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We consider the problem of calculating the Green’s functions associated to a massive scalar field with

modified dispersion relations. We analyze the case when dispersion is modified by higher derivative

spatial operators acting on the field orthogonally to a preferred direction, determined by a unit timelike

vector field. By assuming that the integral curves of the vector field are geodesics, we expand the modified

Klein-Gordon equation in Fermi normal coordinates. By means of a Fourier transform, we find a series

representation in momentum-space of the Green’s functions. The coefficients of the series are geometrical

terms containing combinations of the Ricci tensor and the vector field, as expected from previous

calculations with different methods and for specific backgrounds.
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I. INTRODUCTION

In recent times, there have been a considerable amount
of investigations on the trans-Planckian problem. As a sat-
isfactory theory of quantum gravity is not available yet,
some researchers have focused on the possibility that the
unknown physics beyond the Plank scale appears in the
form of a modification of the dispersion relations above a
certain energy scale. The consequences of this assumption
have been widely examined in relation to the inflationary
cosmology [1,2], the Hawking radiation [3], and the Unruh
effect [4]. In some cases, modified dispersion relations
(MDR) locally break the Lorentz-invariance (for a review,
see [5]). However, one can keep the general covariance of
the action, by assuming the existence of a preferred frame,
encoded by a unit timelike vector field, which breaks dy-
namically the Lorentz invariance [6]. In this setup, often
named ‘‘aether theory,’’ the vector field is independent of
the metric, in the sense that it represents a new degree of
freedom in the Einstein-Hilbert action. In the most general
case, the action contains several new terms associated to
the vector field, its covariant derivatives and contractions
with the Ricci tensor. All these terms carry coefficients
which are constrained by observations, and recent results
show that the aether theory is not incompatible with avail-
able data (see, e.g., [7]).

The vector field can be coupled to covariant derivatives
of quantum fields, thus generating modified dispersion
relations. In flat space, the propagator associated to these
fields contains higher powers of the spatial momenta,
which displays explicitly the breaking of the Lorentz group
down to a spatial rotation subgroup. Thus, also in curved
space one expects that the Hadamard form of the prop-
agator is modified. As a consequence, the fundamental
structure of quantum observables is certainly different
with respect to the Lorentz-invariant case. As, in the semi-
classical theory, the expectation value of the renormalized

stress tensor is the source term of the Einstein equations
(see for instance [8]), the calculation of the modified
Green’s functions is of fundamental importance in order to
establish the quantum backreaction, and, hence, the effects
of trans-Planckian modes. Some investigation on this issue
has recently begun, especially in the context of cosmology.
For example, the renormalized stress tensor has been cal-
culated, via adiabatic regularization, in the cases of
Friedmann-Lemaı̂tre-Robertson-Walker and Bianchi I cos-
mological backgrounds [9,10]. However, it would be de-
sirable to have a general expression that can be applied to
any background.
The aim of this paper is to find a general expression for

the Green’s functions with modified dispersion relations. In
a previous paper [11], we found a representation of these
functions in momentum space, in the case when the back-
ground is ultrastatic. Here, we generalize this result for any
background and for any analytic (in momentum-space) dis-
persion relation. When the latter is Lorentz invariant, there
are various equivalent techniques to calculate the Green’s
functions, such as the deWitt-Schwinger expansion in co-
ordinate space [12], and the Bunch and Parker expansion in
momentum space [13]. When MDR are present, however,
the first technique is difficult to apply as it heavily relies
upon Lorentz-invariance, while the second does not need
this symmetry. In fact, Lorentz invariance in the Bunch and
Parker expansion allows us to reduce the number of terms
in the expansion, but it is not essential, as already shown
for the ultrastatic case in [11]. For general backgrounds,
however, the Bunch and Parker method leads to algebrai-
cally complicated results because of the Riemann normal
coordinates (RNC) used in the expansion of the operators.
This coordinate system is very useful when one needs
to expand the metric around one fixed point. But when,
besides the metric, there exists also an independent vector
field, together with differential operators associated to it,
the expansion of the latter becomes very complicated in
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RNC. As the vector field defines a congruence of timelike
curves, it would be more convenient to find a coordinate
system adapted to these.

Such a system exists, and it was discovered by Fermi
[14] and developed later by several authors (see, e.g.
[15,16]). It generalizes the RNC, in the sense that it allows
to define a local orthonormal coordinate system not only
about one fixed point, but about an entire geodesic curve
[17]. Thus, the use of the so-called Fermi normal coordi-
nate (FNC) allows us to simplify the problem of expanding
the operators associated to the vector field, and provides for
a well-defined orthonormal frame. With this frame, as we
will show, it is possible to construct a momentum-space
representation of the Green’s function by Fourier trans-
forming the Klein-Gordon operator.

The plan of the paper is the following. In Sec. II, we
introduce the modified Klein-Gordon operator in the
context of the aether theory. In Sec. III, we calculate the
momentum-space representation of the Green’s functions.
Most of the technicalities are confined in the appendices: in
the first, we briefly sketch the FNC construction, while, in
the second, we display the expansion in FNC of the differ-
ential operators contained in the Klein-Gordon equation.
We conclude in Sec. IV with a discussion of the results and
few remarks. In this paper, we set @ ¼ c ¼ 1, and the
signature is ð#;þ;þ; . . .Þ.

II. AETHER THEORYAND MDR

In the aether theory, one considers the Einstein-Hilbert
action implemented by terms depending on a unit time-
like vector field u!. The general form in N dimensions is
given by

S ¼ 1

16"G

Z
dNx

ffiffiffiffiffiffiffi#g
p ðR# 2!þLuÞ; (1)

where R, !, and G are the Ricci scalar, the cosmological
constant and the Newton constant, respectively. The term
Lu is the Lagrangian associated to the vector field, and its
general form reads [6]

L u ¼ ##ðu!u! þ 1Þ # b1F!$F
!$ # b2ðr!u

!Þ2

# b3R!$u
!u$ # b4u

%u&r%u!r&u
!: (2)

In this expression, F!$ ¼ 2r½!u$', and the constant # acts
as a Lagrange multiplier, which ensures that the vector
field is unit and timelike. Finally, R!$ is the Ricci tensor,
and the coefficients b1 . . .b4 are arbitrary constants. The
form of this Lagrangian guarantees that the theory is gen-
erally covariant, even though the vector field dynamically
breaks local Lorentz invariance, as it determines a pre-
ferred direction. Some of the terms in Eq. (2) vanish when-
ever the integral curves of the vector field are geodesics. In
such a case, in fact, the vector field is everywhere hyper-
surface orthogonal and F!$ ¼ 0. Also, the acceleration

a! ¼ u%r%u
! ¼ 0, and the term proportional to b4 van-

ishes. In the following, we assume that the integral curves
are geodesics, thus the observer comoving with u! is free-
falling. In any case, to analyze the equations of motion, it is
always convenient to choose a background of the form

g!$dx
!dx$ ¼ #ðu%dx%Þ2 þ q!$dx

!dx$; (3)

where q!$ ¼ g!$ þ u!u$ is the induced metric on the hy-
persurfaces orthogonal to u! [2,6]. We now consider a free,
massive, minimally coupled scalar field with a Lagrangian
given by

L' ¼ # 1

2

"
g!$@!'@$'þm2'2

þ
X

p;q

ApqðD2p'ÞðD2q'Þ
#
; (4)

where the operator D is defined such that

D 2' ¼ q%!r%ðq!&r&'Þ; (5)

and the coefficients Apq are arbitrary [2,6]. This Lagrang-
ian explicitly breaks the local Lorentz group to a rotational
subgroup [6]. The Klein-Gordon operator associated to the
field can be written in the form

ðh#m2Þ'þ F½D2'' ¼ 0; (6)

where F is some functional of the operatorD2, such that it
can formally be expanded as

F½D2'' ¼
X1

n¼2

%2nD2n'; (7)

with arbitrary coefficients %2n. This operator is responsi-
ble for the modification of the dispersion relation as, in
momentum-space, it introduces higher powers of p2, the
square of the spatial momentum. For our purposes, it is
more convenient to write h' as [2]

h' ¼ D2'# u%u&r%r&'# Ku%@%'; (8)

where K ¼ q!$r!u$ is the trace of the extrinsic curvature
of the hypersurface orthogonal to u!. In this way, we can
write the Klein-Gordon equation as

D 2'#u%u&r%r&'#Ku%@%'#m2'þF½D2''¼ 0:

(9)

If F can be expanded as in Eq. (7), we can include the first
term of the above equation into the last one, and finally
write the N-dimensional Klein-Gordon equation as
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X1

n¼1

%2nD2n'# u%u&r%r&'# Ku%@%'#m2' ¼ 0;

(10)

with the requirement that %2 ¼ 1, while the other %’s are
arbitrary.

III. MOMENTUM-SPACE REPRESENTATION OF
THE GREEN’S FUNCTIONS

In this section, we find an expansion up to second order
of the metric in FNC, of the Green’s functions Gðx; x0Þ
associated to the scalar field ' of Eq. (10). These must
satisfy the equation

"X1

n¼1

%2nD2n # u%u&r%r& # Ku%@% #m2

#
Gðx; x0Þ

¼ # 1
ffiffiffi
g

p (ðx# x0Þ; (11)

where x and x0 are the coordinates of two nearby points,
and the differential operators act, by convention, on x. In
order to write this equation in terms of symmetric biscalars,
we need to define [13,18]

Gðx; x0Þ ¼ gðxÞ#1=4 "Gðx; x0Þgðx0Þ#1=4

g#1=2ðxÞ(ðx# x0Þ ¼ g#1=4ðxÞ(ðx# x0Þg#1=4ðx0Þ: (12)

If we choose the FNC as local coordinate system, we can
identify P as the point with coordinate x0 ¼ ð0; 0; . . . ; 0Þ,
andQ as the point with coordinate x ¼ ð); xaÞ, see Fig. 1 in
Appendix A. Hence, the Green’s functions "G must satisfy

the equation

g1=4
"X1

n¼1

%2nD2n # uAuBrArB # KuA@A

#
ðg#1=4 "GÞ

#m2 "G ¼ #(ðxaÞ(ð)Þ: (13)

The convention is that the indices ðA; B; . . .Þ label space-
time coordinates while ða; b; . . .Þ label spatial coordinates
only, see Appendix A. We now wish to expand this equa-
tion in FNC up to the second order. By using Eqs. (A10)
and (B4), we find first the expansion in FNC of

g1=4D2ðg#1=4 "GÞ ¼ (ab@a@b "Gþ 1
2H

"GþQA
bx

b@A "G;

(14)

where we defined

Q0
b ¼ #1

6R
0
b; Qa

b ¼ R0a
0b; H ¼ (abHab:

(15)

By recursion, it is easy to show that

g1=4D2nðg#1=4 "GÞ ¼
"
@2n þ n

2
H@2ðn#1Þ

þ nQA
bx

b@A@
2ðn#1Þ þ nðn

# 1ÞQA
b@A@

b@2ðn#2Þ
#
"G; (16)

where we use the convention @2 "G ¼ (ab@a@b "G, and
@k "G ¼ "G for k ¼ 0. With Eqs. (A10), (A14), and (B3),
we find the expansion of the remaining terms, and the
expansion of Eq. (13) in FNC and up to two derivatives
of the metric finally reads

X1

n¼1

%2n

"
@2n "Gþ n

2
H@2ðn#1Þ "Gþ nQA

bx
b@A@

2ðn#1Þ "G

þ nðn# 1ÞQA
b@A@

b@2ðn#2Þ "G
#

# ð1þQabx
axbÞ@0@0 "G#Qa

bx
b@a "G

þ 3Q0
cx

c@0 "G#m2 "G ¼ #(ð)Þ(ðxaÞ: (17)

The complexity of this equation can be greatly reduced by
performing the N-dimensional Fourier transform

"Gðx; x0Þ ¼
Z dNk

ð2"ÞN eigABk
AxB ~Gðp2

0; p
2Þ; (18)

where kA ¼ ðp0; ~pÞ is the N-momentum, and xB ¼ ð); ~xÞ
are the FNC. The arguments of ~G stress the rotational
invariance assumed before, together with time-reversal
symmetry. As discussed in Appendix B, the geometrical
coefficients are considered )-independent at any given
order, thus the Fourier transform can be calculated to
give, after some algebra,FIG. 1. Construction of Fermi coordinates.
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ðSþ p2
0 #m2Þ ~Gþ ½#1

2H
~GþQa

a
~GþQA

bpA
~@b ~G'DS

þQA
bpAp

b ~GD2S#Qabp
2
0
~@a ~@b ~G

þQa
a
~GþQa

bpa
~@b ~G

# 3Q0
bp0

~@b ~G ¼ #1: (19)

In this equation, we have defined

S ¼
X1

n¼1

%2nð#1Þnp2n; ~@a ~G ¼ @ ~G

@pa
; DS ¼ @S

@p2 :

(20)

To solve this equation, we proceed by iteration, similarly as
in [13]. We first write ~G ¼ ~G0 þ ~G2, where

~G 0 ¼
1

m2 # S# p2
0

; (21)

is the propagator in flat space. Then, we replace ~G with
~G0 þ ~G2 in Eq. (19) and we keep only second order terms.
Finally, by using the definition (21) to write S in function of
~G0, we find

~G2 ¼ #1
2HD ~G0 þQ0

bp0p
bDðD# 3D0Þ ~G0

þQa
a½ðDþD0Þ ~G0 # p2

0DD0
~G0'

þQabp
apb½DðDþD0Þ ~G0 # 4p2

0
~G0D

2 ~G0'; (22)

where D0
~G ¼ @ ~G=@p2

0. This is our main result, and it

displays the corrections to the flat propagator, ~G0, in
momentum-space, in terms of geometrical coefficients
depending on the background, and operators acting on
~G0. These coefficients contain up to two derivatives of
the metric. Note that, in this form, the equation is indepen-
dent of the dispersion relation adopted. When the disper-
sion is linear, S ¼ #p2 and D ~G0 ¼ #D0

~G0 ¼ # ~G2
0.

Thus, the above equation reduces to

~G ðrelÞ
2 ¼ 1

2H
~G2
0 þ 2Qa

ap
2
0
~G3
0 þ 8Q0bp

0pb ~G3
0

# 8Qabp
apbp2

0
~G4
0: (23)

IV. DISCUSSION

We now discuss our results, beginning from Eq. (23).
This equation should be contrasted with the well-know
Bunch and Parker expansion [13], which, to second order,
just reads

~G ðrelÞ
2 ¼ 1

6R
~G2
0; ~G0 ¼ ðp2 # p2

0 þm2Þ#1; (24)

where R is the Ricci scalar. Our expression seems much
more complicated, and the reason is due to the choice of
FNC instead of RNC. Thus, to transform Eq. (23) into the
expression above, we should go back to Eq. (10) and
expand in RNC, together with imposing Lorentz invariance
instead of rotational invariance, as we did with Eqs. (B5).

In opposition, by using FNC, even with Lorentz-invariant
dispersion, the expansion is obtained around the Min-
kowski metric and a preferred direction with u!0 ¼ (!0 at
the lowest order. However, by integrating both expansions
in p0, one can see that, in the coincidence limit, the
divergent contributions in Eq. (23) add up and coincide
with the divergent part of the Bunch and Parker expansion
[19]. Therefore, the fundamental Hadamard structure of
the two propagators is the same.
For Lorentz-breaking dispersions, we have found

Eq. (22). The geometrical coefficients depend on vari-
ous components of the Riemann tensor. Some of these
terms become trivial if one assumes that the back-
ground has some symmetry. By using the usual transfor-
mation law of tensors under coordinate change, Rabcd ¼
R%&*(e

%
ae

&
be

*
ce

(
d, it is immediate to show that, in the

case of ultrastatic metrics, only the first term survives, and
we recover the results of Ref. [11].
In the case of a Bianchi I cosmology, the term Q0b

vanishes, while the remaining ones, when transformed
into comoving coordinates, give rise to terms proportional
to R and R!$u

!u$. These terms were also found via
adiabatic regularization in Ref. [10], however a detailed
comparison involves the calculation of the inverse Fou-
rier transform of Eq. (22). This appears quite difficult to
achieve. In fact, as we showed in Ref. [11], even in the
simple case of a quartic dispersion and ultrastatic metric,
a coordinate space representation of the Green’s function
is hard to find by inverse Fourier transform of the
momentum-space representation.
The future plan is to use our results to regularize the UV

divergences of the two-point function (and of the stress-
energy tensor) with MDR, by operating solely in the mo-
mentum space. This procedure is essential to renormalize
the stress tensor in the case of static spacetimes, such as
black holes. For these backgrounds, the Klein-Gordon
operator contains higher order spatial derivatives and
WKB methods do not apply, in contrast to the cosmologi-
cal case. Work in this direction is in progress.
Finally, we remark that our calculations can be extended

to more general cases. For instance, the coefficients of
Eq. (22) contain up to two derivatives of the metric.
Higher order expansions are of course possible, although
they are likely to be algebraically rather complicate.
Another extension can be obtained by considering a non-
geodesics vector field. In this case, one can make use of the
generalized Fermi coordinate together with the Fermi-
Walker transport, which replaces the usual parallel trans-
port and keeps in account the acceleration of the local
frame [18,20].
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APPENDIX A: FERMI NORMAL COORDINATES

In this appendix, we briefly review the construction of
the Fermi normal coordinates (FNC). More details can be
found in Refs. [15–18,20]. Let * denote the integral curve
of the vector u!, which corresponds to the velocity of the
observer. We assume that the latter is free-falling, so that *
is geodesics. The curve is parametrized by ), the observer’s
proper time. Let P be a reference point on *, where we set
)P ¼ 0, and Q a point off the curve. The latter is chosen to
be close enough to *, so that there exists a unique geo-
desics & orthogonal to * an passing through Q. We denote
by R the point of intersection between * and &. This point
is located at ) ¼ )R. Finally, the vector tangent to & at R is
called +!, see Fig. 1. At the point P we construct an
orthonormal tetrad fe!A g such that e!0 ( u!. We use the
convention such that frame indices are labeled by A ¼
0; 1; 2; . . . or a ¼ 1; 2; . . . , while general spacetime indices
are labeled by Greek letters. Since * is a geodesics, we can
construct the same tetrad anywhere on the curve by parallel
transport. Thus, at any point on the curve, the components
of the tetrad satisfy

g!$u
!u$ ¼ #1; g!$e

!
a u$ ¼ 0; g!$e

!
a e$b ¼ (ab:

(A1)

The dual tetrad components are defined by

e0! ¼ #u!; ea! ¼ (abg!$e
!
b : (A2)

With these, we have the following completeness relations

g!$ ¼ #u!u$ þ (abe!a e$b;

g!$ ¼ #e0!e
0
$ þ (abe

a
!e

b
$:

(A3)

The FNC coordinates of the point Q are defined as

)Q ( )R; xaQ ¼ #ea%ðRÞ,%ðQ;RÞ; (A4)

where ,%ðQ;RÞ ( #+% is the gradient of the Synge world
function relative to &. By using the completeness relations,
one can show that

(abx
axb ¼ 2,ðQ;RÞ ( s2; (A5)

where s is the spatial distance between the points Q and R
along the geodesic &. By expanding the function , in s,
one finds the local metric around *, which has the form

ds2 ¼ ð-AB þ hABÞdxAdxB; (A6)

where -AB is the Minkowski metric and

h00 ¼ #R0c0dx
cxd þOðs3Þ; (A7)

h0a ¼ #2
3R0cadx

cxd þOðs3Þ; (A8)

hab ¼ #1
3Racbdx

cxd þOðs3Þ: (A9)

These expressions represent the expansion to second order
of the metric tensor around the curve * [21]. Note that
indices are raised or lowered with the frame Minkowski
metric -AB. The components of the Riemann tensor ap-
pearing in these expressions depend in general on )R, as
they are evaluated at the point R. If the point Q is on the
curve *, the above metric reduces to the Minkowski one.
The determinant of the metric can be computed by the
identity detðI þ AÞ ’ 1þ TrðAÞ, as the tensor hAB can be
considered as a small correction to the Minkowski metric.
Thus, the modulus of the determinant reads

detjgABj ( g ¼ 1# ðR0
c0d þ 1

3R
a
cadÞxcxd þOðs3Þ

( 1#Hcdx
cxd: (A10)

In the theory discussed in this paper, besides the metric
tensor, there is also the vector field u!. By construction,
this vector is unit timelike and it is the component of
the tetrad tangent *. However, when the tetrad is parallel
transported along & to a point off the curve, the vector u!

shows nontrivial components along the spacelike direc-
tions. Suppose that these can be expanded in a Taylor series
around the point R as

uA ¼ uAjR þ @bu
AjRxb þ 1

2@c@bu
AjRxbxc þ . . . ; (A11)

with uAjR ¼ (A
0 . Then, parallel transport along & implies

+brbu
A ¼ 0 for all +b. As the connection coefficients

vanish along *, in opposition to their derivatives, it fol-
lows that

@bu
AjR ¼ ##A

bDu
DjR ¼ 0; (A12)

@c@bu
AjR ¼ #@c#

A
bDu

DjR ¼ #RA
bc0; (A13)

as it results from the expansion of the connection coef-
ficients, which can be found directly with the help of
Eqs. (A7)–(A9), and read

#A
ab ¼ #2

3R
A
ðabÞcx

c; #A
0B ¼ #A

B0 ¼ RA
Bc0x

c: (A14)

Thus, the second term in the expansion (A11) vanishes, and
we find

uA ¼ (A
0 # 1

2R
A
ij0x

ixj þOðs3Þ: (A15)

With these components we can finally calculate the expan-
sion, to second order, of the induced metric, which reads

qAB ¼ -AB þ (A
0(

B
0 # hAB # (0

ðARBÞ
ij0x

ixj þOðs3Þ:
(A16)

APPENDIX B: DIFFERENTIAL
OPERATORS IN FNC

In this appendix, we find the expansion in FNC of the
differential operator D2, which appears in Eq. (10). The
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quickest way is to use the definition [2]

D 2f ¼ qABrArBfþ KuArAf; (B1)

where K is the trace of the intrinsic curvature of the hyper-
surface orthogonal to u!. As KAB ¼ qCAq

D
BrCuD, with

the results of the previous appendix, we find that the only
nonvanishing terms are

Kab ¼ 1
2R0bacx

c: (B2)

We notice immediately that the extrinsic curvature is not
symmetric. This is a result of the fact that the vector uA is
hypersurface orthogonal only at the point R, see Fig. 1.
However, when we parallel transport the Fermi tetrad to the
pointQ along &, orthogonality is lost, and this gives rise to
a nonzero vorticity at Q, which, in turn, renders KAB not
symmetric [22]. For our calculations, however, we just
need the trace of KAB, which is given by

K ¼ qABrAuB ¼ #1
2R

a
0acx

c ¼ #1
2R0cx

c: (B3)

By putting together these results, we finally find

D 2f ¼ (ab@a@bf# 1
3R

ab
acx

c@bf# 1
6R

0
ax

a@0f: (B4)

In order to arrive at this expression, we made use of the
symmetries of the Riemann tensor and the rotational in-
variance of the propagator. In fact, if f is rotationally
invariant (i.e. it depends on powers of x2), we have

h0b@0@bf ¼ #2
3R

0
c
b
dx

cxd@0@bf ¼ 0 (B5)

and

hab@a@bfþ 1
3R

ad
acx

c@df ¼ 0: (B6)

We conclude this appendix with an important remark. We
mentioned before that the coefficients of the expansion
of gAB depends on ). Therefore, when we compute terms
like g1=4D2ðg#1=4fÞ, as in Sec. III, we need to know, in
principle, the explicit form of the )-dependence of the
Riemann tensor. In fact, there are ) derivatives acting on
g, defined by Eq. (A10). Since we are interested in the
short-distance behavior of the Green’s functions, we can
takeQ close to P, which in turn leads to )R close to )P, see
Fig. 1. Hence, we can expand in Taylor series the coeffi-
cients R0c0d, R0cab, and Racdb with respect to ). However,
the results would be coefficients containing more than two
derivatives of the metric. Thus, in general, if we fix the
order of the expansion to n, say, then any )-derivative of
the coefficients yields terms of order nþ 1 or higher,
which can be neglected. This means that the coefficients
appearing in Eqs. (A7)–(A9) can be consistently consid-
ered as constant in ) when hit by a )-derivative. A further
consistency proof follows from the fact that the operatorh
can be defined as

hf ¼ g#1=2@Aðg1=2gAB@BfÞ; (B7)

where )-derivatives of g explicitly appear, or as

hf ¼ gABrArBf: (B8)

The two expressions coincide if, and only if, the coeffi-
cients are treated as time independent. For completeness,
we report the expression of hf, which reads

hf ¼ ð-AB # hABÞ@A@Bf# 2
3R

Ab
dbx

d@Af# R0b
0dx

d@bf:

(B9)
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