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Abstract

We consider brane-world models with a Schwarzschild–AdS black hole bulk. In the particular case of a flat black hole horizon
geometry, we study the behaviour of the brane cosmological equations when T-duality transformations act on the bulk. We find
that the scale factor is inverted and that either the Friedmann equation or the energy conservation equation are unchanged.
However, these become both invariant if we include a tension in the brane action. In this case, the T-duality in the bulk is
completely equivalent to the scale factor duality on the brane.
 2004 Published by Elsevier B.V.

1. Introduction

One important lesson learned from string theory is
that even though two or more theories appear to be
very different, they might actually be the same theory
seen from different points of view. With this spirit in
mind, in this Letter we consider two aspects of string
cosmology which have attracted the attention of many
researchers in the last decade: pre-Big Bang scenario
and brane-world models. The former is a theory
essentially based on the O(d,d) symmetry group of
certain cosmological backgrounds which appear in
low energy string theory (for a comprehensive review
see [1]). One of the element of the symmetry group
manifests itself through the invariance of the equations
of motion under the inversion of the scale factor. This
element corresponds to a T-duality transformation
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along the time direction, also known as scale factor
duality. Together with the time-reversal symmetry
of the field equations, scale factor duality smoothly
connect a pre-Big Bang phase of growing curvature to
the present expanding phase of decreasing curvature.
The transition between the two phases is expected to
occur in a non-perturbative string theory regime, in
such a way that the standard cosmology is recovered
after the Big Bang. This requirement is often called the
graceful exit problem, since the details are still under
investigation.
The second idea consist in considering our Uni-

verse as a 3-dimensional surface embedded in a
5-dimensional bulk space–time (good reviews can be
found in [2,3]). Matter is confined on the brane, to-
gether with all the fundamental forces except grav-
ity, which is a 5-dimensional field. Nevertheless, grav-
ity on the brane is approximately Newtonian, and this
property holds even when the extent of the extra-
dimension is infinite [4]. Among the appealing fea-
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tures of this model there is also a possible explana-
tion for the huge hierarchy between the electro-weak
scale and the Planck scale. Moreover, if the brane
is not static, an observer living on it then observes
an effective 4-dimensional cosmology described by a
modified Friedmann equation, which, under appropri-
ate conditions, matches with the standard one at late
times.
A connection between brane-world models and

pre-Big Bang scenario is expected for at least one
reason, i.e., symmetry. Indeed, on one hand we have
the pre-Big Bang scenario which is based on a large
O(d,d) symmetry group acting on the action. On
the other hand, we have branes embedded in bulks
which, in most cases, have themselves a large number
of isometries. For example, in the Randall–Sundrum
model proposed in [4], the brane glues together two
slices of anti-de Sitter space, i.e., a maximally sym-
metric space. Therefore, it could be interesting to see
what happens to the effective cosmology on the brane
under the action of the isometry group on the bulk.
As a concrete example, in this Letter we examine two
space–times which are related by T-duality, and which
can host a brane with a flat FLRW induced metric.
As we will shortly see, the duality transformations on
the bulk induce the inversion of the scale factor on the
brane. This simple fact leads to think of a possible con-
nection with the scale factor duality of pre-Big Bang
scenario. We will see that this connection exists, pro-
vided that some conditions are satisfied by the brane
matter Lagrangian.
In Section 2, we briefly introduce two space–

times related by T-duality in the context of type IIA
and type IIB string theory. Their compactification to
five dimensions leads to two black hole metrics, one
of these being the well-known AdS–Schwarzschild
black hole with toroidal horizon. In Section 3 we
review the cosmological equations induced on the
brane moving in the AdS–Schwarzschild black hole
bulk. These are then compared to the ones obtained
on the brane embedded in the dual bulk in Section 3.
Finally, in Section 4 we examine a simple solution
to the dual Friedmann equations, and we conclude
with a summary and few remarks. We also add an
appendix, where we show how the Lanczos–Israel
junction conditions in string frame can be obtained
from the ones written in Einstein frame by means of
a conformal transformation.

2. The T-dual backgrounds

We consider the generalization of the AdS5 × S5

compactification of type IIB string theory, obtained by
replacing the AdS5 space–time with a 5-dimensional
topological black hole ([5], see also [6,7]). The 10-
dimensional metric is

ds2 = −f (r) dt2 + f (r)−1 dr2

(1)+ r2

l2
dΣ23 + l2 dΩ2

5 ,

and the function f (r) is defined by

(2)f (r) = k + r2

l2
− µ

r2
,

where l and µ are constants. The parameter k deter-
mines the geometry of the horizon and from now on
we set k = 0, i.e., we consider only flat (or toroidal)
horizons with metric dΣ23 = δij dxi dxj . The metric
(1) must be supplementedwith an anti-self Hodge dual
5-form

(3)F (5) = −$F (5),

in order to satisfy the fundamental equation [5]

(4)RMN = 1
6 · 42FM

A2A3A4A5FNA2A3A4A5 .

The 10-dimensional space–time (1) can be easily com-
pactified, yielding a 5-dimensional AdS–Schwarz-
schild topological black hole with flat or toroidal hori-
zon [8]. The metric reads

(5)ds2 = −f (r) dt2 + f (r)−1 dr2 + r2

l2
δij dxi dxj ,

where now l is related to the 5-dimensional cosmolog-
ical constant byΛ= −(6/l2), and µ is the mass of the
black hole. These fields are solutions to the equations
of motion derived from the effective action

(6)(5)S = 1
2

∫

dx5
√

g [R − 2Λ].

In [9], it was shown that the solutions (1) and (3)
can be mapped by T-duality transformations into new
low energy solutions of type IIA or IIB string the-
ory. In particular, by applying three T-duality transfor-
mations along the horizon coordinates, one obtains a
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type IIA background with metric and dilaton given by

ds2 = −f (r) dt2 + f (r)−1 dr2

(7)+ l2

r2
δij dxi dxj + l2 dΩ2

5 ,

(8)e−2φ = r6

l6
,

and forms

(9)F (2)
µ1µ2 = 4r3

l4
εµ1µ2 , µ $= xi,

(10)F
(8)

A1...A8
= −4r

3

l4
εA1...A8, Ai $= t, r.

In addition to these, a B-field can be switched on
by boosting the metric (1) along one of the horizon
direction before applying T-duality [9]. For simplicity,
here we set the B-field to zero. These fields solve the
equations of motion derived from the type IIA low
energy string action

S = 1
2

∫

d10x
√

−G

(11)×
{

e−2φ[R + 4(∇φ)2
]

− 1
4
FMNFMN

}

,

which can be easily compactified to 5 dimensions.
Indeed, if we assume that S5 has unit volume, we then
find

S = 1
2

∫

d5x
√−g

(12)

×
{

e−2φ
[

R + 4(∇φ)2 + 20
l2

]

− 1
4
FµνF

µν

}

,

where

gµν dxµ dxν = −f (r) dt2 + f (r)−1 dr2

(13)+ l2

r2
δij dxi dxj ,

(14)Ftr =
4r3

l4
, φ = −3 log r

l
.

3. The brane-world

We now examine the behaviour of a 4-dimensional
brane radially moving in the 5-dimensional compacti-
fications of these T-dual backgrounds. In the case of a

bulk with metric (5), the 4-dimensional cosmological
equations are well-known [2,3]. If we add to the bulk
action (6) a boundary term of the form

(15)Sbrane =
∫

dx4
√

h(L − K),

where L and K are, respectively, the matter La-
grangian and the trace of the extrinsic curvature, and if
assume a Z2 symmetry about the brane, then we must
impose the Lanczos–Israel junction conditions

(16)Kµν = −1
2

(

τµν − 1
3
τhµν

)

.

This equation relates the branematter stress tensor τµν
to the extrinsic curvatureKµν defined by

(17)Kµν = ∇µnµ,

where nµ is the unit vector normal to the brane and
pointing into the bulk. The stress tensor components
are τµ

ν = diag(−ρ,p,p,p), where ρ and p are,
respectively, the energy density and pressure. The
vector nµ is normalized so that the induced metric on
the brane is given by

(18)hµν dxµ xν = −dτ 2 + a(τ )2δij dxi dxj ,

where a(τ ) = r(τ )/ l is the scale factor and τ is an
affine parameter, usually identified with the cosmic
time measured on the brane. With these settings, we
can combine the (ττ ) and the (ij) components of
Eq. (16) and obtain [2,3]

(19)
ṙ2

r2
= ρ

2

36
− 1

l2
+ µ

r4
,

(20)ρ̇ = −3 ṙ

r
ρ(ω+ 1),

where the dot stands for differentiation with respect τ ,
and where we assume that p = ωρ. These expressions
can be interpreted respectively as the Friedmann and
the energy conservation equations by a 4-dimensional
observer living on the brane, provided that we define
the Hubble function

(21)H = ȧ

a
= ṙ

r
.

We see that the Hubble function in Eq. (19) is
proportional to ρ, instead of √

ρ, as in standard
cosmology. However [2,3], if we add a tension V to
the Lagrangian of the brane action (15), then ρ →
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ρ + V , and the Friedmann equation becomes

(22)H 2 = 1
18

Vρ + ρ
2

36
+ V 2

36
+ µ

r4
− 1

l2
.

Therefore, when V ' ρ, we can neglect the term
proportional to ρ2 and recover the standard cosmology
up to the so-called dark radiation term µ/r4, and the
constant

(23)C = V 2

36
− 1

l2
.

If we set ω = −1 then, according to Eq. (20), ρ
is constant. If we also set C = 0 (fine-tuning), then
µ must necessarily vanish [12], and we recover the
standard Randall–Sundrum scenario with one (static)
brane [4].
The metrics (5) and (13) are related by the inversion

of the (ij) components. It is then clear that if we
embed a 4-dimensional brane in the dual bulk space–
time (13), then the induced metric will be

(24)ds2 = −dτ 2 + ã(τ )2δij dxi dxj ,

where now

(25)ã(τ ) = l

r(τ )
= 1

a(τ )

is the new scale factor. Therefore, the T-duality trans-
formations on the bulk generate the inversion of the
scale factor of the induced metric on the brane. The
natural question is then how the effective 4-dimen-
sional cosmology is affected. In particular, if the cos-
mological equations are unchanged, then the T-duality
symmetry of the bulk corresponds to a scale factor du-
ality symmetry on the brane. In the next section we
will see that this can indeed be the case.

4. The dual brane-world

The dual fields (13) and (14) are solutions of the
equations of motion derived from the action (12)
written with respect to the string frame. Therefore,
in order to study the brane cosmological equations,
we need the junction conditions in string frame which
read (see Appendix A)

(26)

Kαβ = −1
2
Ω (q+1)

(

ταβ − τ
3
hαβ

)

− hαβΩ
−1nµ∂µΩ,

(27)nµ∂µ = −1
2
Ω (q+1) ∂ξ

∂φ
τ,

where Ω2 is the conformal factor which relates string
and Einstein frame, and q determines the coupling of
the brane Lagrangian to the induced metric. In our
case, the action (12) can be transformed in Einstein
frame through the conformal rescaling

(28)gµν = e4φ/3g̃µν =Ω−2g̃µν,

hence, according to our notations,

(29)Ω = e−2φ/3.

To determine the unit normal vector nµ, we first
impose that the brane moves along a radial geodesics
with velocity uµ = (ṫ , ṙ,0,0,0), where the dot stands
for differentiation with respect to the affine parameter
τ [2,3]. The bulk metric (13) can then be written as

ds2 = −
[

f (r)ṫ2 − f (r)−1ṙ2
]

dτ 2

(30)+ ã2(τ )δij dxi dxj ,

and, if we impose the normalization

f (r)ṫ2 − f (r)−1ṙ2 = 1,

we then obtain the induced metric (24). Finally, the
condition nµuµ = 0 leads to nα = (ṙ,−ṫ ,0,0,0).
With these settings, the (ij) and (ττ ) components of
Eq. (26) read, respectively,

(31)
1
ṙ

d

dτ

√

f + ṙ2 + 4
r

√

f + ṙ2 = −1
2
ωρe− 2

3 (q+1)φ,

(32)
1
r

√

f + ṙ2 = ρ
6

e− 2
3 (q+1)φ,

where we also assumed that τµ
ν = ρ diag(−1,ω,ω,ω).

By squaring the (ττ ) components and using the defin-
ition (2) with k = 0, we find

(33)
ṙ2

r2
= ρ

2

36
e− 4

3 (q+1)φ − 1
l2

+ µ

r4
.

Then, with the explicit form of the dilaton (14) and
Eq. (33), the (ττ ) component of Eq. (26) can be
written as

(34)ρ̇ = −ρ ṙ

r
(3ω+ 2q + 7).

Finally, the junction condition (27) yields

(35)
∂ξ

∂φ
= 1
1− 3ω .
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These conditions are valid if we suppose that the bulk
2-form does not couple to the matter on the brane.
Consequently, there are no junction conditions to be
imposed on the bulk form field [13]. According to the
definitions (21) and (25), the Hubble function is

(36)H̃ =
˙̃a
ã

= − ȧ

a
= −H = − ṙ

r
.

Then, Eqs. (33) and (34) reads, respectively,

(37)H̃ 2 = ρ
2

36
e− 4

3 (q+1)φ − 1
l2

+ µ

l4
ã4,

(38)ρ̇ = ρH̃ (3ω+ 2q + 7).
We see that, for q = −1, the Friedmann equation

(33) is the same as (19), while, for q = −2, the
conservation equation (34) is equal to Eq. (20). Hence,
under T-duality transformation on the bulk, either
the Friedmann equation or the energy conservation
equation are unchanged on the brane. In particular,
Eq. (34) describes the non-conservation of the energy
on the brane from a point of view of an observer in
the bulk. To measure the eventual energy flow from
the point of view of an observer living on the brane,
we must write this equation in the conformal frame,
usually called the Jordan frame, related to the metric
γµν (see Appendix A and [2]). Usually, through the
conformal transformation

(39)γµν = e2ξ(φ)hµν ,

we “distort” the brane in the bulk in such a way that
the dilaton flux is tangential to brane itself, hence its
contribution to the energy density vanishes.1 In the
case of branes embedded in asymptotically AdS bulks
with dilaton field, one always find that, in the Jordan
frame, the energy is conserved [2,3]. However, this
does not happen in our model. Indeed, if we follow
[2] and we replace

ρ→ e−4ξ(φ)ρ, ã → eξ(φ)ã,

(40)dt → eξ(φ) dt,

in Eq. (38), we obtain

(41)ρ̇ + ρH̃
[

3ξ ′

1+ 3ξ ′ (4+ β) − β
]

= 0,

1 Thanks to P. Watts for suggesting this interpretation.

where ξ ′ = ∂φξ(φ) and β = 3ω + 2q + 7. By using
Eq. (35), we find that

3ξ ′

1+ 3ξ ′ (4+ β) − β = 3(ω+ 1)

(42)⇐⇒ q = −1
2
(7+ 6ω).

This means that the energy on the brane, measured
with respect to the Jordan frame, is not in general
conserved. The reason for this “anomaly” becomes
clear once we remember that the junction conditions
depend on the induced metric hαβ which is related to
the bulk metric. The latter is a solution to the bulk
equations of motion which also include the 2-form.
Hence, even if we suppose that it does not couple to
the matter, the 2-form does affect the brane dynamics
through the bulk equations of motion. In other words,
the 2-form flux through the brane does not in general
vanish, even in the Jordan frame.
This suggests that, if we chose a more appropriate

brane Lagrangian, the energy might be conserved in
the Jordan frame or, more importantly, even in the
conformal frame defined by hµν . In this case, both
cosmological equations would be invariant under T-
duality in the bulk. Therefore, we generalise the brane
Lagrangian by considering the total energy density
on the brane as sum the of the brane matter energy
density and a time-dependent tension, i.e., we set ρ =
ρ̃ + V (τ ). It is then easy to show that Eq. (34) takes
the form

(43)˙̃ρ = −3ρ̃ ṙ

r
(ω+ 1) = ρ̃H̃ (ω+ 1),

provided that we use the relation φ̇ = 3H̃ and we
assume that

(44)V (τ ) = eaφ,

where a is an arbitrary constant. With this form,
the time-dependent tension can also be interpreted as
an effective dilatonic potential on the brane (similar
solutions were found in [10], see also [11]). Also, note
that the Friedmann equation (33) assume the same
form of Eq. (22). Therefore we conclude that, when
q = −1 and when there is a dilatonic potential on the
brane, both brane cosmological equations are invariant
under T-duality in the bulk.
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5. Duality of brane dynamics

According to the results of the previous section, to
each expanding solution to the Friedmann equation
on the brane, there exists a dual contracting one, in
strict analogy with the pre-Big Bang scenario. As an
example, let us consider the solutions to Eqs. (19) and
(20) for µ = 0. In this case, Eq. (20) can be easily
solved, yielding

(45)ρ = ρ0a−3(ω+1),

ρ0 being an arbitrary constant. If we assume that the
total energy density on the brane is given by ρtot =
V + ρ and impose the fine-tuning 6/l = V , then the
solution to Eq. (22) reads

(46)ã−3(w+1) = a3(ω+1) = At + Bt2,

where A and B are positive constants [2]. These
solutions are valid also when µ $= 0, provided that t
is large. Indeed, in this case the scale factor a = r/ l

of the type IIB background is large and the mass term
in Eq. (22) is negligible. This situation corresponds to
a brane moving in the asymptotic region of the black
hole, where the space–time is locally anti-de Sitter
[12]. In the type IIA background, for large values of t ,
the scale factor becomes very small, and in Eq. (37)
the mass term tends again to zero. Since φ = 3 log ã,
we see that, for large t , we have large values of
the effective string coupling e−2φ . Hence, the brane
moving in the dual background of type IIA enters the
strong coupling regime at late times (i.e., large r). In
the type IIB background there is no dilaton, however,
a breakdown of the model occurs when the brane
approaches the horizon and the tension diverges [12].
Therefore, even in this simplified model we can see the
duality between physics at small and large distances
typical of T-duality.

6. Conclusions

We have considered two 4-dimensional branes
moving respectively in two bulks related by T-duality.
The branes have reciprocal scale factors and we found
that either the effective Friedmann equation or the en-
ergy conservation equation are unchanged, according
to which form of the coupling between brane matter
and induce metric we choose. However, we showed

that if we add to the brane Lagrangian a dilatonic po-
tential, then it is possible to have both equation invari-
ant under duality. Therefore, we have an exact equiv-
alence between scale factor duality on the brane and
T-duality in the bulk. To obtain these result we have
used the junction conditions in string frame obtained,
by means of a conformal transformation, from the
junction conditions in Einstein frame. Finally, we an-
alyzed a simple solution to the Friedmann equation,
and we showed how the typical correspondence of T-
duality between large and small distances emerges in
the brane dynamics.
These results may have interesting applications in

the context of the pre-Big Bang scenario, in particular
in relation with the graceful exit problem. Also, the
equivalence between bulk and brane duality might be
extended by means of non-Abelian T-dualities [20,21]
or to more general string backgrounds. We think that
all these aspects deserve further investigations.
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Appendix A. Junction conditions in string frame

The Lanczos–Israel matching conditions in string
frame have been found in various works (see, for
example, [14,15]), by extremizing the bulk action
implemented by the appropriate boundary terms. Here,
we propose a much simpler approach based on the
conformal mapping between the action written in
Einstein frame and in string frame. Consider the
generic action in Einstein frame with a boundary term

S̃ = 1
2

∫

dx5
√

g̃

{

R̃ − 4
3
(∂φ)2 + L̃bulk

}

(A.1)+
∫

dx4
√

h̃ L̃brane,

where L̃bulk and L̃brane denote generic matter La-
grangians in the bulk and in the brane, respectively,
φ is the dilaton field, h̃µν = g̃µν − ñµñν is the induced
metric on the brane, and ñµ is the unit vector normal to
the brane. By assuming Z2 symmetry about the brane,
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the junction conditions to be satisfied by the metric
read [17–19]

(A.2)K̃µν = −1
2

(

τ̃µν − 1
3
τ̃ h̃µν

)

,

where τ̃µν is the stress tensor of the brane matter, and
K̃µν = ∇̃µñν is the extrinsic curvature of the brane.
We also assume that the matter fields confined on the
brane are coupled to a metric γ̃µν , conformally related
to the induced metric through

(A.3)γ̃αβ = e2ξ̃(φ)h̃αβ .

Then, the dilaton field must satisfy the junction condi-
tion [2]

(A.4)ñµ∇̃µφ = −1
2
∂ξ̃

∂φ
τ̃ .

The action can be written in string frame by means of
a conformal rescaling of the metric

(A.5)g̃µν =Ω2gµν,

where Ω is in general a function of the dilaton field.
If we rescale the induced metric and the unit normal
vector according to

(A.6)h̃µν =Ω2hµν, ñα =Ωnα,

then we ensure that nµnµ = 1 and that hα
β is a

projection operator [16]. Note also that h̃α
β = hα

β ,
and hµν = gµν − nµnν . By using the transformation
law for the connection coefficients [16]

Γ̃ αµν = Γ αµν +Ω−1

(A.7)
×

(

δαµ∂νΩ + δαν∂µΩ − gµνg
αβ∂βΩ

)

,

we find that the extrinsic curvature in string frame
reads

(A.8)K̃αβ =ΩKαβ + hαβn
µ∂µΩ .

In order to write the right-hand side of Eq. (A.2) in
string frame, we need to know how the Lagrangian
L̃brane transforms under the conformal rescaling (A.5).
The transformation will in general depend on the field
content of the brane Lagrangian, and here we simply
suppose that, under the transformation (A.5),

(A.9)L̃brane =ΩqLbrane,

for some real number q . Consequently, if we define in
Einstein frame

(A.10)τ̃µν = 2
√

h̃

δ
(

√

h̃ L̃
)

δh̃µν

,

then the conformal transformation of the brane stress
tensor reads

(A.11)τ̃µν =Ω (q−2)τµν .

Alternatively [2], we can define the brane stress tensor
in Einstein frame according to the conformal metric
γ̃αβ (often called the Jordan frame) to which brane
matter fields couple to, i.e.,

(A.12)(γ )τ̃µν = 2
√

γ̃

δ
(

√

h̃ L̃
)

δγ̃µν
.

Then, according to Eq. (A.5), in Einstein frame the two
stress tensors (A.10) and (A.12) are related by

(A.13)(γ )τ̃µ
ν = e−4ξ̃(φ)τ̃µ

ν .

In string frame, we have the analogous equivalence

(A.14)(γ )τµ
ν = e−4ξ(φ)τµ

ν,

provided that we impose

(A.15)γαβ = e2ξ(φ)hαβ .

Hence, consistency requires that

(A.16)γ̃αβ = e2ξ̃(φ)Ω2γαβe
−2ξ(φ).

If we make the choice ξ̃(φ) = ξ(φ), then γ̃µν and h̃µν

transform in the same way under the rescaling (A.5),
i.e.,

(A.17)γ̃µν =Ω2γµν ⇐⇒ h̃µν =Ω2hµν .

With these settings, it is then easy to show that
Eqs. (A.2) and (A.4) in string frame read

Kαβ = −1
2
Ω (q+1)

(

ταβ − τ
3
hαβ

)

(A.18)− hαβΩ
−1nµ∂µΩ,

(A.19)nµ∂µ = −1
2
Ω (q+1) ∂ξ

∂φ
τ.

If we set q = −4 and we define the extrinsic curvature
as Kµν = −∇µnν , we then recover the junction
conditions found in [14]. Alternatively, for q = −1
and L replaced with −L/2, our results match with the
ones obtained in [15].
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