ 2

a000

a2a0

%
; R ¼ 6

a00

a
:

(33)

From these equations, one obtains the WKB expansion for
xk up to the second adiabatic order, which reads

xk ¼
1

a

1

$1=2
k

$
1þ 1

8

$00
k

$3
k

) 3

16

$02
k

$4
k

%
: (34)

In turn, from this expression one immediately finds the
second order adiabatic expansion of jQkj2, namely

jQkj2 ¼
1

2a2$k

$
1þ 1

4

$00
k

$3
k

) 3

8

$02
k

$4
k

%
: (35)

The term V## could be considered of adiabatic order zero
in $2

k, but by using the field equations together with
Eq. (10), one obtains a different conclusion, namely, that
V## ¼ 3H2*, which is in general of adiabatic order two as
well as ~R (see [13] for a different interpretation). Below,
we briefly discuss the case when V## is considered as of
order zero. In terms of the slow-roll parameters we have, at
leading order,

R ¼ 6H2ð2) )Þ; ~R ¼ 6H2ð2þ 5)Þ; (36)

$2
k ¼ k2 þ a2H2ð3*) 5)) 2Þ: (37)

Since the time dependence of $2
k is already of second

order, any derivative of $k generates terms of adiabatic
order greater than two. Thus, we can neglect the derivatives
in Eq. (35), and the power spectrum to second adiabatic
order is simply

Pð2Þ
( ! k3

2$2

$
Hv

_#

%
1

2a2$k
(38)

¼ 1

2M2
pl

$
Hv

2$

%
2 1

)v

v3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2) v2 ) 3*v þ 5)vj

p ; (39)

where we used the relation ð _#=HvÞ2 ¼ 2Mpl)v. The abso-
lute value is necessary because, for v2 < 2) 3*v þ 5)v ’
2, one obtains a negative $2

k. The divergence at v
2 ¼ 2)

3*v þ 5)v is not relevant in the far IR v % 1 or the far UV
v $ 1, but it indicates that one cannot trivially connect
these two regions.
The standard adiabatic expansion then goes on to expand

Eq. (39) again up to second order (see, for example, [13]),
thus the spectrum reads

Pð2Þ
( ’ 1

2Mpl

$
Hv

2$

%
2 1

)v

$
1þ v2 ) 3

2
*v þ

5

2
)v

%
: (40)

This expansion is clearly meaningful only in the far UV,
i.e. for v $ 1. If one wants to extend the validity of
adiabatic renormalization to the IR, one should use
Eq. (39), which, however, becomes rapidly negligible

with respect to PðIRÞ
( , when v % 1.

The adiabatic expansion for the tensor perturbation can
be found using the results in Appendix A of [14] withm2 ¼
0. Here, the authors consider a scalar field propagating on
an unperturbed space-time. On such a background, the
equation of motion of the scalar field with m2 ¼ 0 coin-
cides exactly with the equation of motion of the tensor
perturbation, and one obtains directly
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xk ¼
1

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 ) 1

6 a
2R

q ; (41)

where now xk ¼ jhkjMpl. Thus, the tensor adiabatic power
spectrum reads

Pð2Þ
t ¼ 8

M2
pl

$
Hv

2$

%
2 v3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2) v2 ) )vj

p : (42)

As above, in the far UVone can expand for large v, up to
second abiabatic order, and find for the adiabatic spectrum

Pð2Þ
t ’ 8

M2
pl

$
Hv

2$

%
2
$
v2 þ 1) )v

2

%
: (43)

With similar consideration as above, one sees that Pð2Þ
t ,

when expressed as in Eq. (42), becomes rapidly negligible

with respect to PðIRÞ
t when v % 1.

These results show that the extension to the IR of the
adiabatic expansions of the scalar and tensor spectra, if
sensible, must be considered with great care. In fact, in
Figs. 1 and 2, one sees that the adiabatic corrections have
very different effects, according to whether one uses
Eqs. (39) and (42) or Eqs. (40) and (43).

We now consider the UV case in more detail. The
renormalized power spectra are given by

P( ¼ PðUVÞ
( ) Pð2Þ

( ; Pt ¼ PðUVÞ
t ) Pð2Þ

t ; (44)

where Pð2Þ
( and Pð2Þ

t can be calculated using either Eqs. (40)

and (43) or Eqs. (39) and (42), as these fully coincide for
large v. However, when v ¼ 1, the corresponding expres-
sions for P( already differ substantially. In fact, to leading
order in the slow-roll parameters, using (40), we find

P( ’ 1

2M2
pl

$
H

2$

%
2 1

)

"
3-)þ

$
3.) 9

4

%
*
#
; (45)

while, with Eq. (39), we obtain

P( ’
1

2M2
pl

$
H

2$

%
2 1

)

"
1þð3-þ5Þ)þ

$
3.)21

4

%
*
#
; (46)

where - ’ 0:903, . ’ 0:449, and all of the parameters are
calculated at the time when k ¼ aH. These results make it
clear that adiabatic counterterms, which agree in the far
UV and correctly renormalize the theory in this regime,
produce different results not only in the far IR, but also at
horizon exit. Similar considerations hold for the tensor
spectrum.
To better compare our results with the ones in [7], we

now discuss the case where one considers V## in the scalar
spectrum of adiabatic order zero and ~R of order two.
Starting from Eq. (35) and expanding again up to second
order, one obtains

Pð2Þ
( ¼ 1

2M2
pl

$
Hv

2$

%
2 1

)v

"
v3

ðv2 þ 3*vÞ1=2
þ v3ð1þ 5

2 )vÞ
ðv2 þ 3*vÞ3=2

þ 9*vv
3

4ðv2 þ 3*vÞ5=2
) 45*2

vv
3

8ðv2 þ 3*vÞ7=2
#
; (47)

where we have kept only the leading order, in the slow-roll
parameters, in each term. With this expression, the renor-
malized P( differs again from the other two expressions
above. To see this, we set v ¼ 1 and expand with respect to
the slow-roll parameters to find the expression

P( ¼ 1

2M2
pl

$
H

2$

%
2 1

)
ð3-)þ 3.*Þ; (48)

which has to be compared to Eq. (10) of [7]. In this paper,
there is just - instead of 3-. This comes from the fact that
we use the Mukhanov variable, while in [7] the authors use
the scalar inflaton perturbation in a space-time without
metric fluctuations. However, when v % 1, this result is
no longer reliable as we simply cannot expand with respect
to the slow-roll parameter, since 3*v is no longer much
smaller than v2. For example, in the case V ¼ m2#2=2, as
shown in Appendix B, we have 3)v ! 3*v ’ 1=ð2NÞ. So,
if N ¼ 50 and v ¼ 1=5, then v2 ¼ 1=25 and 3*v ¼
3=100. As a result of this, the tensor-to-scalar ratio strongly
depends on v for v < 1.

FIG. 1. The ratios Pð2Þ
( =P( (solid line) and Pð2Þ

t =Pt (dashed
line) in the IR, v % 1, calculated with Eqs. (39) and (42), for the
case V ¼ m2#2=2. These contributions are negligible for both
scalar and tensor perturbations.

FIG. 2. The ratios Pð2Þ
( =P( (solid line) and Pð2Þ

t =Pt (dashed
line) in the IR, v % 1, calculated with Eqs. (40) and (43), for
the case V ¼ m2#2=2. These contributions are of considerable
size for a large range of v, however they are not correct as in this
regime, the expansions (40) and (43) are not valid.
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In addition to the above considerations, it is known that
the long wave adiabatic modes do not contribute signifi-
cantly to the renormalized Green function at coincident
points in realistic inflationary models (see [15] for similar
consideration on massless particle).

The main point of this section is that adiabatic subtrac-
tion is not a reliable technique in the IR. In fact, we have
presented three types of counterterms for the scalar spec-
trum, Eqs. (39), (40), and (47), and two for the tensor one,
namely, Eqs. (42) and (43). In each case, these terms are
equivalent in the far UV but give very different results
elsewhere. Furthermore, we have shown that when using
(39) and (42), the subtracted spectra are close to the bare
ones already at v ¼ 1 and virtually identical to them at
v % 1.

IV. CONCLUSIONS

In this paper, we have first determined the renormalized
perturbation spectra in a slow-roll inflationary model in
UV domain. In agreement with Ref. [7], we have found
that adiabatic subtraction can lead to a substantial reduc-
tion of power in the UV. Namely, the larger k=a in com-
parison to H, the closer the weight of the adiabatic
counterterm becomes to the unrenormalized spectra. This
is reasonable, since we do not expect that the expansion of
the Universe is ‘‘energetic enough’’ to excite physical
modes in the UV.

On the contrary, in the IR, the adiabatic expansion is no
longer valid, and there is no convincing physical argument
to subtract this term to the standard power spectrum. As
there is a natural IR cutoff to inflation, we propose that for
cosmologically relevant scales, which have been amplified
by inflation but are in the far IR at the end of inflation, no
adiabatic subtraction should be performed.

One might argue, however, that this expansion scheme
still produces a finite result and therefore provides a way to
renormalize the IR modes. In fact, we find this argument
not convincing, as there are different schemes to renormal-
ize the IR modes (for example, see the recent paper [16]).
In a way, we have also shown this by presenting different
counterterms which agree in the far UV but not in the IR.
This reflects the well-known result that in the far UV,
where space-time curvature becomes negligible, the physi-
cal spectrum is independent of the regularization scheme
and that the UV singularity structure of the two-point
function is always of the Hadamard form. Furthermore,
since inflation has not started in the infinite past, there is a
natural infrared cutoff, namely, the horizon scale at the
beginning of inflation. We therefore conclude that one
should not subtract the adiabatic contribution in the IR in
realistic inflationary models.

Even though the adiabatic calculation does not apply in
the IR, it is interesting to note that, the adiabatic counter-
terms become much smaller than the unrenormalized spec-
trum in the IR, when computed without any expansion, as

in Eqs. (39) and (42). As mentioned above, these expres-
sions show a singularity for v2 ’ 2. This is not relevant,
from our point of view, as we claim that the subtraction
should be performed at the end of inflation. At the end of
inflation, however, all cosmologically relevant scales are in
the far IR, hence the adiabatic subtraction, which is a
possible prescription, since the far UV does not affect the
associated spectra. This is the main conclusion of this
work.
The adiabatic subtraction does, however, provide a clean

means to derive the shape of the physical spectrum in the
UV, where it actually tends to zero: at any given time,
fluctuations with v > 1 are significantly suppressed by the
adiabatic counterterm. In this sense, the adiabatic subtrac-
tion provides a UV cutoff of the spectrum which is roughly
given by the scale kUV which reaches v ¼ 1 at the end of
inflation kUV ¼ afHf.
The reason why it is usually sensible to compute P( and

Pt at the Hubble exit v ’ 1 instead of evaluating them at
the end of inflation, is that we have simple and sound
formulae for them, which are valid ‘‘inside the Hubble
scale,’’ while the growing modes of the perturbations are
nearly constant ‘‘outside the Hubble scale.’’ Therefore, in
general we do not need to calculate their evolution until the
end of inflation. This is different for the adiabatic counter-
term Pð2Þ: as we have shown, this term becomes strongly
time dependent and decreases with v in the IR, if extended
in this regime without any further expansion. Therefore, it
seems reasonable to perform the adiabatic subtraction at
the end of inflation, or at least far in the IR, where, how-
ever, it becomes irrelevant for all scales of cosmological
interest.
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APPENDIX A: DEFINITIONS

In Sec. II B, we present the renormalized power spec-
trum of curvature and tensor perturbations, expanded with
respect to the slow-roll parameters. The three functions f,
g, and ft appearing in these expressions are defined by
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These functions are plotted in the range 1=10< v< 10 in
Fig. 3.

APPENDIX B: SPECTRAL INDICES

We consider the case V ¼ m2#2=2. During slow roll, we
can neglect the terms _#2 in Eq. (3) and €# in Eq. (2). It
follows that H ’ Hi þ _Ht, where Hi is the initial value of
the Hubble factor, and _H ’ )m2=3. Thus, the scale factor
satisfies the equalities

ln
aðtÞ
ai

¼
$
Hit)

m2

6
t2
%
¼ 3

2m2 ½H2
i )H2ðtÞ,; (B1)

where ai is its initial value. If we assume that inflation

finishes approximately when HðtÞ ’ 0, it follows that

N ! ln
af
aN

¼ 3

2

H2
N

m2 ; aN ¼ e)Naf; (B2)

where HN and aN are the values of the Hubble and scale
factors N e folds before the end of inflation. Thus, we can
write the momentum kN , associated to the mode that exits
the Hubble scale atN e folds before the end of the inflation,
as

kN ! aNHN ¼ m
$
2

3
N
%
1=2

ai exp
$
3H2

i

2m2 ) N
%
: (B3)

Let s be v or c, according to whether we are dealing with
the UVor IR, respectively. Let ts be the time when

kN ¼ saðtsÞHðtsÞ; (B4)

and with the help of Eqs. (B1) and (B3), we find a quadratic
equation in ts, which gives

ts ¼
3Hi

m2 )
ffiffiffi
6

p

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ lns

p
; (B5)

where we have replaced the slowly varying function HðtsÞ
with the constant value HN in order to obtain an analytical
solution of Eq. (B4). Then, as H ¼ Hi )m2t=3, we find

HðtsÞ ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3ðN þ lnsÞ

q
; (B6)

from which it follows that

)s ¼ *s ¼ 2
$
Mpl

#s

%
2
¼ m2

3H2
s
¼ 1

2ðN þ lnsÞ : (B7)

A possible way to evaluate ns is to express, at leading
order, the derivative with respect to lnk as

d

d lnk
’ ) d

dN
; (B8)

which yields, in both regimes,

nðUVÞs ¼ 1) 4)v; nðIRÞs ¼ 1) 4)c: (B9)

In the UV, we obtain the standard result, while in the IR we
have a slightly different expression. In fact, even if the
relation between r and ns is the same in the two regimes,
namely r ¼ 4) 4ns, in the IR we have ns ¼ 1) 2=ðN þ
lncÞ, while in the UV we have ns ¼ 1) 2=ðN þ lnvÞ. This
difference is, however, quite small since N $ 1 for scales
which exit during slow roll.
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