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Scalar-tensor theories of gravitation attract again a great interest since the discovery of the Chameleon mechanism and of the
Galileon models. The former allows reconciling the presence of a scalar field with the constraints from Solar System experiments.
The latter leads to inflationary models that do not need ad hoc potentials. Further generalizations lead to a tensor-scalar theory,
dubbed the “Fab Four,” with only first and second order derivatives of the fields in the equations of motion that self-tune to
a vanishing cosmological constant. This model needs to be confronted with experimental data in order to constrain its large
parameter space. We present some results regarding a subset of this theory named “John,” which corresponds to a nonminimal
derivative coupling between the scalar field and the Einstein tensor in the action. We show that this coupling gives rise to an
inflationary model with very unnatural initial conditions. Thus, we include the term named “George,” namely, a nonminimal, but
nonderivative, coupling between the scalar field and Ricci scalar. We find a more natural inflationary model, and, by performing
a post-Newtonian analysis, we derive the set of equations that constrain the parameter space with data from experiments in the
Solar System.

1. Introduction

The Galileon theory has recently emerged as an effective
theoretical realization of the Dvali-Gabadadze-Porrati model
(DGP) [1]. The subsequent developments eventually led
to the definition of the most general second order scalar-
tensor theory that includes, besides the usual terms of scalar-
tensor or f (R) theories (as in, e.g., [2–10]), also nonminimal
derivative couplings to the curvature [11–13]. This general
theory, explored for the first time by the pioneering work of
Horndeski many years ago [14], provides a wide framework
that virtually encompasses all scalar models analyzed so far
in the literature.

One interesting aspect of the nonlinearities of the scalar
sector is that they trigger the Vainshtein mechanism that
makes it possible to build viable cosmological models with
sufficiently small effects at local scales to evade Solar System

constraints. Therefore, we have at hand an interesting alter-
native to chameleons [15], in which the parameter space for
local gravity does not overlap with the one allowed by cosmic
acceleration, as recently shown in [16]. In addition, infla-
tionary phases are permitted without the introduction of ad
hoc scalar potentials, making these models more “natural.”
Nonlinearities are also responsible for new phenomena in
the dark sector including, for instance, sub/superluminality
and/or effective violation of the Null Energy Condition, thus
allowing for a stable and well-defined phantom-like phase
[17–20]. Generally speaking, the Galileon model has opened
the way to new models for cosmology, including inflationary
or late-accelerated ones [21–24]. In fact, almost all sorts
of cosmological scenarios are possible depending on which
Galileon model is chosen; see, for example, [25].

In this paper, we first focus on a subclass of models
dubbed “purely kinetic gravity” [25, 27–29] or also similar
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to “John Lagrangian” in the “Fab Four’s” terminology.
(Note that in the Fab Four Lagrangian, the scalar field has
no standard kinetic term. It propagates however, via its
derivative coupling to the curvature tensors.) [22, 30]. More
generally speaking, it is a special case of the very general
Galileon class considered in [23]. We mostly investigate the
inflationary phase and its naturalness, taking into account
no-ghost constraints and causality conditions. In a next step,
a generalization of the theory including a coupling of the
scalar field to the matter—via, in the Jordan frame, a Brans-
Dicke-like coupling to the scalar curvature—is introduced.
The analysis of the inflationary phase is then reconducted in
such a more realistic theory, while a preliminary analysis of
solar system constraints is discussed.

We begin in Section 2 with a review of John’s equations of
motion in a flat and empty Universe. We then complete the
analysis made in [27] by computing the number of e-folds
in Section 2.1. We show that a kinetically driven inflationary
phase requires highly trans-Planckian values for the initial
field velocity, which rule out the model. Moreover, in
Section 2.2 we provide a detailed analysis of the no-ghost and
causality conditions during cosmic evolution, and we show
that the theory becomes acausal for such transplanckian
values unless the coupling constant is vanishingly small or if
the initial Hubble constant is trans-Planckian. In passing, we
prove that some claims made in the literature regarding the
sign of the coupling constant are wrong. We argue that this
model is to be discarded also because there are no reasons
why the scalar field should be generated at all in the first
place. This is particularly clear in an astrophysical context
where the theory is forced to reduce to pure GR (ϕ = 0),
when the same equations are solved inside a compact body.

In Section 3, we thus extend our considerations to a more
general model, in which we also include a coupling of the
scalar field to the Ricci scalar. This corresponds to the “John
plus George” combination in the Fab Four’s terminology.
We derive and study numerically the equations of motion
for the matter-free cosmological background as well as the
no-ghosts and causality conditions. We find that inflation is
possible provided both coupling constants are positive. In
Section 3.2 we derive the field equations in spherical and
static symmetry, and we briefly sketch how to put some con-
straints on the parameter space using Solar System tests. We
conclude in Section 4 with some remarks and perspectives.

2. John Lagrangian

We begin our analysis by considering the action

S =
∫ √−gd4x

[
R
2κ
− 1

2
(
gµν + κγGµν)∂µϕ∂νϕ

]

+ Smat

[
ψ, gµν

]
,

(1)

where R is the curvature scalar, Gµν the Einstein tensor, ψ
collectively denotes the matter degrees of freedom coupled to
the metric gµν, and κ = 8πGN . In this paper we use the mostly
plus signature; γ is a dimensionless parameter whereas ϕ has
the dimension of an inverse length. This action is a special

case of the generalized Galileon one presented in [23], as one
can see by setting K(X) = X , G3 = 0, G4 = 1/(2κ), G5 =
κγϕ/2.

2.1. Inflation with John. As it was realized in [27], this model
allows for a quasi de Sitter inflation with a graceful exit
without the need for any specific scalar potential. Inflation
is essentially driven by kinematics, and it crucially depends
on the initial high velocity of the field, as we will shortly
see. Although, in principle, the inflationary solutions begin
at t = −∞ (see [27]), we will consider the action as an
effective model only valid from few Planck times after an
unknown transplanckian phase. Our first concern is to
establish whether the model accommodates an inflationary
phase together with reasonable assumptions for the initial
conditions at that time. This section thus completes the
analysis found in [27] by providing the number of e-foldings
as a function of the free parameters of the theory. The
cosmological equations in vacuum derived from (1) read

3α̇2 = κϕ̇2

2
(
1− 9κγα̇2), (2a)

2α̈ + 3α̇2 = −κϕ̇2

2
(
1 + κγ

[
3α̇2 + 2α̈ + 4α̇ϕ̈ϕ̇−1]), (2b)

1
a3

d
dt

(
a3ϕ̇

(
1− 3κγα̇2)) = 0, (2c)

where a is the scale factor and α = ln a. The system can
be partially decoupled to allow for a numerical integration
whose results are shown in Section 2.3. Isolating the second
order derivatives, we find

α̈ =
(
3κγα̇2 − 1

)

2

× 3α̇2 +
(
κϕ̇2/2

)(
1− 9κγα̇2

)

1− 3γκα̇2 +
(
κ2γϕ̇2/2

)(
1 + 9κγα̇2

) ,

(3a)

ϕ̈ = −3α̇ϕ̇
(
1 + κ2γϕ̇2

)

1− 3γκα̇2 +
(
κ2γϕ̇2/2

)(
1 + 9κγα̇2

) , (3b)

which can be integrated numerically in a straightforward
way. The effective equation of state (EoS) for the scalar
field can be obtained from its stress-energy tensor or, more
simply, by comparing our equations of motion directly to the
standard Friedmann equations. After some algebra we find

ωϕ =
(
2 + 3κ2γϕ̇2

)(
1− κ2γϕ̇2

)

2 + 3κ2γϕ̇2 + 3κ4γ2ϕ̇4 , (4)

which is plotted in Figure 1 for both positive and negative γ.
For both signs of γ, the EoS tends to −1 in the high energy
limit (κ|ϕ̇|$ 1), so that a large initial velocity for the scalar
field will result in a quasi de Sitter phase. However, only
the case of positive γ can lead to inflation. Indeed, (2a) can
be inverted to 3α̇2 = κϕ̇2/(2 + 3κ2γϕ̇2), which needs to be
positive since the Hubble constant is a real number. Thus,
γ < 0 implies that |ϕ̇| <

√
−2/3γ, which, in turn, means that
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Figure 1: log linear plot of ωϕ as a function of the dimensionless
variable κϕ̇ for γ = 1 and γ = −1 (dashed).

we always have wϕ > 0. Therefore, the scalar field cannot
even start in the wϕ < 0 region if γ < 0. More generally
speaking, accelerated phases driven by a scalar field in this
model require γ > 0.

In view of these considerations, in the following we shall
assume that γ is positive. Equation (3b), together with the
condition that 1 − 3κγα̇2 > 0 (see Section 2.2), shows that
ϕ̈ < 0 for an initially expanding Universe (α̇ > 0). Hence,
the velocity of the field decreases with time and ωϕ is driven
towards ω = +1. We characterize the end of inflation by the
instant tend, at which ωϕ = −1/3 (throughout this paper
we assume a vanishing cosmological constant). Under the
assumption that κγϕ̇2 is initially large, one may derive an
analytical (approximate) solution for the scale factor a(t) =
eα(t) and the scalar field at early times. First, we write (2a) as
3α̇2 = κϕ̇2/(2 + 3κ2γϕ̇2) so that

H = α̇ % 1
3√κγ

, (5)

whereH is the Hubble constant. Integration yields the appro-
ximate scale factor

a ∼ ai exp

(
t − ti
3√κγ

)
. (6)

Using (5) in (3b), and expanding according to κ2ϕ̇2 $ 1,
gives ϕ̈/ϕ̇ % −1/√κγ and

ϕ̇ ∼ ϕ̇i exp

(
− t − ti√κγ

)
. (7)

Now recall that inflation ends at tend such that ωϕ(tend) =
−1/3. This corresponds to κ2γϕ̇2 = ζend, where

ζend =
1
6

(
3 +

√
57
)
≈ 1.76, (8)

as can be shown by solving (4). Using (7), the condition
κ2γϕ̇2 = ζend reduces to

κ2γϕ̇2
i exp

(
−2 (tend − ti)√κγ

)
∼ ζend, (9)

from which one finds

tend − ti =
√κγ

2
ln

(
κ2γϕ̇2

i

ζend

)
. (10)

Replacing this in the expression (6) for the scale factor leads
to

aend

ai
∼
(

κ2γϕ̇2
i

ζend

)1/6

. (11)

We finally impose that inflation lasts for a number of e-folds
N = ln(aend/ai) greater than 60. This gives a relation between
the initial velocity of the field ϕ̇i and γ, namely:

ϕ̇2
i ! ζend

κ2γ
exp(360), (12)

which is the crucial condition for a successful (purely
kinetic-driven) inflationary phase. We see that it involves
a rather unusual very large pure number. In order to
discuss naturalness, (5) is also of interest, as it fixes the
Hubble constant at the beginning of the inflationary phase
Hi ∼ 1/3√κγ. Therefore, the last equation might also be
written as

κ
ϕ̇2
i

H2
i

! 9ζend exp(360) ∼ 10157. (13)

It follows that the “natural” initial conditions Hi = O(1)
and ϕ̇i = O(1) in Planckian units are not allowed. On the
contrary, a natural value for the initial expansionHi = 1 (and
thus γ ≈ 0.11) requires an extremely high transplanckian
value for the initial velocity of the field ϕ̇i ∼ 1078 in natural
units.

It is not even possible to obtain a Planckian value for
the initial velocity in this model, since, in any event, the
initial Hubble constant will be greater than the one today.
This implies that in such an inflationary scenario, √κγ must
be less than the Hubble radius today, still implying a very
unnatural bound for the initial velocity, namely, ϕ̇i ! 1051 in
natural units.

2.2. Theoretical Constraints. The characteristic feature of
Galileon models is the derivative coupling of the scalar field
to the metric. This implies a direct coupling between scalar
field and metric degrees of freedom or, in other words,
that the scalar field propagation explicitly depends on the
metric background and vice versa. Therefore, there might
exist backgrounds for which the propagation becomes patho-
logical (nonhyperbolic, i.e., noncausal, or carrying negative
energy, i.e., ghosts). In the following, we restrict ourselves
to the cosmological background in a flat universe with line
element

ds2 = −dt2 + e2α(t)dx2, (14)

and we explore the conditions for the theory to be well
defined, for both scalar field and metric perturbations. We
start with the scalar field, whose action can be written as

Sϕ =
∫
a3dt d3xQϕ

(
ϕ̇2 −

c2
ϕ

a2∇ϕ2

)
, (15)
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where

Qϕ =
1
2
(
1− 3κγα̇2) > 0 (16)

as it needs to be positive for the scalar field to carry positive
energy. The field propagates at a squared speed given by

c2
ϕ =

1− κγ
(
2α̈ + 3α̇2

)

1− 3κγα̇2 ≥ 0. (17)

The condition c2
ϕ ≥ 0 is necessary to ensure that the scalar

field equation of motion remains hyperbolic, ultimately
expressing its causal behavior regardless of whether the scalar
field perturbations are sub- or super-luminal [17, 31]. The
two conditions previously mentioned are indeed equivalent
to the requirement that the effective metric

g̃µν = gµν + κγGµν,

g̃µν∇µνϕ = 0,
(18)

along which the scalar field propagates, is hyperbolic with the
same (mostly +) signature than gµν.

The conditions (16) and (17) are best analyzed in terms
of the reduced dimensionless variables x(t) = κϕ̇ and y(t) =√
κα̇. The first one requires γy2 < 1/3, and it is automatically

satisfied if γ < 0, but also if γ > 0 provided that there is a
maximal value for the Hubble constant H = α̇ < 1/

√
3κγ.

The second one reduces to an algebraic condition with the
help of (2a)–(3b), namely:

1− 3γy2

1− 9γy2 + 54γ2y4 ≥ 0 ⇐⇒
(
1 + γx2

)(
2 + 3γx2

)

2 + 3γx2 + 3γ2x4 ≥ 0. (19)

In summary, (16)-(17) require γ > 0 and |y| < 1/
√

3γ or
γ < 0 and the two possibilities |x| > 1/

√−γ or |x| <
√
−2/3γ.

These conditions are therefore less restrictive than the one
implied by the Friedmann equation (see previous section).

The curvature background implies nonstandard propa-
gation for the scalar degree of freedom. In a quite similar
fashion, the scalar field background modifies the standard
spectrum of metric perturbations. Similar conditions for the
avoidance of ghosts and euclidean metrics also exist. These
have been derived in full generality in a very wide class of
Galileon models in [32], whose conventions we follow. These
conditions, namely, (23), (25)–(27) of [32], reduce to rather
simple algebraic constraints in our case, after the necessary
manipulation using the equations of motion (2a)–(3b):

QT > 0 ⇐⇒ 1 +
γx2

2
> 0, (20a)

c2
T ≥ 0 ⇐⇒ 1− γx2

2
≥ 0, (20b)

where QT and cT are defined as their scalar counterparts Qϕ

and c2
ϕ, but stand for the tensor perturbations of the metric
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Figure 2: Plot of the six conditions Qi and ci derived previously,
as a function x. Here γ = 1. Allowed values for the field velocity
are typically |x| < O(γ−1/2), as made clear by drawing similar plots
while varying γ.
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Figure 3: Plot of the six conditions Qi and ci derived previously, as
a function x. Here γ = −1. Allowed values for the field velocity are
typically |x| < O(|γ|−1/2).

field. Similar conditions need to hold for the scalar part of
the metric perturbations, namely:

QS > 0 ⇐⇒ 4 + 6γx2 + 6γ2x4

2 + 3γx2 > 0, (21a)

c2
S ≥ 0 ⇐⇒ 12 + 36γx2 + 19γ2x4 − 12γ3x6 − 3γ4x8

2 + 3γx2 + 3γ2x4 ≥ 0.

(21b)

This whole set of equations is difficult to reduce algebraically
because of the last one. However, one might easily plot the six
functions of x defined previously, and one typically finds that
both positive and negative values for γ are allowed on a given
range |x| < ξγ, where typically ξγ behaves as O(1/

√
|γ|); see,

for example, Figures 2 and 3. Hence, large (transplanckian)
values for |x| are only allowed for small |γ|- 1. This means
that the space for possible velocities of the field x = κϕ̇
needs to be typically subplanckian, unless γ is vanishingly
small. This will be linked to the results found earlier, where
transplanckian initial velocity was required for a successful
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Figure 4: Evolution of the acceleration parameter q = +äa/ȧ2 ver-
sus the scale factor, for γ = 1. Also shown in the graph: the evolution
of the scalar field EoS wϕ and Qϕ and c2

ϕ. The scalar field becomes
superluminal during the transition from a de Sitter Universe to a
to stiff matter-dominated one. However, as discussed in the text, it
remains hyperbolic and, thus, causal. Moreover, it carries positive
energy.
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Figure 5: Evolution of the parameters for metric perturbations
(scalar and tensorial parts), respectively, QS, c2

S , QT , c2
T , as defined in

the text versus the scale factor, for γ = 1. As found theoretically, the
initial high velocity of the field drives both the speed of (scalar and
tensor) metric perturbations to imaginary values, thus signaling
a breakdown of hyperbolicity for metric perturbations (here it
happens when the corresponding curves terminate, since the y axis
is in logarithmic scale).
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Figure 6: Evolution of the acceleration parameter q versus the scale
factor, for γ = −1 with initial condition satisfying |xi| = 0.1 <√
−2/3γ. The field starts with an EoS wϕ ∼ 0.5 and the Universe

only decelerates.

inflation, leading to negative squared speeds c2
S and c2

T in that
epoch. This is shown in Figure 5.

In passing, we note that the claim made in the literature
(see, e.g., [24, 29, 33]) according to which only the subclass
γ < 0 is a ghost-free theory is wrong (at least in the back-
ground considered here). Notice that the scalar field is well
defined although being a phantom in certain regime (in the
case γ < 0), a situation reminiscent of the one discussed in
[18]. However, as shown previously, the Friedmann equation
actually prevents the scalar field to enter this regime.

2.3. Numerical Results. In this section, we quickly show the
cosmological behavior in the John model, for both positive
and negative γ. As discussed before, the negative γ case leads
only to a decelerating Universe: the phantom regime is not
an acceptable initial condition (as it entails an imaginary
Hubble constant), and neither can be reached. Only positive
γ leads to acceleration and to an inflationary phase in the
early Universe, a drawback being the presence of noncausal
behavior for the scalar and tensor perturbations of the met-
ric. These plots (Figures 4, 5, 6, and 7) have been obtained by
numerical integration for an initial condition of ϕ̇i = 10 in
natural units in the case γ = 1, and ϕ̇i = 0.1 for γ = −1.

2.4. Discussion. We have established that kinetically driven
inflation in the Galileon theory involving the simplest cou-
pling to Einstein tensor is not viable. It requires unnatural
transplanckian values for the initial velocity of the field,
which, in turn, implies various instabilities.

This model has anyway another serious drawback. In the
absence of any direct coupling to the Ricci scalar, there is no
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Figure 7: Evolution of the parameters for metric perturbations
(scalar and tensorial parts), respectively, QS, c2

S , QT , c2
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in the text versus the scale factor, for γ = −1. This model with γ < 0
is well behaved but does not accommodate inflation.

reason why the scalar field should be generated at all (even in
presence of cosmological matter fluid). In other words, ϕ =
0 is always a solution in this class of models, whatever the
matter content is. At local scales, this problem appears in the
following way. We checked numerically that a relativistic star
(with flat asymptotic conditions) must be described by pure
GR; that is, ϕ = 0 for all r is the only solution that is regular
at the center of the star. To conclude, the model considered so
far is trivial in the sense that it cannot be different than GR,
except if one imposes nonvanishing initial conditions for the
scalar field at early times.

This acts as a leitmotiv for a more realistic model, studied
in the next section, where we add to the Lagrangian a direct
coupling to the Ricci scalar: F(ϕ)R, namely, the “George”
term in the Fab Four terminology, and where only a particu-
lar function F will be analyzed here.

3. George and John

We now consider the extended model given by

S =
∫ √−gd4x

×
[
R
2κ
(
1 + ε

√
κϕ
)
− 1

2
(
gµν + κγGµν)∂µϕ∂νϕ

]

+ Smat

[
ψ, gµν

]
,

(22)

where ε is a dimensionless, free parameter. Of course this
is not the most general coupling one might consider but
it is anyway reminiscent of Brans-Dicke coupling. Notice
that one might worry that the effective gravitational constant

Geff = G/(1 + ε
√
κϕ) might easily become negative in this

model, meaning that the action chosen here shall trivially
lead to dynamical pathologies for εϕ sufficiently large and
negative. (In fact, what matters in the case γ = 0 is that the
scalar field propagates positive energy in the Einstein frame.
Performing a conformal transformation, this is equivalent to
the usual Brans-Dicke condition 2w + 3 > 0, where w =
ε2(1+ε

√
κϕ) here. Then, our model with γ = 0 would indeed

be pathological if ≤ −(3/(2ε2) + 1)/(ε
√
κ). However the γ

term introduces new terms in the equation of motion for the
scalar field which invalidate such a conclusion in the general
case γ /= 0.).

Such an argument would call in favor of defining a
better coupling function F in the Georges term F(ϕ)R.
However, this would be a misleading conclusion here, since
the John term couples the derivatives of the metric and of
the scalar field, thus impacting their propagation. Therefore,
only the entire set of no-ghost conditions together with
causal propagation conditions (positivity of the squared
velocities) for both the scalar and the metric perturbations
can decide which regions of the configuration space are
well behaved. This is done in the following sections (on a
cosmological background), based on the conditions derived
in Appendix B. In this light, the function F chosen above
is just the simplest one could have chosen and might
furthermore be understood as retaining only the first term
in a series expansion of a more general function F.

The cosmological evolution in this theory is typically a
function of four parameters, the initial value of the field, its
velocity, and of the two dimensionless parameters γ and ε.
It goes beyond the scope of the present paper to provide
a comprehensive study of this parameter space. However
we highlight some essential features of the model thanks to
numerical results displayed in the next section. We provide
both the cosmological evolution and the analysis of causality
and positivity of energy within subclasses of the model,
depending on the signs of γ and ε.

3.1. Cosmological Behavior. The equations of motion in a
flat, empty Universe, derived from (22), are given in Appen-
dix A; see (A.1). We extended the analysis of the no-ghost and
causality conditions to this more general framework, and we
also provide the scalar field EoS; see Appendices A and B.

The numerical results are the following. The case ε = 1
and γ = 1 is pretty similar to the case John alone; see Figures
8 and 9. Inflation thus occurs in the case ε > 0 and γ > 0, but
the acausal behavior still shows up in the very early Universe.
The number of e-folds is a function of the two initial
conditions for the field and its velocity and the dimensionless
parameters ε and γ. A further analysis that goes beyond the
scope of this paper would determine whether the addition
of the George term helps in solving the naturalness problem
encountered with John alone in Section 2.

The case ε = −1, γ = 1 is clearly pathological for the
various no-ghosts and no-acausal conditions, as seen in
Figure 10. Actually this theory leads to a double inflation
scenario (see the acceleration parameter): the Universe tran-
sits from one de Sitter phase to another one and experiences
in between a super acceleration phase. Finally, the case with
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two speeds are negative in the early universe.

negative γ is similar to what we found for John alone: the
theory is well defined, ghost-free, and causal, but fails to
exhibit any acceleration at all; see Figure 10.

3.2. Solar System. In this section we show how to derive
Solar System constraints on the free parameters of the model
“John + George.”

In a first step we solve asymptotically the field equations
in spherical symmetric and isotropic coordinates. The line
element reads

ds2 = −A(r)2dt2 + B(r)2(dr2 + r2d2Ω
)
, (23)

and the equations of motion for the components and for ϕ
are given in Appendix C. The post-Newtonian analysis begins
with the expansion of the metric components as A2 = 1 +∑

i ai/ri, B2 = 1 +
∑

i bi/ri and ϕ = p0 +
∑

i pi/ri and of the
field equations in powers of 1/r. By equating the coefficients
of equal powers of r we find

A2 = 1− rs
r

+
r2
s

2r2 +
ε2p2

1

4M2
pz2r2

+
p1εr2

s

24Mpzr3

− p2
1rs

24M2
pzr3

+
3
4

γε2

M4
pz2r4

− rsγ
8M4

pzr5
,

(24a)

B2 = 1 +
rs
r
− 2

εp1

Mpzr
− p2

1

4M2
pzr2

− γ
4M4

pzr4
, (24b)

where rs = 2GM/c2 is the Schwarzschild radius of the central
body, z = 1 + (εp0/Mp), and γ = γp2

1. In the expansion
previously mentioned, we neglected higher order terms in
rs/r, in ε, in p1/(rMp) and in γ/(rMp) (which means we
suppose these terms to be smaller than 1). We recall that,
in our conventions, γ and ε are dimensionless parameters.
The asymptotic scalar field value p0 = ϕ(r → ∞) (in GeV)
is a free parameter that can eventually be connected to the
cosmological evolution of the scalar field.

The next step then amounts to relate the dimensionless
parameter p1 to the scalar charge of the central body and thus
eventually to the couplings ε and γ. This could be determined
numerically by solving the equations in the interior of the
body [34] with suitable asymptotic and regularity condi-
tions, together with, for example, a polytropic equation of
state for the star’s interior. Such a discussion about possible
spontaneous scalarization goes however beyond the scope of
the present paper and is left for future studies. In this section
we only sketch how solar system constraints can be derived.

The final step consists then in computing observable
effects from the metric Equations (23)–(24b), which show a
deviation from standard General Relativity in the Solar Sys-
tem. A first constraint comes from the anomalous perihelion
shift. First of all, we determine the geodesic equation (to first
order in the metric deviation) to find the planetary equations
of motion (when computing the geodesics, we suppose that
matter is minimally coupled to the metric). The anomalous
term is treated perturbatively to find the perihelion shift with
the Gauss equations, which determines the evolution of the
different orbital parameters due to perturbative forces. In
particular, we derive the rate of change of the argument of
the perihelion ω. Finally, the secular term of the change of
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Figure 10: Cosmological evolution of q, Qϕ, c2
ϕ, QS, c2

S , QT , c2
T with the scale factor. Top: the case ε = −1 and γ = 1 corresponds to a “double

inflation.” The scenario is pathological in many respects: singularity in the scalar field velocity (see (a)) while the scalar field EoS is imaginary.
Also (see (b), the y axis is logarithmic): c2

T < 0 and there are periods for which c2
s < 0 and QT < 0. Bottom: the case ε = 1 and γ = −1.

The model is well behaved but does not accelerate the expansion, that is, as in the John alone model. The universe is actually in a super stiff
regime and hence in a highly decelerating phase.

the argument of the perihelion is exhibited by a time average
(over an orbital period T)

〈
dω
dt

3
= 1

T

∫ T

0

dω
dt

dt. (25)

The results of this whole procedure are given by

〈
dω
dt

3
= − α1

γ
M4

pz
− α2

γε2

M4
pz2

− α3
p2

1

M2
pz

− α4
p1ε
zMp

− α5
p2

1ε2

z2M2
p

,

(26)



Advances in Astronomy 9

Table 1: Values of the different αi coeffcients (27a)–(27e) for planets and constraints given by INPOP10a for supplementary advances of
perihelia (values given in [26]).

α1 (mas/cy/m4) α2 (mas/cy/m4) α3 (mas/cy/m2) α4 (mas/cy/m) α5 (mas/cy/m2) dω/dt (mas/cy) INPOP10a

Mercury 3.2× 10−32 4.85× 10−24 8.83× 10−11 19.4 8.2× 10−4 0.4± 0.6
Venus 7.69× 10−34 2.53× 10−25 9× 10−12 3.89 1.65× 10−4 0.2± 1.5
Earth 1.3× 10−34 5.9× 10−26 2.9× 10−12 1.73 7.33× 10−5 −0.2± 0.9
Mars 1.36× 10−35 9.13× 10−27 6.77× 10−13 6.1× 10−1 2.58× 10−5 −0.04± 0.15
Jupiter 1.51× 10−38 3.56× 10−29 9.06× 10−15 2.81× 10−2 1.19× 10−6 −41± 42
Saturn 5.33× 10−40 2.3× 10−30 1.08× 10−15 6.16× 10−3 2.61× 10−7 0.15± 0.65

with

α1 =
n

16a4

8 + 24e2 + 3e4

(1− e2)4 , (27a)

α2 =
9n

8a3rs

4− 3e2 − e4

(1− e2)4 , (27b)

α3 =
n

8a2

4 + e2

(1− e2)2 , (27c)

α4 =
2n

a(1− e2)
, (27d)

α5 =
n

4ars(1− e2)
, (27e)

where a is the semi major axis of the orbit, e its eccentricity,
and n its mean motion n = 2π/T . The advance of perihelion
of Solar System planets is very tightly constrained by plane-
tary ephemerides. In particular, INPOP10a gives constraints
on supplementary advances of perihelia (see Table 5 of [26]).
Table 1 gives the value of the αi coefficients appearing in
the expression of the advance of perihelion (26) and the
constraints coming from INPOP10a.

The most stringent constraints in the case considered
here are obtained by data from Mercury and read

−3.12× 1031 m4 <
γ

M4
pz

< 6.25× 1030 m4, (28a)

−2.06× 1023 m4 <
γε2

M4
pz2

< 4.12× 1022 m4, (28b)

−1.13× 1010 m2 <
p2

1

M2
pz

< 2.26× 109 m2, (28c)

−5.16× 10−2 m <
p1ε
zMp

< 1.03× 10−2 m. (28d)

These constraints are obtained by considering only devi-
ations on the dynamics (i.e., on the equations of motion).
Other constraints can be derived using propagation of light
rays in the solar system. For example, radioscience exper-
iments include light propagation through a Shapiro-like
term that can be derived from the expression of the metric
(23)–(24b). One way to obtain such constraint is to follow
the strategy and to use the software of [35–37]. The main

idea presented in these papers is to simulate radioscience
observables directly from the space-time metric so that the
software includes both deviations on the dynamics and
deviations on light propagation. In particular, we use this
software to simulate a two-way Doppler link between Earth
and Cassini spacecraft from May 2001 on the metric (23)–
(24b) and to analyze them in GR by fitting the initial
conditions of the spacecraft. The residuals that emerge are
the incompressible signature produced by the alternative
theory considered on Doppler signal for Cassini. Comparing
this signal to the Doppler accuracy of the mission (10−14)
allows us to give order of magnitude of constraints on the
theory. Figure 11 represents the incompressible signatures
produced by parameters entering the metric (23)–(24b) on
Cassini Doppler. The three sharp peaks occurred at solar con-
junctions. The order of magnitude of the residuals observed
in this figure is larger than Cassini accuracy, which means
that the values of the parameters should be smaller than the
indicated values.

We run a set of simulations with different values for the
parameters appearing in the metric (23)–(24b). Figure 12
represents the evolution of the maximal Doppler residuals
obtained in Cassini signal as function of metric parameters.
Requiring the residuals to be lower than Cassini accuracy
(10−14) gives the boundary values

∣∣∣∣∣
γ

M4
pz

∣∣∣∣∣ =
∣∣∣∣∣∣

γp2
1

M4
p

(
1 +

(
εp0/Mp

))
∣∣∣∣∣∣
< 3.65× 1026 m4, (29a)

∣∣∣∣∣
γε2

M4
pz2

∣∣∣∣∣ =

∣∣∣∣∣∣∣
γp2

1ε2

M4
p

(
1 +

(
εp0/Mp

))2

∣∣∣∣∣∣∣
< 1.15× 1026 m4,

(29b)

∣∣∣∣∣
p2

1

M2
pz

∣∣∣∣∣ =
∣∣∣∣∣∣

p2
1

M2
p

(
1 +

(
εp0/Mp

))
∣∣∣∣∣∣
< 3.53× 108 m2, (29c)

∣∣∣∣∣
p1ε
zMp

∣∣∣∣∣ =
∣∣∣∣∣∣

p1ε
Mp

(
1 +

(
εp0/Mp

))
∣∣∣∣∣∣
< 5.56 × 10−2 m.

(29d)

It should be noted that radioscience constraints are sig-
nificantly better for γ/M4

pz and p2
1/M2

pz as compared to
perihelia advances. On the other hand, the constraint from
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Figure 11: Incompressible anomalous signal due to the different terms in the metric (23)–(24b) on Cassini Doppler signal with indicated
values. The produced residuals are larger than Cassini accuracy (which is 10−14); therefore these values for the parameters are ruled out.

the ephemerides on γε2/M4
pz

2 is significantly better while the
constraint on p1ε/zMp is of the same order of magnitude.

We thus see that solar systems tests of GR will put
severe constraints on the free parameters of the model. As
already stressed; however, the full numerical study of Solar’s
interior is required, while a thorough analysis of possible
spontaneous scalarization (depending also on the Georges
coupling) is necessary.

4. Conclusions

In this paper, we have explored some phenomenology asso-
ciated with a subset of the “Fab Four” scalar-tensor theory.
The philosophy behind this preliminary work is that we
cannot forget about solar system constraints on the param-
eter space, even when we deal with inflationary solutions.
Traditional models of inflation rely upon the fact that the
inflaton field decays, at some stage, into ordinary matter
through some reheating mechanism. Therefore, the scalar-
tensor nature of inflationary gravity is lost very soon in the
evolution of the Universe. On the opposite, in the models
studied in this paper the scalar field should live and show
its effects until nowadays. Therefore, the parameter space
determined by constraints from cosmological observations
must overlap with the one determined by solar system tests.
The “Fab Four” theory has many parameters with a very rich
phenomenology, and with this paper we begin an ambitious
plan for its systematic study.

In this work, we contained ourselves to the cases John
and John plus George. The John case represents a theory
with a nonminimal derivative coupling between scalar field
and Einstein tensor. It was already known that this model

admits inflationary solutions with a graceful exit. Here, we
constrained the coupling constant γ by showing that it must
be positive in order to have successful inflation. If this
is the case, however, very unnatural initial conditions are
required. In particular the field velocity, which is related to
the energy density, must be huge compared to the Planck
scale, rendering the theory no longer trustworthy. Negative
values for γ are permitted but do not allow for inflation
while ghost states might appear. The most serious problem
however comes from the fact that the model turns out to be
trivial when one tries to solve the equations of motion inside
a compact object. Indeed, we found that the only solution
with a finite field at the centre is ϕ = 0 everywhere.

These facts have convinced us to extend the theory to
include the term named “George,” which is nothing but a
coupling between the scalar field and the Ricci scalar. The
parameter space is now two-dimensional, and we solved
numerically the equations of motion for a cosmological
background. The main result is that the sign of the two
coupling constants must be positive in order to have an
inflationary phase with graceful exit. We reserve the analysis
of the naturalness problem, that is, the need for extreme
initial conditions, for future work. We also performed a post-
Newtonian analysis of the theory by solving the equations
of motion by imposing static and spherical symmetry and
expanding the fields for large radial distance. The aim was
to put some constraint on the free parameters, which now
include also the asymptotic value of the scalar field and the
scalar charge, which now makes sense as there is nontrivial
solution also for the interior of a compact object. The results
still allow for a large parameter space; therefore future work
is necessary in order to improve the constraints.
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Figure 12: Representation of the maximal Doppler residuals signal due to John + George modification of gravity parametrized by the four
parameters in the metric (23)–(24b) for the Cassini mission between Jupiter and Saturn. The red (dashed) lines represent the assumed
Cassini accuracy.

As mentioned previously, this paper is the first of a
series that aim at a systematic study of the “Fab Four”
phenomenology, in order to isolate the experimentally viable
sectors of the theory. Besides these aspects, there are several
issues that deserve further investigations. For example, if
these models truly lead to inflationary cosmology and grace-
ful exit, we will need an alternative reheating mechanism.
Maybe, the complexity of the theory acts as an effective
potential for the scalar field, which resembles the usual
power-law forms of usual inflation. But if this is not the
case, then we need to find alternative explanations. Another
aspect that needs to be studied is the relevance of these
modifications of gravity in terms of late-time cosmology,
as we expect modifications driven by the scalar field. This
would include, at the background level, the study of tracking
solutions and of the convergence mechanism towards GR, if
any. This has not yet been addressed in the literature for the
John Lagrangian (but see [38]). The study of cosmological
perturbations, in particular CMB spectra and large-scale
structures, might then further reduce the parameter space.
Finally, gravitational effects might be relevant at galactic

scales and give rise to alternative explanations to the anoma-
lous galactic rotation curves.

In conclusion, we believe that the recent developments in
scalar-tensor theories of gravity have opened the door to new
and intriguing research directions, and we are confident that
many interesting results will be obtained in the near future.

Appendices

A. Cosmological Equations

In terms of the reduced variables x(t) = κϕ̇, y(t) = √κα̇ and
z(t) = 1 + ε

√
κϕ(t), the equations of motion for a flat and

empty universe derived from action Equation (22) are

6εxy + x2(−1 + 9γy2) + 6y2z = 0,

4x
(
ε + γ

√
κẋ
)
y + x2(1 + 3γy2 + 2γ

√
κ ẏ
)

+ 6y2z + 2
√
κ
(
εẋ + 2 ẏz

)
= 0,

3y
(
x − 2εy − 3γxy2)

+
√
κ
(
ẋ − 3γẋy2 − 3

(
ε + 2γxy

)
ẏ
)
= 0,

(A.1)
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which can be decoupled in the following way:

ẋ = −3x
[
εx + 4

(
ε2 + γx2

)
y + 7εγxy2

]
+ 6y

(
−2x + εy

)
z

2κ1/2
(
3ε2 + 12εγxy + γx2

(
1 + 9γy2

)
+
(
2− 6γy2

)
z
)

ẏ =
(
2εxy

(
1− 15γy2) + x2[−1 + 3γy2(4− 9γy2)]

−6y2(2ε2 + z − 3γy2z
))

×
(

2κ1/2[3ε2 + 12εγxy + γx2(1 + 9γy2)

+
(
2− 6γy2)z

])−1
.

(A.2)

The scalar field EoS is given by

ωϕ = −x
(
3γx2 + 2z

)N
D

(A.3)

with

N = 6x
(
γx2 − z

)(
3γx2 + 2z

)2
+ 6
√

3ε3

×
√
x2
(
3ε2 + 3γx2 + 2z

)(
7γx2 + 2z

)

− 18ε4(7γx3 + 2xz
)
− 2
√

3ε
√
x2
(
3ε2 + 3γx2 + 2z

)

×
(
33γ2x4 + 16γx2z − 4z2)

+ 9ε2(15γ2x5 + 4γx3z − 4xz2)

D =
[
−3εx +

√
3
√
x2
(
3ε2 + 3γx2 + 2z

)]2

×
[
18γ3x6 + 30γ2x4z + 24γx2z2 + 8z3

+ 6
√

3εγx
(
γx2 + 2z

)√
x2
(
3ε2 + 3γx2 + 2z

)

+3ε2(3γ2x4 + 4z2)].
(A.4)

B. Ghost Conditions

The coupling to the Ricci scalar, “George,” does not change
the analysis made for the scalar field sector of the theory.
Thus the two following conditions still hold:

Qϕ =
1
2
(
1− 3γy2) > 0

c2
ϕ =

1− γ
(
3y2 + 2

√
κ ẏ
)

1− 3γy2 ≥ 0.
(B.1)

For the metric perturbations, we derive, based on equations
(23), (25), (26), and (27) of [32]

QT > 0 =⇒ z +
γx2

2
> 0,

c2
T ≥ 0 =⇒ z − γx2

2
≥ 0

(B.2)

for the tensorial part, and also

QS > 0 =⇒ 3ε2 + 12εγxy + 9γ2x2y2 + 2z

+ γ
(
x2 − 6y2z

)
> 0

(B.3)

for the scalar part of the metric perturbations, while their
squared speed c2

s ≥ 0 leads to

2y

(
γx2

2
+ z

)2(
εx + 3γx2y + 2yz

)

+ 2x
(
ε + γ

√
κẋ
)(

γx2 + 2z
)(
εx + 3γx2y + 2yz

)

+
1
2
(
γx2 − 2z

)(
εx + 3γx2y + 2yz

)2

− 2
√
κ

(
γx2

2
+ z

)2

×
[
ε
(
ẋ +

2xy√
κ

)
+ 3γx

(
2ẋy + xẏ

)
+ 2 ẏz

]
≥ 0.

(B.4)

C. Spherically Symmetric Equations of Motion

We derive the equations of motion for the action (22) with
a spherically symmetric and static field configuration. We
consider the metric (23), and we replace its components
in the Lagrangian. With the Noether theorem, we find the
equations of motion for the fields A, B, R, and ϕ. Finally, we
impose the gauge R = r, and we find three equations plus a
Hamiltonian constraint that read

0 =
(

2ϕ′2Br2B′′ + 4ϕ′B2rϕ′′ + 4ϕ′Br2ϕ′′B′

−5ϕ′2B′2r2 + 2ϕ′2B2
)
γκ2

+
(
− 4B3ϕB′′r2 − 2B3B′r2ϕ′ − 4B4ϕ′r − 8B3ϕB′r

−2B4r2ϕ′′ + 2B2ϕB′2r2
)
εκ1/2

− 8B3rB′ − 4B3r2B′′ + 2B2r2B′2 − ϕ′2κ2B4r2,

0 =
(

4ϕ′2B′ArB + 2ϕ′2B2A− 3ϕ′2B′2Ar2

+ 4ϕ′Br2ϕ′′AB′ + 8ϕ′2B2rA′ + 2ϕ′2B′A′Br2

+ 2ϕ′2A′′r2B2 + 4ϕ′B2rϕ′′A + 4ϕ′A′r2ϕ′′B2

+2ϕ′2ABr2B′′
)
γκ2

+
(
−4B3AB′r2ϕ′ + 2B2AϕB′2r2 − 8B4Aϕ′r

− 8ϕrA′B4 − 8B3AϕB′r − 4B3AϕB′′r2

− 4ϕB′A′r2B3 − 6A′r2ϕ′B4 − 4ϕA′′r2B4

−4B4Ar2ϕ′′
)
εκ1/2

− 4B3Ar2B′′ − 4r2A′′B4 − 8rA′B4 − 8B3ArB′

− 4A′r2B′B3 + 2B2Ar2B′2 − ϕ′2κ2B4Ar2,
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0 =
(

4ϕ′A′B3 + 4ϕ′AB′B2 + 4ϕ′B′Ar2B′′B

+ 4ϕ′B′′A′r2B2 + 4ϕ′′rA′B3 + 4ϕ′rA′′B3

+ 4ϕ′′B′A′r2B2 + 8ϕ′B′A′rB2 + 4ϕ′B′′ArB2

+ 4ϕ′′B′ArB2 − 4ϕ′B′2ArB − 6ϕ′B′2A′r2B

−6ϕ′B′3Ar2 + 4ϕ′B′A′′r2B2 + 2ϕ′′B′2Ar2B
)
γκ

+
(
− 8B′ArB4 − 4B5rA′ − 4r2AB′′B4 − 2B′A′r2B4

−2B5r2A′′ + 2B′2Ar2B3
)
εκ−1/2

+ 2A′r2ϕ′B5 + 2B5r2ϕ′′A + 4ϕ′B5Ar

+ 2B′r2ϕ′AB4,

0 =
(

2ϕ′2A′B2 + 2rϕ′2A′′B2 − 6ϕ′2B′2Ar

+ 4ϕ′Aϕ′′B2 − 2ϕ′2B′AB − 4ϕ′2A′B′rB

+ 4ϕ′rB′Aϕ′′B + 4rϕ′A′ϕ′′B2 + 2ϕ′2rB′′AB
)
γκ2

+
(
−4ϕB′AB3 + 4rϕB′2AB2 − 4B4rA′ϕ′

− 4B4ϕA′′r − 4B4ϕ′′Ar − 4B4ϕA′

−4B4ϕ′A− 4ϕB′′ArB3
)
εκ1/2

+ 4rB′2AB2 − 4rAB′′B3 − 4B′AB3

− 4B4A′ − 4B4A′′r − 2B4ϕ′2Arκ2.

(C.1)
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